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Chapter 13

Forcing Conditions and Generic
Filters

13.1 Introduction

Assuming that ZFC is consistent, the aim of this chapter is to prove that there exists a model of
ZFC that does not satisfies the Continuum Hypothesis. In other words, we are going to prove
that ZFC ` !CH is not inconsistent assuming ZFC is consistent. To do so, we proceed by
contraposition and prove:

If ZFC ` !CH is inconsistent, then ZFC is already inconsistent.

i.e.,
ZFC ` !CH $c K ùñ ZFC $c K.

Now, if ZFC ` !CH $c K is satisfied, then such a proof of its inconsistency involves only
finitely many formulas. Therefore, there exist ω1, . . . ,ωn in ZFC ` !CH such that for any
closed formula ω, we have

ω1, . . . ,ωn $c

`
ω ^ !ω

˘
.

i.e.,

$c

´`
ω1 ^ . . . ^ ωn

˘
"Ñ

`
ω ^ !ω

˘¯
.

From Lemma 167, the following implication holds for any non-empty class M:

$c

´`
ω1 ^ . . . ^ ωn

˘
"Ñ

`
ω ^ !ω

˘¯
implies $c

´`
ω1 ^ . . . ^ ωn

˘
"Ñ

`
ω ^ !ω

˘¯M
.
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Notice that

´`
ω1 ^ . . . ^ ωn

˘
"Ñ

`
ω ^ !ω

˘¯M
“

´`
ω1 ^ . . . ^ ωn

˘¯M
"Ñ

´`
ω ^ !ω

˘¯M

“

´`
ω1

˘M
^ . . . ^

`
ωn

˘M¯
"Ñ

´`
ω

˘M
^

`
!ω

˘M¯

“

´`
ω1

˘M
^ . . . ^

`
ωn

˘M¯
"Ñ

´`
ω

˘M
^ !

`
ω

˘M¯

By using forcing methods, one can prove that there exists some N such that

ZFC $c

´`
ω1

˘N
^ . . . ^

`
ωn

˘N¯
.

Since we also have

$c

´`
ω1

˘N
^ . . . ^

`
ωn

˘N¯
"Ñ

´`
ω

˘N
^ !

`
ω

˘N¯

we obtain
ZFC $c

´`
ω

˘N
^ !

`
ω

˘N¯

thus
ZFC $c K.

As for the proof of

ZFC $c DN
´`

ω1

˘N
^ . . . ^

`
ωn

˘N¯
.

there exist only a finite number of formulas ε1, . . . ,εk from ZFC that are really needed to
conduct the proof. So, it really is

ε1, . . . ,εk $c DN
´`

ω1

˘N
^ . . . ^

`
ωn

˘N¯
.

So, what we will do in practice is consider any transitive countable model1 M (given by the
Montague’s Reflection Principle (see page 217) such that

M |ù
`
ε1 ^ . . . ^ εk

˘
.

By forcing, we will obtain a transitive model

N “ MrGs |ù
`
ω1 ^ . . . ^ ωn

˘
.

1Notice that both M and N “ MrGs will be sets.
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13.2 Montague’s Reflection Principle

Montague’s Reflection Principle (Lévy & Montague). Let ω0, . . . ,ωn be any Lst-formulas.

ZF $c @ϑ P On Dϖ # ϑ “ω0, . . . ,ωn are absolute for V pϖq, V. ”

Proof of Montague’s Reflection Principle: The proof is similar to the proof of Theorem 273.
First, without loss of generality we may assume that the set of formulas tω0, . . . ,ωnu is closed
under sub-formulas and only contains formulas using !,^ as connectors and D as quantifiers.

For each integer i $ n such that ωi is of the form Dx ωjpx, y1, . . . , ykiq, we define a class-function
Gi : V ˆ . . . ˆ Vloooooomoooooon

ki

Ñ On by

Gipy1, . . . , ykiq “ 0 if
´

!Dx ωjpx, y1, . . . , ykiq
¯V

“ least ϱ s.t. Dx P V pϱq
`
ωjpx, y1, . . . , ykiq

˘V

Then, for each integer i $ n we define a class-function Fi : On Ñ On by

Fipςq “ sup tGipy1, . . . , ykiq | y1, . . . , yki P V pςqu if Gi is defined

Fipςq “ 0 otherwise.

Given any ordinal ϑ, one defines the strictly increasing sequence pϖkqnPω and a limit ordinal ϖ
by:

˝ ϖ0 “ ϑ

˝ ϖk`1 “ sup
!
ϖk ` 1,F1pϖkq, . . . ,Fnpϖkq

(

˝ ϖ “ supkPω ϖk

We show — by induction on the height of the formula — that for each integer i $ n, one has

@y1 P V pϖq . . .@yki P V pϖq

´
ωipy1, . . . , ykiq

Vpεq
%Ñ ωipy1, . . . , ykiq

V
¯

(13.1)

If ωi is an atomic formula:

˝ If ωi is y1 “ y2, then one has py1 “ y2q
Vpεq

“ py1 “ y2q
L

“ py1 “ y2q, hence

@y1 P V pϖq @y2 P V pϖq

´
py1 “ y2q

Vpεq
%Ñ py1 “ y2q

L
¯
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comes down to

@y1 P V pϖq @y2 P V pϖq

´
y1 “ y2 %Ñ y1 “ y2

¯

which trivially holds.

˝ If ωi is y1 P y2, then one has py1 P y2q
Vpεq

“ py1 P y2q
L

“ py1 “ y2q, hence

@y1 P V pϖq @y2 P V pϖq

´
py1 P y2q

Vpεq
%Ñ py1 P y2q

L
¯

comes down to

@y1 P V pϖq @y2 P V pϖq

´
y1 P y2 %Ñ y1 P y2

¯

which trivially holds as well.

˝ If ωi is either y1 “ y1 or y1 P y1, theses cases are taken care of by the previous cases
by taking y2 “ y1.

So, in any case, when ωi is an atomic formula, the formula 11.1 is satisfied.

If ωi :“ !ωjpy1, . . . ,yki
q: by induction hypothesis, one has

@y1 P V pϖq . . .@yki P V pϖq

´
ωjpy1, . . . , ykiq

Vpεq
%Ñ ωjpy1, . . . , ykiq

V
¯

which yields

@y1 P V pϖq . . .@yki P V pϖq

´
!

`
ωjpy1, . . . , ykiq

˘Vpεq
%Ñ !

`
ωjpy1, . . . , ykiq

˘V¯

and finally gives

@y1 P V pϖq . . .@yki P V pϖq

´`
!ωjpy1, . . . , ykiq

˘Vpεq
%Ñ

`
!ωjpy1, . . . , ykiq

˘V¯

which shows that formula 13.1 is satisfied.

If ωi :“ pωjpy1, . . . ,yki
q ^ ωkpy1, . . . ,yki

qq: by induction hypothesis, one has both

@y1 P V pϖq . . .@yki P V pϖq

´
ωjpy1, . . . , ykiq

Vpεq
%Ñ ωjpy1, . . . , ykiq

V
¯

and
@y1 P V pϖq . . .@yki P V pϖq

´
ωkpy1, . . . , ykiq

Vpεq
%Ñ ωkpy1, . . . , ykiq

V
¯
.

Now, given any y1, . . . yki P V pϖq, one has that both formulas ωjpy1, . . . , ykiq and ωkpy1, . . . , ykiq
hold inV pϖq if and only if they both hold inV. Therefore,

`
ωjpy1, . . . , ykiq^ωkpy1, . . . , ykiq

˘

holds in V pϖq if and only if it holds in V. This shows that formula 13.1 is satisfied.
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If ωi :“ Dx ωjpx,y1, . . . ,yki
q: we have to check that

@y1 P V pϖq . . .@yki P V pϖq

´`
Dx ωjpx, y1, . . . , ykiq

˘Vpεq
%Ñ

`
Dx ωjpx, y1, . . . , ykiq

˘V¯

i.e.,

@y1 P V pϖq . . .@yki P V pϖq

´
Dx P V pϖq ωjpx, y1, . . . , ykiq

Vpεq
%Ñ Dx P V ωjpx, y1, . . . , ykiq

V
¯

Clearly, the direction

@y1 P V pϖq . . .@yki P V pϖq

´
Dx P V pϖq ωjpx, y1, . . . , ykiq

Vpεq
"Ñ Dx P V ωjpx, y1, . . . , ykiq

V
¯

is taken care of by the induction hypothesis. So, we show

@y1 P V pϖq . . .@yki P V pϖq

´
Dx P V ωjpx, y1, . . . , ykiq

V
"Ñ Dx P V pϖq ωjpx, y1, . . . , ykiq

Vpεq
¯

We fix y1 P V pϖq , . . . , yki P V pϖq. For some large enough integer p, one has

ty1, . . . , ykiu & V pϖpq .

By construction, there exists x P V pGipy1, . . . , ykiqq such that
`
ωjpx, y1, . . . , ykiq

˘V
. Since

Gipy1, . . . , ykiq $ Fipϖpq $ ϖp`1, it follows that there exists x P V pϖp`1q & V pϖq such

that
`
ωjpx, y1, . . . , ykiq

˘V
.

Finally, by induction hypothesis, there exists x P V pϖq such that
`
ωjpx, y1, . . . , ykiq

˘Vpεq
.

l Montague’s Reflection Principle

Corollary 285. For every finite set of formulas
!
ω0, . . . ,ωn

(
& ZFC,

ZFC $c DM
´

|M| “ →0 ^ “ M is transitive ” ^
` "

0!i!n

ωi

˘M¯
.

Notice that, although we use the notation M and not M for the countable transitive model that
satisfies all formulas in

!
ω0, . . . ,ωn

(
, M is not a proper class: it is really some set!

Proof of Corollary 285: Either ZFC is inconsistent, in which case it proves anything. Or, ZFC
is consistent, and by Montague’s Reflection Principle, since

#
0!i!n

ωi holds in V, there exists
some ordinal ϖ such that

#
0!i!n

ωi holds in V pϖq. Then, since the language of set theory is
finite, and V pϖq is infinite2 by Löwenheim-Skolem Theorem (see [2, 3, 4, 5, 6, 33]), there exists

2The fact V pωq is infinite relies for instance on the construction of ω in the proof of Montague’s Reflection
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some countable model N such that
N |ù

"

0!i!n

ωi.

Notice that, although V pϖq is transitive, this may not be the case with N. However, the
Mostowski Collapsing Theorem (page 113) grants the existence of both some transitive class M,

and an isomorphism φ : pN, Pq
isom.

%""Ñ pM, Pq. Finally, being isomorphic, N and M are elementary
equivalent, i.e., they satisfy the same closed formulas, which yields M is a transitive countable
set that satisfies

M |ù

"

0!i!n

ωi.

l 285

13.3 Posets and Generic Filters

Notation 286. we write “ ZF”(respectively “ ZFC”) for “ finitely many axioms from ZF ”
(respectively “ finitely many axioms from ZFC ”).

A proof is something that only makes use of finitely many axioms or instances of axiom schemas.
For instance, we showed that the empty set exists using the axiom of Extensionality and one
instance of the Comprehension Schema.

So, later on, it could happen that we write something like “ ZF”$c “⊋ exists ” to indicate both
that ZF $c “⊋ exists ” and “ ZF”refers to the axioms that were necessary to conduct the proof.
An other example, would be the proof of the existence of a class-function as in Theorem 53 :

Given any F : V Ñ V, there exists a unique G : On Ñ V such that for each ordinal ϑ

@ϑ Gpϑq “ FpG æ ϑq.

Strictly speaking, this theorem is a theorem schema: there are infinitely many theorems, one
for every class-function F. Indeed a class-function F refers to some formula ωF, and the result
consists in constructing another formula ωG which satisfies the required property and showing
that the class-function G it represents is unique.

Although the whole construction only requires finitely many axioms or instances of axiom
schemas, but we do not bother precisely indicating which one we used, reason why we use
the notation “ ZF” for “ these finitely many axioms that a hard work could precisely point out,
but we don’t really care as long as there are only finitely many of them”.

A countable transitive model (c.t.m.) of “ZFC ” is a countable transitive model of a “ su!ciently
large number of axioms of ZFC ”. A nice way of thinking of “ZFC ” is to imagine that it contains
all the following axioms:

Principle on page 217, and also in that one wants the Infinity Axiom to be part of the set of formulas
!
ε0, . . . ,εn

(
;

or also again, by simply setting ϑ to be infinite in the application of the Montague’s Reflection Principle on page
217 which yields the ordinal ω.
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˝ Set Existence

˝ Extensionality

˝ Pairing

˝ Union

˝ Infinity

˝ Power Set

˝ Foundation

˝ Choice

and in addition, finitely many instances3 from the following two axiom schemas:

˝ Comprehension Schema ˝ Replacement Schema.

Definition 287 (Notion of Forcing).

˝ A notion of forcing is a partial order pP,$q. It is often abbreviated as P, and refereed
to as a poset.

We also use the notation pP,$,1q when the poset admits a maximum element 1.

˝ The elements of P are called conditions.

˝ Given two conditions p, q P P, we say that p is stronger than q if p $ q.

Definition 288 (Poset). Let pP,$,1q be a poset with maximal element 1, and let p, q P P. We
say that

˝ p and q are comparable if either p $ q or q $ p holds;

˝ p and q are compatible if there exists r P P such that r $ p and r $ q;

˝ we write p K q when p and q incompatible. i.e., when they are not compatible;

˝ a subset A & P is an (strong) antichain if for all p, q P A, p K q holds;

˝ a subset D & P is dense in P if for all p P P there exists q P D such that q $ p.

Example 289. Let P “ P pXq ⫅̸ t⊋u, with p $ q if and only if p & q. In this case, one has

˝ 1 “ X

3These are typically the instances that were necessary to conduct the proofs of the results that we now need
to use in a particular proof.
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˝ if p X q ‰ ⊋, then p X q $ p, q

˝ p K q if and only if p X q “ ⊋

˝

!
tpu | p P X

)
is both an antichain and dense in P.

Example 290. We let P be the following notion of forcing:

P “

!
f : →2 ˆ ↼ Ñ t0, 1u | f a partial function whose domain is finite

)

“

$
’’’’’’&

’’’’’’%

f & →2 ˆ ↼ ˆ t0, 1u

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌

¨

˚̊
˚̊
˚̊
˝

|f | ’ ↼

^

@ϑ ’ →2 @n ’ ↼ @i ’ 2
`
pϑ, n, iq P f "Ñ pϑ, n, 1 ´ iq R f

˘

˛

‹‹‹‹‹‹‚

,
//////.

//////-

with
f $ g (ñ f ) g

and
1 “ ⊋.

Notice that

(1) f $ g holds i” both dom pgq & dom pfq and f æ dom pgq “ g;

(2) f and g are compatible i” f æ pdom pfq X dom pgqq “ g æ pdom pfq X dom pgqq;

(3) f and g are incompatible i” there exists pϑ, kq P dom pfq X dom pgq such that fpϑ, kq ‰

gpϑ, kq.

Definition 291 (Filter). Let pP,$,1q be a notion of forcing.

G & P is a filter on P (ñ

$
’’’&

’’’%

@p P G @q P G Dr P G
`
r $ p ^ r $ q

˘

and

@p P G @q P P
`
p $ q "Ñ q P G

˘
.
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As shown in the figure below, if p and q are inside the filter, then not only all forcing conditions
inside the cone above q or the cone above q belong to the filter, but there exists some r below
both p and q which belong to the filter, and therefore the whole cone above r is included inside
the filter.

p
‚

q
‚

r
‚

1
‚

Figure 13.1: r wittnesses that p and q are compatible.

All the filters we will consider will be non-constructive. We will essentially claim that “ there
exists some filter G... ” by mean of a proof by contradiction. i.e., the proofs will be of the form:
assuming that such a filter does not exist, leads to some contradiction; therefore, such a filter
exists...

So, asking for samples of such filters is useless for the reason that the ones that could be
constructed would be of no interest for our purpose.

Definition 292 (Genericity). Let pP,$,1q be a notion of forcing and M be any set (or class).
G & P is P-generic over M if the following two conditions are satisfied:

(1) G is a filter on P

(2) G intersects every dense subset of P which belongs to M.

Notice that the property of being P-generic over M is expressible by some Lst-formula “G &
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P is P-generic over M ”. Namely,

´
“G is a filter on P ” ^ @D & P

`
p“D dense in P ” ^ D P Mq "Ñ D X G ‰ ⊋

˘¯
.

The goal of the following example is to show that filters G & P which are P-generic over M do
not necessarily exist. In particular, it emphasize the reason why we work with a set M which is
a model of finitely many axioms from ZFC.

Example 293. Let pP,$,1q be the following notion of forcing:

(1) P be the set of functions such that the domain is finite and included in ↼ and the image is
included in ↼1.

P “

"
p & p↼ ˆ ↼1q | |p| ’ ↼ and @a, b, c P ↼

´`
pa, bq P p ^ pa, cq P p

˘
"Ñ b “ c

¯
;

*

(2) p $ q if and only if p ) q (p extends q, for p, q P P);

(3) 1 “ ⊋.

We want to show that there is no filter G which is P-generic over V.

So, towards a contradiction, assume G is P-generic over V. Set f “
$

G and notice that f is
a binary relation since it is a set of couples of the form pn,ϑq with n an integer and ϑ some
countable ordinal. We now show that f & ↼ ˆ↼1 is much better than any subset of ↼ ˆ↼1 since

it satisfies f : ↼
onto
""Ñ ↼1. i.e.,

˝ f is a function ˝ dom pfq “ ↼ ˝ ran pfq “ ↼1.

(1) To show that f is a function, simply consider any integer n and countable ordinals ϑ
and ϖ such that both couples pn,ϑq and pn,ϖq belong to f “

$
G. Then consider any

p, q P G such that pn,ϑq P p and pn,ϖq P q. Since G is a filter, there exists r P G such
that r $ p, q (i.e., r extends both p and q). So, in particular both dom ppq & dom prq and
dom pqq & dom prq hold which shows that n P dom prq and since r (as a function) agrees
with both p and q on their respective domains, we have rpnq “ ppnq “ qpnq, which shows
that ϑ “ ϖ.

(2) dom pfq “ ↼, since for all n P ↼ the set

Dn “ tp P P | n P dom ppqu

is a set which is dense in P — so both statements “Dn is dense in P ” and “Dn belongs
to V ” are satisfied.
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Since Dn P V and G is P-generic over V, it follows that the intersection Dn X G is
nonempty which yields the existence of some p P G with n P dom ppq. Therefore, we have
n P dom p

$
Gq “ dom pfq that holds for every integer n. Thus dom pfq “ ↼.

(3) ran pfq “ ↼1, since for all ordinals ϑ ’ ↼1, the set:

Eϑ “ tp P P | ϑ P ran ppqu

is dense in P and belongs to V, hence there exists some p P EϑXG, showing that ϑ belongs
to the domain of f “

$
G.

So, we have obtained f “
$

G : ↼
onto
""Ñ ↼1, which contradicts several results4 that we obtained

working within ZFC. This shows that our assumption fails. i.e., there is no P-generic filter
over V.

