Part VI

ZF without the Axiom of Choice






Chapter 19

Cardinality Revisited

With the axiom of choice out of hand, we cannot use the notion of the cardinality of a set A as
it was defined when we had the axior?_ of choice at hand. The reason if that if the least ordinal «
such that there exists a bijection A —2> « always exists when A can be well-ordered — because

the order type of this well-ordering yields at least one ordinal which satisfies A LN a, so the
class of all ordinals that are equipotent to A being non-empty admits a minimal element. This
may not be the case when deprived of the axiom of choice. For instance, as we will see in Section
Theorem [379, one can force the set of reals to lack any well-ordering at all.

19.1 Injections and Surjections Revisited

We first introduce some notations for the existence of an injection or a surjection.

Notation 352 (ZF). Given any sets A, B, we write

1-1

o A< B whenever there exists some injective mapping f : A RN B;

1-1

o A Z B whenever A %B does not hold;

o A < B whenever there exists some surjective mapping f : B onto, A;

o A;{B whenever A < B does not hold.
The following definition of being infinite is known as “Dedkind-infinite”. A set is “Dedkind-

infinite” if one can inject the set of integers into it, and “Dedkind-finite” otherwise.

Definition 353. Let A be any set.

A is Dedekind-infinite if w < A.

(A is Dedekind-finite if w /{ A.)
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We will see later!' that — unless inconsistent — ZF does not prove that every Dedekind-finite-set

is finite. But of course ZFC proves that every set can be well-ordered, therefore w X A only
holds when A is finite.

Lemma 354. .
ZF . (AC — VAVB (A< B — A<B))

Proof of Lemma [354:
The result is trivial When A is empty, for B must be empty as well. So, we assume A and B are

non-empty. Since A < B, take any g : B 29, 4 and form {g a)|ae A} which is a non-empty
set of non-empty sets. By AC, one obtains a choice function ¢ Wthh for each a € A provides a

L

unique c(a) € B such that c(a) € g~'(a). By construction, ¢ : A =L, B witnesses that A < B.
O

Corollary 355. Given any sets A, B,

ZFC - ((A'%B AB<A)— A= B).

Proof of Corollary Immediate from Lemma and Cantor-Schréoder-Bernstein Theorem
(page [57).
1353

(((((((

However, as we will see later, A <B=— A < B may fail in the absence of the axiom of choice.
Nonetheless, we have this equivalence between the axiom of choice and the existence of inverses
of surjections.

Lemma 356.

ZF I, (AC «— VAVBVg: B2 A 3f: AL B gof =id)

Proof of Lemma [356:

(=) Given any family (4;);e; of non-empty disjoint sets, we obtain a choice function f:1I—
UA,- by letting g : UAi 27, I be defined as gla) =iiffae A; and f: 1 -1 UA be

el iel el

any function such that g o f = id — which guarantees that f(i) € A; holds for every i € I.

1Such a result can be found in Claim on page



Cardinality Revisited 309

(«<=) The result is trivial when A is empty, for B must be empty as well. So, we assume A and
B are non-empty. Since g : B onto, A, form {g_l(a) |ae A} which is a non-empty set of
non-empty sets. By AC, one obtains a choice function f which for each a € A provides a
unique f(a) € g~'(a). By construction, f: A 7L B and g o f =id both hold.

[1B56]

Lemma 357 (ZF). Given any non-empty sets A and B,

onto

(1) if there exists f : A -1 B, then there exists g : B —— A,

(2) if there exists f : A 1L, B, then there exists g : P(A) =L P(B).

Proof of Lemma[357:

(1) Assume f: A -1 B, then take any element o’ € A and define g : B 2% A by g(x) =d
if x ¢ f[A], and g(z) = a if f(a) = x. The fact that f is 1-1 guarantees that g is onto.

(2) Given f: A =L, B, define g : P(A) =L P(B) by g(C) = fIC].

(1557

19.2 Hartogs’ Lemma

Without the axiom of choice, there may be sets that do not inject into any ordinal number. But,
for any set, there is always some ordinal which does not injects into that set.

Hartogs’ Lemma (ZF). Given any set A, there exists some ordinal o such that
a/%A.

Proof of Hartogs’ Lemma: We consider the following set:
W={(B,<p)S Ax P (Ax A)|(B,<p) is a well-ordering} .

Notice that this set is non-empty since the empty ordering (&, ) belongs to W. We then
consider the class-function F : W — On defined by

F((B,<p)) = the unique ordinal 8 s.t. (8,€g) ~ (B, <p).
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We set
a = sup {F((B, <p)) +1|(B,<gB)€ W}

It turns out that « X A holds; for otherwise if we let f : « 175 A and set

B = fla] and <p={(f(7),f(9)) |7 <d <a},

we then obtain (B, <p) € W, hence o € F[W)], contradicting o > F((B, <p)).
[] Hartogs’ Lemma

19.3 Cardinals without the axiom of choice

Definition 359 (ZF). Given any set A, we define the cardinal of A — denoted by |A| — by
Al ={B€V,1|B~A}

where « is the least ordinal such that there exists some B € V11 that satisfies B ~ A.

