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Chapter 13

Forcing Conditions and Generic
Filters

13.1 Introduction

Assuming that ZFC is consistent, the aim of this chapter is to prove that there exists a model of
ZFC that does not satisfies the Continuum Hypothesis. In other words, we are going to prove
that ZFC + —CH is not inconsistent assuming ZFC is consistent. To do so, we proceed by
contraposition and prove:

If ZFC + —CH is inconsistent, then ZFC is already inconsistent.

ie.,

ZFC+ -CHI 1l = ZFCH, 1.

Now, if ZFC + —CH . | is satisfied, then such a proof of its inconsistency involves only
finitely many formulas. Therefore, there exist ¢1,..., @, in ZFC + —CH such that for any
closed formula ¢, we have

Ply--Pn ((,0/\ ﬁgp).
i.e.,
- ((901 Ao Apn) — (oA ﬂ@))-

From Lemma the following implication holds for any non-empty class M:

[ ((4,01 A A gpn) — (<p A ﬁ(,p)> implies ((cpl Ao A gon) — (cp A ﬁgo))M.
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Notice that

(ernne) —(en—0) =(r1r-re)) — (ere)

= ()™ A (2)™) = (@M A (=)™
= ()™ A e)™) = (@M A =)™
By using forcing methods, one can prove that there exists some N such that

ZFC -, ((gol)N AL A (apn)N>.

Since we also have

we obtain

thus

As for the proof of
ZFC 13N ()™ Ao A (e))

there exist only a finite number of formulas 1, ..., from ZFC that are really needed to
conduct the proof. So, it really is

V1, Uk EiN((cpl)N Ao A (cpn)N).

So, what we will do in practice is consider any transitive countable model' M (given by the
Montague’s Reflection Principle (see page such that

M'Z(”Lﬂl/\/\wk)

By forcing, we will obtain a transitive model

N =MI[G] = (¢1 A ... A gn).

'Notice that both M and N = M[G] will be sets.
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13.2 Montague’s Reflection Principle

Montague’s Reflection Principle (Lévy & Montague). Let ¢y, ..., ¢, be any Lgr-formulas.
ZF . YaeOn 38 >a “go,...,on are absolute for V (8), V.”
Proof of Montague’s Reflection Principle: The proof is similar to the proof of Theorem [273]

First, without loss of generality we may assume that the set of formulas {¢o, ..., p,} is closed
under sub-formulas and only contains formulas using —, A as connectors and 3 as quantifiers.

For each integer ¢ < n such that ¢; is of the form 3z ;(x,y1,...,yx,), we define a class-function
G;:Vx...xV - On by
—_—
k;

A%
Gi(yh' . -,yki> =0 if <_‘3x (Pj(xvyla' .. 7yk2)>
= least 0 s.t. 3x € V (0) (goj(a:,yl,...,yki))v

Then, for each integer ¢ < n we define a class-function F; : On — On by

i(€) =sup{Gi(y1,...,yx;) | Y1, .., yk, € V(§)} if Gy is defined

F
F; (&) = 0 otherwise.

Given any ordinal «, one defines the strictly increasing sequence (f)ne, and a limit ordinal g
by:

o By =«

o Brs1 =sup{Br + L, F1(Bk),...,Fn(Br)}

o [ = Suppe, Bk

We show — by induction on the height of the formula — that for each integer ¢ < n, one has
Ve VB Ve e V) (wilmom) VY e wim o om)Y) (18.)
If ; is an atomic formula:

o If ¢j is y1 = yo, then one has (y; = yg)v = (y1 = yg)L = (y1 = y2), hence

e V(8) Y2 e V(B) (1 =12V — (= 1))
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comes down to
Vy1 € V(B) Vy2 € V (B) <y1 =Y — Yy = yz)

which trivially holds.

P = (y1 € y2)L = (y1 = y2), hence

o If ¢ is y1 € Y2, then one has (y; € yg)v(
Vy1 € V (B) Vyz € V (B) ((y1 ey)V P (y € yz)L)
comes down to

Vy1 € V(B) Vy2 € V (B) (yl EYp <Y1 € 312)

which trivially holds as well.

o If ¢ is either y; = y1 or y; € y1, theses cases are taken care of by the previous cases
by taking y2 = y1.

So, in any case, when ¢; is an atomic formula, the formula is satisfied.

If @5 := —¢j(y1,--.,¥K): by induction hypothesis, one has

which yields

Vy1€ V(B)...Vyr, € V(B) (_‘(Spj(yb . -,yki))v(ﬁ) — (o1, - .,yki))v)

and finally gives

v v
Vyr€ V(B)...Vyr, € V(B) ((ﬁ@j(yl,---,ykﬂ) @ s (=i (W1, Uk,)) )
which shows that formula [13.1]is satisfied.

If oi == (¢5(y1,---»¥K) A Yk(¥15---,¥K)): by induction hypothesis, one has both

Vi e V(B). Ve € VB) (wilun o m)¥V P e )Y

and
Vyr € V(B)...Vyr, € V(B) (#’k(yh )Y oy, - 7yki)v>'

Now, given any 41, ...y, € V (53), one has that both formulas ¢;(y1, ..., yx,) and @r(y1, ..., Yk,)
hold in V () if and only if they both hold in V. Therefore, (gpj(yl, Uk AR, - ykl))
holds in V (p) if and only if it holds in V. This shows that formula is satisfied.
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If 5 := 3Ix ¢j(X,¥1,.-.,YK): we have to check that

VeV (E) . Yo e V) (G ei@ . m) — @z oy m)Y)

ie.,

Yy EV(ﬁ)Vykl GV(/B) <5|er(6) (pj(wvylaﬂ-vyki)vw) ——dzeV Soj(xvyh"'?yki)V)

Clearly, the direction

Vyr e V(B)... Yy, € V(5) (Elx eV (B) cpj(x,yl,...,yki)v(ﬁ) —Jz eV goj(x,yl,...,yki)v)

is taken care of by the induction hypothesis. So, we show
Vyr € V(B)... Vyp, € V Iz eV @, W 3zeV(B) ¢ A V(B)
U ( ) ykl (5) x @](‘rayl)"'aykz) z ( ) 80](1"73/1)"'73/161)

We fix y1 € V(5),...,yk, € V (5). For some large enough integer p, one has

{vi,o -yt SV (By)
By construction, there exists # € V (G;(y1, - - ., yk,)) such that (¢;(z,v1,. .., yki))v. Since

Gi(y1,---,Yk;) < Fi(Bp) < Bpy1, it follows that there exists € V (Bp41) < V (B) such
A%
that (goj(as, Y, ... 7ykz))

Finally, by induction hypothesis, there exists € V () such that (cpj(:v, Y, ... ,yki))v(ﬁ).

[] Montague’s Reflection Principle

Corollary 285. For every finite set of formulas {(po, cee gon} c ZFC,

ZFC . iM (|M|=N0 A “M is transitive” A ( /\ soi)M>.

Notice that, although we use the notation M and not M for the countable transitive model that
satisfies all formulas in {(po, ce ,gon}, M is not a proper class: it is really some set!

Proof of Corollary[285: Either ZFC is inconsistent, in which case it proves anything. Or, ZFC
is consistent, and by Montague’s Reflection Principle, since /\, <i<n Pi holds in 'V, there exists
some ordinal 8 such that /\osign @i holds in V (). Then, since the language of set theory is
finite, and V (f) is infinite? by Léwenheim-Skolem Theorem (see [2, 13, 4, 5, 6, [33]), there exists

2The fact V (B) is infinite relies for instance on the construction of 3 in the proof of Montague’s Reflection
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some countable model N such that

NE A o
0<i<n

Notice that, although V (8) is transitive, this may not be the case with N. However, the
Mostowski Collapsing Theorem (page|113) grants the existence of both some transitive class M,

and an isomorphism ¢ : (N, €) Jsom,, (M, €). Finally, being isomorphic, N and M are elementary

equivalent, i.e., they satisfy the same closed formulas, which yields M is a transitive countable
set that satisfies
M = /\ Pi-
0<i<n

[ 285l

13.3 Posets and Generic Filters

Notation 286. we write “ZF ”(respectively “ZFC”) for “finitely many axioms from ZF ”
(respectively “finitely many axioms from ZFC 7).

A proof is something that only makes use of finitely many axioms or instances of axiom schemas.
For instance, we showed that the empty set exists using the axiom of Extensionality and one
instance of the Comprehension Schema.

So, later on, it could happen that we write something like “ ZF”}-, “ @ exists” to indicate both
that ZF |-, “ O exists” and “ ZF”refers to the axioms that were necessary to conduct the proof.
An other example, would be the proof of the existence of a class-function as in Theorem [53| :

Given any F : V — V| there exists a unique G : On — V such that for each ordinal «
Va G(a) =F(G | a).

Strictly speaking, this theorem is a theorem schema: there are infinitely many theorems, one
for every class-function F. Indeed a class-function F refers to some formula g, and the result
consists in constructing another formula ¢g which satisfies the required property and showing
that the class-function G it represents is unique.

Although the whole construction only requires finitely many axioms or instances of axiom
schemas, but we do not bother precisely indicating which one we used, reason why we use
the notation “ ZF” for “these finitely many axioms that a hard work could precisely point out,
but we don’t really care as long as there are only finitely many of them”.

A countable transitive model (c.t.m.) of “ZFC?” is a countable transitive model of a “ sufficiently
large number of axioms of ZFC”. A nice way of thinking of “ ZFC” is to imagine that it contains
all the following axioms:

Principle on page , and also in that one wants the Infinity Axiom to be part of the set of formulas {goo, ey gon};
or also again, by simply setting « to be infinite in the application of the Montague’s Reflection Principle on page
which yields the ordinal .
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o Set Existence o Infinity

o Extensionality o Power Set
o Pairing o Foundation
o Union o Choice

and in addition, finitely many instances® from the following two axiom schemas:

o Comprehension Schema o Replacement Schema.

Definition 287 (Notion of Forcing).

o A notion of forcing is a partial order (P,<). It is often abbreviated as P, and refereed
to as a poset.

We also use the notation (P, <,1) when the poset admits a mazximum element 1.
o The elements of P are called conditions.

o Given two conditions p,q € P, we say that p is stronger than q if p < q.

Definition 288 (Poset). Let (P,<,1) be a poset with mazimal element 1, and let p,q € P. We
say that

o p and q are comparable if either p < q or q < p holds;
o p and q are compatible if there exists r € P such that r < p and r < q;

o we write p L q when p and q incompatible. i.e., when they are not compatible;

(@)

a subset A < P is an (strong) antichain if for all p,qe A, p L q holds;

O

a subset D € P is dense in P if for all p € P there exists g € D such that g < p.

Example 289. Let P = & (X) \ {3}, with p < q if and only if p < q. In this case, one has
ol=X

3These are typically the instances that were necessary to conduct the proofs of the results that we now need
to use in a particular proof.
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o ifpnq+# 3, thenpnq<p,q
oplqgifandonlyifpng=9o

o { {p}|pe X} is both an antichain and dense in P.

Example 290. We let P be the following notion of forcing:

P= {f : Ng x w —{0,1} | f a partial function whose domain is ﬁm’te}

s 3
[fl<w

=< fS Ny xwx{0,1} A >

Va < NoVn <wVi< 2 ((a,n,i) e f— (ayn,1—1) ¢f)

with
and

Notice that

(1) f < g holds iff both dom(g) < dom(f) and f | dom(g) = g;

(2) f and g are compatible iff f | (dom(f) N dom(g)) =g | (dom(f) n dom(g));

(8) f and g are incompatible iff there exists (a, k) € dom(f) n dom(g) such that f(a, k) #
gla, k).

Definition 291 (Filter). Let (P,<,1) be a notion of forcing.

VpeGVYqe G dreG (r<pAr<q)

G <P isa filter on P <— and

VpeGVqeP (p<q— qeq).
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As shown in the figure below, if p and ¢ are inside the filter, then not only all forcing conditions
inside the cone above ¢ or the cone above ¢ belong to the filter, but there exists some r below
both p and ¢ which belong to the filter, and therefore the whole cone above r is included inside
the filter.

Figure 13.1: r wittnesses that p and ¢ are compatible.

All the filters we will consider will be non-constructive. We will essentially claim that * there
exists some filter G...” by mean of a proof by contradiction. i.e., the proofs will be of the form:
assuming that such a filter does not exist, leads to some contradiction; therefore, such a filter
exists...

So, asking for samples of such filters is useless for the reason that the ones that could be
constructed would be of no interest for our purpose.

Definition 292 (Genericity). Let (P,<,1) be a notion of forcing and M be any set (or class).
G < P is P-generic over M if the following two conditions are satisfied:

(1) G is a filter on P

(2) G intersects every dense subset of P which belongs to M.

Notice that the property of being P-generic over M is expressible by some Lgr-formula “G <
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P is P-generic over M”. Namely,

(“Gisaﬁlteron P” A VDS P ((“D densein P” A DeM)—>DmG;ﬁ®)>.

The goal of the following example is to show that filters G € P which are P-generic over M do
not necessarily exist. In particular, it emphasize the reason why we work with a set M which is
a model of finitely many axioms from ZFC.

Example 293. Let (P,<,1) be the following notion of forcing:

(1) P be the set of functions such that the domain is finite and included in w and the image is
included in wi.

P= {pg(wxwl) | [p| <w and Ya,b,cew (((a,b)Ep/\(a,c)Ep) —>b=c);}

(2) p<qifand only if p 2 q (p extends q, for p,qe P);
(3) 1=0.
We want to show that there is no filter G which is P-generic over V.

So, towards a contradiction, assume G is P-generic over V. Set f = | JG and notice that f is
a binary relation since it is a set of couples of the form (n,«a) with n an integer and a some
countable ordinal. We now show that f S w x w1 is much better than any subset of w x wy since
it satisfies f: w 20, . i.e.,

o f is a function o dom(f) =w o ran(f) = w;.