That may seem a problem at first glance, but since our aim it to consider countable transitive
models of “ZFC ”, the latter result is not in our scope. To, the contrary, when M is a countable
set as opposed to the whole universe V, we have a positive result.

Lemma 294 (ZFC). Let M be any countable set, P any poset in M, and p P P. There exists
some filter G which is P-generic over M and such that p P G.

Notice that we do not claim that G belongs to M. In fact, most of the time we will have G R M,
simply because when G P M holds, the generic extension obtained by forcing is no di!erent than
the ground model M one starts with, and therefore it is useless.

Proof of Lemma 294:

4For instance, that ϖ1 is a regular cardinal; or that any surjection s : A
onto!!!Ñ B yields an injection i : B

1´1!!Ñ A
such that s ˝ i “ id. .
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p0 P D0‚

p1 P D1‚

p2 P D2‚

p3 P D3‚

pn P Dn‚

pn`1 P Dn`1‚

Let us consider (in V) an enumeration pDnqnPω of the sets of
the form D that satisfy both

(1) D & P is dense in P. (2) D P M.

Notice that such an enumeration exists since we are working
within ZFC and that it is countable since M is a countable
set.

Let p0 P D0 be such that p0 $ p; we define by induction on ↼
a sequence ppnqnPω such that:

pn`1 $ pn and pn`1 P Dn`1.

Let us consider G, the filter generated by ppnqnPω:

G “ tq P P | Dn P ↼ pn $ qu .

Since the formula “D is dense in P ” is absolute — i.e., “D is
dense in P ”%Ñ

`
“D is dense in P ”

˘M
— G is a filter whose

intersection with the dense sets of M is nonempty. G is thus
P-generic over M and p P G.

l 294

We said that in most cases, the generic filter does not belong to the ground model M. Indeed,
the cases that matter the least are those where filter exists inside the ground model. The next
lemma gives an easy condition that the poset P needs to satisfy in order for any filter G to not
belong to the ground model M.

Lemma 295 (ZFC). Let M be any transitive model of “ZFC ”, and P P M a notion of forcing
that satisfies @p P P Dr, q P P

`
q $ p ^ r $ p ^ q K r

˘
.

If G is P-generic over M, then G R M.

Notice that in this lemma, we do not simply consider any transitive setM, but rather a transitive
model of “ZFC ”. The reason for this, is that we need M to satisfy some very basic properties.
For instance, we need that given P and G that belong to M, the set P ⫅̸G also belongs to M.
Proof of Lemma 295: . Suppose, for the sake of contradiction, that G P M.

˝ We let D “ P ⫅̸G and M satisfy enough axioms from ZFC such that D P M holds.

˝ We then show that D is dense in P: take any p P P, there exist r, q P P such that q $ p,
r $ p and q K r. But it cannot be the case that both r and q belong to G, for otherwise,
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p
‚

q
‚

r
‚

STOP

1
‚

Figure 13.2: p * q, r with qKr.

since G is a filter on P, there would exist s P P such that s $ r and s $ q both hold, which
would contradict the fact that p and r are incompatible. It follows that either r or q is a
member of D, therefore D is dense in P.

Finally, we have the following contradiction:

(1) G is P-generic over M (2) D P M and D is dense (3) D X G “
`
P ⫅̸G

˘
X G

“ ⊋.

l 295

We need a last result which seems technical at first glance but will prove extremely useful later
on.

Definition 296. Let P be any poset, E & P, and p P P.

E is dense below p (ñ @q $ p Dr P E r $ q.

So, being dense below p is really what it says it is: being dense but only with regards to the
sub-poset formed of all forcing conditions that lies below p.



228 Set Theory

Lemma 297. Let M be a transitive model of “ZFC ”, P a notion of forcing such that P P M,
and G be P-generic over M. Let also p P P and E & P be such that E P M. Then,

˝ either G X E ‰ ⊋, or

˝ there exists q P G such that for all r P E, r K q.

Furthermore, if E is dense below p P G, then G X E ‰ ⊋.

This last statement: “ every set which is dense below some element which belongs to the generic
filter G also intersects this filter G ” will be used time and time again.

Proof of Lemma 297: To prove the first part of the lemma, let

D “ ts P P | Dr P E s $ rulooooooooooooomooooooooooooon
D!E

Y ts P P | @r P E s K rulooooooooooooomooooooooooooon
DKE

.

First, we notice that D is dense. Indeed, take any s P P. Then,

(1) either there exists r P E such that r and s are compatible, and so there exists q P P with
q $ s and q $ r, which implies that q P D!E & D;

(2) or, for all r P E, we have r K s and thus s P DKE & D. Since s $ s holds, this shows that
D is dense in P.

Moreover, D P M holds because E P M and M is a model of “ZFC ” which contains enough
axioms to show that D exists. As a result of G being P-generic over M, its intersection with D
is non-empty. Take any q P D X G. Since q P D,

(1) either q P D!E , i.e., there exists r P E such that q $ r. In that case, since G is a filter,
r P G and G X E ‰ ⊋;

(2) or, q P DKE , i.e., for all r P E, q K r. In that case, there exists q P G such that for all
r P E, r K q.

For the second part of the lemma, we assume p P G and E is dense below p. Towards a
contradiction we also assume G X E “ ⊋. Then, the previous result provides some q P G such
that for all r P E, r K q.
Since G is a filter, there exists s P G such that s $ p and s $ q. But E is dense below p, so
there exists r P E such that r $ s. We have obtained r P E such that r $ q. This contradicts
the property that q satisfies: @r1

P E r1
K q.

l 297

Our main goal will now be as follows: start from
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p
P G

‚
q

P G
q K r (any r P E)

‚

s
P G

‚

r
P E

‚

1
‚

Figure 13.3: p * s, q * s with p, q, s P G and s * r P E since E is dense below p.

(1) any M which is some c.t.m. of “ZFC ” and

(2) any filter G which is P-generic over M,

and construct a c.t.m. of “ZFC ” MrGs — called a generic extension of M — which satisfies
the following:

(1) M & MrGs; (2) pOnq
M

“ pOnq
MrGs; (3) G P MrGs.
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Chapter 14

P-names and Generic Extensions

14.1 P-names

We will see that some of the elements that belong to the generic extension MrGs will be brand
new sets. In the sense that they do not exist inside M, but they are created when going from M
to the the generic extension MrGs. This seems an obvious remark, since any time one considers
the strict inclusion of a set into some other one (A + B) there are elements that belong to the
bigger one but not the smaller one.

However, the main di!erence here is that each and every one of these new elements will happen
to already have a name in M. They do not exist in M but in M, they could be called by their
names, although they do not exist! It is as if in M one can call many names without
knowing what one talks about. Only with the help of a key that allows to decode the names
and give rise to the sets they denominate that one can see the relation between the name and
the object it depicts.

To view things the other way round, every set that belongs to MrGs already pre-exists in M
in that it already has a name, even though a key that is required to decode and identify it is
missing in M (this key is the filter G).

Definition 298 (P-name). ↽ is a P-name if and only if ↽ is a binary relation and for all
p⇀, pq P ↽ , ⇀ is a P-name and p P P.

Notice that ⊋ satisfies this definition, hence ⊋ is a P-name.

Formally, P-names are defined recursively. First consider the following binary relation E on
P-names:

⇀E↽ (ñ Dp P P p⇀, pq P ↽.

E is well-founded since:
⇀E↽ ùñ rk p⇀q ’ rk p↽q .
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We set:

Fp↽q “

#
1, if @x P ↽

`
“x is a couple px1, x2q ” ^ x2 P P ^ Fpx1q “ 1

˘
;

0, otherwise.

We may define F as Fp↽q “ HpF æpredEpϖq, ↽,Pq where all notions used to define H are ”0rud
0 ,

hence H is absolute for transitive models of “ZFC ”. Then, the class of all P-names is the set

t↽ | Fp↽q “ 1u .

Example 299. In order to get the right intuition about P-names, it is fruitful to go back to the
way we represented well-founded sets by well-founded trees. For instance, in Example 152 where
we presented a tree

that represents the ordinal 4 when we associate to each node n the set pn “ tpc | c is a child of nu:

"
⊋, t⊋u ,

!
⊋, t⊋u

(
,
!
⊋, t⊋u ,

!
⊋, t⊋u

()*

⊋ t⊋u
!
⊋, t⊋u

(
!
⊋, t⊋u ,

!
⊋, t⊋u

()

⊋ ⊋ t⊋u

⊋

⊋ t⊋u
!
⊋, t⊋u

(

⊋ ⊋ t⊋u

⊋

When represented by trees, P-names are not just well-founded trees, but rather some particular
colored well-founded trees: those whose nodes — except for the root — are “ colored ” by forcing
conditions. For instance:
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p0
p1 p2

p3 p4 p5

p6

This tree represents the P-name:

#
p⊋, p0q ,

´!
p⊋, p3q

(
, p1

¯
,

ˆ"
p⊋, p4q ,

´!
p⊋, p6q

(
, p5

¯*
, p2

˙+

Some P-name which is a coloring of the set 4:

p0
p1 p2

p7

p3 p4 p5

p6

p5 p1 p2

p3 p4 p5

p6

This tree represents the P-name:
$
’’’’’’&

’’’’’’%

p⊋, p0q ,´!
p⊋, p3q

(
, p1

¯
,

˜"
p⊋, p4q ,

´!
p⊋, p6q

(
, p5

¯*
, p2

¸
,

¨

˚̊
˝

$
&

%p⊋, p5q ,
´!

p⊋, p3q
(
, p1

¯
,

˜"
p⊋, p4q ,

´!
p⊋, p6q

(
, p5

¯*
, p2

¸,
.

-, p7

˛

‹‹‚

,
//////.

//////-
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Definition 300. Let VP
“ tP-namesu. If M is a transitive model of “ZFC ”, then

MP
“ M X VP.

By absoluteness,

MP
“

!
↽ P M | p↽ is a P-nameq

M
)
.

14.2 Generic Extensions

Starting from M any transitive model of “ZFC ”, we create another model — known as a
generic extension — by considering all the P-names that belong to M (MP

“ M X VP) and
“ unscrambling ” them with the use a filter G — that is generic over M — which plays the role
of a decryption key.

Definition 301 (Generic Extension). Let pP,$,1q be a notion of forcing

(1) Given any ↽ P VP, and G & P a filter, we recursively define

p↽q
G

“ tp⇀q
G

| Dp P G p⇀, pq P ↽u .

(2) Given M any transitive model of “ZFC ”, P P M and G & P a filter, we define

MrGs “
!

p↽q
G

| ↽ P MP(
.

Notation 302. Given M any transitive model of “ZFC ”, P P M, G & P any filter P-generic
over M, and x P MrGs, we write

˜
x for any P-name for x. i.e.,

˜
x P MP and p

˜
xq

G
“ x.

There are two di!erent ways of looking at P-names:

˝ either we start from the ground model M, pick a P-name ↽ , and move forward to the
generic extension MrGs to deal with p↽q

G
;

˝ or we start from the generic extension MrGs, pick an element x, and move backward to
the ground model M to deal with a P-name

˜
x that has produced x.
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Example 303. Consider the following P-name ↽ that was introduced in Example 299:

p0
p1 p2

p3 p4 p5

p6

ω “

This tree represents the P-name:

#
p⊋, p0q ,

´!
p⊋, p3q

(
, p1

¯
,

ˆ"
p⊋, p4q ,

´!
p⊋, p6q

(
, p5

¯*
, p2

˙+

If for each integer n, pn P G (ñ n is even. Then p↽q
G

is obtained by removing the nodes
colored by forcing conditions not in the filter, then getting rid of the coloring:

p0
p1 p2

p3 p4 p5

p6

↭

p0
p2

p4

↭
pωqG “

↭

!
⊋, t⊋u

(
.

t⊋u

⊋

⊋

pωqG “

So, we obtain p↽q
G

“
!
⊋, t⊋u

(
.
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Example 304. Consider the following P-name ↽ that was introduced in Example 299:

p0
p1 p2

p7

p3 p4 p5

p6

p5 p1 p2

p3 p4 p5

p6

ω “

This tree represents the P-name:

↽ “

$
’’’’’’&

’’’’’’%

p⊋, p0q ,´!
p⊋, p3q

(
, p1

¯
,

˜"
p⊋, p4q ,

´!
p⊋, p6q

(
, p5

¯*
, p2

¸
,

¨

˚̊
˝

$
&

%p⊋, p5q ,
´!

p⊋, p3q
(
, p1

¯
,

˜"
p⊋, p4q ,

´!
p⊋, p6q

(
, p5

¯*
, p2

¸,
.

-, p7

˛

‹‹‚

,
//////.

//////-

If for each integer n, pn P G (ñ n R t0, 1, 3u. Then p↽q
G

is obtained by removing the nodes
colored by forcing conditions not in the filter, then getting rid of the coloring:

p0
p1 p2

p7

p3 p4 p5

p6

p5 p1 p2

p3 p4 p5

p6

↭
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p2
p7

p4 p5

p6

p5 p2

p4 p5

p6

↭

pωqG :

↭

pωqG :

"!
⊋, t⊋u

(
,
!
⊋,

!
⊋, t⊋u

()*

!
⊋, t⊋u

(

!
⊋,

!
⊋, t⊋u

()

⊋ t⊋u

⊋

⊋
!
⊋, t⊋u

(

⊋ t⊋u

⊋

↭

So, we obtain

p↽q
G

“

"!
⊋, t⊋u

(
,
!
⊋,

!
⊋, t⊋u

()*
.
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Example 305. Consider

p1
q q1 p

q p1 q1

q

p1 q p

p1 p q

p

ω “

with p, p1
P G, but q, q1

R G. This yields the following tree:

p1
q q1 p

q p1 q1

q

p1 q p

p1 p q

p

↭

p1
p

p1 p

p

↭

and by dropping the forcing conditions:
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↭

!
⊋,

!
⊋, t⊋u

()

⊋

!
⊋, t⊋u

(

⊋ t⊋u

⊋

↭

which yields

p↽q
G

“

!
⊋,

!
⊋, t⊋u

()
.

Definition 306 (Canonical P-names). By P-induction, we define for any x P M,

x̌ “ tpy̌,1q | y P xu .

We will also consider
# “ tpp̌, pq | p P Pu .

The P-names x̌ are called canonical names for sets that belong to M, and the P-names # is
called the canonical name for the filter G.

Lemma 307. Let pP,$,1q be a notion of forcing, and G & P a filter.

(1) px̌q
G

“ x (2) p#q
G

“ G.
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An immediate consequence of this lemma is that as long as M is a model which is closed under
the “ check ” operation1 — which comes to asking that M be a model of “ZFC ”, where “ZFC ”
contains the axioms that are necessary to prove that V is closed under the “ check ” operation
— then both M & MrGs and G P MrGs hold.

Proof of Lemma 307:

(1) By P-induction, since ⊋̌ “ ⊋ and p⊋q
G

“ ⊋:

px̌q
G

“ tpy̌q
G

| Dp P G py̌, pq P x̌u

“ tpy̌q
G

| py̌,1q P x̌u

“ ty | y P xu

“ x.

(2)

p#q
G

“ tpp̌q
G

| Dp P G pp̌, pq P #u

“ tp | p P Gu

“ G.

l 307

Example 308. For instance, 4̌ corresponds to:

1
1 1

1

1 1 1

1

1 1 1

1 1 1

1

4̌ “

which yields

1This means that M satisfies x̌ P M holds for every x P M
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`
4̌
˘
G

“

which is nothing but the ordinal 4:

"
⊋, t⊋u ,

!
⊋, t⊋u

(
,
!
⊋, t⊋u ,

!
⊋, t⊋u

()*

⊋ t⊋u
!
⊋, t⊋u

(
!
⊋, t⊋u ,

!
⊋, t⊋u

()

⊋ ⊋ t⊋u

⊋

⊋ t⊋u
!
⊋, t⊋u

(

⊋ ⊋ t⊋u

⊋

Example 309. We define couple : MP
ˆ MP

Ñ MP so that given any
˜
x,
˜
y P MP, and any G

P-generic over M, couplep
˜
x,
˜
yq “ ↽ with p↽q

G
“

`
p
˜
xq

G
,
`

˜
y

˘
G

˘
. This is the canonical name

↽ “

ˇhkkkkkkkkkkkkkkkkkkj!
t
˜
xu ,

!
˜
x,
˜
y

( (
“

"´
tp
˜
x,1qu ,1

¯
,
´ !

p
˜
x,1q, p

˜
y,1q

(
1

¯*
,

as shown in the picture below.
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¨

˚̊
˚̊
˚̊
˝

˜
x

˜
x

˜
y

‚

‚

‚

‚

‚ ‚

1

1

1

1 1

˛

‹‹‹‹‹‹‚

G

“

x x y

‚

‚

‚

‚

‚ ‚

Lemma 310. If M is a transitive model of “ZFC ”, P P M is a notion of forcing, and G is
P-generic over M, then

(1) M & MrGs

(2) G P MrGs.

Proof of Lemma 310: Both statements are consequence of previous Lemma 307. Indeed, since
for all x P M, one has x̌ P MP and x “ px̌q

G
P MrGs, it follows that M & MrGs. Moreover,

# P MP, so G “ p#q
G

P MrGs.

l 310

Lemma 311. Let M be a transitive model of “ZFC ”, P a notion of forcing, and G be P-generic
over M. Then

(1) MrGs is transitive,

(2) if N is a transitive model of “ZFC ” with M & N such that G P N, then MrGs & N.

Proof of Lemma 311:

(1) Given any x P p↽q
G

P MrGs, by transitivity of M, there exists ⇀ P MP and p P P (in fact
p P G) such that p⇀, pq P ↽ and x “ p⇀q

G
. Thus, x “ p⇀q

G
P MrGs.

(2) Recall that
p↽q

G
“ tp⇀q

G
| Dp P G p⇀, pq P ↽u ,
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and that we defined the class-function F as:

F : MP
"Ñ MrGs

↽ ,"Ñ p↽q
G

Therefore:
Fp↽q “ H

`
F æpredEpϖq, G, ↽

˘
.

Since H is absolute, we have
`

p↽q
G

˘N
“ p↽q

G
and therefore MrGs & N.

l 311

If MrGs is a transitive model of “ZFC ”, the second part of this Lemma states that MrGs is
the smallest transitive model of “ZFC ” such that both M & MrGs and G P MrGs hold.

Lemma 312. Let M be a transitive model of “ZFC ”, P a notion of forcing with P P M, and
G be P-generic over M.

pOnq
M

“ pOnq
MrGs

Proof of Lemma 312: By induction on the rank, we prove that for all P-name ↽ P MP, one has
rk

`
p↽q

G

˘
$ rk p↽q. Indeed

p↽q
G

“ tp⇀q
G

| Dp P G p⇀, pq P ↽u ,

it follows that
rk

`
p↽q

G

˘
“ sup

!
rk

`
p⇀q

G

˘
` 1 | Dp P G p⇀, pq P ↽

(
.