Notation 360 (ZF). Given any set A, we by denote oy the least ordinal such that there exists
some B € V41 that satisfies B ~ A.

With this definition we notice that
Lemma 361 (ZF). Given any non-empty sets A and A’,

(1) |A| is a set;
(2) |Al = A = A= A

(3) |A| = |[A'| = A< A and A’ < A.
Proof of Lemma[361:

(1) Obvious.
(2) (=) If |A| = |A'|, then we have the following equality between non-empty sets

{(BeVi,nlB>a}={Bev. B>}
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which yields o4 = a4/, hence
{B €V, | B~ A} _ {B €V, 11 |B=~ A/}

which leads to A ~ A’.

(<) If A~ A, then A’ ~ B holds for every B such that A ~ B. Therefore A’ ~ B holds
for all B € |A| = {B EVa,+ | B~ A} which yields a4 < aj4. By symmetry,

one also has a4 < 4|, thus o 4| = a|4, which leads to |A| = |A"].

(3) This is immediate via Cantor-Schréder-Bernstein Theorem (page [57).

(] 36T
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Chapter 20

About R without the axiom of choice

20.1 Variations on the Reals

In this chapter, we will not really be interested at the reals as an algebraic structure nor a
topological structure. We will concentrate on the reals as a set which is equipotent to the power
set of the integers. This is the reason why we first recall the following relations:

Lemma 362 (ZF).

Proof of Lemma [362:

We recall “w = { fw — w} and “2 = {f : w — {0,1} }.

1-1 1-1 1-1

By Cantor-Schroder-Bernstein Theorem (page , we only need to show R < “w < ¥2 <R

R <“w: assume every real r is written in base 10 as

o in case 0 < 7r:

r=-4eyeiey...ex, dopdydads...dydpi1dpio. .. ...
o in case r < 0:

r=—ep€1€2...€L, d0d1d2d3...dndn+1dn+2 ......

where
(a) k is finite,
(b) for each i < k and each j € w, €;,d; € {0,1,2,3,4,5,6,7,8,9}
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(c) eo=0=£k=0,

(d) (d;/j € w) satisfies Vj 35" > j d; # 9. i.e., it is not ultimately constant with value
9. This means for instance that the real 0,23999999999999... is rather repre-
sented by 40, 24000000000000. .. and the integer —3 by —3, 00000000000 . . ..

We describe the following mapping f : R 12wy by
oIlfr=+egereq...ep, dodidods...dydpi1dpso...... , then
f(T‘) = <8,1+60,1+€1,...,1+€k,0,1+d0,1+d1,...,1+dn,1+dn+1,...>

o Ifr=+,e9,e1,62...€1,do,d1,do,ds...dp,dns1,dpso...... , then

f(?“)Z<9,1—1—60,1+61,...,1—l—ek,o,l—l-do,l—i-dl,...,l+dn,1+dn+1,...>

1-1

wWw <“2: we define g : “w 171 wg by

g({a;/iew))=10...010...010...01...

ag al az

w2 S:R: we define h : @2 =L R by

9(<ai/i €w>) =0,a0a102 ... QpQpy1 .- ...
(2) “R = “(“w) = “(+2).

It is enough to show that whenever A S B holds for non-empty sets A and B, then ¥ A g “B
holds as well. So, given any f: A -1 B, define h: YA 1Lwp by

h({aifi€w)) = (f(a;)/i€w).

(3) w2 ~ 7 (w2).

1-1

w2 %“(%) is obvious. We show “ (¥2) < w2 by providing f : “(w2) 171, w9 defined by

f(< (a;j/j <w)i< w>> = (by/k < w)

where by, = a; ; iff k = w s

Notice that the mapping (7, j) — % + 4 is a bijection between w x w and w.

(1362
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Lemma 363 (ZF).

onto

w1 éwQ.

Proof of Lemma @: We construct f: “2 2O, .

(1) we define a mapping ©  ':w X w L by mym’ = 2ntl . gmEL
(2) For each s = (a;/i € w) € “2 we set
oif 3JiVj>=ia; =0 |,then f(s) =i for the least such ;
s contains fitely many 1
oif Vidj=ia;=1 |, then

s contains infinitely many 1
e if 3iVnVm (a; =1 A ‘'nym’ # i), then f(s) =0
e if Yidndim (a; =1 — 'n,m' =1i), then
o if (w, {(n,m) | appm = 1}) is not a well-ordering, then f(s) = 0;
o if (w, {(n,m) | ay,m = 1}) is a well-ordering, then f(s) = o where « is the

unique ordinal isomorphic to (w, {(n,m) | @ = 1}) Notice that a € wq

since « is countable.