(1) To show that f is a function, simply consider any integer n and countable ordinals o
and B such that both couples (n,co) and (n, ) belong to f = |JG. Then consider any
p,q € G such that (n,«) € p and (n,B) € q. Since G is a filter, there exists r € G such
that r < p,q (i.e., r extends both p and q). So, in particular both dom (p) S dom (r) and
dom (q) € dom (r) hold which shows that n € dom(r) and since r (as a function) agrees
with both p and q on their respective domains, we have r(n) = p(n) = q(n), which shows
that o = 3.

(2) dom(f) = w, since for all n € w the set
D, ={peP|nedom(p)}

is a set which is dense in P — so both statements “D,, is dense in P ” and “D,, belongs
to V 7 are satisfied.



Forcing Conditions and Generic Filters 225

Since D, € V and G is P-generic over V, it follows that the intersection D, n G is
nonempty which yields the existence of some p € G with n € dom (p). Therefore, we have
n e dom(|JG) = dom(f) that holds for every integer n. Thus dom(f) = w.

(8) ran(f) = w1, since for all ordinals o < wy, the set:
E,={peP|aeran(p)}

is dense in P and belongs to 'V, hence there exists some p € E, NG, showing that o belongs

to the domain of f = JG.

So, we have obtained f = JG : w onto, w1, which contradicts several results* that we obtained

working within ZFC. This shows that our assumption fails. i.e., there is no P-generic filter
over V.

That may seem a problem at first glance, but since our aim it to consider countable transitive
models of “ZFC?”, the latter result is not in our scope. To, the contrary, when M is a countable
set as opposed to the whole universe V, we have a positive result.

Lemma 294 (ZFC). Let M be any countable set, P any poset in M, and p € P. There exists
some filter G which is P-generic over M and such that p € G.

Notice that we do not claim that G belongs to M. In fact, most of the time we will have G ¢ M,
simply because when G € M holds, the generic extension obtained by forcing is no different than
the ground model M one starts with, and therefore it is useless.

Proof of Lemma [294:

onto
—

4For instance, that w, is a regular cardinal; or that any surjection s : A B yields an injection i : B =LA

such that soi = id. .
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. D,
"-,.me ! Let us consider (in V) an enumeration (D;,)new of the sets of
the form D that satisfy both
o pieDy

(1) D <P is dense in P. (2) DeM.

¢ poe Dy Notice that such an enumeration exists since we are working
- 5 within ZFC and that it is countable since M is a countable
. p3€ D3 set.

Let pg € Dy be such that py < p; we define by induction on w
a sequence (pp)new such that:

Dn+1 < Pn and Pn+1 € Dn1.

.,) €D, Let us consider G, the filter generated by (pp)new:

{fl)r:vleDn+1 GZ{q€P|E|nEw pngq}

Since the formula “D is dense in P ” is absolute — i.e., “ D is
dense in P 7 «— (“D is dense in P” )M — G is a filter whose
intersection with the dense sets of M is nonempty. G is thus
P-generic over M and p € G.

(1294

We said that in most cases, the generic filter does not belong to the ground model M. Indeed,
the cases that matter the least are those where filter exists inside the ground model. The next
lemma gives an easy condition that the poset P needs to satisfy in order for any filter G to not
belong to the ground model M.

Lemma 295 (ZFC). Let M be any transitive model of “ZFC ”, and P € M a notion of forcing
that satisfies Vp e P dr,q € P (q<p AT<p A qJ_r).

If G is P-generic over M, then G ¢ M.

Notice that in this lemma, we do not simply consider any transitive set M, but rather a transitive
model of “ZFC?”. The reason for this, is that we need M to satisfy some very basic properties.
For instance, we need that given P and G that belong to M, the set P \. G also belongs to M.
Proof of Lemma[295: . Suppose, for the sake of contradiction, that G € M.

o Welet D =P~ G and M satisfy enough axioms from ZFC such that D € M holds.

o We then show that D is dense in P: take any p € P, there exist r,¢q € P such that g < p,
r < pand g L r. But it cannot be the case that both r and ¢ belong to G, for otherwise,
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o=

Ry

Figure 13.2: p > ¢q,r with gLr.

since G is a filter on P, there would exist s € P such that s < r and s < ¢ both hold, which
would contradict the fact that p and r are incompatible. It follows that either r or ¢ is a
member of D, therefore D is dense in P.

Finally, we have the following contradiction:

(1) G is P-generic over M (2) DeM and D is dense 3) DnG = (P\G)n@G
= UJ.
O

We need a last result which seems technical at first glance but will prove extremely useful later
on.

Definition 296. Let P be any poset, E < P, and p € P.

FE is dense belowp <— Vg<pdreE r <q.

So, being dense below p is really what it says it is: being dense but only with regards to the
sub-poset formed of all forcing conditions that lies below p.
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Lemma 297. Let M be a transitive model of “ZFC ”, P a notion of forcing such that P € M,
and G be P-generic over M. Let also p e P and E < P be such that E € M. Then,

o either Gn E # &, or
o there exists g € G such that for all v € E, r | q.

Furthermore, if E is dense below p € G, then G N E # &.

This last statement: “every set which is dense below some element which belongs to the generic
filter G also intersects this filter G” will be used time and time again.

Proof of Lemma[297: To prove the first part of the lemma, let

D={seP|3reEs<rju{seP|VreEsLlr}.

—
D¢k D,g

First, we notice that D is dense. Indeed, take any s € P. Then,

(1) either there exists r € E such that r and s are compatible, and so there exists ¢ € P with
q < s and g < r, which implies that g € D<p < D;

(2) or, for all r € E, we have r 1 s and thus s € D) g € D. Since s < s holds, this shows that
D is dense in P.

Moreover, D € M holds because E € M and M is a model of “ZFC?” which contains enough
axioms to show that D exists. As a result of G being P-generic over M, its intersection with D
is non-empty. Take any g € D n G. Since q € D,

(1) either ¢ € D<p, i.e., there exists r € E such that ¢ < r. In that case, since G is a filter,
reGand GnFE # J;

(2) or, g€ D, ie., for all r € E, ¢ L r. In that case, there exists ¢ € G such that for all
rekb, rlgq.

For the second part of the lemma, we assume p € G and E is dense below p. Towards a
contradiction we also assume G n E = &. Then, the previous result provides some ¢ € G such
that for all re E, r 1 gq.
Since G is a filter, there exists s € GG such that s < p and s < ¢q. But E is dense below p, so
there exists r € F such that » < s. We have obtained r € E such that r < ¢. This contradicts
the property that ¢ satisfies: V' € E ' 1 q.

]

Our main goal will now be as follows: start from
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o=

.. ..
p - - q
€G- T eG
" glr(anyrek)

m /
~ ®.e .
DI .

e
ek

Figure 13.3: p > s, ¢ = s with p,q,s € G and s = r € E since E is dense below p.

(1) any M which is some c.t.m. of “ZFC” and
(2) any filter G which is P-generic over M,

and construct a c.t.m. of “ZFC” M[G] — called a generic extension of M — which satisfies
the following:

(1) M < M[G]; (2) (On)M — (OnMIEl;  (3) GeMIG].
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Chapter 14

P-names and Generic Extensions

14.1 P-names

We will see that some of the elements that belong to the generic extension M[G] will be brand
new sets. In the sense that they do not exist inside M, but they are created when going from M
to the the generic extension M[G]. This seems an obvious remark, since any time one considers
the strict inclusion of a set into some other one (A & B) there are elements that belong to the
bigger one but not the smaller one.

However, the main difference here is that each and every one of these new elements will happen
to already have a name in M. They do not exist in M but in M, they could be called by their
names, ALTHOUGH THEY DO NOT EXIST! It is as if in M one can call many names without
knowing what one talks about. Only with the help of a key that allows to decode the names
and give rise to the sets they denominate that one can see the relation between the name and
the object it depicts.

To view things the other way round, every set that belongs to M[G] already pre-exists in M
in that it already has a name, even though a key that is required to decode and identify it is
missing in M (this key is the filter G).

Definition 298 (P-name). 7 is a P-name if and only if T is a binary relation and for all
(o,p) €T, 0 is a P-name and p € P.

Notice that & satisfies this definition, hence @ is a P-name.

Formally, P-names are defined recursively. First consider the following binary relation E on
P-names:
oET <= 3peP (o,p)eT.

FE is well-founded since:
oET = 1k(0) < rk(T).
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We set:

F(r) {1, if Vo e 7(“x is a couple (z1,32)” A z2 € P A F(21) = 1);
7_ =

0, otherwise.

We may define F as F(7) = H(F [eq,(r), 7, P) where all notions used to define H are Agmd,
hence H is absolute for transitive models of “ZFC”. Then, the class of all P-names is the set

{T|F(r) =1}.

Example 299. In order to get the right intuition about P-names, it is fruitful to go back to the
way we represented well-founded sets by well-founded trees. For instance, in Example where
we presented a tree

that represents the ordinal 4 when we associate to each node n the set n = {¢ | c is a child of n}:

When represented by trees, P-names are not just well-founded trees, but rather some particular
colored well-founded trees: those whose nodes — except for the root — are “colored” by forcing
conditions. For instance:
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This tree represents the P-name:

{(Q,po) : ({(Q,pg)} : p1> : ({(Q,m) : ({(g,pﬁ)} : ps)} : p2>}

Some P-name which is a coloring of the set 4:

This tree represents the P-name:

3 (9,p0) »

({(g,pg)} : pl) ) ({(Q,m) ’ ({(@,p(s)} ) p5)} ’ p2)7

{(@PE) ) ({(Qapza)} : Pl) ; ({(@7]94) . ({(@,Pﬁ)} : ps)} : p2> },m

"
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Definition 300. Let VP = {P-names}. If M is a transitive model of “ZFC 7, then
MP =M n VP

By absoluteness,

MP — {7’ eEM | (T isa P-name)M}.

14.2 Generic Extensions

Starting from M any transitive model of “ZFC”, we create another model — known as a
generic extension — by considering all the P-names that belong to M (M'D = M ~ VP) and
“unscrambling” them with the use a filter G — that is generic over M — which plays the role
of a decryption key.

Definition 301 (Generic Extension). Let (P, <,1) be a notion of forcing

(1) Given any T € VP, and G < P a filter, we recursively define

(1) ={(0)g | e G (0,p) eT}.

(2) Given M any transitive model of “ZFC 7, Pe M and G < P a filter, we define

M[G] = {(T)G | 7€ MP}.

Notation 302. Given M any transitive model of “ZFC ”, Pe M, G € P any filter P-generic
over M, and x € M[G], we write z for any P-name for x. i.e.,

zeMP and (z)5 = .
There are two different ways of looking at P-names:

o either we start from the ground model M, pick a P-name 7, and move forward to the
generic extension M[G] to deal with (7).;

o or we start from the generic extension M[G], pick an element z, and move backward to
the ground model M to deal with a P-name z that has produced x.
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Example 303. Consider the following P-name T that was introduced in Example [299

This tree represents the P-name:

{(@7190)7 (tem) . m) . ({@mn. ({(@,m)},ps)},m)}

If for each integer n, p, € G <= n is even. Then (T)q is obtained by removing the nodes
colored by forcing conditions not in the filter, then getting rid of the coloring:

So, we obtain (1), = {2, {2} }.



236 EPFL Set Theory

Example 304. Consider the following P-name 7 that was introduced in Example 299

’7_:

This tree represents the P-name:

T =1 (9,p0) ,

({(@7]93)} s pl) : ({

(2,p4) , ({(E,pe)} : p5)} : pz),

(9,ps5) , ({(@aps)} : Pl) ; ({(g,m) ; ({(@71?6)} : ps)} : p2> , D7

"

J

If for each integer n, p, € G <= n ¢ {0,1,3}. Then (7)q is obtained by removing the nodes
colored by forcing conditions not in the filter, then getting rid of the coloring:
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So, we obtain

@e= {{@, {o}}, {@, {@,{o} }}}
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Example 305. Consider

with p,p’ € G, but q,q' ¢ G. This yields the following tree:

and by dropping the forcing conditions:
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which yrields

(e = {2.{2.12} }}.

Definition 306 (Canonical P-names). By e-induction, we define for any x € M,
& ={(y,1)|yea}.

We will also consider
I'={(p,p) | peP}.

The P-names & are called canonical names for sets that belong to M, and the P-names I' is
called the canonical name for the filter G.

Lemma 307. Let (P,<,1) be a notion of forcing, and G < P a filter.

(1) (&) == 2) (D)g =G.
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An immediate consequence of this lemma is that as long as M is a model which is closed under
the “check” operation' — which comes to asking that M be a model of “ZFC”, where “ ZFC”
contains the axioms that are necessary to prove that V is closed under the “check” operation
— then both M € M[G] and G € M[G] hold.

Proof of Lemma[307:

(1) By e-induction, since & = @ and (&), = @:

(@) ={W)¢ | Ipe G (3,p) € T}
={(W¢ | (9,1) ez}
={ylyex}

=Xx.

Mg =1{P)g|Ipe G (p,p)eT}
={plpeG}
=G.

(1607

Example 308. For instance, 4 corresponds to:

which yields

!This means that M satisfies & € M holds for every z € M
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which is nothing but the ordinal 4:

Example 309. We define couple : M x MP — MP so that given any z,y € MP, and any G

P-generic over M, couple(z,y) = T with (7)5 = ((;U)G, (Q)G) This is the canonical name

T= {@%iz&y}} = {({(zc,]l)} 7]1)» <{(£”’]1)v (?Jv]l)}]l>}7

as shown in the picture below.
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Lemma 310. If M is a transitive model of “ZFC ”, P € M is a notion of forcing, and G is
P-generic over M, then

(1) M < M|G]
(2) G e M|[G].

Proof of Lemma Both statements are consequence of previous Lemma Indeed, since
for all z € M, one has & € M" and = = (), € M[G], it follows that M < M[G]. Moreover,
FeMP s0 G = (T), € M[G].