By inductive hypothesis, one has

rk
`

p↽q
G

˘
$ sup trk p⇀q ` 1 | Dp P G p⇀, pq P ↽u

$ sup trk p⇀q ` 1 | Dp P P p⇀, pq P ↽u

$ sup trk pzq ` 1 | z P ↽u

$ rk p↽q .

In particular, for any ordinal ϑ P MrGs, and any P-name
˜
ϑ P M, one has ϑ $ rk p

˜
ϑq P M, and

since M is transitive, it follows that ϑ P M.

This gives pOnq
MrGs

& pOnq
M which combined with M & MrGs yields pOnq

M
“ pOnq

MrGs.
l 312
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‚
ϑ

‚
↼

‚

ϑ ` 1

Vp↼q
MrGs

“

Vp↼q
M

`
Vpϑq

˘MrGs`
Vpϑq

˘M

`
Vpϑ ` 1q

˘M `
Vpϑ ` 1q

˘MrGs

MrGsM

‚
P

‚
G

Figure 14.1: The ground model M and its generic extension MrGs.



Chapter 15

The Truth Lemma

The Truth Lemma is about connecting the truth inside the generic extension to the truth inside
V and the truth inside M. Ultimately we will prove that the relations represented in the
following Figure hold (see page 264).

inside M inside MrGs inside V

Dp P G
`
p ,˚ εpϱ1, . . . , ϱnq˘M

(ñ MrGs |ù ε
` pϱ1qG , . . . , pϱnqG

˘
(ñ Dp P G p , εpϱ1, . . . , ϱnq

.

Figure 15.1: Connecting the truth inside MrGs to the truth inside V and the truth inside M.

15.1 Forcing from inside V

Definition 313. Let M be a c.t.m. of “ZFC ”, P a notion of forcing with P P M. Let also
ωpx1, . . . , xnq be any Lst-formula whose free variables are among x1, . . . , xn, ↽1, . . . , ↽n P MP

and p P P. We say that p forces ωp↽1, . . . , ↽nq and write

p ,P,M ωp↽1, . . . , ↽nq

(ñ

for all G P-generic over M such that p P G, one has

MrGs |ù ω
`

p↽1q
G
, . . . , p↽nq

G

˘
.
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Notice that, since G may not exist in M, this definition is not made in M, but rather in V.

Lemma 314. Let M be a c.t.m. of “ZFC ”, P P M a notion of forcing,
ωpx1, . . . , xnq,εpx1, . . . , xnq be any Lst-formulas whose free variables are among x1, . . . , xn, and
↽1, . . . , ↽n P MP, and p P P.

(1) If p ,P,M ωp↽1, . . . , ↽nq and q $ p, then q ,P,M ωp↽1, . . . , ↽nq.

(2) If p ,P,M ωp↽1, . . . , ↽nq and p ,P,M εp↽1, . . . , ↽nq, then p ,P,M
`
ωp↽1, . . . , ↽nq ^

εp↽1, . . . , ↽nq
˘
.

Proof of Lemma 314:

(1) Suppose that p ,P,M ωp↽1, . . . , ↽nq and q $ p. To show that q ,P,M ωp↽1, . . . , ↽nq, we
consider any filter G which is both P-generic over M and contains q. Since G is a filter
and q $ p, it follows that p P G. Also, from p ,P,M ωp↽1, . . . , ↽nq, it follows from the
definition of the forcing relation that MrGs |ù ω

`
p↽1q

G
, . . . , p↽nq

G

˘
holds.

Hence, we have shown that for all G, P-generic over M, such that q P G, MrGs |ù

ω
`

p↽1q
G
, . . . , p↽nq

G

˘
holds which means — by definition — that q ,P,M ωp↽1, . . . , ↽nq.

(2) We have
p ,P,M ωp↽1, . . . , ↽nq and p ,P,M εp↽1, . . . , ↽nq

(ñ

for all G P-generic over M such that p P G, one has

MrGs |ù ω
`

p↽1q
G
, . . . , p↽nq

G

˘
and MrGs |ù ε

`
p↽1q

G
, . . . , p↽nq

G

˘

(ñ

for all G P-generic over M such that p P G, one has

MrGs |ù

´
ω

`
p↽1q

G
, . . . , p↽nq

G

˘
^ ε

`
p↽1q

G
, . . . , p↽nq

G

˘¯

(ñ

p ,P,M
`
ωp↽1, . . . , ↽nq ^ εp↽1, . . . , ↽nq

˘
.

l 314
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15.2 Forcing from inside M

The idea now, is to define another notion of forcing, not inside V but inside M so that the two
coincide. i.e., we want to define ,˚ in V such that for all ↽1, . . . , ↽n P MP and p P P:

p ,P,M ωp↽1, . . . , ↽nq (ñ
`
p ,˚ ωp↽1, . . . , ↽nq

˘M
.

The definition of ,˚ is done entirely inside M, by induction on the height of the formula ω
involved. Usually, constructions made by induction on the height formulas start from basic
properties required at the atomic level and rather more involved ones when connectors and
quantifiers come to play.

Here, as we will see, not only the whole construction is relatively tedious and cumbersome, but
the definition of the relation ,˚ is already di$cult with atomic formulas — in particular for the
equality — but gets easier with more complicated formulas. Anyhow, the results that such a
construction will provide are definitely worth the e!ort.

For simplicity, we assume that the only connectors of our first order logic are “^ ” and “! ”,
and “ D ” is the only quantifier. Of course, one can get the definition of the definition of ,˚ with
the other connectors “_ ” , “"Ñ ” , “%Ñ ” and “@ ” by means of the usual equivalences:

˝ pω _ εq ” !p!ω ^ !εq

˝ pω "Ñ εq ” !p!!ω ^ !εq

˝ pω %Ñ εq ”
`
!p!!ω ^ !εq ^ !p!!ε ^ !ωq

˘

˝ @x ω ” !Dx !ω.

We will see in Corollary 324 that if any two formulas ωpx1, . . . , xnq and εpx1, . . . , xnq satisfy

$c @x1 . . .@xn
`
ωpx1, . . . , xnq %Ñ εpx1, . . . , xnq

˘
,

then we have for any c.t.m. M of “ZFC ”, P P M, p P P, and all ↽1, . . . , ↽n P MP,

`
p ,˚ ωp↽1, . . . , ↽nq

˘M
(ñ

`
p ,˚ εp↽1, . . . , ↽nq

˘M
.

So, we could already state:

˝ pω _ εq ” !p!ω ^ !εq

˝ pω "Ñ εq ” !pω ^ !εq

˝ pω %Ñ εq ”
`
!pω ^ !εq ^ !pε ^ !ωq

˘

˝ @x ω ” !Dx !ω.
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Definition 315. Let ↽1, . . . , ↽n P MP. We let:

˝ p ,˚ ↽1 “ ↽2 if and only if both

(1) for all p⇁1, s1q P ↽1, the following set is dense below p:

Dϑp⇁1, s1, ↽2q “

!
q P P | q $ s1 "Ñ Dp⇁2, s2q P ↽2

`
q $ s2 ^ q ,˚ ⇁1 “ ⇁2

˘)

(2) for all p⇁2, s2q P ↽2, the following set is dense below p:

Dεp⇁2, s2, ↽1q “

!
q P P | q $ s2 "Ñ Dp⇁1, s1q P ↽1

`
q $ s1 ^ q ,˚ ⇁2 “ ⇁1

˘)

˝ p ,˚ ↽1 P ↽2 if and only if the following set is dense below p:

!
q P P | Dp⇁, sq P ↽2

´
q $ s ^ q ,˚ ⇁ “ ↽1

¯)

˝ p ,˚ pω ^ εq if and only if p ,˚ ω and p ,˚ ε;

˝ p ,˚ !ω if and only if for all q $ p , q .˚ ω;

˝ p ,˚ Dxωpx, ↽1, . . . , ↽nq if and only if the following set is dense below p:

!
q P P | D⇀ P MP q ,˚ ωp⇀, ↽1, . . . , ↽nq

)
.

The main idea behind this definition is to aim at proving the so-called Truth Lemma (see page
263) which states that given any formula ωpx1, . . . , xnq, any c.t.m. M of “ZFC ”, P any notion
of forcing on M, any ↽1, . . . , ↽n P MP, and G any filter P-generic over M,

MrGs |ù ω
`

p↽1q
G
, . . . , p↽nq

G

˘
(ñ Dp P G

`
p ,˚ ωp↽1, . . . , ↽nq

˘M
.

So, for instance for the definition of the membership relation (p ,˚ ↽1 P ↽2) the Truth Lemma
states that for all G filter P-generic over M, we have

MrGs |ù p↽1q
G

P p↽2q
G

(ñ Dp P G
`
p ,˚ ↽1 P ↽2

˘M

(ñ Dp P G
!
q P P | Dp⇁, sq P ↽2

´
q $ s ^ q ,˚ ⇁ “ ↽1

¯)

is dense below p.

So, the definition of p ,˚ ↽1 P ↽2 should be understood the following way:

p(ùq If p P G holds, then we would like to have MrGs |ù p↽1q
G

P p↽2q
G

to hold. This means
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that there should be some forcing condition s and some ⇁ P MP such that all following
three conditions hold:

(1) p⇁, sq P ↽2 (2) s P G (3) p⇁qG “ p↽1qG.

Let us study them in detail.

(1) p⇁, sq P ↽2:

↽2 “

˜
x

˜
x1 ε

˜
y1

˜
y

‚ ‚

‚

‚ ‚ ‚. . . . . . . . . . . . . . . . . .s r uv w

(2) s P G: Since p P G and the following set Q is dense below p:

Q “

!
q P P | Dp⇁, sq P ↽2

`
q $ s ^ q ,˚ ⇁ “ ↽1

˘)

we obtain
!
q P Q | q $ p

(
X G ‰ ⊋; so there exists some q P P such that both q $ p

and q P G holds. By construction of Q, there exists also some s * q (hence s P G
holds) such that both p⇁, sq P ↽2 and q ,˚ ⇁ “ ↽1.

p
‚

s
‚

q
‚

(3) p⇁qG “ p↽1qG:
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p↽2qG
“

¨

˚̊
˚̊
˚̊
˝

˜
x

˜
x1 ε

˜
y1

˜
y

‚ ‚

‚

‚ ‚ ‚. . . . . . . . . . . . . . . . . .s r uv w

˛

‹‹‹‹‹‹‚

G

“

p⇁qG

‚

‚

‚ ‚. . . . . . . . . . . . . . . . . .

yx

Since q ,˚ ⇁ “ ↽1 and q P G, we will have (since the proof will be by induction on the
complexity1 of the P-names and the complexity of ⇁ is smaller than the one of ↽1) both

MrGs |ù p⇁q
G

“ p↽1q
G

and MrGs |ù p⇁q
G

P p↽2q
G
;

hence we will end up with
MrGs |ù p↽1q

G
P p↽2q

G
.

pùñq This implication is

MrGs |ù p↽1q
G

P p↽2q
G

ùñ Dp P G
`
p ,˚ ↽1 P ↽2

˘M
.

If MrGs |ù p↽1q
G

P p↽2q
G

holds, then there exists some P-name ⇁ together with some
forcing condition s P G such that we have both following conditions satisfied:

(1) p⇁, sq P ↽2 (2) MrGs |ù p↽1q
G

“ p⇁q
G
.

1See Definition 320 on page 259.
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↽2 “

˜
x

˜
x1 ε

˜
y1

˜
y

‚ ‚

‚

‚ ‚ ‚. . . . . . . . . . . . . . . . . .s r uv w

Since the complexity of ⇁ is somehow smaller2 than the one of ↽2, one can apply the Truth
Lemma and get some forcing condition r P G which satisfies:

`
r ,˚ ↽1 “ ⇁

˘M
.

Since both r P G and s P G, there exists some forcing condition p P G which satisfies both
p $ r and p $ s.

We will very soon — on page 253 — prove Lemma 317 which yields that the following are
equivalent:

(1) r ,˚ ↽1 “ ⇁;

(2) for all t $ r, t ,˚ ↽1 “ ⇁;

(3) the set
!
t P P | t ,˚ ↽1 “ ⇁

(
is dense below r.

r ,˚ ↽1 “ ⇁‚

s
‚

p ,˚ ↽1 “ ⇁‚

q ,˚ ↽1 “ ⇁
‚

So, it follows that p ,˚ ↽1 “ ⇁ and also that every forcing condition q $ p satisfies both

2See Definition 320 on page 259.



252 Set Theory

(1) q $ s (2) q ,˚ ↽1 “ ⇁.

Henceforth, the set

Q “

!
q1

P P | Dp⇁1, s1
q P ↽2

´
q1

$ s1
^ q1

,˚ ⇁1
“ ↽1

¯)

is dense below p, which is the condition to fulfill in order to state that p ,˚ ↽1 P ↽2 holds.

Example 316. Notice that the empty set is a P-name: it satisfies the requirements of Definition
298:

˝ it is a binary relation such that for all p⇀, pq P ⊋, ⇀ is a P-name and p P P.

˝ It is even a P-name for the empty set, since p⊋q
G

“ ⊋.

˝ Also, the canonical P-name for the empty set is nothing but the empty set itself:

⊋̌ “
!

p⇀̌,1q | ⇀ P ⊋
(

“ ⊋ and p⊋q
G

“ ⊋.

For every forcing condition p, and every P-name ↽ , the following three conditions are satisfied:

(1) p .˚ ↽ P ⊋ holds because the following set being empty, is definitely not dense below p:

!
q P P | Dp⇁, sq P ⊋

´
q $ s ^ q ,˚ ⇁ “ ↽

¯)
“ ⊋.

(2) p ,˚ ⊋ “ ⊋ holds because

(a) The statement: “ for all p⇁1, s1q P ⊋, Dϑp⇁1, s1,⊋q is dense below p ” is of the form

@p⇁1, s1q

´
p⇁1, s1q P ⊋ "Ñ “Dϑp⇁1, s1,⊋q is dense below p ”

¯

and since p⇁1, s1q P ⊋ always fails, this statement is true.

(b) The statement “ for all p⇁2, s2q P ⊋, the set Dεp⇁2, s2,⊋q is dense below p ” holds also
for the same reason.

(3) p ,˚ ⊋̌ P }t⊋u holds because we have

⊋̌ “ ⊋ and }t⊋u “
!

p⇀̌,1q | ⇀ P t⊋u
(

“
!

p⊋̌,1q
(

“
!

p⊋,1q
(
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and the following set is obviously dense below p:

!
q P P | Dp⇁, sq P }t⊋u

´
q $ s ^ q ,˚ ⇁ “ ⊋

¯)

“

!
q P P |

`
q $ 1 ^ q ,˚ ⊋ “ ⊋

˘)

“ P.

Lemma 317. Let P be a notion of forcing, and p P P. Let also ωpx1, . . . , xnq be any Lst-formula
whose free variables are among x1, . . . , xn, and ↽1, . . . , ↽n P VP.
The following are equivalent:

(1) p ,˚ ωp↽1, . . . , ↽nq;

(2) for all r $ p, r ,˚ ωp↽1, . . . , ↽nq;

(3) the set
!
r P P | r ,˚ ωp↽1, . . . , ↽nq

(
is dense below p.

Proof of Lemma 317:

p1q ñ p2q By induction on the height of ω.

ω : x1 “ x2

Take any r $ p, and suppose that p ,˚ ↽1 “ ↽2, which means that

for all p⇁1, s1q P ↽1, Dϑp⇁1, s1, ↽2q is dense below p.

Since r $ p, Dϑp⇁1, s1, ↽2q is also dense below r. Analogously, for all p⇁2, s2q P ↽2,
Dεp⇁2, s2, ↽1q is dense below r. Therefore r ,˚ ↽1 “ ↽2.

ω : x1 P x2

Take any r $ p, and suppose that p ,˚ ↽1 P ↽2, which means that the set

!
q P P | Dp⇁, sq P ↽2

´
q $ s ^ q ,˚ ⇁ “ ↽1

¯)

is dense below p. It follows that the same set is dense below r.

ω : Dx εpx,x1, . . . , xnq

Take any r $ p, and suppose that p ,˚ Dx εpx, ↽1, . . . , ↽nq, which means that the set

!
q P P | D⇀ P VP q ,˚ εp⇀, ↽1, . . . , ↽nq

)
.

is dense below p. It follows that the same set is dense below r.
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ω : pϑ ^ εq

Take any r $ p, and suppose that p ,˚ pϱ ^ εq, which means that both p ,˚ ϱ and
p ,˚ ε. So by induction hypothesis, one has r ,˚ ϱ and r ,˚ ε, which comes down
to r ,˚ pϱ ^ εq.

ω : !ε

Take any r $ p, and suppose that p ,˚ !ε, which means that for all q $ p , q .˚ ε.
So in particular, for all q $ r , q .˚ ω; which means r .˚ ε.

p2q ñ p3q is immediate.

p3q ñ p1q By induction on the height of ω.

ω : x1 “ x2

We suppose the set D “
!
r P P | r ,˚ ↽1 “ ↽2

(
is dense below p. So, for all

p⇁1, s1q P ↽1, Dϑp⇁1, s1, ↽2q is dense below r for all r P D. But since D is dense below
p, Dϑp⇁1, s1, ↽2q is dense below p as well, and the same holds for Dεp⇁2, s2, ↽1q. So,
p ,˚ ↽1 “ ↽2.

ω : x1 P x2

We suppose the set D “
!
r P P | r ,˚ ↽1 P ↽2

(
is dense below p. So, the set

!
q P P | Dp⇁, sq P ↽2

´
q $ s ^ q ,˚ ⇁ “ ↽1

¯)

is dense below r for all r P D. Hence it is also dense below p, which yields p ,˚ ↽1 P ↽2.

ω : Dx εpx,x1, . . . , xnq

We suppose once again that the set D “
!
r P P | r ,˚ Dxωpx, ↽1, . . . , ↽nq

(
is dense

below p. So, the set

!
q P P | D⇀ P VP q ,˚ εp⇀, ↽1, . . . , ↽nq

)
.

is dense below each r P D, which implies that it is dense below p. Henceforth,
p ,˚ Dxωpx, ↽1, . . . , ↽nq.