To show that f is onto, it is enough to show that for every infinite countable
ordinal « there exists some s € “2 such that f(s) = «. For this, notice that

« being countable, any bijection h : w 24, o induces a well-ordering on w of
type a. Namely, (w, <q ) where <= {(n,m) € w x w | h(n) < h(m)}.

By construction, s = (a;/i € w) € “2 defined by a; = 1 iff there exists (n,m) €
<q such that ‘'n,m' = 1.

(1363

We will see later that it is consistent with ZF to have w; X “2. This means, if ZF is consistent,
there exists a model of ZF in which there exists some surjection from “2 to wi, but no injection
from wy to “2. i.e.,

1-1
“““““

w1 <2 hut wlz“’z

Nice examples of such models where w; % “2 holds are given by those where the set of reals is
a countable union of countable sets (see Section [22.1).
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Notation 364. Given any sets A and B, the disjoint union of A and B is

AwB:=(Ax{0})u(Bx{1}).

Lemma 365 (ZF).

Yo W wp <¥2.

Proof of Lemma I@: We construct f : “2 om0, w9 wy. From Lemma 363L we are granted

with a mapping f/ : “2 2% ;. Given any s = (a;/i € w) € “2 we define f(s) as follows:

o if ag = 0, then f(s) = (ai+1/i € w);
o if ag = 1, then f(s) = f'({ais+1/i € w)).

[ 1363l

20.2 OQOutcomes of R as a Countable Union of Countable Sets

Proposition 366 (ZF). If R is a countable union of countable sets, then

1-1

wi £ “2.

Proof of Proposition Notice first that by Lemma we have
(“2).

Thus, the assumption is equivalent to saying that any of these sets is a countable union of
countable sets. So, we assume that ~(“2) is a countable union of countable sets. i.e., there exists
(Gn)n<w where for each integer n, G,, is non-empty, countable and

‘2= Jon

n<w

w

R~%“R~%Yy ~ ("Jw):“’Qz
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First, we set

A= | L]
yegn
— J{Hw] €92 | & € Gn}

={S(k)ev2| S €G, N kew}
={se¥2 |3 €G, Ik <w (k) =s}.
We first establish that for each integer n we have

11

H < w.

Since G, is a non-empty countable set, we take any g : G, 171, & and construct

I I, N
s o I(s) = (i+j)(é+j+1) +i
(1) i is the least integer such that
s€ (g7'()[w]
i.e., there exists . € G,, with g(.¥) = i, and there exists some k < w . (k) = s;

(2) j is the least such that (¢71(3))(j) = s.

e

Towards a contradiction, we then assume that w; < “2 holds, so that there exists some injective
mapping f : wy 1oL wg,

For each integer n, we define

an = f1[A4]
=min{a € w; | f(a) & H,}.

We then define, by diagonalization, some mapping which will yield a contradiction:

h:w——Y2

n — flag).

By its very definition, h € “(¥2) = U Gn, hence for some integer n we have h € G,,. We then
n<w
consider h(n) € “2, and discuss whether h(n) belongs to 77, or not:

o h(n) € 7, holds since h € G,, and J7, = U S |wl;
7€G,
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o h(n) ¢ 7, holds too since h(n) = f(ay,) and f(«a) ¢ H2,.

This contradiction shows that no injective mapping f : w; 171 wg exists; namely w % “2.
(]

Corollary 367 (ZF). IfR is a countable union of countable sets, then there exists some partition
R of R such that R 5 R which stands for

1=l

R<R and R Z R.

Proof of Corollary We first show that this statement is equivalent to the existence of some
partition C of “2 such that “2 < C, i.e.,

“2 S:C and C /{ “2.
Indeed, if R £ R holds, then take any f : R Ly w9 and define C = {fIp] | p€e R}. Clearly C is
a partition of “2 that satisfies R ~ C, which yields “2 5 C since one has “2~R g R ~C.

Similarly, if “2 £ C holds, then take any g : “2 &%, R in order to obtain the partition R =
{f[p] | p € C} that satisfies C ~ R which leads to R £ R since one has R ~“2 5 C ~ R.

So, in order to establish the result we simply prove that there exists some partition C of “2 such

'''''''

that “2 < C. For this, we come back to Lemma 365 which stated that “2 v w; <“2 holds and
take any f:%2 20, w9 wy to form the partition

Cz{{sew2|f(s)=z}|$e“2ww1}
—{F e v 2w},
We obtain

@2 < C: The mapping g : “2 — C defined by

g(x) ={s€“2] f(s) = x}
= [ [ {z}]

1-1

is obviously 1-1, hence witnesses that “2 SC holds.