(]3I0

Lemma 311. Let M be a transitive model of “ZFC 7, P a notion of forcing, and G be P-generic
over M. Then
(1) M[G] is transitive,

(2) if N is a transitive model of “ZFC ” with M < N such that G € N, then M[G] < N.

Proof of Lemma [B11:

(1) Given any x € (7)o € M[G], by transitivity of M, there exists ¢ € M" and p € P (in fact
p € G) such that (o,p) € 7 and © = (0). Thus, z = (o), € M[G].

(2) Recall that
(Mg ={(0)¢ | Ip€ G (0,p) €7},
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and that we defined the class-function F' as:

F:MF — M[G]
Therefore:
F(T) =H (F rpredE(T)u G, T) .
N
)

Since H is absolute, we have ((7)s )" = (), and therefore M[G] < N.

1B

If M[G] is a transitive model of “ZFC?”, the second part of this Lemma states that M[G] is
the smallest transitive model of “ZFC” such that both M € M[G] and G € M[G] hold.

Lemma 312. Let M be a transitive model of “ZFC ”, P a notion of forcing with P € M, and
G be P-generic over M.
(On)™ = ()M«

Proof of Lemma @: By induction on the rank, we prove that for all P-name 7 € MP, one has
rk((7)e ) < rk(7). Indeed

(T)g ={(0)g |G (0,p) €T},
it follows that
rh( (7)) = sup{rk( (o)) +1|Ipe G (o,p)eT}.
By inductive hypothesis, one has

h( (7)) <sup{rk(c) +1|3Ipe G (o,p) e 7}
sup{rk(c)+1|3IpeP (o,p) €T}
sup{rk(z)+1|ze 7}

<
<
<
< 71k(T).

In particular, for any ordinal o« € M[G], and any P-name a € M, one has a < rk(a) € M, and

since M is transitive, it follows that o € M.

This gives (On)MI% = (On)™ which combined with M = M[G] yields (On)™ = (On)™I¢],
[
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Figure 14.1: The ground model M and its generic extension M[G].



Chapter 15

The Truth Lemma

The Truth Lemma is about connecting the truth inside the generic extension to the truth inside
V and the truth inside M. Ultimately we will prove that the relations represented in the
following Figure hold (see page [264).

inside M inside M[G] inside V

))M — M[G] ):‘P((ﬂ)(;““:(ﬂ')(;) — Iped pl- 50(7’1 ,,,,, Too)

IpeCG (plks o(T1,...,Tn

Figure 15.1: Connecting the truth inside M[G] to the truth inside V and the truth inside M.

15.1 Forcing from inside V

Definition 313. Let M be a c.t.m. of “ZFC ”, P a notion of forcing with P € M. Let also
o(r1,...,xy) be any Lsr-formula whose free variables are among x1,...,Tpn, Ti,..., Ty € MP
and p € P. We say that p forces o(71,...,7,) and write

plFpm o(T1, .., )
<

for all G P-generic over M such that p € G, one has

M[G] ’: 90( (Tl)G Heooy (Tn)G)'
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Notice that, since G may not exist in M, this definition is not made in M, but rather in V.

Lemma 314. Let M be a c.tm. of “ZFC”, P € M a notion of forcing,
(1, ... xn), Y(x1, ..., xy) be any Lsr-formulas whose free variables are among x1, . .., Ty, and
T, ..., € MP, and p € P.

(1) If plkpm @(T1, - -, Tn) and g < p, then q -p v (71, - - -, Th).

(2) If p Fkpm @(T1,...,m) and p IFpm Y(T1,...,7n), then p IFpm ((p(Tl,...,Tn) A
2,[)(71,...,7'”)).

Proof of Lemma [314:

(1) Suppose that p Fpm @(71,...,7,) and ¢ < p. To show that ¢ IFpm @(71,...,T), we
consider any filter G which is both P-generic over M and contains ¢. Since G is a filter
and ¢ < p, it follows that p € G. Also, from p Fpm @(71,...,T), it follows from the
definition of the forcing relation that M[G] = ¢((71)¢ - - -, (Tn)¢ ) holds.

Hence, we have shown that for all G, P-generic over M, such that ¢ € G, M[G] [
gp( (T1)g s s (Tn)G) holds which means — by definition — that ¢ IFp M ©(71,...,Th)-

(2) We have
plkpv @(71, ..., 7) and p lFpv (715 - - - )

—

for all G P-generic over M such that p € G, one has

M[G] = <p( (T1)gs s (Tn)G) and M[G] = w( (T1)gse s (Tn>G)

—

for all G P-generic over M such that p € G, one has

MIG] = (p((M)g oo (T)a) A ¥((M)g e (m)g))

—

P lFp.M (go(ﬁ, cesTn) AU(T, . ,Tn)).

(16514
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15.2 Forcing from inside M

The idea now, is to define another notion of forcing, not inside V but inside M so that the two
coincide. i.e., we want to define |-, in V such that for all 71,...,7, € M" and p € P:

M
plrpM o(T1, .. o) = (P Ikx (11, 7)) .

The definition of |-, is done entirely inside M, by induction on the height of the formula ¢
involved. Usually, constructions made by induction on the height formulas start from basic
properties required at the atomic level and rather more involved ones when connectors and
quantifiers come to play.

Here, as we will see, not only the whole construction is relatively tedious and cumbersome, but
the definition of the relation |, is already difficult with atomic formulas — in particular for the
equality — but gets easier with more complicated formulas. Anyhow, the results that such a
construction will provide are definitely worth the effort.

2 b

For simplicity, we assume that the only connectors of our first order logic are “A” and “—7,
and “37 is the only quantifier. Of course, one can get the definition of the definition of |-, with

[43 ” [43 7 2

the other connectors “v” , “—7 | “«—"” and “V” by means of the usual equivalences:
o (pvy)=—(-pn—Y)
o (p—19)=—(-—p A Y
o (¢ =) = (=(==p A ~Y) A =(==Y A —p))
o Vx ¢ = -3z —¢.
We will see in Corollary that if any two formulas ¢(x1,...,z,) and ¥(x1,...,z,) satisfy
. Vay... Vo, ((p(xl, ceey ) —— Y(x, ... ,xn)),
then we have for any c.t.m. M of “ZFC”, Pe M, pe P, and all 71,...,7, € MP,
(p I+ (71, - .. ,Tn))M — (plF« ¥(m,... ,Tn))M.
So, we could already state:
o (p v 1) = —(—p A )
o (p— ) =—(pr )
o (pe— )= (=(p A —¥) A =¥ A —p))

o Vx ¢ = —3z —¢.
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Definition 315. Let 71,...,7, € M". We let:
o ply« 71 = T2 if and only if both
(1) for all (71, s1) € 11, the following set is dense below p:
Dy (m1,81,72) = {q eEPlg<si — A(ma,s2)em (¢<s2 A qlhsm = m)}
(2) for all (ma, s2) € T2, the following set is dense below p:

DB(W2,82,7'1)={q€P|Q<$2—>3(7T1,81)€Tl (g<s1 A gl 7T2=771)}

(@)

D Ik« 71 € 2 if and only if the following set is dense below p:

{QGPH(Tr,s)eTg <q<s A q||—*7r:7-1>}

O

P lx (o A W) if and only if p Ik« @ and p -y ©¥;

o

p Ik« =@ if and only if for all g <p , q -« ¢;

O

Py Jx(x, 71, ...,70) if and only if the following set is dense below p:

{qe Pl3oceMP ql, so(a,rl,.-.,m)}-

The main idea behind this definition is to aim at proving the so-called Truth Lemma (see page
263) which states that given any formula ¢(x1,...,x,), any c.t.m. M of “ZFC”, P any notion
of forcing on M, any 71, ...,7, € M, and G any filter P-generic over M,

M[G] = o((M)gs- - (Tn)g) < e G(p v olr, ..., 7)™

So, for instance for the definition of the membership relation (p Ik« 71 € 72) the Truth Lemma
states that for all G filter P-generic over M, we have

M[G] = (11)g € (r2) <= FpeG(plamen)”
— IpeG {geP|Ims)en (¢<s A aruer=7)}
is dense below p.

So, the definition of p |-, 7 € 72 should be understood the following way:

(=) If p € G holds, then we would like to have M[G] }= (71)4 € (72)¢ to hold. This means
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that there should be some forcing condition s and some 7€ M such that all following
three conditions hold:

1) (r,5)em 2) seq 3) (Me = (1)e-.

)

Let us study them in detail.

(2) s e G: Since p € G and the following set @ is dense below p:
Q= {(/e P|3(m,s)€em ((/< 5 A qlbgm= Tl)}

we obtain {(/ €EQ|qg< /)} N G # J; so there exists some ¢ € P such that both ¢ < p
and ¢ € G holds. By construction of @, there exists also some s > ¢ (hence s € G
holds) such that both (7,s) € 7 and ¢ |4 7 = 71.
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r ¢ m oy Y
G
v (e Y

Since ¢ I« 7 = 71 and ¢ € G, we will have (since the proof will be by induction on the
complexity! of the P-names and the complexity of 7 is smaller than the one of 71) both

M[G] = (1) = (1)g and MIG] = (7)g € (m)g

hence we will end up with
(=) This implication is
M
MI[G] = (T1)g € (2)g =€ G([’ ks 71 € Tz)

If M[G] = (71)g € (72) holds, then there exists some P-name 7 together with some
forcing condition s € G such that we have both following conditions satisfied:

1See Definition on page ﬁ
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Since the complexity of 7 is somehow smaller? than the one of 7, one can apply the Truth
Lemma and get some forcing condition » € G which satisfies: (/- Iy 71 = n)

Since both 7 € G and s € GG, there exists some forcing condition p € G which satisfies both
p<randp<s.

We will very soon — on page [253 — prove Lemma which yields that the following are
equivalent:

(1) 7 ks 71 =,
(2) forall t <7t by 71 =7,
(3) the set {t € P |/ |4 71 = 7} is dense below 7.

8 T =T

¢ pllami=m

.
Qs 71 =T

So, it follows that p I« 71 = 7 and also that every forcing condition ¢ < p satisfies both

2See Definition on page
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(1) g< s (2) qls 71 =

Henceforth, the set
Q= {(// eP |3, s)en ((// <5 A IR = T[)}

is dense below p, which is the condition to fulfill in order to state that p |4 7 € 7 holds.

Example 316. Notice that the empty set is a P-name: it satisfies the requirements of Definition

1298
o it is a binary relation such that for all (o,p) € @, o is a P-name and p € P.

o It is even a P-name for the empty set, since (&), = @.

o Also, the canonical P-name for the empty set is nothing but the empty set itself:
={(61)]|ced}=0 and (@), =2.
For every forcing condition p, and every P-name 7, the following three conditions are satisfied:

(1) p V-« T € @ holds because the following set being empty, is definitely not dense below p:
{quH(w,s)e@ <q<s A qll—*w:7>}=®.
(2) plF« @ = @ holds because
(a) The statement: “ for all (m1,s1) € &, Do(m1,s1, D) is dense below p ” is of the form
V(71,51) <(7T1,81) € ¥ —> “D,(m1,s1,9) is dense below p ”)

and since (m1,51) € @ always fails, this statement is true.

(b) The statement for all (12, s2) € @, the set Dg(ma, s2, D) is dense below p ” holds also
for the same reason.

(3) plF« D € {\Gj holds because we have

S=0 and (B} ={(,1)|ce{a}}={(5,1)}={(2,1)}
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and the following set is obviously dense below p:

{q€P|EI(7T,s)€{?§3 <q<s A qll—*ﬂ':@)}
{qu|(q<]1 A qll—*®=®)}
— |5

Lemma 317. Let P be a notion of forcing, andp € P. Let also ¢(x1,...,xy) be any Lsr-formula
whose free variables are among x1,...,%n, and Ti,...,Tn € VF.
The following are equivalent:

(1) plbs (1,3 Tn);

(2) for allr < p, v s (T, .., Tn);

(8) the set {r € P |r s p(T1,...,70)} is dense below p.

Proof of Lemma [B1T:
(1) = (2) By induction on the height of .

p:

r1 = T2
Take any r < p, and suppose that p |-, 7 = 72, which means that
for all (71,s1) € 171, Dq(m1,81,72) is dense below p.

Since r < p, D4(71,51,72) is also dense below r. Analogously, for all (mg, s2) € T2,
Dg(ma, s2,71) is dense below r. Therefore r |-y 71 = To.

T I €E T2

Take any r < p, and suppose that p I, 7 € 79, which means that the set

{qu\H(w,s)eT2 (q<s A QH—*7T=T1>}

is dense below p. It follows that the same set is dense below r.

: dz (e, 1, .. n)

Take any r < p, and suppose that p |-, 3z ¢¥(x,71,...,7,), which means that the set

{qu |30 e VP gl 1/1(0';7'17~--7Tn)}'

is dense below p. It follows that the same set is dense below r.
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A
N

N~—r
I

&

(0~ 9)

Take any r < p, and suppose that p |-« (6 A ), which means that both p |-, 6 and
D k% ¥. So by induction hypothesis, one has 7 |-, 6 and 7 |- v, which comes down
to r s (0 A ).

:

Take any r < p, and suppose that p |-, —, which means that for all ¢ < p , q |F« ¥.
So in particular, for all ¢ < 7, ¢ |F+« ¢; which means 7 £, .

is immediate.

By induction on the height of .

¢ 1 = X2

We suppose the set D = {r EP |7 ke 1 = 7'2} is dense below p. So, for all
(m1,81) € 11, Do(71, 51, 72) is dense below r for all r € D. But since D is dense below
D, Dq(m1,51,72) is dense below p as well, and the same holds for Dg(ma, s2,71). So,
plFs T = To.

: X1 € X2

We suppose the set D = {r EP|rilym € 7'2} is dense below p. So, the set

{q€P|EI(7r,s)E7'2 (qgs A qli—*ﬂ':ﬁ)}

is dense below r for all » € D. Hence it is also dense below p, which yields p |-, 71 € To.