ω : pϑ ^ εq

We assume that the set D “
!
r P P | r ,˚ pϱ ^ εq

(
is dense below p. So, both sets

!
r P P | r ,˚ ϱ

(
and

!
r P P | r ,˚ ε

(

are dense below p. By induction hypothesis, this leads to p ,˚ ϱ and p ,˚ ε, and
finally to p ,˚ pϱ ^ εq.
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ω : !ε

We assume that the set D “
!
r P P | r ,˚ !ε

(
is dense below p and proceed by

contradiction. So, we suppose p .˚ !ε, which means that there exists q $ p such
that q ,˚ ε. By p1q ñ p2q we see that for all r $ q, r ,˚ ε. Since D is dense below
p, it is also dense below q. Now, any r P D X ts P P | s $ qu satisfies both r ,˚ !ε
and r ,˚ ε, a contradiction.

l 317

Proposition 318. Let P be a notion of forcing, and p P P. Let also ωpx1, . . . , xnq and
εpy1, . . . , ykq be any Lst-formulas whose free variables are among x1, . . . , xn and y1, . . . , yk,
respectively. Let ↽1, . . . , ↽n,⇀1, . . . ,⇀k P VP. For any forcing condition p P P we have

(1)
p ,˚

`
ωp↽1, . . . , ↽nq _ εp⇀1, . . . ,⇀kq

˘

if and only if
tq P P | q ,˚ ωp↽1, . . . , ↽nqu Y tq P P | q ,˚ εp⇀1, . . . ,⇀kqu is dense below p

(2)
p ,˚

`
ωp↽1, . . . , ↽nq "Ñ εp⇀1, . . . ,⇀kq

˘

if and only if
for all q $ p, if q ,˚ ωp↽1, . . . , ↽nq, then q ,˚ εp⇀1, . . . ,⇀kq

(3)
p ,˚ @x1 ωpx1, ↽2, . . . , ↽nq

if and only if
for all P-names ↽ P V P, p ,˚ ωp↽, ↽2, . . . , ↽nq.

Proof of Lemma 318:

(1) We have that
`
ωp↽1, . . . , ↽nq _εp⇀1, . . . ,⇀kq

˘
” !

`
!ωp↽1, . . . , ↽nq ^ !εp⇀1, . . . ,⇀kq

˘
. So we

prove
p ,˚ !

`
!ωp↽1, . . . , ↽nq ^ !εp⇀1, . . . ,⇀kq

˘

(ñ

tq P P | q ,˚ ωp↽1, . . . , ↽nqu Y tq P P | q ,˚ εp⇀1, . . . ,⇀kqu is dense below p

pñq Suppose that p ,˚ !
`
!ωp↽1, . . . , ↽nq ^ !εp⇀1, . . . ,⇀kq

˘
. Then for all q $ p,

q .˚
`
!ωp↽1, . . . , ↽nq ^ !εp⇀1, . . . ,⇀kq

˘
.
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i.e. q .˚ !ωp↽1, . . . , ↽nq or q .˚ !εp⇀1, . . . ,⇀kq. We show that the set of r $ p
such that r ,˚ ωp↽1, . . . , ↽nq or r ,˚ εp⇀1, . . . ,⇀kq is dense below p. To see this,
suppose that q $ p. We have q .˚ !ωp↽1, . . . , ↽nq or q .˚ !εp⇀1, . . . ,⇀kq. If
q .˚ !ωp↽1, . . . , ↽nq, then there exists r $ q such that r ,˚ ωp↽1, . . . , ↽nq. Similarly if
q .˚ !εp⇀1, . . . ,⇀kq, then there exists r $ q with r ,˚ εp⇀1, . . . ,⇀kq. In both cases
we have found r $ q with r ,˚ ωp↽1, . . . , ↽nq or r ,˚ εp⇀1, . . . ,⇀kq.

p(q Suppose that tq P P | q ,˚ ωp↽1, . . . , ↽nqu Y tq P P | q ,˚ εp⇀1, . . . ,⇀kqu is dense be-
low p. So, for all r $ p there exists q $ r such that q ,˚ ωp↽1, . . . , ↽nq or q ,˚
εp⇀1, . . . ,⇀kq, and therefore q .˚ !ωp↽1, . . . , ↽nq or q .˚ !εp⇀1, . . . ,⇀kq. Therefore,
the set

tq P P | q .˚ !ωp↽1, . . . , ↽nq or q .˚ !εp⇀1, . . . ,⇀kqu

is dense below p. Hence, the set

!
q P P | q .˚

`
!ωp↽1, . . . , ↽nq ^ !εp⇀1, . . . ,⇀kq

˘(

is also dense below p. Thus, given any r $ p, there exists some q $ r such that
q .˚

`
!ωp↽1, . . . , ↽nq ^ !εp⇀1, . . . ,⇀kq

˘
.

We distinguish between

paq q .˚ !
`
!ωp↽1, . . . , ↽nq ^ !εp⇀1, . . . ,⇀kq

˘

and
pbq q ,˚ !

`
!ωp↽1, . . . , ↽nq ^ !εp⇀1, . . . ,⇀kq

˘

(a) q .˚ !
`
!ωp↽1, . . . , ↽nq ^ !εp⇀1, . . . ,⇀kq

˘
would lead to the existence of some

s $ q $ r $ p with s ,˚
`
!ωp↽1, . . . , ↽nq ^ !εp⇀1, . . . ,⇀kq

˘
, and by Lemma 317

this would lead to all s1
$ s satisfying s1

,˚
`
!ωp↽1, . . . , ↽nq ^ !εp⇀1, . . . ,⇀kq

˘
,

contradicting the fact that the set

!
q P P | q .˚

`
!ωp↽1, . . . , ↽nq ^ !εp⇀1, . . . ,⇀kq

˘(

is also dense below p. So, this case is impossible.

(b) So, the only possibility is that q ,˚ !
`
!ωp↽1, . . . , ↽nq ^ !εp⇀1, . . . ,⇀kq

˘
which

shows that the set

!
q P P | q ,˚ !

`
!ωp↽1, . . . , ↽nq ^ !εp⇀1, . . . ,⇀kq

˘(

is dense below p. Hence, by Lemma 317, we obtain p ,˚ !
`
!ωp↽1, . . . , ↽nq ^ !εp⇀1, . . . ,⇀kq

˘
.

(2) We have that ωp↽1, . . . , ↽nq Ñ εp⇀1, . . . ,⇀kq ” !ωp↽1, . . . , ↽nq _ εp⇀1, . . . ,⇀kq. By the
previous point, q ,˚ !ωp↽1, . . . , ↽nq _ εp⇀1, . . . ,⇀kq if and only if

tq P P | q ,˚ !ωp↽1, . . . , ↽nqu Y tq P P | q ,˚ εp⇀1, . . . ,⇀kqu
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is dense below p. So we show that

tq P P | q ,˚ !ωp↽1, . . . , ↽nqu Y tq P P | q ,˚ εp⇀1, . . . ,⇀kqu is dense below p

(ñ

for all q $ p, if q ,˚ ωp↽1, . . . , ↽nq, then q ,˚ εp⇀1, . . . ,⇀kq.

pñq Take any q $ p such that q ,˚ ωp↽1, . . . , ↽nq holds. We show that the set

tr P P | r ,˚ εp⇀1, . . . ,⇀kqu

is dense below q, which will guarantee that q ,˚ εp⇀1, . . . ,⇀kq. Indeed, since

!
q1

P P | q1
,˚ !ωp↽1, . . . , ↽nq

(
Y

!
q1

P P | q1
,˚ εp⇀1, . . . ,⇀kq

(

is dense below p, it is also dense below q. So, pick r $ q with

r P
!
q1

P P | q1
,˚ !ωp↽1, . . . , ↽nq

(
Y

!
q1

P P | q1
,˚ εp⇀1, . . . ,⇀kq

(
.

Notice that r P tq1
P P | q1

,˚ !ωp↽1, . . . , ↽nqu is impossible since q ,˚ ωp↽1, . . . , ↽nq

and r $ q yield r ,˚ ωp↽1, . . . , ↽nq. Therefore, one has

r P
!
q1

P P | q1
,˚ εp⇀1, . . . ,⇀kq

(
,

which shows that tr P P | r ,˚ εp⇀1, . . . ,⇀kqu is dense below q.

p(q In order to show that tq P P | q ,˚ !ωp↽1, . . . , ↽nqu Y tq P P | q ,˚ εp⇀1, . . . ,⇀kqu is
dense below p, consider any r $ p. If r ,˚ !ωp↽1, . . . , ↽nq or r ,˚ εp⇀1, . . . ,⇀kq we
are done. Otherwise, r .˚ !ωp↽1, . . . , ↽nq and r .˚ εp⇀1, . . . ,⇀kq yield there exists
some s $ r such that s ,˚ ωp↽1, . . . , ↽nq, hence s ,˚ εp⇀1, . . . ,⇀kq also holds from
the assumption, which shows that

s P tq P P | q ,˚ !ωp↽1, . . . , ↽nqu Y tq P P | q ,˚ εp⇀1, . . . ,⇀kqu

and completes the proof that tq P P | q ,˚ !ωp↽1, . . . , ↽nquYtq P P | q ,˚ εp⇀1, . . . ,⇀kqu

is dense below p.

(3) We have that @vωpvq ” !Dv!ωpvq. So we need to show

p ,˚ !Dx1 !ωpx1, ↽2, . . . , ↽nq

(ñ

for all P-names ↽ P V P, p ,˚ ωp↽, ↽2, . . . , ↽nq.

pñq We suppose p ,˚ !Dx1 !ωpx1, ↽2, . . . , ↽nq and show that for each P-name ↽ , the set
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tt P P | t ,˚ ωp↽, ↽2, . . . , ↽nqu is dense below p.

So, pick any q $ p. Since, p ,˚ !Dx1 !ωpx1, ↽2, . . . , ↽nq we have q .˚ Dx1 !ωpx1, ↽2, . . . , ↽nq,
hence the set !

r P P | D⇀ P VP r ,˚ !ωp⇀, ↽2, . . . , ↽nq

)
.

is not dense below q. So there exists r $ q such that for all ⇀ P VP and all
s $ r we have s .˚ !ωp⇀, ↽2, . . . , ↽nq which leads to the existence of some t $ s
which satisfies t ,˚ ωp⇀, ↽2, . . . , ↽nq. So, for each P-name ⇀ P VP, we have found
some t $ s $ r $ q $ p which satisfies t ,˚ ωp⇀, ↽2, . . . , ↽nq, which shows that
tt P P | t ,˚ ωp⇀, ↽2, . . . , ↽nqu is dense below p, and ultimately, by Lemma 317, that
p ,˚ ωp⇀, ↽2, . . . , ↽nq.

p(q We assume for all P-name ↽ P V P, we have p ,˚ ωp↽, ↽2, . . . , ↽nq. This implies that for
all P-name ↽ P V P and all q $ p q ,˚ ωp↽, ↽2, . . . , ↽nq, hence q .˚ !ωp↽, ↽2, . . . , ↽nq.
Therefore, for each q $ p, the set

!
r P P | D⇀ P VP r ,˚ !ωp⇀, ↽2, . . . , ↽nq

)
.

is empty – hence not dense – below any q $ p. So, q .˚ Dx1!ωpx1, ↽2, . . . , ↽nq holds
for each q $ p, which precisely grants p ,˚ !Dx1!ωpx1, ↽2, . . . , ↽nq.

l 318

15.3 Connecting the Truth in MrGs to the Truth in M

Providing we have access to the filter G, we show that we can go back and forth between the
truth in M and the truth in MrGs.

Lemma 319. Let ωpx1, . . . , xnq be any Lst-formula, M any c.t.m. of “ZFC ”, P any notion of
forcing on M, ↽1, . . . , ↽n P MP, and G any filter P-generic over M.

(1) If p P G and
`
p ,˚ ωp↽1, . . . , ↽nq

˘M
, then

MrGs |ù ω
`

p↽1q
G
, . . . , p↽nq

G

˘
.

(2) If MrGs |ù ω
`

p↽1q
G
, . . . , p↽nq

G

˘
, then there exists p P G such that

`
p ,˚ ωp↽1, . . . , ↽nq

˘M
.

Viewed from the perspective of the generic extension — in the sense that we start from picking
elements in MrGs and find a name for them later on, as opposed to firstly starting with P-names
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and secondly decoding them — this Lemma states that for all G P-generic over M, and all sets
a1, . . . , an in MrGs, we have

(1) If p P G and
`
p ,˚ ωp

˜
a1, . . . ,

˜
anq

˘M
, then

MrGs |ù ω
`
a1, . . . , an

˘
.

(2) If MrGs |ù ω
`
a1, . . . , an

˘
, then there exists p P G such that

`
p ,˚ ωp

˜
a1, . . . ,

˜
anq

˘M
.

Where
˜
a1, . . . ,

˜
an are P-names in M such that p

˜
a1q

G
“ a1, . . . , p

˜
anq

G
“ an.

Definition 320. Given P a notion of forcing, and ⇁1,⇁2, ↽1, ↽2 P VP, we define

p⇁1,⇁2q ! p↽1, ↽2q (ñ ⇁1 P dom p↽1q and ⇁2 P dom p↽2q.

Notice that this definition yields ! is well-founded since rk p⇁1q ’ rk p↽1q and rk p⇁2q ’ rk p↽2q

both hold, therefore, min
!
rk p⇁1q , rk p⇁2q

(
’ min

!
rk p⇁1q , rk p⇁2q

(
.

Proof of Lemma 319: We prove (1) and (2) simultaneously by induction on the height of ω.

ω : x1 “ x2 We prove (1) and (2) by !-induction.

(1) Let p P G be such that pp ,˚ ↽1 “ ↽2q
M, we want to show both

MrGs |ù p↽1q
G

& p↽2q
G

and MrGs |ù p↽2q
G

& p↽1q
G
.

We recall that
p↽1q

G
“ tp⇁1q

G
| Ds1 P G p⇁1, s1q P ↽1u .

Let p⇁1, s1q P ↽1, and let us show that p⇁1q
G

P p↽2q
G
. To do so, we are reaching for

some s2 P G such that p⇁1, s2q P ↽2.

Since p and s1 are elements of the filter G, there exists q P G such that q $ p and
q $ s1. The set Dϑp⇁1, s1, ↽2q is dense below p and thus under q. By Lemma 297,
one has G X Dϑp⇁1, s1, ↽2q ‰ ⊋. Then take any r P G X Dϑp⇁1, s1, ↽2q ‰ ⊋. There
thus exists p⇁2, s2q P ↽2 such that r $ s2 and r ,˚ ⇁1 “ ⇁2. Moreover, since r P G
and r $ s2, one obtains s2 P G. It follows that MrGs |ù p⇁2q

G
P p↽2q

G
.

We have p⇁1,⇁2q ! p↽1, ↽2q, r ,˚ ⇁1 “ ⇁2, and r P G. So, the induction hypothesis,
gives MrGs |ù p⇁1q

G
“ p⇁2q

G
.

Therefore, we have shown that MrGs |ù p⇁1q
G

P p↽2q
G
holds for every p⇁1q

G
P p↽1q

G
,

and so MrGs |ù p↽1q
G

& p↽2q
G
. The opposite inclusion is achieved in a similar fashion.
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(2) Suppose that MrGs |ù p↽1q
G

“ p↽2q
G
. Let

D “ tr P P | r ,˚ ↽1 “ ↽2 _ ε1prq _ ε2prqu ,

where

ε1pxq : Dp⇁1, s1q P ↽1
`
x $ s1 ^ @p⇁2, s2q P ↽2 @q $ s2 pq ,˚ ⇁1 “ ⇁2 "Ñ q K xq

˘

and

ε2pxq : Dp⇁2, s2q P ↽2
`
x $ s2 ^ @p⇁1, s1q P ↽1 @q $ s1 pq ,˚ ⇁2 “ ⇁1 "Ñ q K xq

˘
.

Let us show that D is dense in P. Let p P P, if p ,˚ ↽1 “ ↽2, then p P D. Otherwise,
there exists p⇁1, s1q P ↽1 such that Dϑp⇁1, s1, ↽2q is not dense below p, so there exists
p⇁2, s2q P ↽2 such that Dεp⇁2, s2, ↽1q is not dense below p.

Suppose that there exists p⇁1, s1q P ↽1 such that Dϑp⇁1, s1, ↽2q is not dense below p,
which means that there exists r $ p such that for all q $ r, q R Dϑp⇁1, s1, ↽2q. We
show that r satisfies ε1.

Let q $ r, q R Dϑp⇁1, s1, ↽2q, so q $ s1. Furthermore, for all p⇁2, s2q P ↽2, q - s2 ou
q .˚ ⇁1 “ ⇁2.

For all t P P and for all p⇁2, s2q P ↽2, if t $ s2 and t ,˚ ⇁1 “ ⇁2 then t K r. Indeed,
if this is not the case, there would exist t1

$ r such that t1
$ s2, t1

,˚ ⇁1 “ ⇁2,
but the last two properties assure us that t1

P Dϑp⇁1, s1, ↽2q which contradicts the
definition of r. Therefore r satisfies ε1. We reason in a similar manner if there exists
p⇁2, s2q P ↽2 such that Dεp⇁2, s2, ↽1q is not dense below p. Hence, D is dense in P.

Let us now show that if p P G, then p does not satisfy neither ε1, nor ε2. Suppose
towards contradiction that p P G and that p satisfies ε1. Fix p⇁1, s1q P ↽1 such that:

p $ s1 ^ @p⇁2, s2q P ↽2 @q $ s2
`
q ,˚ ↽1 “ ↽2 Ñ q K p

˘
.

We have p $ s1 and p P G, so s1 P G. Hence MrGs |ù p⇁1q
G

P p↽1q
G
. Now,

MrGs |ù p↽1q
G

“ p↽2q
G
, so MrGs |ù p⇁1q

G
P p↽2q

G
. There thus exists p⇁2, s2q P ↽2

such that p⇁1q
G

“ p⇁2q
G
.

By induction hypothesis, there exists r P G such that r ,˚ ⇁1 “ ⇁2. It follows that
there exists q $ r, s2, p such that q ,˚ ⇁1 “ ⇁2. But since p satisfies ε1, from q $ s2
and q ,˚ ⇁1 “ ⇁2 we deduce that q K p, but this contradicts the fact that q $ p. The
case of ε2 is analogous.

We can conclude by remarking that since D is dense, there exists p P G X D such
that p ,˚ ↽1 “ ↽2.

ω : x1 P x2
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(1) Suppose that there exists p P G such that p ,˚ ↽1 P ↽2. The set

D “
!
q P P | Dp⇁2, s2q P ↽2

`
q $ s2 ^ q ,˚ ↽1 “ ⇁2

˘(

is thus dense below p. Since G is P-generic over M, G X D ‰ ⊋. Let q P G X D and
p⇁2, s2q P ↽2 be such that q $ s2 and q ,˚ ↽1 “ ⇁2. G is a filter, so s2 P G, which in
turn implies

MrGs |ù p⇁2q
G

P p↽2q
G
.

Furthermore, q P G and q ,˚ ↽1 “ ⇁2, so

MrGs |ù p↽1q
G

“ p⇁2q
G
.

Hence, MrGs |ù p↽1q
G

P p↽2q
G
.

(2) Suppose that MrGs |ù p↽1q
G

P p↽2q
G
. There thus exists s2 P G such that p⇁2, s2q P ↽2

and p⇁2q
G

“ p↽1q
G
. Hence, by (2) for equality, there exists q P G such that q ,˚ ⇁2 “

↽1. Since G is a filter, there exists p P G such that p $ q and p $ s2. Since p $ q and
q ,˚ ⇁2 “ ↽1, p moreover verifies p ,˚ ⇁2 “ ↽1. The set

D “
!
q P P | Dp⇁2, s2q P ↽2

`
q $ s2 ^ q ,˚ ↽1 “ ⇁2

˘(

is then dense below p since all q1
$ p verify q1

$ s2 and q1
,˚ ↽1 “ ⇁2. Hence p P G

verifies p ,˚ ↽1 P ↽2.