1-1 1-1 1-1

C X «“2: Towards a contradiction, we assume C <@w2. We notice that w; <C holds for the
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following mapping is 1-1: h : w; —— C defined by

W) ={se“2| f(s) = o}

= {=}]

Therefore, we have both

-

wy <C and C<%2

-

1-1

which leads to wy < “2, contradicting Proposition

366

(1367
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Chapter 21

Symmetric Submodels of Generic
Extensions

21.1 Symmetry Groups and Hereditarily Symmetric P-names

We recall Definition which states that given M any c.t.m. of “ZFC” and (P,<,1) any

partial order over M, an automorphism of P is a mapping 7 : P 2, P such that
VpePVgeP (p<q «— =(p) <7(q))

We also recall that this definition implies 77(1) = 1 and any such automorphism 7 induces an
automorphism 7 on the class of P-names M defined by transfinite recursion (see Definition
344):

: MP — MP

T —{(#(0),7(p)) | (o,p) € T}.

<

Figure 21.1: The P-name 7.
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Figure 21.2: The P-name 7(7).

Notice that we have 7(2) = &. Also, for every canonical P-name &, we have 7(&) = 7.
By Lemma [346} for all G P-generic over M, and all automorphism 7,

M[#[G]] = M[G].
Moreover, by Lemma for all 71,...,7, € MP, and p € P,

pl=¢ (7—17 SRR Tn) Aand W(p) I= (,0(7?(7'1), SRR ﬁ(Tn))
Definition 368 (Symmetry Group). Let M be any c.t.m. of “ZFC 7, (P,<,1) any partial
order over M, and G any subgroup of the group of automorphisms of P.

For each P-name T the symmetry group of T is

symy (1) = {m e G | (1) = 7}.

Lemma 369. Let M be any c.t.m. of “ZFC 7, (P,<,1) any partial order over M, and G any
subgroup of the group of automorphisms of P. Let T be any P-name.

symg (T) is a subgroup of G.

Proof of Lemma[369: We check that symy (7) is closed under products and inverses.



Symmetric Submodels of Generic Extensions 323

Closed under (m, p) — pom: Given any automorphisms 7, p € symy (7),

Il
e}
—~
<
—~
\]
SN—
SN—

po7(r)

|

S ™
—~

\]
SN—

which shows that p o m € symgy (7).

Closed under 7 — 7~ !: Given any automorphism 7 € P, the following holds:
¥(0,p) e MP x P ((o.p) €7« (7 (0),7(p)) €7 (7) ).

Notice that we have 7 € symg (7) if and only if 7 = 7(7). Or, to say it differently,

T =7(1) < VY(o,p) e MP x P <(O’,p)€7’<—>(ﬁ'(0‘),7‘l’(p))€7’).

Notice also that ¥(o,p) €e M x P

—~— —~—

(o,p)eT — (w*l(a),w_l(p)) en1(r)

and

(f[’ (o) 77T(p)> ET — (7/'1::J1 o 77'(0),7['_1 o 77(]?)) IS 7;:_1(7—)

> (o,p) e 7 1(7).

So, we end up with

7 =7(1) <= V(o,p) e MP x P <(07P) €T« (

M
S
~—~"
2
S
SN—

m

\]

~—

—VY(o,p)e M” x P <(o,p) €T« (o,p) € 7;:/1(7)>
7 =71"1(1).
which shows that m € symy, (1) if and onyl if 7! € symy (7).

[ 1B69)

We notice:

(1) For any canonical P-name &,

symy (2) = {me G| n(2) = ¥} = G.
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(2) For all P-name 7, and all automorphism 7 € G, one has

symey (7(T)) = 7 0 symey (T) o !

since, given any automorphism p € symgy (7), we have

(Fopor N#(r) =7ojo (7 Lor)(r) =7 o p(r) = #(r).

Definition 370 (Normal Filter). Let M be any c.t.m. of “ZFC 7, (P,<,1) any partial order
over M, and G any subgroup of the group of automorphisms of P.

Z is a normal filter on G if

F is a set of subgroups of G such that for all subgroups H,KK. € G and all T € G:
(1) Ge F

(2) if He F and H S K, then K e F

(8) if He F and K € F, then H n K € F

(4) if He F, thenmoHorn e F

Granted with some normal filter, we focus on P-names whose symmetry group belongs to the
filter, and even more, whose symmetry group hereditarily belongs to the filter:

Definition 371 (Hereditarily Symmetric P-names). Let M be any c.t.m. of “ZFC 7, (P,<,1)

(
any partial order over M, and G any subgroup of the group of automorphisms of P, and F any
normal filter on G.

The set of all hereditarily symmetric P-names HS, € MF is defined by transfinite recursion:

TeHS, «— symy (r)e.# and {o|Ipe P (o,p) € 7} < HS,.
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Figure 21.3: The P-name 7.

p q

Figure 21.4: 7 € HS # iff symy (o) € .# holds for every above P-name o.
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So we have
HS, = {r¢ MP | symy (7)€ .F and {0 |IpeP (0,p)eT} < HS,}.
Notice that
o every canonical P-name & € HS since symy (&) = G € Z.

o If 7 € HS,, then 7(7) € HS, holds for any 7 € G, because we have
symy (7(r)) = m o symy (t) o™ !
Hence, for all P-name 7 € MP and all automorphism 7 € G, we have

Te HS, < 7(7) € HS,.