: dx Y(xy 1,y Ty)

We suppose once again that the set D = {r €P |7y Jzp(x,m,.. .,Tn)} is dense
below p. So, the set

{qe Pl3oce VP gl ¢(U,7'1a---77-n)}'

is dense below each r € D, which implies that it is dense below p. Henceforth,
P ks Jzp(, 11, .. Th)-

(0 A 9)
We assume that the set D = {r € P | 7 I« (6 A ¥) } is dense below p. So, both sets

{rePlrir,0} and {reP|ri- ¢}

are dense below p. By induction hypothesis, this leads to p I« 6 and p I« ¥, and
finally to p Ik« (6 A ).
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p: P

We assume that the set D = {r eEP |7 Ik ﬁw} is dense below p and proceed by
contradiction. So, we suppose p |+ —, which means that there exists ¢ < p such
that g |-« ¢. By (1) = (2) we see that for all » < g, 7 |4 9. Since D is dense below

p, it is also dense below ¢q. Now, any r € D n {s € P | s < ¢} satisfies both r |-, —%
and 7 |4 ¢, a contradiction.

L]B1a
Proposition 318. Let P be a notion of forcing, and p € P. Let also ¢(x1,...,z,) and
V(y1,-.-,yk) be any Lgp-formulas whose free variables are among x1,...,x, and yi,..., Yk,
respectively. Let T1,...,Tn,01,...,0% € VE. For any forcing condition p € P we have
(1)

D I+ ((,0(7'1, cesTn) VU(01, ..., O’k))
if and only if

{geP|qlFe o(T1,..., )} U{qEP | qlrs ¥(o1,...,0k)} is dense below p

(2)

p s (011, T) — (01, ..., 0%))
if and only if

fOT allq <]97 qu ”_* 90(7—1"" 7Tn)7 th’en q ”_* ¢(0-17"'70-k)

(3)

D s Vo1 (21,72, - .., Th)
if and only if
for all P-names 7 € VP, p i o(7,72,...,Tn).

Proof of Lemma [318:

(1) We have that (o(71,...,7) vi(or,...,0k8)) = = (=@(T1, ..., T) A =t(01,...,0%)). So we
prove
D s _'(—'(p(Tl, cesTn) A (01, ... ,ak))

=

{geP|qlFs p(m1,...,m)} U{geP| qlFs ¥(o1,...,0k)} is dense below p

(=) Suppose that p |- _'(_'<p(T1, cesTn) A (o1, ... ,crk)). Then for all ¢ < p,

q ¥« (ﬁ(P(Tlaw s Tn) A _'1#(017"‘70-/6))'
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ie. q Wy —o(T1,...,T) or q s —(01,...,0,). We show that the set of r < p
such that 7 Ik« @(71,...,7n) or r I« ¥(o1,...,0%) is dense below p. To see this,
suppose that ¢ < p. We have q s« —p(11,...,7) or ¢ Vs —(01,...,0%). If
q W« —o(T1, ..., Tn), then there exists r < ¢ such that r |4 (71, ...,7,). Similarly if
q W« —(01,...,0k), then there exists r < g with r |- (01, ...,0%). In both cases
we have found r < ¢ with r |- @(71,...,7) or 7 |-« ¥(01,. .., 0k).

Suppose that {g€P | g« @(T1,...,7)} U{g€P | qlFs ¥(o1,...,0k)} is dense be-
low p. So, for all r < p there exists ¢ < r such that q I« @(71,...,7,) or q I«
Y(o1,...,0L), and therefore q £ —p(11,...,7n) or q s« —9(01,...,0k). Therefore,
the set

{geP | qlWfs ~o(T1,...,m) or qlfs —Y(o1,...,0%)}
is dense below p. Hence, the set

{qu\ql}L* (ﬁgo(ﬁ,...,rn) A ﬁw(al,...,ak))}

is also dense below p. Thus, given any r < p, there exists some ¢ < r such that
qWs (mo(r1,.. s ) A —U(01,...,0%)).
We distinguish between

(@) qWs —(—@(T1,..,T) A —(o1,...,0%))

and
0) gl = (=@(T1, - sm) A —(01,. .., 01))
(a) q Vs —(—@(T1,..., ) A —9(o1,...,0%)) would lead to the existence of some
s<qg<r<pwith s |- (—'90(7'1, cesTn) A (o, ... ,ak)), and by Lemma
this would lead to all &’ < s satisfying s Ik« (—=@(T1,...,7) A —¥(01,...,0%)),

contradicting the fact that the set

{qu|q|}¢* (—'50(7'1,...,7'”) A ﬁw(al,...,ak))}

is also dense below p. So, this case is impossible.
(b) So, the only possibility is that q I —'(—'QO(Tl, cesTn) A (o1, ... 7U;C)) which
shows that the set

{qe P ‘ q s _‘(_‘(P(Tl,- . 'aTn) A _'w(o—la" -7Uk))}

is dense below p. Hence, by Lemma we obtain p I —'(—'<p(71, cosTn) A (01, ...

(2) We have that ¢(11,...,7,) — ¥(o1,...,0k) = —p(11,...,™) v ¥(01,...,0%). By the
previous point, ¢ s —@(71,...,T) Vv ¥(01,...,0k) if and only if

{geP | gl —p(m1,..., )} U{g€P | qlFs Y(o1,...,0k)}

,0%))-
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is dense below p. So we show that

{geP|qlFs ~o(r1,...,m)} U{qEP | qls Y(o1,...,0)} is dense below p
—
for all ¢ <p, if ¢ ks @(11,...,70), then q -4 ¥(o1,...,0%).

(=) Take any ¢ < p such that ¢ |-« ¢(71,...,7,) holds. We show that the set
{reP|riF«¥(or,...,08)}
is dense below ¢, which will guarantee that ¢ I« ¥ (071, ...,0%). Indeed, since
{deP|d Iku—p(ri,..., 1)} U{d €P| ¢ ks ¥(o1,....0%)}
is dense below p, it is also dense below ¢q. So, pick r < g with
re{d eP|qd ke —p(r1,...., )} U{d €P|d s t(or,...,0h0)}.

Notice that r € {¢ € P | ¢ Ik« —p(11,...,7n)} is impossible since q I+« @(11,...,Tn)
and r < ¢ yield r I« ¢(71,...,7,). Therefore, one has

re {q,E P | q, | w(o-ly"'vo-k:)}v
which shows that {r € P | r I-s ¥(01,...,04)} is dense below g.

(<) In order to show that {ge€ P | q I« —@o(71,..., 7))} U{q€P | ql-s ¥(o1,...,0%)} is

dense below p, consider any r < p. If 7 - —p(71,...,7n) Or T |-« Y(01,...,0%) We
are done. Otherwise, 7 s« —@(T1,...,T) and 7 4 ¥(01,...,0k) yield there exists
some s < r such that s -« @(71,...,7), hence s 4« ¥ (01,...,0k) also holds from

the assumption, which shows that

s€{geP|qlre —p(m,...,m)} U{geP| gl (o1, ..., 0n)}

and completes the proof that {g € P | ¢ -4« —¢(71,...,7)}u{g e P | ¢ Ik« (o1, ..., 0k)}
is dense below p.

(3) We have that Yvp(v) = —3Fv—p(v). So we need to show

p s =3z —0(21, 72, ..., Th)
<
for all P-names 7 € VP, P lw (T, T2, ooy Th).

(=) We suppose p I« —3z1 ~p(z1,72,...,T,) and show that for each P-name 7, the set
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{teP |ty @(1,72,...,7)} is dense below p.
So, pick any ¢ < p. Since, p -« —3z1 —@(x1, 72, ..., Ty) We have q [ Jx1 ~(21, 72, . . .
hence the set

{r eP |30 e VP riky —0(o,m,... ,Tn)}.

is not dense below g. So there exists r < ¢ such that for all 0 € VP and all

s < r we have s |fx —¢(0,72,...,7,) which leads to the existence of some ¢t < s
which satisfies t |- @(0,To,...,7). So, for each P-name o € VP, we have found
some t < s < r < g < p which satisfies ¢t |« (0, 72,...,7,), which shows that

{teP |ty ©(0,72,...,70)} is dense below p, and ultimately, by Lemma [317, that
D lkx (0,72, oy Tn).

We assume for all P-name 7 € VP, we have p |-« (7,72, ..., 7). This implies that for
all P-name 7 € VP and all ¢ < p q IF+ ©(7,7o,...,Ty), hence q o —@(T, T2, ..., Tn).
Therefore, for each g < p, the set

{re P | Joe VP r I ﬁtp(U,T%'--,Tn)}-

is empty — hence not dense — below any ¢ < p. So, q -« 3z1—¢(21,72,...,Ts) holds
for each ¢ < p, which precisely grants p Ik, —3x1—p(x1, 72, ..., Th)-

RIS

15.3 Connecting the Truth in M[G] to the Truth in M

Providing we have access to the filter G, we show that we can go back and forth between the
truth in M and the truth in M[G].

Lemma 319. Let p(z1,...,2,) be any Lsp-formula, M any c.t.m. of “ZFC 7, P any notion of
forcing on M, 71,...,7, € MY, and G any filter P-generic over M.

(1) If pe G and (p I« go(Tl,...,Tn))M, then

MI[G] E ¢((m)gs-- -5 (T)g )

(2) IFM[G] E ¢((T)g - (Ta)g ), then there exists p € G such that

(p I (11, . .. ,Tn))M-

Viewed from the perspective of the generic extension — in the sense that we start from picking
elements in M[G] and find a name for them later on, as opposed to firstly starting with P-names

7Tn)7
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and secondly decoding them — this Lemma states that for all G P-generic over M, and all sets
ai,...,a, in M[G], we have

Where g4, ...

(1) If pe G and (p Ik« ¢(ay, - .- ,gn))M, then

M[G] k= ¢(ar,...,an).

(2) If M[G] = ¢(a1,...,an), then there exists p € G such that

(p I @(@1, ceey gn))M,

, @, are P-names in M such that (a¢1)s = a1,...,(a,)q = an.

Definition 320. Given P a notion of forcing, and w1, 72, 71,7 € VP, we define

(m1,m2) < (11, 72) <= m € dom(71) and w3 € dom (72).

Notice that this definition yields < is well-founded since 7k (m1) < rk(71) and 7k (m2) < 1k (12)
both hold, therefore, min {rk (1), rk(m2) } < min {rk(m), 7k (m2) }.

Proof of Lemma @: We prove and simultaneously by induction on the height of ¢.

P

x1 = x2 We prove and by <-induction.

(1) Let p € G be such that (p Ik 71 = TQ)M, we want to show both

M[G] E (T1)g < ()¢ and M[G] = (12)g < (1) -

We recall that
(Tl)G = {(7T1)G | 381 e (7‘(’1,81) € 7'1}.

Let (71, s1) € 71, and let us show that (1), € (72)s. To do so, we are reaching for
some s9 € GG such that (7, s2) € 2.

Since p and s; are elements of the filter GG, there exists ¢ € G such that ¢ < p and
q < s1. The set D,(m,$1,72) is dense below p and thus under q. By Lemma m
one has G N D, (71, s1,72) # &. Then take any r € G N Dy(m1,81,72) # &. There
thus exists (2, s2) € 7o such that r < s and 7 |-y 71 = m. Moreover, since r € G
and 7 < s, one obtains sp € G. It follows that M[G] = (m2) € (72) -

We have (m1,m2) < (71,72), 7 Ik« ™ = 7o, and r € G. So, the induction hypothesis,
gives M[G] |- (m1)g = (72)q

Therefore, we have shown that M[G] = (7). € (72) holds for every (m1) s € (71) o,
and so M[G] |= (11) 5 S (72)- The opposite inclusion is achieved in a similar fashion.
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p:

(2) Suppose that M[G] |= (11)s = (12)q. Let

D={reP|rikem =70 v ¢1(r) v a(r)},
where
P1(z) 2 I(m1,81) €7 (x <81 A V(me,82) €T Vg<sy (qlrsm =m0 —q L w))
and
Yo(x) : I(me, s2) € To (x <sy A V(my,s1)em Vg<s) (qlremya=m —q L 93))

Let us show that D is dense in P. Let p e P, if p |4 71 = 7o, then p € D. Otherwise,
there exists (71, s1) € 71 such that D, (71, s1,72) is not dense below p, so there exists
(72, s2) € T2 such that Dg(ma, s2,71) is not dense below p.

Suppose that there exists (71, s1) € 71 such that D, (71, $1,72) is not dense below p,
which means that there exists r < p such that for all ¢ < r, ¢ ¢ Dy(71,51,72). We
show that r satisfies ;.

Let ¢ < r, q ¢ Dy(m1,51,72), s0 ¢ < s1. Furthermore, for all (7, s2) € 72, ¢ € s2 ou
q W+ ™ = To.

For all t € P and for all (w2, s2) € T2, if t < s9 and ¢ |4 M = 7o then ¢ L r. Indeed,
if this is not the case, there would exist ¢ < r such that ' < so, t/ |-y ™ = o,
but the last two properties assure us that ¢’ € D,(71, s1,72) which contradicts the
definition of r. Therefore r satisfies 1;. We reason in a similar manner if there exists
(72, s2) € T2 such that Dg(mg, s2,71) is not dense below p. Hence, D is dense in P.

Let us now show that if p € G, then p does not satisfy neither v, nor ». Suppose
towards contradiction that p € G and that p satisfies ¢1. Fix (71, s1) € 71 such that:

p<siAV(my,s2)emaVg<sy (qlremi=T2—>qLlp).

We have p < s1 and p € G, so s € G. Hence M[G] | (m1)g € (71)g. Now,
MIG] & (11)g = (12)g, so M[G] = (71)g € (72)q. There thus exists (mg, s2) € T
such that (7)o = (m2) -

By induction hypothesis, there exists r € G such that r |-, m = m. It follows that
there exists ¢ < 7, s9,p such that ¢ I, m; = m3. But since p satisfies 1, from ¢ < s9
and ¢ |4 ™ = m we deduce that ¢ L p, but this contradicts the fact that ¢ < p. The
case of 1 is analogous.