ω : pω ^ εq

(1) Suppose that there exists p P G such that
`
p ,˚ pω ^ εq

˘M
. In particular, this means

there exists p P G such that pp ,˚ ωq
M and pp ,˚ εq

M and by induction hypothesis,
that MrGs |ù ω and MrGs |ù ε both hold. Thus, MrGs |ù pω ^ εq holds as well.

(2) Suppose that MrGs |ù pω ^ εq, so MrGs |ù ω and MrGs |ù ε. There thus exist
p, q P G such that pp ,˚ ωq

M and pq ,˚ εq
M. But since G is a filter, there exists

r P G such that r $ p and r $ q, moreover such that r verifies pr ,˚ ωq
M and

pr ,˚ εq
M. Hence,

`
p ,˚ pω ^ εq

˘M
.

ω : !ω

(1) Suppose that there exists p P G such that pp ,˚ !ωq
M. For the sake of contradiction,

also suppose that MrGs * !ω. Then MrGs |ù ω, and so there exists q P G such that
pq ,˚ ωq

M. Since G is a filter, there exists r P G such that r $ p and r $ q. From
r $ q and pq ,˚ ωq

M, it follows that pr ,˚ ωq
M. But r $ p, so pp . !ωq

M, which
contradicts the assumptions we made on p.
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(2) Suppose that MrGs |ù !ω. Let

D “

!
q P P |

`
q ,˚ ω

˘M
_

`
q ,˚ !ω

˘M)
.

The set D is dense below p P P in any case. Indeed, let p P P and q $ p, then we have
two possible cases: either pq ,˚ !ωq

M, and therefore q P D, or there exists r $ q
such that pr ,˚ ωq

M and r P D.

Since for all p P P, D is dense below p, D X G ‰ ⊋. Let q P D X G, then either
pq ,˚ !ωq

M, and le the conclusion follows, or pq ,˚ ωq
M. But the latter case is to

exclude since it would imply that MrGs |ù ω.

Dx ωpx,a1, . . . , anq Let ↽ “ p↽1, . . . , ↽nq.

(1) Suppose that there exists p P G such that
`
p ,˚ Dx ωpx, ↽q

˘M
. The set

D “

!
r P P | D⇀ P MP`

r ,˚ ωp⇀, ↽q
˘M)

is thus dense below p and D X G ‰ ⊋. Let q P D X G, there exists ⇀ P MP such that`
q ,˚ ωp⇀, ↽

˘M
. Hence MrGs |ù ω

`
p⇀q

G
, p↽q

G

˘
. Therefore, MrGs |ù Dx ω

`
x, p↽q

G

˘
.

(2) Suppose thatMrGs |ù Dx ω
`
x, p↽q

G

˘
. Let p⇀q

G
be such thatMrGs |ù ω

`
p⇀q

G
, p↽q

G

˘
.

By induction, there exists p P G such that
`
p ,˚ ωp⇀, ↽q

˘M
, so for all r $ p,`

r ,˚ ωp⇀, ↽q
˘M

. Thus

D “

!
r P P | D⇀ P MP`

r ,˚ ωp⇀, ↽q
˘M)

is dense below p and it follows that
`
p ,˚ Dx ωpx, ↽q

˘M
.

l 319

At last, we are now able to prove the main result that connects the truth in V to the truth
inside M.

Lemma 321. Let ωpx1, . . . , xnq be any Lst-formula, M any c.t.m. of “ZFC ”, P any notion of
forcing on M, and ↽1, . . . , ↽n P MP.

For all p P P,
p ,P,M ωp↽1, . . . , ↽nq (ñ

`
p ,˚ ωp↽1, . . . , ↽nq

˘M
.

Proof of Lemma 321:

p(ùq Consider any p P P such that
`
p ,˚ ωp↽1, . . . , ↽nq

˘M
. By Lemma 319 (1) for any3 G

3Since M is a c.t.m. of “ZFC ”, such a G P-generic over M exists by Lemma 294.
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P-generic over M such that p P G, one has MrGs |ù ωp↽1, . . . , ↽nq, which, by definition, is
equivalent to p ,P,M ωp↽1, . . . , ↽nq.

pùñq Fix p P P such that p ,P,M ωp↽1, . . . , ↽nq, and let

D “

!
r P P |

`
r ,˚ ωp↽1, . . . , ↽nq

˘M)
.

D is dense below p. Indeed, if this were not the case, there would exist q $ p such that
for all r $ q, r R D, i.e., `

@r $ q r . ωp↽1, . . . , ↽nq
˘M

.

It would follow that pq ,˚ !ωp↽1, . . . , ↽nqq
M. By the reverse implication proved above, it

would follow that q , !ωp↽1, . . . , ↽nq and thus, for G P-generic over M with q P G,

MrGs |ù !ω
`

p↽1q
G
, . . . , p↽nq

G

˘

would hold. But if q P G, then p P G and having

MrGs |ù ω
`

p↽1q
G
, . . . , p↽nq

G

˘

would yield the desired contradiction.

l 321

The next result is the main result of this chapter. It is really a theorem which builds on all the
lemmas that were proved in this chapter. nevertheless, following the tradition of the “ founding
fathers ”, we do not call it a theorem, but a lemma.

However, its title — the “Truth Lemma” — should be enough to indicate that it is of major
importance.

The Truth Lemma.

Let ωpx1, . . . , xnq be any Lst-formula, M any c.t.m. of “ZFC ”, P any notion of forcing on M,
and ↽1, . . . , ↽n P MP.

For all G P-generic over M,

MrGs |ù ω
`

p↽1q
G
, . . . , p↽nq

G

˘
(ñ Dp P G

`
p ,˚ ωp↽1, . . . , ↽nq

˘M
.

Viewed from the perspective of the generic extension — in the sense that we start from picking
elements in MrGs and find a name for them later on, as opposed to beginning with P-names —
the Truth Lemma states that for all G P-generic over M, and all sets a1, . . . , an in MrGs, we
have

MrGs |ù ω
`
a1, . . . , an

˘
(ñ Dp P G

`
p ,˚ ωp

˜
a1, . . . ,

˜
anq

˘M
.
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Proof of the Truth Lemma: This is an immediate consequence of Lemmas 319 and 321.
l Truth Lemma

Combining the Truth Lemma with Lemma 321 we obtain the following picture:

inside M inside MrGs inside V

Dp P G
`
p ,˚ εpϱ1, . . . , ϱnq˘M

(ñ MrGs |ù ε
` pϱ1qG , . . . , pϱnqG

˘
(ñ Dp P G p , εpϱ1, . . . , ϱnq

.

Figure 15.2: The connections between the forcing relations and the generic extension.

If the ground model is a c.t.m. of “ ZFC ”, the forcing relation preserves all logical consequences.
This means that as soon as some forcing condition p forces some formula ω, it also forces all the
formulas that are deductible from ω. Namely,

Proposition 323. Let ωpx1, . . . , xnq and εpx1, . . . , xnq, be any Lst-formula, M any c.t.m. of
“ZFC ”, P any notion of forcing on M, and ↽1, . . . , ↽n P MP. For all p P P,

`
p ,˚ ωp↽1, . . . , ↽nq

˘M

and

$c @x1 . . .@xn
`
ωpx1, . . . , xnq "Ñ εpx1, . . . , xnq

˘

,
///.

///-
ùñ

`
p ,˚ εp↽1, . . . , ↽nq

˘M
.

Proof of Proposition 323: Consider in M the following set:

Q “
!
q P P | q ,˚ εp↽1, . . . , ↽nq

(
.

We show that Q is dense below p. Towards a contradiction, let us assume that there exists some
s $ p such that for all t $ s

t .˚ εp↽1, . . . , ↽nq.

This implies
s ,˚ !εp↽1, . . . , ↽nq.

Since by Lemma 314 we have s $ p gives

s ,˚ ωp↽1, . . . , ↽nq,
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we end up with
s ,˚

`
ωp↽1, . . . , ↽nq ^ !εp↽1, . . . , ↽nq

˘
.

By Lemma 294 there exists some filter G P-generic over M such that s P G. By the Truth
Lemma, we have

´
s P G ^

`
s ,˚ ωp↽1, . . . , ↽nq

˘M
^

`
s ,˚ !εp↽1, . . . , ↽nq

˘M¯

implies
MrGs |ù ωp↽1, . . . , ↽nq and MrGs |ù !εp↽1, . . . , ↽nq

Now, since
$c @x1 . . .@xn

`
ωpx1, . . . , xnq "Ñ εpx1, . . . , xnq

˘

we have
|ù @x1 . . .@xn

`
ωpx1, . . . , xnq "Ñ εpx1, . . . , xnq

˘

and in particular

MrGs |ù @x1 . . .@xn
`
ωpx1, . . . , xnq "Ñ εpx1, . . . , xnq

˘

which yields
MrGs |ù

`
ωp↽1, . . . , ↽nq "Ñ εp↽1, . . . , ↽nq

˘

By modus ponens this gives
MrGs |ù εp↽1, . . . , ↽nq

which yields the following contradiction

MrGs |ù
`
εp↽1, . . . , ↽nq ^ !εp↽1, . . . , ↽nq

˘
.

So, we have shown that Q is dense below p, and by Lemma 317 we obtain

`
p ,˚ εp↽1, . . . , ↽nq

˘M
.

l 323

Corollary 324. Let ωpx1, . . . , xnq and εpx1, . . . , xnq be any logically equivalent Lst-formulas,
M any c.t.m. of “ZFC ”, P any notion of forcing on M, and ↽1, . . . , ↽n P MP. For all p P P,
we have `

p ,˚ ωp↽1, . . . , ↽nq
˘M

(ñ
`
p ,˚ εp↽1, . . . , ↽nq

˘M
.

We recall that ωpx1, . . . , xnq and εpx1, . . . , xnq are logically equivalent if they satisfy

$c @x1 . . .@xn
`
ωpx1, . . . , xnq %Ñ εpx1, . . . , xnq

˘
.
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Proof of Corollary 324: Immediate.
l 324

From now on:

(1) if M is fixed, we will identify p ,P,M ωp↽1, . . . , ↽nq and
`
p ,˚ ωp↽1, . . . , ↽nq

˘M
;

(2) in case both P and M are clear from the context, we will simply write p , ωp↽1, . . . , ↽nq.



Chapter 16

ZFC within the Generic Extension
and Cardinal Preservation

16.1 ZFC within the Generic Extension

This whole section is dedicated to proving, providing one starts with a ground model M that
satisfies “ZFC ”, that the generic extension MrGs also satisfies “ZFC ”. Of, course, this state-
ment should be understood backwards: whatever finite set of axioms ” from ZFC we consider,
we will end up with some generic extension MrGs that satisfies ”, providing we start from a
ground model M that satisfies some (other) finite set # of axioms from ZFC, where the relation
between # and ” could be made explicit (but will never be).

Theorem 325. Let M be any c.t.m. of “ZFC ”, pP,$,1q P M be any partial order and G be
P-generic over M.

MrGs satisfies “ZFC ”.

This theorem really states that given any finite sub-theory ” + ZFC, there exists some finite
sub-theory # + ZFC such that in order to have MrGs |ù ”, it is enough to start from any
c.t.m. M which satisfies M |ù #.

Proof of Lemma 325:

Extensionality: holds in MrGs since MrGs is transitive.

Comprehension Schema: We want to show that for all ⇀,⇁1, . . . ,⇁n P MP and ωpx, y1, . . . , ynq:

u “

"
z P p⇀q

G
|

´
ω

`
z, p⇁1q

G
, . . . , p⇁nq

G

˘¯MrGs*
P MrGs.
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We must find some ↽ P MP such that u “ p↽q
G
. So, we set

↽ “
!

pϱ, pq P dom p⇀q ˆ P | p ,P,M
`
ϱ P ⇀ ^ ωpϱ,⇁1, . . . ,⇁nq

˘(
.

We show that p↽q
G

“ u.

p↽q
G

“
!

pϱq
G

| Dp P G pϱ, pq P ↽
(

“
!

pϱq
G

| ϱ P dom p⇀q ^ Dp P G p ,P,M
`
ϱ P ⇀ ^ ωpϱ,⇁1, . . . ,⇁nq

˘(

“

"
pϱq

G
| ϱ P dom p⇀q ^

´
pϱq

G
P p⇀q

G
^ ω

`
pϱq

G
, p⇁1qG, . . . , p⇁nqG

˘¯MrGs*

“

"
pϱq

G
| ϱ P dom p⇀q ^ pϱq

G
P p⇀q

G
^

´
ω

`
pϱq

G
, p⇁1qG, . . . , p⇁nqG

˘¯MrGs*

“ u.

Pairing: We assume M is a c.t.m. of su$ciently enough finitely many formulas from “ZFC ”,
so that given any P-names ↽,⇀ P MP, we have1 tp⇀,1q, p↽,1qu P MP. Then we make use
of the fact 1 belongs to G to obtain:

tp⇀,1q, p↽,1qu
G

“ tp⇀q
G
, p↽q

G
u P MrGs.

Union: Let ⇀ P MP, to prove that
$

p⇀q
G

P MrGs, it is enough to show that there exists
↽ P MP such that

$
p⇀q

G
& p↽q

G
. We recall that

dom p⇀q “
!
⇁ P MP

| Dp P P p⇁, pq P ⇀
(
.

We set
↽ “

%
dom p⇀q .

Since M is a c.t.m. of “ a su$ciently large enough amount of axioms from ZFC, ” we have
↽ P MP. Let ⇁ P dom p⇀q, then ⇁ &

$
dom p⇀q “ ↽ , and thus p⇁q

G
& p↽q

G
, which yields

$
p⇀q

G
“

$ !
p⇁qG | Dp P G p⇁, pq P ⇀

)

&
$ !

p⇁qG | p⇁, pq P ⇀
)

“

´ $
dom p⇀q

¯

G

“ p↽q
G
.

1It is enough to guarantee, for instance, that M is closed under the class-function px, yq "Ñ tpx,1q, py,1qu.
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Infinity: This axiom holds in MrGs since both ↼ P M and ↼̌ P MP are satisfied, and ↼ “

p↼̌q
G

P MrGs.

Power Set: Let ⇀ P MP, we must show that the set P
`

p⇀q
G

˘
X MrGs belongs to MrGs. For

this, it is enough to show that there exists ↽ P MP such that P
`

p⇀q
G

˘
X MrGs & p↽q

G
,

we then get the result by making use of both an instance of the comprehension schema
and the axiom of extensionality.

We consider :

S “
!
µ P MP

| dom pµq & dom p⇀q
(

“
!
µ P MP

| µ &
`
dom p⇀q ˆ P

˘(

“

´
P

`
dom p⇀q ˆ P

˘¯
X MP

“

´
P

`
dom p⇀q ˆ P

˘¯M
.

Notice that given any b P P
`

p⇀q
G

˘
X MrGs and any P-name

˜
b for b, we have both

(1) the set
˜
b1

“
!

pϱ, pq P dom p⇀q ˆ P | p ,P,M ϱ P
˜
b
(
belongs to S;

(2) and

p
˜
b1

q
G

“
!

pϱq
G

P MrGs | ϱ P dom p⇀q ^ Dp P G p , ϱ P
˜
b
(

“
!

pϱq
G

P MrGs | ϱ P dom p⇀q ^ pϱq
G

P p
˜
bq

G

(

“
!

pϱq
G

P MrGs | ϱ P dom p⇀q ^ pϱq
G

P b
(

“
!

pϱq
G

P MrGs | pϱq
G

P b
(

“
!
a P MrGs | a P b

(

“ b.

Assuming “ ZFC, ” contains enough axioms to guarantee that S ˆ t1u is some P-name
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that belongs to M, we set ↽ “ S ˆ t1u and we obtain:

p↽q
G

“ pS ˆ t1uq
G

“
!

pµq
G

| µ P S
(

“
!

pµq
G

| µ P MP
^ µ &

`
dom p⇀q ˆ P

˘(

)

!
p
˜
b1

q
G

| p
˜
bq

G
P P

`
p⇀q

G

˘
X MrGs

)

“

!
p
˜
bq

G
| p
˜
bq

G
P P

`
p⇀q

G

˘
X MrGs

)

“ P
`

p⇀q
G

˘
X MrGs.

Foundation: This axiom holds in MrGs because MrGs is transitive and M satisfies the axiom
of Foundation—which simply means that the axiom of Foundation belongs to “ZFC ”.
To show this, we simply show that any infinite Q-descending chain in MrGs, would yield
some other infinite Q-descending chain in M.

Notice that for all sets a, b P MrGs with
˜
b any P-name such that p

˜
bq

G
“ b, we have

a P b P MrGs ùñ D
˜
a P dom p

˜
bq p

˜
aq

G
“ a

ùñ D
˜
a rk p

˜
aq ’ rk p

˜
bq ;

which induces

´
DpaiqiPω @i P ↼ ai`1 P ai

¯MrGs
ùñ

´
Dp
˜
aiqiPω @i P ↼

˜
ai`1 P dom p

˜
aiq

¯M

and equivalently

!

´
Dp
˜
aiqiPω @i P ↼

˜
ai`1 P dom p

˜
aiq

¯M
ùñ !

´
DpaiqiPω @i P ↼ ai`1 P ai

¯MrGs

“ “

´
!Dp

˜
aiqiPω @i P ↼

˜
ai`1 P dom p

˜
aiq

¯M ´
!DpaiqiPω @i P ↼ ai`1 P ai

¯MrGs

Since ´
!Dp

˜
aiqiPω @i P ↼

˜
ai`1 P dom p

˜
aiq

¯M

holds, it follows that ´
!DpaiqiPω @i P ↼ ai`1 P ai

¯MrGs
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holds as well.

Replacement Schema: for each formula ωpx, y, z1, . . . , znq, we want to prove that:

@z1, . . . ,@zn P MrGs

¨

˚̋
@x P MrGs D!y P MrGs

`
ωpx, y, z1, . . . , znq

˘MrGs

"Ñ

@u P MrGs Dv P MrGs @x P u Dy P v
`
ωpx, y, z1, . . . , znq

˘MrGs

˛

‹‚.

We fix a1 “ p
˜
a1q

G
, . . . , an “ p

˜
anq

G
, and u “ p

˜
uq

G
. Inside M we define:

F : dom p
˜
uq ˆ P Ñ On

p
˜
a, pq Ñ

#
least ϑ P On s.t. D

˜
b P MP

X Vϑ p ,P,M ωp
˜
a,
˜
b,
˜
a1, . . . ,

˜
anq

0 otherwise.

Since M satisfies the finitely many instances of the replacement schema our proof requires,
there exists ϖ P

`
On

˘M
such that F rdom p

˜
uq ˆ Ps & ϖ. We set:

η “
`
MP

X Vε

˘
ˆ t1u P M.

We assume
@x P MrGs D!y P MrGs

`
ωpx, y,

˜
a1, . . . ,

˜
anq

˘MrGs

and let a P u. It follows that there exists some — unique — b P MrGs such that

`
ωpa, b, a1, . . . , anq

˘MrGs
.