21.2 The Symmetric Submodel

We now define the symmetric submodel of a generic extension as its restriction to the only
elements that admit an hereditarily symmetric P-name.

Definition 372 (Symmetric Submodel). Let M be any c.t.m. of “ZFC 7, (P,<,1) any partial
order over M, and G any subgroup of the group of automorphisms of P, and # any normal filter
on G. The symmetric submodel of the generic extension M[G] is

MI[G] = {(r); € M[G] | 7 € HS,}.

A symmetric submodel is a structure which lies in between M (since every canonical P-name is
hereditarily symmetric) and the generic extension M[G] (since hereditarily symmetric P-names
are particular P-names). The properties that make the symmetric submodel very interesting is
that it is transitive and satisfies all the axioms of ZF, but contrary to the generic extension, it
does not necessarily satisfy the axiom of choice (AC).

Lemma 373. Let M be any c.t.m. of “ZFC 7, (P,<,1) any partial order over M, and G any
subgroup of the group of automorphisms of P, and F any normal filter on G.

(1) M< M[G] < MIG];

—

(2) M[G]j is a transitive set;

— 7

(3) M[G]j satisfies “ZF 7.



Symmetric Submodels of Generic Extensions 327

—F
Figure 21.5: The symmetric submodel M[G] of M[G] the generic extension of M.

— 7

Notice that if G the generic filter over M is a member of M[G]j then the whole construction
is not of much interest. Indeed, in Lemma we showed that M[G] is the S-least transitive
model N of “ZFC” with satisfies both M < N and G € N. Therefore, if there exists some

— 7
P-name for G that is hereditarily symmetric, then we end up with M[G] = MJ[G], rendering
the entire construction useless.

Proof of Lemma|373
(1) is immediate.

(2) Assume z € (7)€ I\T[E]g with 7 € HS ;. Then, there exists p € G and o € MF such that

—7

(0,p) € Tand z = (o). Since T € HS,;, it follows that ¢ € HS;, hence z = (o), € M[G] .

—_

(3) M[G]  satisfies “ ZF

L — —_

Extensionality holds in M[G]y since M[G]g is transitive.

Comprehension Schema We want to show that for all 0, 21, ..., 2, € HS; and ¢(z,y1,...,¥n):

—7

= {ze(0)0| (o(= (%1)@---’(%)@))@ }EM[G] .
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We must find some 7 € HS; such that u = (7). For this purpose, we first modify o
and consider & instead:

o ={(z,p) eHS; xP|3¢geP p<gqand (zq) €}

Notice that (), = (7) holds because:

o 0 <@ implies () < (7), and
o for every p € G and (z,p) € 7, there exists some (z,q) € o with p < ¢, hence
q € G, which shows that if (z), belongs to (7)., it also belongs to (o) -

We now show that & € HS ;.

Claim 374.
symg (o) S symgy (0) -

Proof of Claim[374; Take any automorphism 7 € symy (o) and any (z,p) € & with
p < q and (z,q) € 0. Since 7 € symy (o), (ﬁ(g),ﬁ(q)) € o holds. Because p < ¢, we
have 7(p) < 7(q); thus, by the very definition of & we have (7(z),7(p)) € & which
shows 7(¢) € &. To show the other inclusion, namely that () 2 & holds, it is
enough to notice that

T € symy (o) if and only if 7! € symy (o)

and

(1574

So, we obtain symy, (o) € .% since we have shown

symg (o) S symgy (7),
————’

eF

Moreover, since dom () = dom (o) <€ HS, it follows o € HS ;.

We set
u= {(;va) €0 | b H_P,M Qp(gvz;la oo az;n)}
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We show u € HS . Since @ € HS, it only remains to show that symg (u) €

this, we consider

G’ = symy (7) N symy (21) O ... " symy (2n)

4’ € .F holds since .7 is a filter, and for each m € ¢’, one has

M
~—
R
S~—

N
~—~
=
S~—

m

S
)
N—

T
0
AS)

—~
—~
N—
[N
=
3
SN—
——

% . For

We have just shown ¥’ < symy (u), which proves that symy (u) € .Z and completes

the proof that u € HS.

It remains to show that (u), = u.