We can conclude by remarking that since D is dense, there exists p € G n D such
that p IFs 7 = To.

Tr1 € T2
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p:

(1)

Suppose that there exists p € G such that p |-, 71 € 2. The set
D= {QGP | I(ma, s2) € T2 (q<32 A qlFe T =7T2)}

is thus dense below p. Since G is P-generic over M, G " D # &. Let ge G n D and
(2, $2) € T2 be such that ¢ < sg and ¢ |« 71 = m. G is a filter, so s2 € G, which in
turn implies

M[G] = (m2)¢ € (12)g -
Furthermore, g € G and ¢ |4 71 = 73, S0

MI[G] = (11)g = (m2)g -
Hence, M[G] = (1) € (T2) -

Suppose that M[G] = (1) € (72) ;- There thus exists sy € G such that (7o, s2) € T
and (m2)s = (71) . Hence, byfor equality, there exists ¢ € G such that g |-, o =
71. Since G is a filter, there exists p € G such that p < ¢ and p < so. Since p < ¢ and
q I+ ™o = 71, p moreover verifies p |4 3 = 7. The set

DI{QGP’H(?TQ,SQ)GTQ (q<32 A Q||—*T1=7T2)}

is then dense below p since all ¢ < p verify ¢’ < s9 and ¢’ |- 71 = m5. Hence pe G
verifies p |- T € To.

(p A1)

(1)

(2)

Suppose that there exists p € G such that (p s (@ A 1) )M. In particular, this means
there exists p € G such that (p I+ ¢)™ and (p I« ¥)™ and by induction hypothesis,
that M[G] = ¢ and M[G] [= ¥ both hold. Thus, M[G] = (¢ A ) holds as well.

Suppose that M[G] = (¢ A ), so M[G] | ¢ and M[G] = . There thus exist
p.q € G such that (p Ik« )™ and (¢ I+ ¥)™. But since G is a filter, there exists
r € G such that » < p and r < ¢, moreover such that r verifies (7 |-« QO)M and

(r I+ 1)™. Hence, (P I-s (0 A ) )M'

Suppose that there exists p € G such that (p |- ﬂcp)M. For the sake of contradiction,
also suppose that M[G] # —¢. Then M[G] |= ¢, and so there exists g € G such that
(q IF+« <p)M. Since G is a filter, there exists r € G such that r < p and r < ¢. From
r < g and (q Ik« @)™, it follows that (r |-« ¢)™. But r < p, so (p I =)™, which

contradicts the assumptions we made on p.
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(2) Suppose that M[G] &= —p. Let

D= {qe Pl (a1 @) v (gl ﬁ@)M}'

The set D is dense below p € P in any case. Indeed, let p € P and ¢ < p, then we have
two possible cases: either (q I ﬁgo)M, and therefore ¢ € D, or there exists r < ¢
such that (7 |-« @)™ and 7 € D.

Since for all p € P, D is dense below p, D n G # &. Let ¢ € D n G, then either
(q IF+« ﬁcp)M, and le the conclusion follows, or (¢ I« cp)M. But the latter case is to
exclude since it would imply that M[G] & ¢.

Jx p(xz,a1y...,ayn) Let 7= (11,...,7n).

(1) Suppose that there exists p € G such that (p s 3z p(x, T))M. The set
[=) M
D= {rePHUeM (r I+ 9(0,7)) }

is thus dense 1’{)/Ielow pand DN G # @. Let g € D n G, there exists o € M such that
(q I+ (o, 7‘) . Hence M[G] = gp( (@)es (T)G). Therefore, M[G] = 3z go(a:, (T)G).

(2) Suppose that M[G] |= 3z ¢(z, ()¢ ). Let (o) be such that M[G] = ¢( (o), (7))
By induction, there exists p € G such that (p I+ (o, T))M, so for all » < p,
M
(r I+ @(o, T)) . Thus

D= {7’ eP |30 e MP(r Iks (o, T))M}

is dense below p and it follows that (p s 3z p(x, T))M

L1319

At last, we are now able to prove the main result that connects the truth in V to the truth
inside M.

Lemma 321. Let o(x1,...,zy,) be any Lsr-formula, M any c.t.m. of “ZFC ”, P any notion of

forcing on M, and 11, ..., 7, € MF.

For all pe P, v
plrem ©(T1, ..., ) <= (DI« @(11,..., )" .

Proof of Lemma [321:

(«<=) Consider any p € P such that (p s (71, - - - ,Tn))M. By Lemma for any® G
3Since M is a c.t.m. of “ZFC?”, such a G P-generic over M exists by Lemmam
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P-generic over M such that p € G, one has M[G] = ¢(m1,...,T,), which, by definition, is
equivalent to p l-p v ©(71, ..., Tn).

(=) Fix p € P such that p IFp v ©(71,- .., Tn), and let

D= {re P | (7’ I+ 90(71,...,Tn))M}.

D is dense below p. Indeed, if this were not the case, there would exist ¢ < p such that
forallr <gq,r¢ D, ie.,
M
(Vr <q Tt go(Tl,...,Tn)) )

It would follow that (q I« —¢(71,...,7))M. By the reverse implication proved above, it
would follow that ¢ - —¢(71,...,7,) and thus, for G P-generic over M with ¢ € G,

M[G] E = ((T)gs---» (Ta)e)

would hold. But if ¢ € G, then p € G and having

M[G] Eo((T1)g,---» (Ta)g)

would yield the desired contradiction.

(] B21

The next result is the main result of this chapter. It is really a theorem which builds on all the
lemmas that were proved in this chapter. nevertheless, following the tradition of the “founding
fathers”, we do not call it a theorem, but a lemma.

However, its title — the “Truth Lemma” — should be enough to indicate that it is of major
importance.

The Truth Lemma.

Let o(x1, ..., x,) be any Lsp-formula, M any c.t.m. of “ZFC 7, P any notion of forcing on M,
and 11, ..., € MF.

For all G P-generic over M,

M[G] = o(()gs---» (Tn)g) = e G(p v o(m, .., 7)™

Viewed from the perspective of the generic extension — in the sense that we start from picking
elements in M[G] and find a name for them later on, as opposed to beginning with P-names —
the Truth Lemma states that for all G P-generic over M, and all sets aq,...,a, in M[G], we
have

M[G] = ¢(ar,...,an) = Ipe G(p Ik« olar, ... ,gn))M.
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Proof of the Truth Lemma: This is an immediate consequence of Lemmas and
[] Truth Lemma,

Combining the Truth Lemma with Lemma [321 we obtain the following picture:

inside M inside M[G] inside V

HPEG(,B\F* ‘ﬂ(ﬁy»uﬂ'n))M — M[G]':95‘((7'1)(;7~~,(Tn)c) — IpeG pl-o(ti,..., ™)

Figure 15.2: The connections between the forcing relations and the generic extension.

If the ground model is a c.t.m. of “ ZFC”, the forcing relation preserves all logical consequences.
This means that as soon as some forcing condition p forces some formula ¢, it also forces all the
formulas that are deductible from . Namely,

Proposition 323. Let o(x1,...,z,) and (z1,...,Ty), be any Lsr-formula, M any c.t.m. of
“ZFC ”, P any notion of forcing on M, and 11,...,7, € M". For all p € P,

(P s (71, - )™
and = (p I ¢(Tl’ 000 7Tn))M'

F Vay... Vo, (gp(:nl, ey ) — Y(x1, ... ,mn))

Proof of Proposition Consider in M the following set:

Q={qeP|qlra¥(r1,..., ™)}

We show that ( is dense below p. Towards a contradiction, let us assume that there exists some
s < p such that for all ¢t < s

tU’L* w(Tla"'an)'

This implies
Slhe —U(T1y ..oy Th).

Since by Lemma we have s < p gives

Sls @(T1, 00y Th),
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we end up with
Slhw (O(T1, ., ) A =(T1, ..., ).

By Lemma [294 there exists some filter G P-generic over M such that s € G. By the Truth
Lemma, we have

(s eG A (S s (11, ... ,Tn))M A (5 s = (T, - - 7Tn))M)

implies
M|G] E ¢(11,...,m7) and M|G] = —(T1,...,Tn)

Now, since
V...V, (gp(a:l, ey y) — (a1, ... ,:Un))

we have

= V.. Ve, (oo, . zn) — (@, ..., 2p))
and in particular

M[G] = V... Vo, (p(z1,. .. 20) — Y(21,..., 7))

which yields
M[G] |= (@(71, -y Tn) = (715 )

By modus ponens this gives

M[G] = (71, ..y )

which yields the following contradiction
M[G] ): (1/}(7—1’ ceey Tn) A _‘,¢(7—17 s )Tn))’
So, we have shown that () is dense below p, and by Lemma we obtain

(P Irw (71, - m)) ™

16523

Corollary 324. Let p(x1,...,2,) and Y(x1,...,2zy,) be any logically equivalent Lgr-formulas,
M any c.t.m. of “ZFC 7, P any notion of forcing on M, and 71, ...,m, € MP. For all p € P,
we have

(p s (11, . .. ,Tn))M = (plr« ¥(m,. .. ,Tn))M.

We recall that ¢(z1,...,z,) and ¥(x1,...,z,) are logically equivalent if they satisfy

F Va... Vo, ((p(azl,...,xn) «— ¢(x1,...,a:n)).
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Proof of Corollary Immediate.
L1324

From now on:

(1) if M is fixed, we will identify p IFpnm ¢(71, ..., 7,) and (p s (71, .. 77'71))M;

(2) in case both P and M are clear from the context, we will simply write p I @(71,. .., Ts).




Chapter 16

ZFC within the Generic Extension
and Cardinal Preservation

16.1 ZFC within the Generic Extension

This whole section is dedicated to proving, providing one starts with a ground model M that
satisfies “ZFC”, that the generic extension M|[G] also satisfies “ZFC”. Of, course, this state-
ment should be understood backwards: whatever finite set of axioms A from ZFC we consider,
we will end up with some generic extension M[G] that satisfies A, providing we start from a
ground model M that satisfies some (other) finite set I" of axioms from ZFC, where the relation
between I' and A could be made explicit (but will never be).

Theorem 325. Let M be any c.t.m. of “ZFC”, (P,<,1) € M be any partial order and G be
P-generic over M.

M|[G] satisfies “ZFC ”.

This theorem really states that given any finite sub-theory A ¢ ZFC, there exists some finite
sub-theory I' € ZFC such that in order to have M[G] = A, it is enough to start from any
c.t.m. M which satisfies M =T

Proof of Lemma [325:

Extensionality: holds in M[G] since M[G] is transitive.

Comprehension Schema: We want to show that for all o, 7y, . .., m, € MP and (T Y1y -y Yn):

v — {z e (@) | (o0 (m)G,...,m)G))M[G]} e M[G].
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We must find some 7 € M such that u = (7). So, we set
7={(0,p)edom(c) xP|plpm (€0 A0 m,...,m))}.

We show that (7). = u.

{
{0)|0edom(c) AIpe G plrpm (B0 A (O, m1,...,m))}
:{(G)G\Hedom(a) A ((O)GG(J)G A ¢((9)G,(m)g,...,(wn)g))

MI[G]

(O)g |0 € dom(o) A (B)ge(o)g A (‘P((H)G’(m)c, e (Wn)G)>M[G]}

Pairing: We assume M is a c.t.m. of sufficiently enough finitely many formulas from “ZFC”,
so that given any P-names 7,0 € MF, we have! {(o,1), (7,1)} € MP. Then we make use
of the fact 1 belongs to G to obtain:

{(U’ ]l)’ (T’ ]l)}G = {(U)G ’ (T)G} € M[G]

Union: Let ¢ € MF, to prove that | J(0); € M[G], it is enough to show that there exists
7€ MP such that | (o) S (7)5. We recall that

dom (o) = {ﬂ'EMP | peP (m,p)eo}.

We set
T = U dom (o) .

Since M is a c.t.m. of “ a sufficiently large enough amount of axioms from ZFC,” we have
7€ MP. Let 7 € dom(0), then 7 < |Jdom (o) = 7, and thus (1), S (7)g, which yields

U©@)e =U{@a|3peG (mp) o}
cU{mal (mp e}
- (Udom(a))G

= (T)G-

Tt is enough to guarantee, for instance, that M is closed under the class-function (z,y) — {(z, 1), (y,1)}.
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Infinity: This axiom holds in M[G] since both w € M and @ € MF are satisfied, and w =
(@)g € M[G].

Power Set: Let o € MP, we must show that the set %( ()5 ) n M[G] belongs to M[G]. For
this, it is enough to show that there exists 7 € M such that 2( (o), ) n M[G] € (7).
we then get the result by making use of both an instance of the comprehension schema
and the axiom of extensionality.

We consider :
S ={peMP | dom(p) < dom (o)}
={pueMP | pc (dom(o) xP)}
— (2 (dom(0) x P)) " MP
— (2 (dom (o) % P))M.

Notice that given any be £ ( (o), ) n M[G] and any P-name b for b, we have both

(1) the set b’ = {(0,p) € dom(c) x P | p -pm 0 € b} belongs to S;
(2) and
(V) = {(6) € MIG] |6 € dom(o) A IpeG pI-beb)
={(0)g e M[G] |0 € dom(a) A (0)€ (b)g }
—{(0); € M[G] |0 € dom(a) A (B),€b}
={(0)c e M[G] | (0) € b}
— {aeM[G] | aeb}

=b.

Assuming “ ZFC,” contains enough axioms to guarantee that S x {1} is some P-name
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that belongs to M, we set 7 = S x {1} and we obtain:

(1) = (5 x{1})g

Foundation: This axiom holds in M[G] because M[G] is transitive and M satisfies the axiom
of Foundation — which simply means that the axiom of Foundation belongs to “ZFC”.
To show this, we simply show that any infinite 3-descending chain in M[G], would yield
some other infinite 3-descending chain in M.