Therefore there exists p P G such that given any P-names
˜
a P dom p

˜
uq and

˜
b P MP which

satisfy p
˜
aq

G
“ a and p

˜
bq

G
“ b, respectively, we have

p ,P,M ωp
˜
a,
˜
b,
˜
a1, . . . ,

˜
anq

It follows that there exists
˜
b1

P η “
`
MP

X Vε

˘
ˆ t1u such that

p ,P,M ωp
˜
a,
˜
b1,

˜
a1, . . . ,

˜
anq

The Truth Lemma yields

MrGs |ù ω
´
a,

`
˜
b1˘

G
, a1, . . . , an

¯
.

Finally, by unicity, we obtain b “ p
˜
b1

q
G
, which shows that b P pηq

G
. Therefore pηq

G
satisfies

"
b P MrGs | Da P u

´
ω

`
a, b, a1, . . . , an

˘¯MrGs*
& pηq

G
.
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Choice: In order to establish that pACq
MrGs we show that any A P MrGs can be well-ordered.

To do so, it is enough to show that given any set A P MrGs, there exists some set B ) A
such that B P MrGs and B can be well-ordered. (Indeed, the restriction of any well-
ordering of B to A is some well-ordering of A). Now, in MrGs, if we show that for some

set B, there exist an ordinal ϑ and a mapping f : ϑ
onto
""Ñ B, then B can be well-ordered

by: for all b, b1
P B,

b ! b1 if and only if
& !

ϖ P ϑ | fpϖq “ b
(

P

& !
ϖ1

P ϑ | fpϖ1
q “ b1(.

Or to say it di!erently,

b ! b1 if and only if min
!
ϖ P ϑ | fpϖq “ b

(
’ min

!
ϖ1

P ϑ | fpϖ1
q “ b1(.

Since we assume M is a c.t.m. of finitely many axioms from ZFC, we assume in particular
that the axiom of choice (AC) is among those finitely many axioms. Thus, AC holds in
M.

Given any A P MrGs, we let
˜
A P MP be some P-name for A. i.e., it satisfies p

˜
Aq

G
“ A.

Inside M, there exist some ordinal ϑ and some mapping

g : ϑ
onto
""Ñ dom p

˜
Aq .

We make use of the class-function couple : MP
ˆ MP

Ñ MP that was defined in Example
309. We recall that

couple
`
˜
x,
˜
y

˘
“

"´
tp
˜
x,1qu ,1

¯
,
´ !

p
˜
x,1q, p

˜
y,1q

( *

as shown in the picture below, providing p
˜
xq

G
“ x and

`

˜
y

˘
G

“ y, we have

´
couple

`
˜
x,
˜
y

˘ ¯

G

“ px, yq.

¨

˚̊
˚̊
˚̊
˝

˜
x

˜
x

˜
y

‚

‚

‚

‚

‚ ‚

1

1

1

1 1

˛

‹‹‹‹‹‹‚

G

“

x x y

‚

‚

‚

‚

‚ ‚
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We consider the P-name
˜
f P MP defined by

˜
f “

!´
couple

`
ϖ̌, gpϖq

˘
,1

¯
P MP

ˆ t1u | ϖ P ϑ
)

We then have

f “
`

˜
f

˘
G

“

"´
couple

`
ϖ̌, gpϖq

˘¯

G

P MrGs |
`
ϖ P ϑ

˘MrGs
*

“

"´`
ϖ̌

˘
G
,
`
gpϖq

˘
G

¯
P MrGs | ϖ P ϑ

*

“

!´
ϖ,

`
gpϖq

˘
G

¯
P MrGs | ϖ P ϑ

)
.

Clearly, f is some mapping from ϑ to some set

B “ ran pfq “

!`
gpϖq

˘
G

| ϖ P ϑ
)

“

!
p⇀q

G
| ⇀ P dom p

˜
Aq

)

that belongs to MrGs and, by construction, satisfies A &

!
p⇀q

G
| ⇀ P dom p

˜
Aq

)
“ B.

It remains to show
f : ϑ

onto
""Ñ B

To show that f is onto, it su$ces to notice that for every b P B, there exist some ⇀ P

dom p
˜
Aq and some ϖ ’ ϑ such that b “ p⇀q

G
. Since g : ϑ

onto
""Ñ dom p

˜
Aq is surjective, there

exists some ϖ ’ ϑ such that gpϖq “ ⇀. Thus we finally obtain:

b “ p⇀q
G

“ pgpϖqq
G

“ fpϖq.

This shows that f : ϑ
onto
""Ñ B, which yields the existence of a well-ordering of B, and since

A & B holds, the existence of a well-ordering of A as well.

l 325

16.2 A First Attempt to Deny CH

As a start, we try to apply our knowledge of the generic extensions and propose a notion of
forcing P P M, where M is a c.t.m. of “ZFC ”, such that for every G that is P-generic over M
one has

MrGs |ù !CH.

As we will later see, this first attempt will hit the target, but in order for us to be able to realize
that, we will need to discuss the notion of “ cardinal preservation ”.
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Example 326.
We let P be the following notion of forcing, and M be a c.t.m. of “ZFC ” with P P M:

P “

!
f :

`
↼2

˘M
ˆ ↼ Ñ t0, 1u | dom pfq is finite

)

with
f $ g (ñ f ) g

and
1 “ ⊋.

Let G be P-generic over M and F “
$

G. From Exercise 293 we already know that

(1) F is a function (see Exercise 293):

F :
`
↼2

˘M
ˆ ↼ "Ñ t0, 1u.

(2) Given any p P P and any ordinal ϑ ’
`
↼2

˘M
and any integer n such that pϑ, nq R dom ppq,

one has r “ p Y
!`

pϑ, nq, 0
˘(

and q “ p Y
!`

pϑ, nq, 1
˘(

satisfy

q $ p ^ r $ p ^ q K r

hence, by Lemma 295, G R M.

(3) By Lemma 307, G P MrGs, hence F P MrGs.

For ϑ ’ ϖ ’
`
↼2

˘M
, we consider:

Dϑ,ε “

!
p P P | Dn ’ ↼

`
pϑ, nq P dom ppq ^ pϖ, nq P dom ppq ^ ppϑ, nq ‰ ppϖ, nq

˘)
.

We show that Dϑ,ε is dense in P. Indeed, let q P P, since dom pqq is finite, there exists n P ↼
such that pϑ, nq and pϖ, nq do not belong to dom pqq. Set

p “ q Y

!`
pϑ, nq, 0

˘
,
`
pϖ, nq, 1

˘)
,

to obtain p $ q and p P Dϑ,ε, which shows that Dϑ,ε is dense in P.

We also have Dϑ,ε belongs to M (any ϑ ’ ϖ ’
`
↼2

˘M
and, since G is P-generic over M, for

all ϑ ’ ϖ ’
`
↼2

˘M
, we also have:

Dϑ,ε X G ‰ ⊋.

Thus there exist p P G and n P ↼ such that

ppϑ, nq ‰ ppϖ, nq.
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It follows that for all ϑ ’ ϖ ’
`
↼2

˘M
, there exists an integer n such that

F pϑ, nq ‰ F pϖ, nq.

For each ordinal ϑ ’
`
↼2

˘M
, we consider the following subset of the integers:

aϑ “ tn ’ ↼ | F pϑ, nq “ 1u .

For all ϑ ’ ϖ ’
`
↼2

˘M
, since there exists n P ↼ such that F pϑ, nq ‰ F pϖ, nq, we have

aϑ ‰ aε .

It follows that there exist at least
`
↼2

˘M
-many di”erent subsets of ↼ in MrGs.

In the Example above, a question remains:

what is the cardinality of
`
↼2

˘M
inside MrGs ?

i.e.,

what is
ˇ̌
ˇ
`
↼2

˘M ˇ̌
ˇ
MrGs

?

In order to succeed in our attempt, we would like two things:

(1) to claim MrGs |ù 2→0 * →2, and

(2) to carefully be able to determine whether or not
`
↼2

˘M
“

`
↼2

˘MrGs
holds.

In order to answer these questions, we need to investigate the collapse of cardinal numbers that
may occur during the move from M to MrGs. In particular, since the ordinals of M and MrGs

are the same, we would like to know of some conditions which guarantee that the ordinals that
are cardinals in M still remain cardinals in MrGs.

16.3 Cardinal Preservation

We recall from Definition 288, that given M any c.t.m. of “ZFC ”, pP $,1q P M any notion of
forcing on M,

A & P is a (strong) antichain (ñ @p P A @q P A
`
p ‰ q "Ñ pKq

˘
.

Definition 327. Let M be any c.t.m. of “ZFC ”, P P M any notion of forcing on M, and`
λ is a cardinal

˘M
, we say
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P has the λ-chain condition — or P is λ-c.c. —

(ñ

in M, every antichain of P has cardinality strictly less than λ.

We say that P is c.c.c. if P is →1-c.c..

λ-chain condition is the wording commonly adopted. However, the correct formulation should
rather be λ-antichain condition, or even λ-strong antichain condition.

Definition 328. Let M be any c.t.m. of “ZFC ”, P P M any notion of forcing on M, and`
λ is a cardinal

˘M
.

P preserves cardinals * λ (respectively $ λ)

(ñ

for all G P-generic over M, M and MrGs have the same cardinals * λ (respectively $ λ).

The following theorem gives an explicit condition on the poset which guarantees that the cardi-
nals above some threshold are preserved.

Theorem 329. Let M be any c.t.m. of “ZFC ”, P P M any notion of forcing on M.

`
λ is a regular cardinal

˘M

and`
P is λ-c.c.

˘M

,
/.

/-
ùñ P preserves cardinals * λ.

In particular, if M |ù λ “ →1, we have M |ù “→1 is regular ” because we assume AC is part
of the finitely many axioms that M satisfies. Therefore, given any P P M which satisfies
M |ù P is -c.c.c. (P is →1-c.c.), we have P preserves all cardinals * →1. Since →0 and all finite
cardinals are all absolute for transitive classes, we have that M and MrGs have exactly the same
cardinals.

Proof of Theorem 329: Let G be P-generic over M. Towards a contradiction, we suppose there
exists λ1

* λ a cardinal (in M) such that λ1 is collapsed (in MrGs) down to some ordinal µ ’ λ1.
So, there exists, inside MrGs, a mapping from µ onto λ1:

f : µ
onto
""Ñ λ1
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‚

‚

‚λ

λ1

f

µ

‚

‚

‚λ

λ1

f

µ

We let
˜
f P MP satisfy f “

`

˜
f

˘
G
. By the Truth Lemma, there exists p0 P G such that:

p0 ,

˜
f : µ̌

onto
""Ñ λ̌1.

Since M and MrGs have same ordinal numbers (Lemma 312), we define inside M:

F : µ "Ñ P pλ1
q

ϑ ,"Ñ
!
ϖ ’ λ1

| Dq $ p0 q ,

˜
fpϑ̌q “ ϖ̌

(
.

We show:
MrGs |ù @ϑ ’ µ fpϑq P Fpϑq.

For this, we let
MrGs |ù fpϑq “ ϖ.

By the Truth Lemma, there exists q0 P G such that : q0 ,

˜
f pϑ̌q “ ϖ̌.

p0 ,

˜
f : µ̌

onto
""Ñ λ̌1

P G

‚

q0 ,

˜
f pϑ̌q “ ϖ̌

P G

‚

r0 ,

˜
f pϑ̌q “ ϖ̌

P G

‚

1
‚

Figure 16.1: p0 * r0 $ q0 with p0, q0, r0 P G.
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Therefore, there exists r0 P G such that r0 $ q0, r0 $ p0 and r0 ,

˜
f pϑ̌q “ ϖ̌, hence ϖ P Fpϑq

and thus, for all ϑ ’ µ, fpϑq P Fpϑq.

We now show that for all ϑ ’ µ, p|Fpϑq| ’ λq
M. Let ϑ ’ µ and ϖ in Fpϑq. With the help of

AC — which holds in M — we map ϖ to some qε P P which satisfies both

(1) qε $ p0 (2) qε ,

˜
f pϑ̌q “ ϖ̌.

We notice that the underlying mapping: H : Fpϑq
1´1
""Ñ P

ϖ ,"Ñ qε

is 1-1.

This relies on the fact that not only do we have ϖ ‰ ϖ1
ùñ qε ‰ qε1 , but we even have

ϖ ‰ ϖ1
ùñ qε K qε1 .

To show this, let us assume towards a contradiction, that there exist ϖ ‰ ϖ1 with qε and qε1

compatible. Then there would also exist some q P P such that q $ qε and q $ qε1 , hence:

(1) q ,P,M
˜
f : µ̌

onto
""Ñ λ̌1 (2) q ,P,M

˜
fpϑ̌q “ ϖ̌ (3) q ,P,M

˜
fpϑ̌q “ ϖ̌1.

Then, in V, we could get some filter J which contains q and is P-generic over M. By the Truth
Lemma, this would lead to some generic extension MrJs that would satisfy:

(1) MrJs |ù f : µ
onto
""Ñ λ1 (2) MrJs |ù fpϑq “ ϖ (3) MrJs |ù fpϑq “ ϖ1,

which leads to MrJs |ù ϖ “ ϖ1, contradicting our hypotheses about ϖ and ϖ1.
So, not only have we shown that H is injective, but we have also shown that H rFpϑqs is an
antichain. Now, since P is λ-c.c., we obtain

´
|H rFpϑqs| ’ λ

¯M
.

and since H is 1-1, ´
|Fpϑq| ’ λ

¯M
.

Inside M:
We define S & λ1 by

S “
$

ran pF q

“
$ !

Fpϑq | ϑ ’ µ
(
.

For each ϑ ’ µ, since we showed that fpϑq P Fpϑq, we have fpϑq P S, and since f : µ
onto
""Ñ λ1,

we have
f rµs “ λ1

& S.

Since both S & λ1 and λ1
& S hold, we obtain

S “ λ1.
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For each ϑ ’ µ, we set
|Fpϑq| “ λϑ ’ λ.

We distinguish between µ * λ and µ ’ λ in order to show that in any case, |S| ’ λ1 holds
(which will contradict S “ λ1).

‚

‚

‚λ

λ1

f

µ

‚

‚

‚λ

λ1

f

µ

˝ If µ * λ, then |S| $ |µ| ¨ λ “ max t|µ| ,λu “ |µ| $ µ ’ λ1.

˝ If µ ’ λ, then since λ is regular, we have cof pλq “ λ, hence for any family p▷ϑq
ϑ"µ

of
cardinals ▷ϑ ’ λ, we have

sup
!
▷ϑ | ϑ ’ µ

(
’ λ.

By induction on ϑ ’ µ we set

▷ϑ “ sup
´!

▷ϱ | ς ’ ϑ
(

Y
!
↼,λϑ

(¯

By induction on ϑ, we see that p▷ϑq
ϑ"µ

is an increasing sequence of infinite cardinal
numbers that satisfies for each ϑ ’ µ:

ˇ̌$ !
Fpςq | ς $ ϑ

(ˇ̌
$

ˇ̌$ !
tςu ˆ Fpςq | ς $ ϑ

(ˇ̌

$ ▷ϑ.

This is why we have

|S| “ |
$

ran pF q|

“

ˇ̌$ !
Fpϑq | ϑ ’ µ

(ˇ̌

$

ˇ̌$ !
tϑu ˆ Fpϑq | ϑ ’ µ

(ˇ̌

$ sup
!
▷ϑ | ϑ ’ µ

(

’ λ.

So, in both cases we have |S| ’ λ1 which contradict S “ λ1.
l 329

We already have a condition on posets — being λ-c.c. for some λ regular — which guarantees
that cardinals above a certain threshold are preserved. We now propose another condition on
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posets which guarantees the same type of preservation not above but below the same kind of
threshold. The first condition relied on sizes of antichains, this new one deals with sizes of
chains.

Definition 330. Let M be any c.t.m. of “ZFC ”, P P M any notion of forcing, and`
λ is a cardinal

˘M
.

P is λ-closed

(ñ

for all ◁ ’ λ and decreasing sequence ppϱqϱ"ς from P, there exists p P P s.t. p $ pϱ (any ς ’ ◁).

Theorem 331. Let M be any c.t.m. of “ZFC ”, P P M be any notion of forcing.

If pλ is a cardinalqM and pP is λ-closedq
M, then P preserves all cardinals $ λ.

Before proving this theorem, we need some easy preliminary result.

Lemma 332. Let M be any c.t.m. of “ZFC ”, P P M be any notion of forcing, and p P P be
any forcing condition. Let also ωpx, x1, . . . , xnq be any Lst-formula, and

˜
b,

˜
a1, . . . ,

˜
an P MP.

If p ,P,M Dx
`
x P

˜
b ^ ωpx,

˜
a1, . . . ,

˜
anq

˘
, then there exists q $ p and

˜
c P dom p

˜
bq s.t.

q ,P,M ωp
˜
c,

˜
a1, . . . ,

˜
anq.

Proof of Lemma 332: Let G be P-generic over M such that p P MrGs and set b “ p
˜
bq

G
, a1 “`

˜
a1

˘
G

“, . . . , an “ p
˜
anq

G
. We have:

MrGs |ù Dx
`
x P b ^ ω px, a1, . . . , anq

˘
;

therefore there exists — by the very definition of b — some c “ p
˜
cq

G
with

˜
c P dom p

˜
bq such that

MrGs |ù
`
c P b ^ ω pc, a1, . . . , anq

˘
.

By the Truth Lemma, there exists p1
P G such that

p1
,P,M ω

`
˜
c,

˜
a1, . . . ,

˜
an

˘
.

Since both p and p1 belong to G, there exists q P G such that both q $ p and q $ p1 hold. This
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yields
q ,P,M ωp

˜
c,

˜
a1, . . . ,

˜
anq.

l 332

Proof of Theorem 331: We simply show the following which will immediately give the result:

For all µ ’ λ, for all ς P On, for all f : µ
onto
""Ñ ς,

if f P MrGs, then f P M.

We assume f “
`

˜
f

˘
G

P MrGs, and let p0 P G such that p0 ,P,M
˜
f : µ̌

onto
""Ñ ς̌. We set

D “

"
p P P |

´
Dǧ @ϑ ’ µ D!x

`
couple pϑ̌, xq P ǧ ^ p ,P,M

˜
fpϑ̌q “ x

˘¯M
*
.

which we summarize as

D “
!
p P P | Dǧ P M @ϑ ’ µ p ,P,M

˜
fpϑ̌q “ ǧpϑ̌q

(
.

We show that D is dense below p0. For this purpose, we define both a $P-decreasing sequence
ppϑqϑ"µ and a sequence of ordinals pςϑqϑ"µ such that for all ϑ ’ ϖ ’ µ:

pε ,P,M
˜
f pϑ̌q “ ς̌ϑ.

The definition is by recursion on ϑ ’ µ. At each step ϑ, both ppφqφ!ϑ and pςφqφ"ϑ are defined.
In particular, all ςφ are defined at successor level (even for for 0 limit).

