

Exercise Sheet n°10

We denote by \mathfrak{C} the set:

$$\{p : F \rightarrow 2 \mid F \text{ is a finite subset of } \omega\},$$

partially ordered by the relation $p \leq q$ if and only if p extends q , i.e.

$$p \leq q \iff \text{dom}(p) \supseteq \text{dom}(q) \text{ and } p|_{\text{dom}(q)} = q.$$

This notion of forcing is called Cohen's Forcing.

Exercise 1: Let us consider the \mathfrak{C} -conditions $p_1 = \{(0, 0)\}$, $p_2 = \{(0, 0), (1, 0)\}$, $p_3 = \{(0, 0)(1, 1)\}$ and the \mathfrak{C} -names:

$$\begin{aligned}\sigma &= \{(\emptyset, p_2), (\emptyset, p_3)\}, \\ \tau &= \{(\sigma, p_3), (\emptyset, p_1)\}, \\ \nu &= \{(\tau, p_1), (\sigma, p_2), (\emptyset, p_2), (\emptyset, p_3), (\tau, p_3)\}.\end{aligned}$$

Let M be a countable transitive model of "ZFC" with $\mathfrak{C} \in M$, G a filter which is \mathfrak{C} -generic over of M such that $p_2 \in G$ and F be \mathfrak{C} -generic over of M such that $p_3 \in F$.

1. Compute $(\sigma)_G$, $(\tau)_G$ and $(\nu)_G$, as well as $(\sigma)_F$, $(\tau)_F$ and $(\nu)_F$.
2. Show that $p_2 \Vdash \check{1} = \sigma$.
3. Show that $p_1 \Vdash \check{2} = \tau$ and that $p_1 \Vdash \neg \check{2} = \tau$.

Exercise 2: Let M be a countable transitive model of "ZFC" with $\mathfrak{C} \in M$ and G a filter which is \mathfrak{C} -generic over of M .

1. Show that $G \not\in M$.
2. Show that $f_G = \bigcup G$ is a function : $\omega \rightarrow 2$.
3. Show that $f_G \not\in M$.
4. Show that:

$$\sigma = \{(\check{n}, p) \mid p \in \mathfrak{C} \wedge p(n) = 1\} \in M^{\mathfrak{C}},$$

where $M^{\mathfrak{C}}$ is the set of all \mathfrak{C} -names that belong to M . Also show that

$$(\sigma)_G = \{n \in \omega \mid f_G(n) = 1\}.$$

5. Show that $(\sigma)_G \not\in M$.
6. Show that $\{n \in \omega \mid f_G(n) = 1\}$ is infinite and co-infinite.

Exercise 3: We say that a function $f : \omega \rightarrow \omega$ dominates a function $g : \omega \rightarrow \omega$ if there exists some integer n such that for all integers $k \geq n$ $f(k) > g(k)$ holds.

We will show the following:

Theorem. *Cohen's Forcing does not add a dominant real.*
i.e. for any \mathfrak{C} -generic filter G over of M there does not exist a real $f \in {}^\omega\omega \cap M[G]$ which dominates all functions $g \in {}^\omega\omega \cap M$.

Let G be a filter which is \mathfrak{C} -generic over of a countable transitive model of “ZFC” M , $f \in {}^\omega\omega \cap M[G]$ and \underline{f} be a \mathfrak{C} -name for f .

1. Show that there exists $p_0 \in G$ such that

$$p_0 \Vdash \forall x \in \check{\omega} \ \exists! y \in \check{\omega} \ \underline{f}(x) = y.$$

We fix a $p_0 \in \mathfrak{C}$ which satisfies the previous point. Since \mathfrak{C} is countable in M , we can fix, in M , an enumeration $\{p_k \mid k \in \omega\}$ of the set $\{q \in \mathfrak{C} \mid q \leq p_0\}$.

2. Show that we can define a function $g \in {}^\omega\omega$ in M by:

$$g(k) = \min \{n \mid \exists p \leq p_k \ p \Vdash \underline{f}(\check{k}) = \check{n}\}.$$

3. Show that for all $n \in \omega$ the set $\{q \in \mathfrak{C} \mid \exists k \in \omega \ q \Vdash (\check{k} \check{\geq} \check{n} \wedge \underline{f}(\check{k}) = \check{g}(\check{k}))\}$ is dense below p_0 .
4. Show that $M[G] \models \forall x \in \omega \ \exists y \in \omega \ (y \geq x \wedge f(y) = g(y))$ and conclude.