Notice that for all sets a,b € M[G] with b any P-name such that (), = b, we have

acbe M[G] = da e dom(b) (a)g=a

= Ja rk(a) < rk(b);

which induces

) MI[G]

M
<El(a2-)iew View a;j41 € a; — (El(gi)iew View g;.q€ dom(gi))

and equivalently

M M[G]
ﬂ<3(gi)i€w View a; 1 € dom (gi)) = ﬂ<3(ai)iew View aj41 € a¢>

I I

)M[G]

M
<ﬁ5|(gi)i6w View a; 1 € dom (gi)) (ﬁfl(ai)ieu, View aj+1 € a;

Since M
(ﬁﬂ(gi)iew View gj1q € dom((}z’))
holds, it follows that

M[G]
(ﬁa(ai)iew View a;+1 € ai)
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holds as well.

Replacement Schema: for each formula ¢(z,y, 21, ..., 2,), we want to prove that:

Vo e M[G] 3ly e M[G] (¢(z,y,21,..-,2n))
Vzl,...,VzneM[G] —
Vue M[G] e M[G] Vzeudyev (p(z,y,2,... ,zn))M[G]

We fix a1 = (a1)q,---s0n = (¢,) g, and u = (u),. Inside M we define:

F : dom(u) x P — On
(@.p) {least aeOnst. IbeM” AV, plem p(a,b a,. .. a,)
a,p -

0 otherwise.

Since M satisfies the finitely many instances of the replacement schema our proof requires,
there exists 3 € (On)M such that F [dom (u) x P] < 5. We set:

n=(MPnVg)x{l}eM.

We assume
Vo e M[G] Ay e MIG] (p(z.y. a1, a,) "

and let a € u. It follows that there exists some — unique — b € M[G] such that

(¢(a,b,a,. .. ,an))M[G]_

Therefore there exists p € G such that given any P-names g € dom (u) and b € MP which
satisfy (a)o = a and (b), = b, respectively, we have

plrem #(a,b,01, -, a,)
It follows that there exists b’ € n = (MP N Vﬁ) x {1} such that

b ”_P,M @(gvb,7 Ayy---y gn)

The Truth Lemma yields

M[G] = <p<a, (b’)G,al,...,an>.

Finally, by unicity, we obtain b = (V') , which shows that b € (). Therefore (n), satisfies

{be M[G] | Ja € u (gp(a, b, al,...,an)>M[G]} < ()¢ -
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Choice: In order to establish that (AC)MIG] we show that any A € M[G] can be well-ordered.
To do so, it is enough to show that given any set A € M[G], there exists some set B 2 A
such that B € M[G] and B can be well-ordered. (Indeed, the restriction of any well-

ordering of B to A is some well-ordering of A). Now, in M[G], if we show that for some

set B, there exist an ordinal o and a mapping f : « oo, B , then B can be well-ordered

by: for all b,V € B,
b<¥ ifandonlyif (|{Bealf(B)=0b}e [({B ealf(B)=V}
Or to say it differently,

b<b ifandonly if min{fea|f(8)=0b} < min{f ecalf(f)="V}.

Since we assume M is a c.t.m. of finitely many axioms from ZFC, we assume in particular
that the axiom of choice (AC) is among those finitely many axioms. Thus, AC holds in
M.

Given any A € M[G], we let A € M be some P-name for A. i.e., it satisfies (4), = A.

Inside M, there exist some ordinal o and some mapping

g a2t dom (A).

We make use of the class-function couple : MP x MP — MP that was defined in Example
[309] We recall that

couple(2.3) = { (10 0).1). ({0 1)} |

as shown in the picture below, providing (z), = = and (y) =y, we have

G

(couple (@,y) )G = (z,y).
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We consider the P-name f € M” defined by
f= {(coupze(ﬁ,g(ﬁ)), 11) eMP x {1} | e a}
We then have
F= (D) = { (comte(3009)) e MIGY | (3¢ )1}

~ {9 (09)5) e MG | e o}
—{(8.(9(8)¢) e MIG] | B a}.
Clearly, f is some mapping from « to some set
B =ran(f) = {(909)¢ | Bea} = { (#)g| o dom(4) }

that belongs to M[G] and, by construction, satisfies A < { (0)g | o€ dom(A) } = B.

It remains to show
f o onto B

To show that f is onto, it suffices to notice that for every b € B, there exist some o €
dom (A) and some 3 < « such that b = (0). Since g : « 2", dom (A) is surjective, there
exists some < a such that g(8) = 0. Thus we finally obtain:

b=(0)g=(9(B))g = f(B).

This shows that f : « onto, B, which yields the existence of a well-ordering of B, and since

A < B holds, the existence of a well-ordering of A as well.

[]B23

16.2 A First Attempt to Deny CH

As a start, we try to apply our knowledge of the generic extensions and propose a notion of
forcing P € M, where M is a c.t.m. of “ZFC?”, such that for every GG that is P-generic over M

one has
M[G] = —CH.

As we will later see, this first attempt will hit the target, but in order for us to be able to realize
that, we will need to discuss the notion of “cardinal preservation”.
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Example 326.
We let P be the following notion of forcing, and M be a c.t.m. of “ZFC ” with P € M:
P= {f : (wg)M x w — {0,1} | dom(f) is ﬁm’te}

with
[<g <= f2y
and
1=0.

Let G be P-generic over M and % = | JG. From Ezercise we already know that
(1) F is a function (see Exercise[295):

F (wg)M x w — {0,1}.
(2) Given any p € P and any ordinal o < (wg)M and any integer n such that (o, n) ¢ dom (p),
one hasr = p u {((a,n),O)} and g =p U {((a,n), 1)} satisfy
qg<p AT<p A qlr
hence, by Lemma[299, G ¢ M.
(3) By Lemma[307, G € M[G], hence F € M|G].

Fora < < (wg)M, we consider:

Do g = {pe Plin<w ((a,n) € dom(p) A~ (B,n)e dom(p) A pla,n) # p(ﬁ,n))}.

We show that D, g is dense in P. Indeed, let q € P, since dom(q) is finite, there exists n € w
such that (o, n) and (8,n) do not belong to dom(q). Set

p=quv {((a,n),O), ((/Ban)71)}7
to obtain p < q and p € D, g, which shows that D, g is dense in P.

We also have Dg g belongs to M (any o < B < (wg)M and, since G is P-generic over M, for
all a < B < (wg)M, we also have:
Daﬂ NG # 9.

Thus there exist p € G and n € w such that

p(a,n) # p(B,n).
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It follows that for all a < B < (wg)M, there exists an integer n such that
F(a,n) # F(B,n).
For each ordinal o < (CUQ)M, we consider the following subset of the integers:
ao = {n<wl| Z(a,n)=1}.
Foralla < B < (wg)M, since there exists n € w such that #(a,n) # % (B,n), we have
Qo 7 QG-

It follows that there exist at least (wg)M—mang/ different subsets of w in M[G].

In the Example above, a question remains:
what is the cardinality of (wg)M inside M[G] ?
ie.,

’M[G] )

what is ’(wg)M
In order to succeed in our attempt, we would like two things:

(1) to claim M[G] = 2% > Ry, and

)M[G]

(2) to carefully be able to determine whether or not (wz)M = (w2 holds.

In order to answer these questions, we need to investigate the collapse of cardinal numbers that
may occur during the move from M to M[G]. In particular, since the ordinals of M and M[G]
are the same, we would like to know of some conditions which guarantee that the ordinals that
are cardinals in M still remain cardinals in M[G].

16.3 Cardinal Preservation

We recall from Definition that given M any c.t.m. of “ZFC”, (P <,1) € M any notion of
forcing on M,

o/ < P is a (strong) antichain <= VYpe o/ Yqe o (p #q — pJ_q).

Definition 327. Let M be any c.t.m. of “ZFC”, P € M any notion of forcing on M, and
()\ s a cardmal)M, we say
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P has the A\-chain condition — or P is A-c.c. —
<
m M, every antichain of P has cardinality strictly less than .

We say that P is c.c.c. if P is Xq-c.c..

A-chain condition is the wording commonly adopted. However, the correct formulation should
rather be A-antichain condition, or even A-strong antichain condition.

Definition 328. Let M be any c.t.m. of “ZFC”, P € M any notion of forcing on M, and
()\ 8 a cardz'nal)M.

P preserves cardinals = \ (respectively < \)

—

for all G P-generic over M, M and M|G] have the same cardinals = X (respectively < ).

The following theorem gives an explicit condition on the poset which guarantees that the cardi-
nals above some threshold are preserved.

Theorem 329. Let M be any c.t.m. of “ZFC 7, P € M any notion of forcing on M.

()\ is a regular cardinal)M
and = P preserves cardinals = \.

(P 18 )\-c.c.)M

In particular, if M = A = X, we have M = “N; is regular” because we assume AC is part
of the finitely many axioms that M satisfies. Therefore, given any P € M which satisfies
M E P is -c.c.c. (P is Nj-c.c.), we have P preserves all cardinals > N;. Since Ny and all finite
cardinals are all absolute for transitive classes, we have that M and M[G] have exactly the same
cardinals.

Proof of Theorem Let G be P-generic over M. Towards a contradiction, we suppose there
exists A’ > \ a cardinal (in M) such that X" is collapsed (in M[G]) down to some ordinal u < \'.
So, there exists, inside M[G], a mapping from p onto \:

f LU onto )\/
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N N

A S

1§ p
A

We let f e MP satisfy f = (I)G By the Truth Lemma, there exists pg € G such that:

o I f . ,a onto X/'

Since M and M[G] have same ordinal numbers (Lemma [312), we define inside M:
F:p— 2\
a —{B<N[Ig<po ql- f(a)=B}.

We show:
M[G] = Ya<p f(a)e F(a).

For this, we let
M[G] = f(a) = B.
By the Truth Lemma, there exists qo € GG such that : qg I+ f(d) = B.

o=

pol- [ fi ROrEOS Y q I+ f () = B
... .

eG ., L el

Figure 16.1: py > ro < go with po, go, 70 € G.
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Therefore, there exists rg € G such that ro < qo, 70 < po and 7o |- f (&) = f3, hence § € F(a)
and thus, for all a < u, f(a) € F(a).

We now show that for all a < u, (|F(e)] < M)™. Let o < p and 8 in F(a). With the help of
AC — which holds in M — we map /3 to some gg € P which satisfies both

(1) g5 <po (2) g5 1= f (@) = 5.
We notice that the underlying mapping: H : F(«) L P s -l

This relies on the fact that not only do we have § # ' — ¢3 # g¢g, but we even have

67&5,:QBJ_QB/.
To show this, let us assume towards a contradiction, that there exist 5 # 8’ with gg and gg
compatible. Then there would also exist some ¢ € P such that ¢ < gg and ¢ < gg, hence:

1) qlrpm [ 2% N (2) qlrpm f(d) =5 (3) qlrpm f(a) = 5.

Then, in V, we could get some filter J which contains ¢ and is P-generic over M. By the Truth
Lemma, this would lead to some generic extension M[.J] that would satisfy:

(1) M[J] | f:p 225 N (2) M[J] = f(a) = 58 3) M[J] = fla) = 8,

which leads to M[J] = 8 = [/, contradicting our hypotheses about 8 and /3’
So, not only have we shown that H is injective, but we have also shown that H[F(«)] is an
antichain. Now, since P is A-c.c., we obtain

(IH[E@)] <)
and since H is 1-1, iy
(|F(a)| < A) .

Inside M:
We define S < X by

S =|Jran(F)
~U{F(a) | <}

For each o < p, since we showed that f(«) € F(a), we have f(a) € S, and since f: uy —— X,
we have

flul=Xcs.
Since both S € X and X' < S hold, we obtain

S =\
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For each o < i, we set
[F(a)| = Ao < A,

We distinguish between g > A and p < A in order to show that in any case, |S| < A holds

(which will contradict S = \).

N N

A S

14 I
A

o If = A, then [S] < |u| - A = max{[ul, A} = |pu] < p < X

o If u < A, then since X is regular, we have cof(A) = A, hence for any family (v,)

cardinals v, < A, we have
sup {va | @ < p} <A

By induction on a < u we set

Vo = SUp ({1/5 | € < a} U {w, )\a})

By induction on «, we see that (v,)
numbers that satisfies for each o < p:

a<p

U{F(©) [ € <o} <[U{{e} xF(&) | € < af

< Vg-

This is why we have
S| = [Uran (F)]
= |U{F() | @ <}
<|U{{e} x F(a) | a < p}}
<sup{va | a < p}

A

A

So, in both cases we have |S| < A" which contradict S = \'.

of

a<p

is an increasing sequence of infinite cardinal

(] B29

We already have a condition on posets — being A-c.c. for some A regular — which guarantees
that cardinals above a certain threshold are preserved. We now propose another condition on



280 EPF Set Theory

posets which guarantees the same type of preservation not above but below the same kind of
threshold. The first condition relied on sizes of antichains, this new one deals with sizes of
chains.

Definition 330. Let M be any c.t.m. of “ZFC”, P € M any notion of forcing, and
()\ 8 a cardz'nal)M.

P is A-closed

—

for all v < X and decreasing sequence (p¢)e<~ from P, there exists pe P s.t. p < pe (any § < ).

Theorem 331. Let M be any c.t.m. of “ZFC 7, P € M be any notion of forcing.

If (X is a cardina)™ and (P is A-closed)™, then P preserves all cardinals < .

Before proving this theorem, we need some easy preliminary result.

Lemma 332. Let M be any c.t.m. of “ZFC 7, P € M be any notion of forcing, and p € P be
any forcing condition. Let also p(x,x1,...,2,) be any Lsr-formula, and b, a1, ..., a, € MP.

Ifplrppm 3z (x€b A @(z,a1,...,ay)), then there exists ¢ < p and ¢ € dom (D) s.t.

q M (e at, ... an).