ϖ :“ 0: Nothing needs to be defined at this stage, since only p0 is required and it is already
defined.

ϖ :“ ϖ ` 1: we define pϑ`1 $ pϑ and ςϑ. By Construction, we have pϑ $ p0, hence

pϑ ,P,M
˜
f : µ̌

onto
""Ñ ς̌.

Since ϑ ’ µ, it follows that

pϑ ,P,M Dx P ς̌
˜
f

`
ϑ̌

˘
“ x.

By definition, ς̌ “ tpη̌,1q | η ’ ςu and dom
`
ς̌
˘

“ tη̌ | η ’ ςu. From Lemma 332, there
exists pϑ`1 $ pϑ and ςϑ ’ ς such that

pϑ`1 ,P,M
˜
f pϑ̌q “ ς̌ϑ.

ϖ limit: assuming the decreasing sequence ppφqφ"ϑ has been constructed, since P is λ-closed,
there exists pϑ which is below every pφ . Since ϑ is limit, there is no other condition on pϑ
to satisfy and there is no ordinal of the form ςφ to define.
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Since ϑ ’ µ ’ λ and P is λ-closed, there exists some pµ P P such that for all ϑ ’ µ we have

pµ $ pϑ and pµ ,P,M
˜
f pϑ̌q “ ς̌ϑ.

Inside M, we set gpϑq “ ςϑ so that we have

pµ $ p0 and @ϑ ’ µ pµ ,P,M
˜
f pϑ̌q “ ǧpϑ̌q

which shows that pµ belongs to D and completes the proof that D is dense below p0.

Now, since p0 P G, we have D X G ‰ ⊋. For any q P D X G, by the very definition of D there
exists g P M such that

@ϑ ’ µ q ,P,M
˜
f pϑ̌q “ ǧpϑ̌q.

Thus, we have for all ϑ ’ µ,
MrGs |ù

`

˜
fpϑq

˘
G

“
`
ǧpϑ̌q

˘
G

i.e.,
MrGs |ù fpϑq “ gpϑq.

which shows that f “ g æ µ which belongs to M. So, finally we obtain f P M.
l 331



Chapter 17

Independence of CH

In this chapter, we will prove that if the theory ZF is consistent, so is the theory ZF`2→0 “ →2.
Since we already know that if ZF is consistent, so is ZF`2→0 “ →1 (see Theorem 278), this new
result will show that 2→0 “ →1 is independent from ZF. i.e., if ZF is consistent, then

˝ ZF &c 2→0 “ →1 ˝ ZF &c 2→0 ‰ →1.

The same result holds for ZFC as well. i.e., if ZFC is consistent, then

˝ ZFC &c 2→0 “ →1 ˝ ZFC &c 2→0 ‰ →1.

In the next chapter, we will also have similar results for AC instead of CH. i.e., if ZF is
consistent, then

˝ ZF &c AC ˝ ZF &c !AC.

Moreover, many more independence results can be obtained by applying forcing techniques. We
only illustrate the by a few samples, but many more can be found in the litterature.

17.1 Forcing 2→0 “ →2

We go back to the poset that was introduced in Example 326:

Pω2 “
!
f :

`
↼2

˘M
ˆ ↼ "Ñ 2 | |dom pfq| ’ ↼

(
.

In order to conclude that, when we forced with this notion of forcing, the generic extension
satisfied 2→0 “ →2 we needed to make sure that cardinals were preserved. This is precisely what
this section will establish: simply by proving that Pω2 has the c.c.c..

As a preliminary, we need to prove some purely combinatorial result.



284 Set Theory

Lemma 333. Let F be any family of finite sets such that |F | “ →1. There exist F 1
& F and r

finite such that:

˝ |F 1
| “ →1;

˝ for all a, b P F 1, a X b “ r.

F 1 is called a ”-system.

,
//.

//-
r

Figure 17.1: Some ”-system F 1, where @a, b P F 1 a X b “ r.

Proof of Lemma 333: Since F is some family of finite sets, and |F | “ →1, there exists an integer
n and a subset of F with cardinality →1 only containing sets of cardinality n. So without loss of
generality we may assume that for all a P F , |a| “ n. The proof then goes by induction on n.

If n “ 1, then F 1
“ F and r “ ⊋ works.

We now suppose that the property holds for n and show that it also holds for n ` 1. So we let
F be such that for all a P F , |a| “ n ` 1. We then distinguish between two cases.

(1) There exists x such that |Fx| “ →1 where Fx “ ta P F | x P au. We then set F0 “

ta⫅̸ txu | a P Fxu. We obtain |F0| “ →1 and for all a P F0, |a| “ n. By induction
hypothesis, there exists F 1

0 & F0 and r0 such that |F 1
0| “ →1 and for all a, b P F 1

0, aXb “ r0.
We then set

F 1
“

!
a0 Y txu | a P F 1

0

(
and r “ r0 Y txu.

Notice that we have |F 1
| “ →1 and for all a, b P F 1, a X b “ r.
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(2) For every x, |Fx| ’ →1. We then define by induction on ς a sequence paϱqϱ"ω1 of two by
two disjoint elements of F . We start with a0 being any element, and for each ϖ ’ ↼1, we
choose aε such that for all ς ’ ϖ, aϱ X aε “ ⊋. We can do so, for otherwise there would
exist some (least) ϖ ’ ↼1 such that no a P F satisfies that for all ς ’ ϖ, aϱ X a “ ⊋. We
would then be able to define the following mapping:

f : pF ⫅̸ taϱ | ς ’ ϖuq "Ñ ϖ

a ,"Ñ ς such that a X aϱ ‰ ⊋.

Since |F ⫅̸ taϱ | ς ’ ϖu| “ →1 and |ϖ| ’ →1, there exists ς ’ ϖ such that
ˇ̌
f´1

rςs

ˇ̌
“ →1. But

aϱ is finite and there are →1-many elements in F that have one element in common with aϱ,
therefore there exists x P aϱ such that |Fx| “ →1, which contradicts the hypothesis. This
guarantees the existence of the sequence paϱqϱ"ω1 . We then finally set F 1

“ taϱ | ς ’ ↼1u

and r “ ⊋.

l 333

The following notion of forcing was introduced in Example 326.

Definition 334. The notion of forcing pPω2 ,$,1q is defined by

(1) Pω2 “

!
f :

`
↼2

˘M
ˆ ↼ Ñ t0, 1u | dom pfq is finite

)

(2) f $ f 1
(ñ f ) f 1

(3) 1 “ ⊋

Lemma 335. Let M be any c.t.m. of “ZFC ” and pPω2 ,$,1q P M.

Pω2 has the c.c.c..

Proof of Lemma 335: Towards a contradiction, we suppose that A is an antichain in Pω2

with cardinality →1. We set F “ tdom ppq | p P A u. Since in Pω2 there exist only finitely many
di!erent functions over any finite fixed domain, we necessarily have that |F | “ →1. By Lemma
333, there exists some ”-system F 1

& F such that |F 1
| “ →1 and r finite such that for any two

di!erent a, b P F 1, a X b “ r.
We let

!
pϑ | ϑ ’ ↼1

(
& A be a subset of A such that for any ϑ ’ ↼1, dom ppϑq P F 1.

Since A is an antichain for any two di!erent ϑ,ϑ1
’ ↼1, we have pϑ K pϑ1 , hence

pϑ æ r ‰ pϑ1 æ r.
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It follows that the mapping

→1
1´1
""Ñ 2r

ϑ ,"Ñ pϑ æ r

is injective which is impossible because 2r is finite (recall r is finite).

l 335

Corollary 336. Let M be any c.t.m. of “ZFC ”, Pω2 P M, and G P-generic over M.

Pω2 preserves all cardinals.

i.e., for all ϑ P On,
→ϑ

MrGs
“ →ϑ

M.

Proof of Corollary 336: By Lemma 335, Pω2 has the countable chain condition (c.c.c.). By
Theorem 329, it preserves all cardinals * →1. Moreover, by absoluteness, →0

M
“ →0

MrGs and
also for each integer n, nM

“ nMrGs. So, Pω2 preserves all cardinals.

l 336

This Corollary guarantees that forcing with Pω2 yields at least
`
↼2

˘M
-many di!erent subsets of

↼ in MrGs. Now, we know from Corollary 336 that in MrGs there are at least
`
↼2

˘MrGs
-many

di!erent subsets of ↼. Therefore, MrGs |ù 2→0 * →2. Some more work is still required to show
that MrGs |ù 2→0 “ →2. Namely, we are going to show that MrGs |ù 2→0 $ →2. This will be
done by obtaining a bound on the size of Ppλq in MrGs that depends on some properties of
the notion of forcing P.

Lemma 337. Let M be any c.t.m. of “ZFC ”, P P M any notion of forcing.

If pP has the c.c.c.qM, pλ is an infinite cardinal q
M, and G is P-generic over M. Then

|Ppλq|
MrGs

$

´
|P|

↼

¯M
.

Proof of Lemma 337: Let X P Ppλq
MrGs. Inside MrGs, we choose a P-name

˜
X in M such that

p
˜
Xq

G
“ X.

Inside M we define:

f
˜
X : λ "Ñ PpPq

ϑ ,"Ñ Aϑ some maximal antichain in
!
p P P | p , ϑ̌ P

˜
X

(
.
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We define inside MrGs:

F : Ppλq "Ñ
`
↼
tantichains of Pu

˘M

X ,"Ñ f
˜
X .

We show that F is 1-1:

For this we let X,X 1
P Ppλq

MrGs be distinct and
˜
X,

˜
X 1 such that p

˜
Xq

G
“ X and p

˜
X 1

q
G

“ X 1.
Pick ϑ P pX ⫅̸X 1

q Y pX 1 ⫅̸Xq. By symmetry, we assume ϑ P X ⫅̸X 1. By the Truth Lemma,
there exists p0 P G such that

p0 ,
`
ϑ̌ P

˜
X ^ ϑ̌ R

˜
X 1˘ .

Since f
˜
Xpϑq “ Aϑ is some maximal antichain, there exists p P Aϑ such that p0 and p are

compatible. Moreover, p0 is not compatible with any element from A 1
ϑ. Indeed, if p0 were

compatible with some p1
P A1

ϑ there would exist r such that r $ p0, r $ p1 and

r , ϑ̌ R
˜
X 1 and r , ϑ̌ P

˜
X 1.

A contradiction since

r , ϑ̌ R
˜
X 1

(ñ r , !ϑ̌ P
˜
X 1

(ñ @t $ r t . ϑ̌ P
˜
X 1

ùñ r . ϑ̌ P
˜
X 1.

Since p0 is compatible with some element from f
˜
Xpϑq “ Aϑ but no element from f

˜
X 1pϑq “ A 1

ϑ,
we conclude that Aϑ ‰ A 1

ϑ and f
˜
X ‰ f

˜
X 1 , which shows that F is 1-1; which in turn gives

|Ppλq|
MrGs

$

ˇ̌
ˇ↼tantichains of Pu

ˇ̌
ˇ
M

.

Since P has the c.c.c., every antichain is countable. So, we have

|tantichains of Pu|
M

$
`

|P|
→0

˘M
.

Finally, an easy computation gives the result:

|Ppλq|
MrGs

$

ˇ̌
ˇ↼tantichains of Pu

ˇ̌
ˇ
M

$

ˇ̌
ˇ̌
´

|P|
→0

¯
↼
ˇ̌
ˇ̌
M

“

ˇ̌
ˇ|P|

→0¨↼
ˇ̌
ˇ
M

$

´
|P|

↼

¯M
.

l 337

Corollary 338 (Cohen). Let M be any c.t.m. of “ ZFC ` CH ”, P “
`
Pω2

˘M
, and G be

P-generic over M. ´
2→0 “ →2

¯MrGs
.

Notice that we start with a ground model M that satisfies CH. i.e., p2→0 “ →1q
M.
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Proof of Corollary 338: By Lemma 335, Pω2 has the c.c.c., so by Lemma 337, we have:

|Pp↼q|
MrGs

$

´
|Pω2 |

→0

¯M
.

Notice that
f P Pω2 (ñ f is some finite function : ↼2 ˆ ↼ Ñ t0, 1u .

So formally,

f P Pω2 (ñ

´
f &

`
p↼2 ˆ ↼q ˆ t0, 1u

˘
and f is finite

¯
,

hence,
|Pω2 |

M
“ →M

2 .

In M, ↼2 is regular since AC is satisfied. So, any function from ↼ into ↼2 is indeed some
mapping from ↼ into some ϑ ’ ↼2, and certainly |ϑ| $ →1. So, in M:

|
ωϑ| $ →→0

1 .

Since M is a c.t.m. of “ ZFC ` CH ” we have
`
→1 “ 2→0

˘M
. Thus, in M, for every ϑ ’ ↼2 we

also have:

|
ωϑ| $ →→0

1 “

´
2→0

¯
→0

“ 2→0¨→0 “ 2→0 “ →1.

When ϑ varies over ↼2, we obtain:

→2 $ →→0
2 “

ˇ̌
ˇ→0→2

ˇ̌
ˇ “

ˇ̌
ˇ̌
ˇ

%

ϑ"ω2

ωϑ

ˇ̌
ˇ̌
ˇ $

ˇ̌
ˇ
!`

ϑ, f
˘

| ϑ ’ ↼2 ^ f P
ωϑ

)ˇ̌
ˇ $ →2 ¨ →1 “ →2.

So, we have shown

|Pp↼q|
MrGs

$

´
|Pω2 |

→0

¯M
“ →2

M.

In Example 326 we obtained
→2

M
$ |Pp↼q|

MrGs .

Altogether, this gives
|Pp↼q|

MrGs
“ →2

M.

i.e., ´
2→0

¯MrGs
“ →2

M.

In Corollary 336 we proved that Pω2 preserves all cardinals, so in particular

→2
M

“ →2
MrGs

which finally leads to ´
2→0 “ →2

¯MrGs
.
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l 338

17.2 Reflecting back on forcing 2→0 “ →2

Formally, in order to show

cons
`
ZFC

˘
"Ñ cons

`
ZFC ` 2→0 “ →2

˘

we proceeded by contraposition and proved:

!cons
`
ZFC ` 2→0 “ →2

˘
"Ñ !cons

`
ZFC

˘
.

For this purpose, we supposed there exist axioms ω1, . . . ,ωn in ZFC ` 2→0 “ →2 such that:

ω1, . . . ,ωn $c K.

One can then determine within “ZFC ” — in advance and independently of M — some other
formulas ε1, . . . ,εk in “ZFC ” such that if M is a model of ε1, . . . ,εk and G is Pω2-generic
over M, then MrGs is a model of ω1, . . . ,ωn. We add to ε1, . . . ,εk other formulas εk`1, . . . ,εl

which enable us to prove other results such as the ones on cardinal preservations, on ”-systems,
or on absoluteness, etc.

Then, we work in ZFC:

ZFC $c

¨

˚̊
˚̊
˚̋

“ DM a c.t.m. s.t.
´

tε1, . . . ,εlu

¯M
”

^

“ DG
`
Pω2

˘M
-generic over M ”

,
/////.

/////-

ùñ DMrGs

´
tω1, . . . ,ωnu

¯MrGs

˛

‹‹‹‹‹‚

Since,

ZFC $c “ DM a c.t.m. s.t.
´

tε1, . . . ,εlu

¯M
” ^ “ DG

`
Pω2

˘M
-generic over M ”.

by modus ponens follows,

ZFC $c DMrGs

´
tω1, . . . ,ωnu

¯MrGs
.

or more generally,

ZFC $c DN
´

tω1, . . . ,ωnu

¯
N

looooooooooooomooooooooooooon
↽

.
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Since ω1, . . . ,ωn $c K,

ZFC $c !DN
´

tω1, . . . ,ωnu

¯
N

loooooooooooooomoooooooooooooon
#↽

.

Therefore,
ZFC $c K.

As put by Kenneth Kunen: “The inelegant part of this argument is that the procedure of finding
ε1, . . . ,εl, although straightforward, completely e”ective, and finitistically valid, is also very
tedious ” [21, p. 233]

17.3 Forcing 2→0 “ →ϑ`1

The same argument, mutatis mutandis yields, for any ordinal ϑ, the equiconsistency of ZFC
and ZFC ` 2→0 “ →ϑ`1.

Definition 339. Let M be any c.t.m. of “ZFC ”. Given any ϑ P On, we let
`
P→ω ,$,1

˘
be

(1) P→ω “

!
f :

`
→ϑ

˘M
ˆ ↼ Ñ t0, 1u | dom pfq is finite

)

(2) f $ f 1
(ñ f ) f 1

(3) 1 “ ⊋

We first need to show that P→ω has the c.c.c. which will guarantee that all cardinals are preserved.

Lemma 340. Let M be any c.t.m. of “ZFC ”, 0 ’ ϑ P On and P→ω P M.

P→ω has the c.c.c..

Proof of Lemma 340: Mutatis mutandis, identical to the proof of Lemma 335. Towards a
contradiction, we suppose that A is an antichain in P→ω with cardinality →1. We set

F “ tdom ppq | p P A u .

Since in P→ω there exist only finitely many di!erent functions over any finite fixed domain, we
necessarily have that |F | “ →1. By Lemma 333, there exists some ”-system F 1

& F such that
|F 1

| “ →1 and r finite such that for any two di!erent a, b P F 1, a X b “ r. We let ppϑqϑ"ω1 be a
sequence of elements of A such that for any ϑ ’ ↼1, dom ppϑq P F 1. For ϑ ’ ϑ1

’ ↼1, we have
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pϑ K pϑ1 , hence pϑ æ r ‰ pϑ1 æ r. It follows that the mapping

→1
1´1
""Ñ 2r

ϑ ,"Ñ pϑ æ r

is injective which is impossible because 2r is finite (recall r is finite).

l 340

Theorem 341 (Cohen). Let M be any c.t.m. of “ ZFC`GCH ” and 0 ’ ϑ P On.

If P “
`
P→ω`1

˘M
and pGCHq

M, then for all G P-generic over M,

´
2→0 “ →ϑ`1

¯MrGs
.

Proof of Lemma 341: By Lemma 117 →ϑ`1 is regular and by Lemma 340 P→ω`1 has the c.c.c.,
thus P→ω`1 preserves all cardinals. By Lemma 337, we have

|Pp↼q|
MrGs

$

´ˇ̌
P→ω`1

ˇ̌
→0

¯M
.

So, we need to compute
´ˇ̌

P→ω`1

ˇ̌
→0

¯M
. i.e.,

ˇ̌
→0P→ω`1

ˇ̌M
.

Inside M, one has

˝

ˇ̌
P→ω`1

ˇ̌
“ →ϑ`1;

˝ since M is a c.t.m. of “ ZFC ` GCH ” we have 2→ω “ →ϑ`1;

˝ →ϑ`1 is regular since AC is satisfied. So, any function from ↼ into →ϑ`1 is indeed some
mapping from ↼ into some ς ’ ↼ϑ`1, and certainly |ς| $ →ϑ. So,

|
ως| $ →→0

ϑ .