(u)g S u: if (2)g € (u), then there exists p € G such that both the following hold:

(Nzap) €o and p ”_P,M Sp(zza%la . 7Z~n)

which yields
e
> MIG]

((@o: () (zn)g)

By construction, there exists ¢ > p such that (z,q) € 0. Now, ¢ > pandpe G

yields ¢ € G, which gives (2)g € (0). Putting all this together, we obtain

N
SN—
Q
—~
N
—
~—
@
—~
IN
S
~
Q
~

()a € (o) and (o((

which shows that (z)g € u holds.
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(u)g 2 u: if z € u, then we have both

p—

2 (@)g and (o= () g (20)g))

So, there exists some ¢ € G and some — necessarily hereditarily symmetric —
P-name z such that (z,q) € 0 and (2); = 2. By construction of @ we have
(z,q) € . We have both

—

MI[G]
) and ¢ge@.

(P(@e () (20)g)

Therefore, by a direct application of the Truth Lemma, there exists some r € G
such that
T e M P(2 2155 20)-

[ SERREI . 7“FP,M §9(§72~1,.‘.,~

plFpM 0(2, 215+ 5 2n)

Since G is a filter and ¢,r € G, there exists also some p € G which satisfies both
p < qand p <7, and also (since p < q):

P lFpm (90(?7 21,5 %)

=
Q

which shows that (z,p) € u, and finally z = (2). € (

=ye l\f[\G]? — i.e., with 2,y € HS; — then {(z,1), (y,]l)} €
e

Pairing If (z), = =, (Q)G

HS; since symy ({(@, 1), (y, ]1)}) D symy () N symy (gi We obtain
I -

—_—7

(@) @D} = {@e. W)} = fz.v) e MIC]

—— T

Union Let 0 € HS;, to prove that | J(o)s € M[G]j, it is enough to show that there
exists 7 € HS; such that | (¢)s < (7). We recall that

dom (o) ={6€ HS, |Ipe P (J,p) € o}

We set

X = U{dom(5) | 6 € dom (o) }.



Symmetric Submodels of Generic Extensions 331

U
N
=

Z

Figure 21.6: An hereditarily symmetric P-name for the pair {z,y}.

Notice that, for every 7 € symy (o), 7(X) = X holds since 0 € HS,. Thus, X x {1}
belongs to HS; and (X x {1}), 2 Jo.

—

Infinity Since w € M, one has @ € HS;, hence w = (@) € M[G] .
Power Set Let o € HS;, it is enough to show there exists 7 € HS ; such that 2 ( (o)) N
M[G] < (7)g-

Notice first that for every subset X < dom (o), the P-name ox = {(z,1) | z € X}
belongs to HS  since every z belongs to HS,; and symy (0x) 2 symy (o) € F holds

for every X < dom (o).

We consider :
7 ={(ox,1) | X < dom (o) }

Notice that 7 € HS, since every ox belongs to HS; and

symg (1) 2 [ symy (0x).

XS dom(o) Ssymeg (o)

Dsymg (o) € F

Given any Y < (o), it appears that Y € (7)., since

Y= (U{w(y)GGYQG

and by construction Y € (7).

Foundation holds in 1\//I[E]¢ since l\f[\Gf is transitive and Foundation holds in the
ground model M as well as in the generic extension M[G]. (Indeed, the e-well-
foundedness of each element of MFi yields the e-well-foundedness of each element of

—_

HS,, hence each element of M[G]%.)
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Replacement Schema for each formula ¢(z,y, 21, ..., 2,), we want to prove that:

Vz1 € M[G]...Vz, € M[G]

F

vee M[G] 3lye M[G] (o(z,4,21,-- -2

—

Yu € 1\//1[\61]2 Jve 1\//1‘[\Gf Veeudyew (Lp(a:,y,zl,...,zn))M[G]
We fix 21 = (Z~1)G7 ceesRn = (%n)Ga and u = (QJ)G

Inside M we define:

F : dom(u) x P — On

(2.7) {least ast. JyeHS, "V, plI-o(z,y,21,. .., zn)H&
z,p - - =

0 otherwise.

Since M satisfies the instances of the various replacement schema that we need to

complete the proof, there exists 3 € (On)M such that F [dom (u) x P] < 5. We claim

that v = Vg works:
Let () € (u)q, by hypothesis there exists — a unique — (y) o such that

(P(@a: W (=)o (2)g)

Therefore there exists p € G such that

DI+ 90(‘2:7 ya 1y 7ZTL)HS?

It follows that there exists g € Vg such that

P o(@, 9,21, 2n)-

The Truth Lemma yields

MG b (@ (@) (1) (n)g) ™

so, by unicity, we obtain (y) o= (g) o Therefore Vg is (one of) the set we were

looking for, since it satisfies

{(y)g MG [3(@ge o (o(@g Wa: (@)gr ()e) } S Vs = (Vo)g

B3
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Theorem 375. Let M be any c.t.m. of “ZFC 7, (P, <, 1) any partial order over M, and G any
subgroup of the group of automorphisms of P, and # any normal filter on G.