Proof of Lemma @: Let G be P-generic over M such that p € M[G] and set b = (b),a1 =
(QJ)G =,...,an = (a,)q- We have:

M[G] =3z (zeb A p(z,a1,...,an));
therefore there exists — by the very definition of b — some ¢ = (¢), with ¢ € dom (b) such that
M[G] = (ceb A ¢(c,ar,...,an)).
By the Truth Lemma, there exists p’ € G such that
Pikem e (car, ..., a,).

Since both p and p’ belong to G, there exists g € G such that both ¢ < p and ¢ < p’ hold. This
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yields
ql-pM p(c a1, ..., an).

O
Proof of Theorem [331: We simply show the following which will immediately give the result:

onto

For all < A, for all £ € On, for all f: uy— &,
if f € M[G], then f € M.

We assume f = (f)G € M[G], and let po € G such that po -pm f : fi oo, €. We set

M
D= {p eP| <3g Va < p 3z (couple(d,z) e g A plrpm f(@) = w)) }
which we summarize as

D={peP|I3geMVa<pu plrpm f(a@) = g(@)}.

We show that D is dense below py. For this purpose, we define both a <p-decreasing sequence
(Pa)a<u and a sequence of ordinals (£4)a<, such that for all @ < 8 < pu:

ps e f (&) = &a-

The definition is by recursion on o < p. At each step «, both (p¢)c<a and (§¢)¢<q are defined.
In particular, all £ are defined at successor level (even for for ¢ limit).

a := 0: Nothing needs to be defined at this stage, since only pg is required and it is already
defined.

a =« + 1: we define py11 < po and &,. By Construction, we have p, < pg, hence
PalFpM [ 1A oo, €.
Since o < p, it follows that
Do IFp,M J € f f(d) = .

By definition, £ = {(77,1) | n < £} and dom (f) = {n|n<¢&}. From Lemma @, there
exists pa+1 < po and &, < £ such that

Pat1 lFpM [ (&) = &a.

a limit: assuming the decreasing sequence (p¢)¢<q has been constructed, since P is A-closed,
there exists p, which is below every p¢. Since « is limit, there is no other condition on pq
to satisfy and there is no ordinal of the form & to define.
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Since o < pr < X and P is A-closed, there exists some p, € P such that for all a < u we have

Dy < Da and Py l-pM f(d) = &a-

Inside M, we set g(a) = &, so that we have

pu<po and Ya <pu p,lpm f (&) = g(a)
which shows that p,, belongs to D and completes the proof that D is dense below py.

Now, since pg € G, we have D n GG # @&. For any q € D n GG, by the very definition of D there
exists g € M such that

Va<p qglFpm f (&) = g(a).

Thus, we have for all o < p,

i.e.,
MIG] k= f(a) = g(a).
which shows that f = g | p which belongs to M. So, finally we obtain f € M.
(1331



Chapter 17

Independence of CH

In this chapter, we will prove that if the theory ZF is consistent, so is the theory ZF + 280 = R,.
Since we already know that if ZF is consistent, so is ZF + 2% = R; (see Theorem , this new
result will show that 2%0 = X is independent from ZF. i.e., if ZF is consistent, then

o ZF £ 280 = N o ZF £ 280 £ Ny,
The same result holds for ZFC as well. i.e., if ZFC is consistent, then
o ZFC £ 280 = o ZFC £ 280 = ;.

In the next chapter, we will also have similar results for AC instead of CH. i.e., if ZF is
consistent, then

o ZF i AC o ZF I, ~AC.

Moreover, many more independence results can be obtained by applying forcing techniques. We
only illustrate the by a few samples, but many more can be found in the litterature.

17.1 Forcing 2% = X,
We go back to the poset that was introduced in Example
M
Po, = {f: (w2) " xw—2]|dom(f)] <w}.

In order to conclude that, when we forced with this notion of forcing, the generic extension
satisfied 280 = Ry we needed to make sure that cardinals were preserved. This is precisely what
this section will establish: simply by proving that P, has the c.c.c..

As a preliminary, we need to prove some purely combinatorial result.
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Lemma 333. Let F be any family of finite sets such that |F| = Ry. There exist F' < F and r
finite such that:

© |F/| = Nj;
o foralla,be F',anb=r.

F' is called a A-system.

Figure 17.1: Some A-system F’, where Ya,be F' anb=r.

Proof of Lemmam Since F' is some family of finite sets, and |F'| = Xy, there exists an integer
n and a subset of F' with cardinality N; only containing sets of cardinality n. So without loss of
generality we may assume that for all a € F', |a| = n. The proof then goes by induction on n.

If n =1, then F/ = F and r = & works.

We now suppose that the property holds for n and show that it also holds for n + 1. So we let
F be such that for all a € F', |a| = n + 1. We then distinguish between two cases.

(1) There exists x such that |F,| = Xy where F, = {a € F' | z € a}. We then set Fy =
{a~{x}|ae F,}. We obtain |Fy| = N; and for all a € Fy, |a] = n. By induction
hypothesis, there exists Fyy  Fy and ro such that |Fj| = Ny and for all a,b € Fjj, anb = ry.
We then set

F'={apu{z}|acFy} andr =rou {z}.

Notice that we have |F’'| = Ny and for all a,be F',; anb =r.
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(2) For every z, |F,| < ;. We then define by induction on & a sequence (ag)¢<w, of two by
two disjoint elements of F'. We start with ag being any element, and for each § < w1, we
choose ag such that for all £ < 3, ag nag = @. We can do so, for otherwise there would
exist some (least) 8 < w; such that no a € F satisfies that for all { < 8, ag na = @. We
would then be able to define the following mapping;:

fo(F~Aag | €< BY) — B

a —— § such that a nag # @.

Since |F' \ {ag | € < B} = Ry and |B] < Ny, there exists £ < § such that ‘f‘1[§]| = Ny. But
ag is finite and there are Nj-many elements in F' that have one element in common with ag,
therefore there exists « € a¢ such that |F,| = Ry, which contradicts the hypothesis. This
guarantees the existence of the sequence (a¢)¢<w,. We then finally set F' = {a¢ | { < w1}
and r = @.

B33
The following notion of forcing was introduced in Example

Definition 334. The notion of forcing (P,,<,1) is defined by
(1) Py, = {f (WQ)M xw — {0,1} | dom(f) is ﬁm'te}

2) f<f <= f2f
(3) 1=0

Lemma 335. Let M be any c.t.m. of “ZFC ” and (P,,,<,1) € M.

Pu, has the c.c.c..

Proof of Lemma [335:  Towards a contradiction, we suppose that </ is an antichain in P,
with cardinality ;. We set F' = {dom (p) | p € &/}. Since in P, there exist only finitely many
different functions over any finite fixed domain, we necessarily have that |F| = X;. By Lemma
@, there exists some A-system F' < F such that |F’| = N; and r finite such that for any two
different a,be F', a nb=r.

We let {pa | @ < w1} S o be a subset of & such that for any o < wy, dom (pa) € F'.

Since &7 is an antichain for any two different o, o/ < wq, we have p, L p,s, hence

Pa I 7 # Par | T
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It follows that the mapping
1-1 4,
Ny —> 2

o — palr

is injective which is impossible because 2" is finite (recall r is finite).

[JB33

Corollary 336. Let M be any c.t.m. of “ZFC 7, P,,, € M, and G P-generic over M.

P, preserves all cardinals.

i.e., for all « € On,

Proof of Corollary By Lemma [335, P, has the countable chain condition (c.c.c.). By

Theorem it preserves all cardinals = X;. Moreover, by absoluteness, oM = RoMIET and

M _ , M[G]

also for each integer n, n™ =n . So, P, preserves all cardinals.

(1334

This Corollary guarantees that forcing with P, yields at least (wg)M—many different subsets of

w in M[G]. Now, we know from Corollary that in M[G] there are at least (wg)M[G]—many
different subsets of w. Therefore, M[G] = 2™ > Ny. Some more work is still required to show
that M[G] = 2% = Ry. Namely, we are going to show that M[G] = 2% < Ry. This will be
done by obtaining a bound on the size of Z(\) in M[G] that depends on some properties of
the notion of forcing P.

Lemma 337. Let M be any c.t.m. of “ZFC ”, P € M any notion of forcing.

If (P has the c.c.c)™, (X is an infinite cardinal Y™, and G is P-generic over M. Then

2OM < (PP)™

Proof of Lemma Let X € Z(A)MIC]. Inside M[G], we choose a P-name X in M such that
(X)g =X,

Inside M we define:

fx A — 2(P)

o« — 4, some maximal antichain in {pe P [pIFd e X}.
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We define inside M[G]:
F : #()\) — (*{antichains of P}
X — fx.

)M

We show that F is 1-1:
For this we let X, X’ € 2(\)MIE] be distinct and X, X’ such that (X); = X and (X'), = X'
Pick a € (X N~ X') U (X' N X). By symmetry, we assume « € X \ X’. By the Truth Lemma,

there exists pg € G such that
pol-(@eX A a¢X').

Since fx(a) = o, is some maximal antichain, there exists p € <7, such that py and p are
compatible. Moreover, py is not compatible with any element from 7. Indeed, if py were
compatible with some p’ € A/, there would exist r such that r < pg, r < p’ and

ri-a¢ X’ and ri-ae X,
A contradiction since
rica¢X = rkFr—-aeX = Vi<r tfaeX —=rlfacX.

Since pg is compatible with some element from fx(a) = @, but no element from fy:(a) = 47,
we conclude that 7%, # <7, and fx # fx/, which shows that F is 1-1; which in turn gives

M

|2(\)MIC < ”\{antichains of P}‘ .
Since P has the c.c.c., every antichain is countable. So, we have
D M Ro \M
|{antichains of P} < (|P|™) .

Finally, an easy computation gives the result:
M A M M M
|2(\) M < Mantichains of P}] < ‘<|P|N°> ‘ - ]ypr‘“\ < (|P|*) .

[1B37

Corollary 338 (Cohen). Let M be any c.t.m. of “ZFC + CH”, P = (PWQ)M, and G be

P-generic over M.

(2?*0 _ NQ) el

Notice that we start with a ground model M that satisfies CH. i.e., (2% = X)M,
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Proof of Corollary By Lemma [335, P, has the c.c.c., so by Lemma we have:
M
2(w) M < (P, ™)
Notice that

fePy, <= fissome finite function :wy x w — {0,1}.

So formally,
fEP,, < (fg ((w2 x w) x {0,1}) and f is finite ),

hence,
|Pw2 |M = Ng/[

In M, ws is regular since AC is satisfied. So, any function from w into wy is indeed some
mapping from w into some o < wg, and certainly |a| < ;. So, in M:

Yol < WY

Since M is a c.t.m. of “ ZFC + CH” we have (Nl = 2N°)M. Thus, in M, for every a < ws we
also have:

[“al < V)" = (2N0>N0 =200 = 2% = Ry

When « varies over wsy, we obtain:

U“’a

a<w?g

N
NgéNZO =

N0N2’= <‘{(a,f)\a<w2 A fe“a}‘SNg-MzNz.

So, we have shown

M
2(@)M < (IPuy )T =M.

In Example we obtained
oM < |22 (w)MICT

Altogether, this gives
|2 (w) ML = M.

ie.,
<2N0)M[G] = NzM.
In Corollary we proved that P, preserves all cardinals, so in particular

NQM _ NQM[G]

which finally leads to
MI[G]
(2% =n)
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[1B38

17.2 Reflecting back on forcing 2% = X,

Formally, in order to show
cons(ZFC) — cons(ZFC + 2% — Ng)
we proceeded by contraposition and proved:
ﬁcons(ZFC + 2R — Ng) — ﬁcons(ZFC).
For this purpose, we supposed there exist axioms @1, ..., ¢, in ZFC + 28 = X, such that:
Oly-eeyPn L.

One can then determine within “ZFC” — in advance and independently of M — some other
formulas 1, ...,¢, in “ZFC” such that if M is a model of #1,...,9Y, and G is P,,-generic
over M, then M[G] is a model of o1, ...,¢,. We add to 91, ..., ¢y other formulas ¥yy1,...,1
which enable us to prove other results such as the ones on cardinal preservations, on A-systems,
or on absoluteness, etc.

Then, we work in ZFC:

M
“JM a c.t.m. s.t. ({lﬁ;---ﬂbl}) 7
MI[G]
e A NG ()
“3G (PWQ)M—generic over M 7
Since,

M
ZFC H “ IM a c.t.m. s.t. ({1/11, . ,wl}> 7oA 3G (PMQ)M—generic over M 7.

by modus ponens follows,

M[G]
ZFC - IM[G] ({gpl,...,gon}> .

or more generally,

ZFC - 3N ({wl,---,son})N

)

P
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Since ©1,...,0n L,
N
ZFC . —3IN ({(pl,...,(pn})

"

g

-

Therefore,
ZFC - L.

As put by Kenneth Kunen: “The inelegant part of this argument is that the procedure of finding
Y1, ..., although straightforward, completely effective, and finitistically valid, is also very
tedious ” |21, p. 233]

17.3 Forcing 2% = N,

The same argument, mutatis mutandis yields, for any ordinal «, the equiconsistency of ZFC
and ZFC + 2% = R, .

Definition 339. Let M be any c.t.m. of “ZFC ”. Given any o € On, we let (PNQ, <, ]1) be
M . .
(1) Py, = {f : (Ra)" xw—{0,1} | dom(f) is ﬁmte}

2) f<f = f=2f
(3) 1 =0

We first need to show that Py, has the c.c.c. which will guarantee that all cardinals are preserved.

Lemma 340. Let M be any c.t.m. of “ZFC ”, 0 < o € On and Py, € M.

Px, has the c.c.c..