˝ The mapping 1 that associates to each function f from →0 into →ϑ, its characteristic
function 1f : →0 ˆ →ϑ "Ñ t0, 1u is 1-1. Thus

→ϑ
→0 $ 2→0¨→ω “ 2→ω “ →ϑ`1.
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˝ So we obtain:

→ϑ`1 $ →→0
ϑ`1

“

ˇ̌
→0→ϑ`1

ˇ̌

“

ˇ̌
ˇ
$

ϱ"→ω`1
ς→0

ˇ̌
ˇ

$

ˇ̌
ˇ
!`

ς, f
˘

| ς ’ →ϑ`1 ^ f P
ως

)ˇ̌
ˇ

$ →ϑ`1 ¨ →→0
ϑ

$ →ϑ`1 ¨ →ϑ`1

“ →ϑ`1

which yields ˇ̌
P→ω`1

ˇ̌
→0

“ →→0
ϑ`1 “ →ϑ`1.

Thus, by applying Lemma 337 we obtain:

|Pp↼q|
MrGs

$
` ˇ̌

P→ω`1

ˇ̌
→0

˘M
“ p→ϑ`1q

M
“ p→ϑ`1q

MrGs.

i.e., ´
|Pp↼q| $ →ϑ`1

¯MrGs
.

For the other inequality, we set F “
$

G and notice that

(1) F is a function (see Exercise 293):

F :
`
→ϑ`1

˘M
ˆ ↼ "Ñ t0, 1u.

(2) G R M since by Lemma 295, given any p P P→ω`1 and any integer n R dom ppq, one has
r “ p Y tpn, 0qu and q “ p Y tpn, 1qu satisfy

q $ p ^ r $ p ^ q K r.

(3) G P MrGs (see Lemma 307), hence F P MrGs.

For ϑ ’ ϖ ’
`
→ϑ`1

˘M
, we consider:

Dϑ,ε “

!
p P P | Dn ’ ↼

`
pϑ, nq P dom ppq ^ pϖ, nq P dom ppq ^ ppϑ, nq ‰ ppϖ, nq

˘)
.

Dϑ,ε is dense in P because given any q P P, since dom pqq is finite, there exists n P ↼ such that
pϑ, nq and pϖ, nq do not belong to dom pqq, thus the following forcing condition p $ q belongs to
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Dϑ,ε .

p “ q Y

!`
pϑ, nq, 0

˘
,
`
pϖ, nq, 1

˘)
.

Since each Dϑ,ε is dense and belongs to M, and G is P-generic over M,

Dϑ,ε X G ‰ ⊋.

Thus there exists p P G and n P ↼ such that ppϑ, nq ‰ ppϖ, nq. It follows that for all ϑ ’ ϖ ’`
→ϑ`1

˘M
, there exists an integer n such that

F pϑ, nq ‰ F pϖ, nq.

For each ordinal ϑ ’
`
→ϑ`1

˘M
, we consider

Xϑ “ tn ’ ↼ | F pϑ, nq “ 1u .

If ϑ ’ ϖ ’
`
→ϑ`1

˘M
, since there exists n P ↼ such that F pϑ, nq ‰ F pϖ, nq, we have

Xϑ ‰ Xε .

It follows that there exist at least
`
→ϑ`1

˘M
-many subsets of ↼ in MrGs. Thus,

|Pp↼q|
MrGs

*
`
→ϑ`1

˘M
“

`
→ϑ`1

˘MrGs
.

i.e., ´
|Pp↼q| * →ϑ`1

¯MrGs
.

Finally, we have shown ´
→ϑ`1 $ |Pp↼q| $ →ϑ`1

¯MrGs

which yields ´
2→0 “ →ϑ`1

¯MrGs
.

l 341
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Chapter 18

Independence of AC

18.1 Notions of Forcing and Automorphisms

We shift our attention to the axiom of choice and intend to prove:

ZFC $c cons
`
ZFC

˘
"Ñ cons

`
ZF ` !AC

˘
.

We will do this by first forcing from a ground model M which satisfies “ZFC ”. This will
provide us with a generic extension MrGs which will also satisfy “ZFC ” as shown by Theorem
325. So, there is no chance we get a model in which the axiom of choice fails this way. However,
we will consider a submodel of the generic extension for which we will be able to prove that it
denies the axiom of choice.

Definition 342. Let M be a c.t.m. of “ZFC ” and pP,$,1q a partial order over M.

Any mapping ⇁ : P "Ñ P is an automorphism of P if

˝ ⇁ is a bijection;

˝ @p P P @q P P
`
p $ q %Ñ ⇁ppq $ ⇁pqq

˘
;

˝ ⇁p1q “ 1.

Lemma 343. Let M be a c.t.m. of “ZFC ” and pP,$,1q a partial order over M. If ⇁ P M is
an automorphism of P, then

G is P-generic over M (ñ ⇁rGs is P-generic over M.

Proof of Lemma 343:
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pùñq In order to prove that ⇁rGs is P-generic over M, we first show that ⇁rGs is a filter over
P. We have

(1) Given any ⇁ppq,⇁pqq P ⇁rGs, since G is a filter, there exists r P G such that r $ p
and r $ q. Since ⇁ is a automorphism, we have ⇁prq P ⇁rGs, together with

⇁prq $ ⇁ppq and ⇁prq $ ⇁pqq.

(2) If ⇁ppq P ⇁rGs and ⇁ppq $ ⇁pqq, then

p $ q %Ñ ⇁ppq $ ⇁pqq

holds, which yields q P G (since G is a filter), hence ⇁pqq P ⇁rGs.

(3) 1 “ ⇁p1q, thus 1 P ⇁rGs.

We now check that ⇁rGs satisfies the density clause:

For every D P M which is dense in P, ⇁rGs X D ‰ ⊋.

It su$ces to show that ⇁´1
rDs is dense in P, since

⇁rGs X D “ ⇁
“
G X ⇁´1

rDs
‰
.

Let p P P, D is dense, so there exists r $ ⇁ppq such that r P D; hence ⇁´1
prq $ p and

⇁´1
prq P ⇁´1

rDs, which shows that ⇁´1
rDs is dense.

So we have ⇁´1
rDs X G ‰ ⊋ and thus D X ⇁rGs ‰ ⊋. ⇁rGs is thus P-generic over M.

p(ùq The proof of the reverse implication is simply addressed by replacing ⇁ by ⇁´1.

l 343

Definition 344. Let M be a c.t.m. of “ZFC ”, pP,$,1q a partial order over M and ⇁ : P "Ñ P.
By transfinite recursion, we define

⇁̃ : MP
"Ñ MP

↽ ,"Ñ tp⇁̃p⇀q,⇁ppqq | p⇀, pq P ↽u .



Independence of AC 297

Example 345.

The P-name ↽ :

r
q s

p

q r s

q

r q p

r p q

p

The P-name ⇁̃p↽q:

ϱprq

ϱpqq ϱpsq

ϱppq

ϱpqq ϱprq ϱpsq

ϱpqq

ϱprq ϱpqq ϱppq

ϱprq

ϱppq

ϱpqq

ϱppq

We show that the image of a P-generic filter over M by an automorphism of P yields exactly
the same generic extension as the original filter.

Lemma 346. Let M be a c.t.m. of “ZFC ”, P P M be a notion of forcing, G be P-generic over
M, and ⇁ P M be an automorphism of P.

M
“
⇁rGs

‰
“ MrGs.

Proof of Lemma 346: Notice first that, for all ↽ P MP, we have

p↽q
G

“
`
⇁̃p↽q

˘
⇀rGs.

(Indeed, given any b P M
“
⇁rGs

‰
, and ↽ P MP such that b “ p↽q

⇀rGs we have b “ p↽q
⇀rGs “
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`
⇁̃´1

p↽q
˘
G
.)

This yields
M

“
⇁rGs

‰
& MrGs.

For the reverse inclusion, we make use of Lemma 311 which stated that if N is a transitive model
of “ZFC ” with M & N such that G P N, then MrGs & N. We notice that

(1) M
“
⇁rGs

‰
is transitive.

(2) M & M
“
⇁rGs

‰
;

(3) G “ ⇁´1
“
⇁rGs

‰
P M

“
⇁rGs

‰
.

This gives
MrGs & M

“
⇁rGs

‰

which yields
M

“
⇁rGs

‰
“ MrGs.

l 346

Lemma 347. Let M be a c.t.m. of “ZFC ” and P a notion of forcing over M. Let also
ωpx1, . . . , xnq be any Lst-formula. If ⇁ P M is an automorphism of P, then

(1) for all x P M, ⇁̃px̌q “ x̌;

(2) for all
˜
a1, . . . ,

˜
an P MP, and p P P,

p , ω
`

˜
a1, . . . ,

˜
an

˘
(ñ ⇁ppq , ω

`
⇁̃p

˜
a1q, . . . , ⇁̃p

˜
anq

˘
.

Proof of Lemma 347: The proof of (1) is immediate. For (2), we write a1, . . . , an for
`

˜
a1

˘
G
, . . . , p

˜
anq

G
,
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repsectively. By using Lemmas 343 and 346, we have

p , ω
`

˜
a1, . . . ,

˜
an

˘
(ñ for all G P-generic over M with p P G

MrGs |ù ω pa1, . . . , anq

(ñ for all G P-generic over M with p P G

MrGs |ù ω
´ `

⇁̃
`

˜
a1

˘˘
⇀rGs , . . . , p⇁̃ p

˜
anqq

⇀rGs
¯

(ñ for all G P-generic over M with p P G

M
“
⇁rGs

‰
|ù ω

´ `
⇁̃

`

˜
a1

˘˘
⇀rGs , . . . , p⇁̃ p

˜
anqq

⇀rGs
¯

(ñ for all ⇁rGs P-generic over M with ⇁ppq P ⇁rGs

M
“
⇁rGs

‰
|ù ω

´ `
⇁̃

`

˜
a1

˘˘
⇀rGs , . . . , p⇁̃ p

˜
anqq

⇀rGs
¯

(ñ ⇁ppq , ω
`
⇁̃p

˜
a1q, . . . , ⇁̃p

˜
anq

˘
.

l 347

18.2 Hereditarily Ordinal Definable Sets

Definition 348. Given any set A,

(1) ODpAq is defined by
b P ODpAq

(ñ

for some Lst-formula ωpx, x1, . . . , xn, y1, . . . , yk, yk`1q, ordinals ϑ,ϑ1, . . .ϑn and
a1, . . . , ak P A.

b “

"
z P Vϑ |

´
ωpz,ϑ1, . . .ϑn, a1, . . . , ak, Aq

¯Vω
*
.

(2) HODpAq is defined by

b P HODpAq

(ñ

b P ODpAq and the transitive closure of b is included in ODpAq.
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Theorem 349. Let A be an arbitrary set.

pZFq
HODpAq.

Proof of Lemma 349: The proof is identical to the proof of pZFq
HOD — see exercises sheet.

l 349

18.3 Forcing !AC

This section is entirely dedicated to “ constructing ” a model of ZF in which the axiom of choice
fails. Namely,

Theorem 350.
ZFC $c cons

`
ZFC

˘
"Ñ cons

`
ZF ` !AC

˘
.

Proof of Theorem 350: To do so, we prove that given M any c.t.m. of “ZFC ” with P→0 P M,
if G is P→0-generic over M, then there exists a set A P MrGs such that:

MrGs |ù
`
!AC

˘HODpAq
.

Or, to say it di!erently, ´
p!ACq

HODpAq
¯MrGs

.

We start by forcing with

P→0 “
!
f : ↼ ˆ ↼ "Ñ t0, 1u | dom pfq finite

(
.

Given any G P→0-generic over M, we have F “
$

G satisfies

F : ↼ ˆ ↼ Ñ t0, 1u.

Let
ak “

!
n ’ ↼ | F pk, nq “ 1

(
and A “

!
ak | k ’ ↼

(
.

We have A P MrGs, and A R M for otherwise, one could recover from A some filter ⇁rGs for
some automorphism ⇁ of P. This would yield ⇁rGs P M, henceforth M

“
⇁rGs

‰
“ MrGs “ M

which yields G P M which would contradict Lemma 295 since given any p P P→0 , there exists
q, r P P→0 such that q, r $ p and qKr.

Also, since
Dn,m “

!
p P P→0 | Dk $ ↼ ppn, kq ‰ ppm, kq

(
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is dense in P→0 , for all integers n ‰ m, we have an ‰ am, which shows that A is infinite.

Inside MrGs, we verify that A is an element of HODpAq:

(1) A P ODpAq since it is definable from itself.

(2) If x P A, then x is definable from itself, so x P ODpAq. If y P x P A, then y P ↼, hence
y P OD & ODpAq. So, the transitive closure of A is included in ↼ Y A & ODpAq.

Now, for each n P ↼, we define canonical P→0-names
˜
an and

˜
A for, an and A respectively:

˜
an “ tpm̌, pq | ppn,mq “ 1u .

and

˜
A “ tp

˜
an,1q | n ’ ↼u ,

so that we have
p
˜
anq

G
“ an and p

˜
Aq

G
“ A.

We let
N “

`
HODpAq

˘MrGs
.

Towards a contradiction, we suppose
`
AC

˘N
.

So, N satisfies that the set A can be well-ordered. In particular, there exists some mapping

f : A
1´1
""Ñ On. Since f P N, we have in particular

`
f P ODpAq

˘MrGs

and therefore f is definable in MrGs with parameters ϑ1, . . . ,ϑn P On, a1, . . . , ak P A and A.
Let ak`1 P A and ϑ P On such that fpak`1q “ ϑ. The set ak`1 is definable in MrGs with
parameters ϑ,ϑ1, . . . ,ϑn P On, a1, . . . , ak P A and A and some Lst-formula ω:

´
“ ak`1 is the only x such that ωpx,ϑ,ϑ1, . . . ,ϑn, a1, . . . , ak, Aqloooooooooooooooooooomoooooooooooooooooooon

“ fpxq“ϑ ”

”
¯MrGs

.

So, by the Truth Lemma, there exists r P G such that

`
r , “

˜
ak`1 is the only x such that ωpx, ϑ̌, ϑ̌1, . . . , ϑ̌n,

˜
a1, . . . ,

˜
ak,

˜
Aq ”

˘M
.

We then consider

D “

!
q P P→0 | Dl # k ` 1

`
q , “

˜
al is the only x such that ωpx, ϑ̌, ϑ̌1, . . . , ϑ̌n,

˜
a1, . . . ,

˜
ak,

˜
Aq ”

˘M)
.

We have D P M and we still need to show
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Claim 351.
D is dense below r.

Proof of Claim 351: Given any q $ r, since dom prq is finite,

Dl # k ` 1 @i ’ ↼ pl, iq R dom pqq .

Then, we consider the permutation 2 : ↼ ˆ ↼ "Ñ ↼ ˆ ↼ defined for all i ’ ↼ by

˝ 2pk ` 1, iq “ pl, iq;

˝ 2pl, iq “ pk ` 1, iq;

˝ 2pn, iq “ pn, iq (any n R tl, k ` 1u).

This permutation induces the automorphism ⇁ : P→0 "Ñ P→0 defined for all p P P→0 by

˝ dom
`
⇁ppq

˘
“ 2

“
dom ppq

‰

˝ ⇁ppq
`
2pn,mq

˘
“ ppn,mq.

We denote by ⇁̃ its extension to MP. We have:

For i R tk ` 1, lu:

⇁̃p
˜
aiq “

!`
⇁̃pm̌q,⇁ppq

˘
P MP

ˆ P | ppi,mq “ 1
(

“
!`
m̌,⇁ppq

˘
P MP

ˆ P | ⇁ppqpi,mq “ 1
(

“
!`
m̌, q

˘
P MP

ˆ P | qpi,mq “ 1
(

“
˜
ai;

⇁̃p
˜
ak`1q “

!`
⇁̃pm̌q,⇁ppq

˘
P MP

ˆ P | ppk ` 1,mq “ 1
(

“
!`
m̌,⇁ppq

˘
P MP

ˆ P | ⇁ppqpl,mq “ 1
(

“
!`
m̌, q

˘
P MP

ˆ P | qpl,mq “ 1
(

“
˜
al;

and
⇁̃p
˜
alq “

!`
⇁̃pm̌q,⇁ppq

˘
P MP

ˆ P | ppl,mq “ 1
(

“
!`
m̌,⇁ppq

˘
P MP

ˆ P | ⇁ppqpk ` 1,mq “ 1
(

“
!`
m̌, q

˘
P MP

ˆ P | qpk ` 1,mq “ 1
(

“
˜
ak`1.
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So, we also have

⇁̃p
˜
Aq “

!`
⇁̃p
˜
anq,⇁p1q

˘
| n ’ ↼

(

“
!`
⇁̃p
˜
anq,1

˘
| n ’ ↼

(

“
!`
˜
an,1

˘
| n ’ ↼

(

“
˜
A.

In M, since q $ r and r , “
˜
ak`1 is the only x such that ωpx, ϑ̌, ϑ̌1, . . . , ϑ̌n,

˜
a1, . . . ,

˜
ak,

˜
Aq ”, we

also have
q , “

˜
ak`1 is the only x such that ωpx, ϑ̌, ϑ̌1, . . . , ϑ̌n,

˜
a1, . . . ,

˜
ak,

˜
Aq ”

then, since ⇁ : P Ñ P is an automorphism, we also have

⇁pqq , “ ⇁̃p
˜
ak`1q is the only x such that ω

`
x, ⇁̃pϑ̌q, ⇁̃pϑ̌1q, . . . , ⇁̃pϑ̌nq, ⇁̃p

˜
a1q, . . . , ⇁̃p

˜
akq, ⇁̃p

˜
Aq

˘
”,

hence
⇁pqq , “

˜
al is the only x such that ωpx, ϑ̌, ϑ̌1, . . . , ϑ̌n,

˜
a1, . . . ,

˜
ak,

˜
Aq ”.

But q is not defined over l, so ⇁pqq is not defined over k` 1 and for all integers i R tk ` 1, lu and
m ’ ↼, we have qpi,mq “ ⇁pqqpi,mq. Therefore, q and ⇁pqq are compatible and s “ q Y ⇁pqq

satisfies both s $ q and s $ ⇁pqq, and also

s , “
˜
al is the only x such that ωpx, ϑ̌, ϑ̌1, . . . , ϑ̌n,

˜
a1, . . . ,

˜
ak,

˜
Aq ”,

which shows that s P D, and completes the proof that D is dense below r.
l 351

Finally, since G is P→0-generic over M, one has D XG ‰ ⊋, but any q P D XG yields that there
exists l # k ` 1 such that

`
q , “

˜
al is the only x such that ωpx, ϑ̌, ϑ̌1, . . . , ϑ̌n,

˜
a1, . . . ,

˜
ak,

˜
Aq ”

˘M

By the Truth Lemma, this gives

´
“ al is the only x such that ωpx,ϑ,ϑ1, . . . ,ϑn, a1, . . . , ak, Aq ”

¯MrGs
.

which contradicts the uniqueness of ak`1 in MrGs.
l 350
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