M[G]‘sz is a countable transitive model of “ZF ”

Proof of Theorem [375: Immediate from Lemma [373. O
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Chapter 22

Some Applications of the Symmetric
Submodel Technique

22.1 Forcing R as a Countable Union of Countable Sets

The following blatantly contradicts the countable axiom of choice (CC) which is precisely the
statement that we used in order to prove Lemma[L04]which established that any countable union
of countable sets is countable. Keep in mind that, with the help of Cantor’s Theorem (see page
61), we proved that the set of reals is uncountable. So, we will have an uncountable set (R.)
which is a countable union of countable sets.

Theorem 376 (Feferman & Lévy).

cons(ZF) — cons(ZF + “R is a countable union of countable sets”).

Proof of Theorem [376; Instead of showing that there exists some model that satisfies
“R is a countable union of countable sets”
we will show that there exists some model that satisfies the equivalent! statement

“P(w) is a countable union of countable sets”.

We start with M any c.t.m. of “ZFC+Vn < w oRn — N,,+1” and force with the poset (P, ,<,1)
defined inside M by

Ffmz{f D wXw— N, | dom(f) is finite AVnew Vm e w f(n,m)eNn}

1See Lemma on page for the equivalence between the two statements.
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and f < g < f2g,s0that 1 =@.

—
We let G be P, -generic over M and construct a symmetric submodel M[G] of M[G]. For this,
we consider the group ¥,.,. of the permutations of w x w which do not move the first coordinate.
ie.,

Ger. = {7r cwX WD wxw| Vi, jkn<w (W(k,Z) =(n,j) — k= n)}
For each integer n, any such permutation 7 induces a permutation 7,, of w defined by
Vi <wm(n,i) = (n,m,(1)).

. ) . t. . .
Every permutation 7 € ¢,., induces an automorphism 7 : P 2, P by having for each forcing

condition p € P:

dom ((p)) = 7 [dom.(x)] = {(n,7,(0)) | (n.i) € dom (p) }

and
W(p) (na Wn(i)) = p(n’ Z)
Or, to say it directly,
7(p) = { (n,7.(0), ) | (n,i,0) € p}.
We let ¢,,,;. be the group of automorphisms of P induced by the group of permutations ¥,.,.:
{ga,ut. = {7T ’ ™€ gpm:}-
We check that ¥,,; is closed under products and inverses.

o Closed under (p, ) — pomr: Given any 7, p € 4,,;., we have

por@) = o {0 i) e p} )
= {(n,p” (W,,(i)),&) | (n,1,a) € p}
= {(n, pnown(i),a) | (n,i,a) € p}.
Since both p and 7 belong to ¢, it is immediate to see that
Vi <w por(n,i) = (n, pom,(i)),
hence porm belongs to ¢, ; so that po 1€ 9, .
1

o Closed under 7 — 7~ ':

(indeed, %,.,. is a subgroup of the group of permutations on w x w) and

it is immediate to see that if 7 belongs to ¢,.., so does 7~

7o) = { (7 (0),0) | (a7, 0) € pl
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We let 77}, be the subgroup of ¢,,; formed of all automorphisms 7 such that for every integer
n < k, the permutation 7, is the identity. i.e.,

A, = {w € Do | V0 <k Vi <w 7(n,i) = (n,i)}.
We also let .7 be the filter:

T = {9’ S Gy | © 7 isasubgroup” A In<w S 9’}

7 is a normal filter on ¥,,; since .7 is a set of subgroups of ¥,,; such that for all subgroups
ST of Gy

(1) 9, € .7 holds since 9, = 70

(2) if ¥ € .7 and ¥ € 7 for .7 some subgroup of ¥4, , then there exists n < w such that
;<. < 7, hence T € .7,

(3) if /' €.7 and .7 € .7, then there exist n,k <w 7, € ./ and 77, .7, hence /7, (,, 1} S
. "7 which gives .Y n .7 € .7}

(4) if . € .7, then there exists n < w such that /7, < ./ and for all 7 € ¥,,,, one has
wo M, on = ), sothat #, = ro 4, on ' < ro.”or ! which shows 70.”or ' € 7.

We then construct a canonical symmetric P-name for each real® (subset of the integers).

1

Claim 377. Let ($ € P(w))M[G] and x be any P-name in HS, for x. Then,
z={(kp) e HS, xP|3(k,r)ex (p<r A plemked))
1s another P-name in HS; which satisfies

(l?)G = (»ZU)G =Z.