Proof of Lemma Mutatis mutandis, identical to the proof of Lemma Towards a
contradiction, we suppose that ./ is an antichain in Py, with cardinality X;. We set

F = {dom(p) | pe o/}

Since in Py, there exist only finitely many different functions over any finite fixed domain, we
necessarily have that |F| = N;. By Lemma @ there exists some A-system F' < F such that
|F'| =¥y and r finite such that for any two different a,b € F', anb =r. We let (pa)a<w, be a
sequence of elements of &/ such that for any o < wy, dom(p,) € F'. For a < o/ < wy, we have
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Do L Doy hence py, | 7 # por | 7. It follows that the mapping
Ry ——5 o7

o —> po T

is injective which is impossible because 2" is finite (recall r is finite).

(1340

Theorem 341 (Cohen). Let M be any c.t.m. of “ZFC+GCH ” and 0 < « € On.
Jil> = (PNQH)M and (GCH)M, then for all G P-generic over M,

(2‘*0 _ Na+1)M[G]

Proof of Lemma|341: By Lemma[117 Ry is regular and by Lemma [340 Py, ,, has the c.c.c,
thus Py, ,, preserves all cardinals. By Lemma 337, we have

2@)M < (py,, [*)
So, we need to compute <|PNQ+1| ) . le., | OPN,IH’

Inside M, one has

O

Pxois| = Rasi;

o since M is a c.t.m. of “ ZFC + GCH” we have 2% = R, ;

o

N, 41 is regular since AC is satisfied. So, any function from w into Ny is indeed some
mapping from w into some & < wq+1, and certainly |£] < R,. So,

€] < R

O

The mapping x that associates to each function f from Wy into X,, its characteristic
function x ¢ : g x Xy — {0,1} is 1-1. Thus

RGN0 < RoRa —9Ra
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o So we obtain:

No
Nay1 < NaJrl

= ["oRq 41
= ‘U§<Na+1 fNU
<{(&h) 1€ <Rart n fese}

R
< NOZ+1 : Nao

< Nog1 - Nt

= NaJrl

which yields
P

atl1 a+1 = N1

Thus, by applying Lemma we obtain:

12(@)MD < ([P, )M = Rar )™ = Ry )M,

ie.,
(12 < Rat) ™

For the other inequality, we set .# = | J G and notice that
(1) # is a function (see Exercise [293):

F o (Rar)™ xw — {0,1}.

(2) G ¢ M since by Lemma given any p € Py
r=pu{(n,0)} and ¢ = pu {(n,1)} satisfy

a+1

qg<p A T<p A qlr
(3) G € M|[G] (see Lemma [307)), hence .# € M[G].

M .
For a < 8 < (Na+1) , we consider:

and any integer n ¢ dom (p), one has

Dy = {p eEP|In<w ((a,n) € dom(p) A (B,n)e€ dom(p) A pla,n) ;ép(ﬁ,n))}.

D, g is dense in P because given any ¢ € P, since dom (q) is finite, there exists n € w such that
(a,n) and (B, n) do not belong to dom (q), thus the following forcing condition p < ¢ belongs to
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Da.s.

)

p=aqo {((@.n),0), ((8.m). 1) )

Since each D, g is dense and belongs to M, and G is P-generic over M,
Da,ﬁ NG #g.

Thus there exists p € G and n € w such that p(a,n) # p(5,n). It follows that for all « < 8 <
(Na+1)M, there exists an integer n such that

F(a,n) # F(B,n).
. M .
For each ordinal a < (Na+1) , we consider
Xo={n<w| Z(a,n) =1}.
Ifa<fB< (Na+1)M, since there exists n € w such that .7 («,n) # .7 (5,n), we have
Xy # Xﬁ.

It follows that there exist at least (NQH)M—maHy subsets of w in M[G]. Thus,

M M[G
)[]

|2(@)M = (R )™M = Raga

ie.,
Finally, we have shown
which yields

(B4
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Chapter 18

Independence of AC

18.1 Notions of Forcing and Automorphisms

We shift our attention to the axiom of choice and intend to prove:
ZFC cons(ZFC) — cons(ZF + ﬂAC).

We will do this by first forcing from a ground model M which satisfies “ZFC”. This will
provide us with a generic extension M[G] which will also satisfy “ZFC” as shown by Theorem
So, there is no chance we get a model in which the axiom of choice fails this way. However,
we will consider a submodel of the generic extension for which we will be able to prove that it
denies the axiom of choice.

Definition 342. Let M be a c.t.m. of “ZFC ” and (P,<,1) a partial order over M.
Any mapping w : P — P is an automorphism of P if

o 7 is a bijection;

o VpeP VqgeP (p<q «— 7(p) <7T(CI))7'

on(l)=1.

Lemma 343. Let M be a c.t.m. of “ZFC ” and (P,<,1) a partial order over M. If m € M s
an automorphism of P, then

G is P-generic over M <= w|[G] is P-generic over M.

Proof of Lemma [343:
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(=) In order to prove that 7[G] is P-generic over M, we first show that 7[G] is a filter over
P. We have

(1) Given any m(p),n(q) € 7[G], since G is a filter, there exists € G such that r < p
and r < ¢. Since 7 is a automorphism, we have m(r) € 7[G], together with

w(r) < w(p) and 7(r) < 7(q).
(2) If m(p) € w[G] and 7w (p) < 7(q), then
p<q — 7(p) <7(q)

holds, which yields ¢ € G (since G is a filter), hence 7(q) € ©[G].
(3) 1 ==(1), thus 1 € 7[G].

We now check that 7[G] satisfies the density clause:
For every D € M which is dense in P, 7[G] n D # @.

It suffices to show that m—![D] is dense in P, since
m[G] "D =7[G nn ' [D]].
Let p € P, D is dense, so there exists 7 < m(p) such that r € D; hence 7~!(r) < p and
771(r) € #~1[D], which shows that 7~![D] is dense.
So we have 7~ ![D] n G # @ and thus D n 7[G] # @. 7[G] is thus P-generic over M.

(«=) The proof of the reverse implication is simply addressed by replacing 7 by 7.

(1343

Definition 344. Let M be a c.t.m. of “ZFC 7, (P, <, 1) a partial order over M and 7 : P — P.
By transfinite recursion, we define

7:MP— MP
T —{(7(o),7(p)) | (o,p) € T}.
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Example 345.

The P-name 7:

We show that the image of a P-generic filter over M by an automorphism of P yields exactly
the same generic extension as the original filter.

Lemma 346. Let M be a c.t.m. of “ZFC ”, P e M be a notion of forcing, G be P-generic over
M, and m € M be an automorphism of P.

Proof of Lemma @: Notice first that, for all 7 € MF, we have
(M = (7)) 2

(Indeed, given any b € M[n[G]], and 7 € MF such that b = (T)xic We have b = (7)1 =
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()¢

This yields
M[r[G]] < M[G].

For the reverse inclusion, we make use of Lemma[311] which stated that if N is a transitive model
of “ZFC” with M < N such that G € N, then M[G] € N. We notice that

(1) M[7[G]] is transitive.

This gives

which yields
[]B44

Lemma 347. Let M be a c.t.m. of “ZFC 7”7 and P a notion of forcing over M. Let also
o(21, ..., xy) be any Lsp-formula. If m € M is an automorphism of P, then

(1) for allz e M, 7(%) = &;
(2) for all ql,...,gneMP, and p € P,

plkg(at,....a,) = m(D) Ik o(T(ar), - .., 7(an))-

Proof ofLemma@: The proof ofis immediate. For we write a1, . .., a, for (GJ)G oo (@)
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repsectively. By using Lemmas and we have
Pl (ql, e gn) — for all G P-generic over M with pe G
M[G] = ¢ (a1,...,a,)
— for all G P-generic over M with p e G
MIG] = o (7 (1)) e+ (7 (@) i)
— for all G P-generic over M with pe G
M[x(G1] o ( (7 (@) 6y (7 @) )
<= for all 7[G] P-generic over M with 7(p) € 7[G]
M[x(G]] o ( (7 (@) 6y (7 @) )
— ©(p) = p(@(ar), ..., 7(ay)).
(1B47

18.2 Hereditarily Ordinal Definable Sets

Definition 348. Given any set A,
(1) OD(A) is defined by

be OD(A)
—
for some Lsp-formula o(x,x1, ..., Tn, Y1y - Yk, Yks1), ordinals a,aq,. ..o, and

ai,...,ai € A.

Vo
b= {zeVa | (cp(z,al,...an,al,...,ak,A)> }

(2) HOD(A) is defined by

be HOD(A)

—

be OD(A) and the transitive closure of b is included in OD(A).



300 EPF Set Theory

Theorem 349. Let A be an arbitrary set.

Proof of Lemma @: The proof is identical to the proof of (ZF)HOD — see exercises sheet.
C1B49

18.3 Forcing —AC

This section is entirely dedicated to “constructing” a model of ZF in which the axiom of choice
fails. Namely,

Theorem 350.
ZFC cons(ZFC) — cons(ZF + ﬂAC).

Proof of Theorem To do so, we prove that given M any c.t.m. of “ZFC” with Py, € M,
if G is Py,-generic over M, then there exists a set A € M[G] such that:

MIG] & (—AC)TOPW,

Or, to say it differently,
((-acyrop) ™,

We start by forcing with
Pxo = {f:wxw—>{0,1} | dom(f) finite}.
Given any G Py,-generic over M, we have .# = | J G satisfies
Frwxw—{0,1}.
Let
ar ={n<w|F(kn)=1} and A= {ay |k <w}.

We have A € M[G], and A ¢ M for otherwise, one could recover from A some filter 7[G] for
some automorphism 7 of P. This would yield n[G] € M, henceforth M[7[G]] = M[G] = M
which yields G € M which would contradict Lemma since given any p € Py,, there exists
q,r € Py, such that ¢, < p and gLlr.

Also, since
Dn,m = {Pe PNO ‘ Jk Sw p(nvk) # p(m,k)}
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is dense in Py,, for all integers n # m, we have a,, # a,,, which shows that A is infinite.

Inside M[G], we verify that A is an element of HOD(A):
(1) Ae OD(A) since it is definable from itself.

(2) If z € A, then z is definable from itself, so x € OD(A). If y € x € A, then y € w, hence
y€ OD < OD(A). So, the transitive closure of A is included in w u A < OD(A).

Now, for each n € w, we define canonical Py,-names g,, and A for, a,, and A respectively:

a, = {(m,p) ’p(n7m) = 1}
and
A: {(an]l) ]n<w},
so that we have

(¢n)g = an and (4)g = A

We let
N = (HOD(4))M“.
Towards a contradiction, we suppose (AC)N.
So, N satisfies that the set A can be well-ordered. In particular, there exists some mapping
fA 171, On. Since f € N, we have in particular

(f € OD(A)™M]

and therefore f is definable in M[G] with parameters ay,...,a, € On, aj,...,a; € A and A.
Let agy1 € A and o € On such that f(ags1) = o The set agy1 is definable in M[G] with
parameters o, aq,...,a, € On, ay,...,a; € A and A and some Lgr-formula ¢:
) MIG]
<“ ag+1 is the only z such that p(z,a,a1,...,an,a1,...,ax, A) ”)
ﬁLf(x):a”

So, by the Truth Lemma, there exists r € GG such that

(r - “ap,q is the only x such that ¢(z, &, dy,...,dn,aq,...,0;,4) ”)M.

We then consider
D= {qe Py, |3 >k+1 (q I- “q; is the only x such that go(x,d,dl,...,dn,gl,...,gk,A)”)M}.

We have D € M and we still need to show
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Claim 351.
D is dense below r.

Proof of Claz'mﬂ Given any g < r, since dom (r) is finite,
A>k+1 Vi<w (1,7) ¢ dom(q).

Then, we consider the permutation p : w x w — w X w defined for all 1 < w by
o p(k+1,1) = (l,3);
o p(l,i) = (k + 1,9);
o p(n,i) = (n,i) (any n ¢ {l,k + 1}).

This permutation induces the automorphism 7 : Py, — Py, defined for all p € Py, by

o dom(r(p)) = p[dom (p) ]
o 7(p) (pln,m)) = pln, m).

We denote by 7 its extension to MP. We have:

For i ¢ {k+1,1}:

#(m),m(p)) € MP x P | p(i,m) = 1}
7 ,7r(p)) eMP x P | 7(p)(i,m) = 1}
f,q) € MP x P | q(i,m) = 1}

and
7(m), m(p)) € MP x P | p(l,m) = 1}

(
(m,m(p)) e MP x P | 7(p)(k + 1,m) = 1}
(1, q) eMP xP|qk+1,m)= 1}
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So, we also have

= A.
In M, since ¢ < r and r |+ “@;; is the only x such that p(z,&,d1,...,dn,a1,...,0;,4)7, we
also have

q |- “ajq is the only x such that p(z, &, d1,...,dpn,a1,...,0;,A4)7

then, since 7w : P — P is an automorphism, we also have

7(q) I “#(ay1) is the only @ such that ¢(z, 7(&), 7(d), .., #(cn), 7(ay), - .-, 7(ay), 7(4)) 7,

hence
7(q) I+ “a; is the only x such that p(z, &, a1,..., 00, a1, ...,a;,A)7.

But ¢ is not defined over [, so m(q) is not defined over k + 1 and for all integers i ¢ {k + 1,1} and
m < w, we have ¢(i,m) = w(q)(i,m). Therefore, ¢ and m(q) are compatible and s = ¢ U 7(q)
satisfies both s < ¢ and s < 7(q), and also

s |- “gy is the only x such that o(z, &, dy,...,dn, a1, .., 05, A)7,

which shows that s € D, and completes the proof that D is dense below r.
(1351

Finally, since G is Py,-generic over M, one has D n G # &, but any ¢ € D n G yields that there
exists [ > k + 1 such that

(q I~ “q,; is the only = such that ¢(x, &, aq,...,dn, a1, ...,05,A) ”)M

By the Truth Lemma, this gives

MIG]
(“al is the only = such that ¢(z, o, a1,...,an,a1,...,ax, A) ”) .

which contradicts the uniqueness of ax+1 in M[G].
O
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