Proof of Claim We show z € HS . It is enough to show that symgy () S symy (z). For
this, take any 7 € symy, (). We have

e symy (1) = Y(k,r) e HS, x P <(l§,r) €1 (7 (k),7(r)) € ;1;)

2As is common among set theorists, we freely use the word “real” to designate any subset of w.
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Now, for all (k,p) € HS, x P we have

(k,p)ex
e (z) (n(r)=m(p) A 7(p) kpm 7 (k) €7 (D))

R3]

which shows that 7 € symy (

We show (2)qn = (2)q

o (1)q 2 (2)q: (/j) € (2)q, then there exist p € G and (k,p) € . By construction, there
exists » > p such that (k,r) € 2. Since p € G and p < r, it follows that r € G, hence

(k)g € (l)G-

o (1)g S (z)g: if (k)g € (2)q, then there exists (k,p) € » with p € G. Now, since the
following holds:

M[G] E(k)gexcw
also holds

or to say it differently,
—
M[G] | (k)g € (@)g

by the Truth Lemma, there exists some g € G which satisfies
ql-pM k€.
Since both p, g € G, there also exists some r € GG, r < p, ¢ which necessarily satisfies

rlFp,M kew.

o, edlFpMm ke

7 Fpn kew

By construction we have (k,r) € z and since r € G, we obtain (k) € (z)g.

L1B77
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So, Without loss of generality we may ask that

xr < {(lg,p)eHS; X P|p|l—P,Ml§ed)}.

Notice also that because for any filter J which is P-generic over M and contains p, we have

M[J] = (k) € (2);,

we also have for any (k,p) € z,
plpm k€ x.

So, by combining both results mentioned above, we have

Vik,p)ez pipm (kewnkern).

Now, since z € HS;, there exists some integer n, such that 77, < symg,

automorphism 7 € .77, , since 7 € symy, () we have:

We define another canonical P-name g for z by:

(). So, given any

z = {(h,q) |3(k,p)ex IreP (r<parqg=rlnxw AT Il—p,MIEJZﬁ)}.

p P hgw= ke k=7
oreinn, .
(k,p)ez . (g ez

-
ripM kEw

We first check that r € HS,. Notice first that given any 7 € 77, and (n,q) € z, we have

(i, q) = (7, 7(q)).

Since dom (q) S ny x w and 7 € J7;,,, we also have 7(q) = ¢. So that we obtain

%(ﬁa Q) = (ﬁ¢ Q),

which yields
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We have shown that z is symmetric. Since every P-name o € dom (@) is of the form o = n, it
follows that o € HS ., which shows that z belongs to HS.

Now that we know that both z and 2 belong to HS ;, we need to show that they both give birth
to the same set x. Namely,

Claim 378.

Proof of Claim 378}

(;:U)G C(z)g|: Let ne (;;)G, and consider any ¢ € G such that (7,¢) € . So, there exists

(k,p) € z and r < p such that
r<pandr [n?x(d: qand r lFpv B = N

Now, for every condition 7’ < ¢, we may find a condition 7 and an automorphism 7 € /7,
such that the picture below holds.

r rn@xw:q /p I-p,M (kewnkex)
riem (k=70 nAkegz)

i.e., both v’ <’ and r” < 7(r) hold. Notice first the following:

o plFpm (k € @ A k € z) holds because (k,p) € z (this was shown on page [339).

O

r IFp,m (kK = 7o A k € ) holds since we have both

e 7 I-pMm k = 71, by assumption on z, and

e 7 l-pm k€ xsince r < pandp IFpm K € 2 holds.

o m(r) IFp,m (ﬁ(l{i) =nAn(k)e g;) since 7(r) I-p.m (77‘(15:) =n A (k) e ﬁ(@)) and
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So, in particular since ¢ = 7(r) [n,xw and r’ < ¢ holds, we necessarily have 7(r), r and r!
agree on dom (q), which is a finite subset of n, x w. i.e.,

m(r) Mgxw=T Tngxw=q = r’ P dom(q) -
So, for each n > n, we consider the following sets:

o Uy ={icw(|(ni)edom(r)ndom(r') ~ r(ni)+#r(ni))}

o Vpc{iew|(n,i)¢ dom(r)u dom(r')} is any set of the same cardinality as Uy,.

bij. .
o fn:Uy BN V,, any permutation between U,, and V,,.

Let 7 € ¢,., be such that

(1) for every integer n < ng, the permutation 7, is the identity.
(2) for every integer n > ng, the permutation 7, satisfies:
(a) If (n,i) ¢ Uy, UV, then 7, (i) = 1;
(b) If (n,i) € Uy, then 7, (i) = f(3);
(c) If (n,i) € Vy, then 7,,(i) = £, 1(i).
The family (7,,)n<w induces a permutation 7 € ¥, , which itself induces an automorphism
TE Gyt

We notice that 7 belongs to /7, and also 7(r) agrees with r’ on their common domain.

\\\\\

forcing condition r” necessarily satisfies

=}

" ke (7(k) =7 A 7 (k) € 2),

{

since we have r” < 7(r) and this statement is already forced by 7(r). So, given any
" < g, we have found r” < 7’ such that r” IFpny 7 € z holds. This shows that the set
9 = {7“” eP| IFpm N € :p} is dense below q. So, there exists some r’ € 2 n G, and by

the Truth Lemma, we finally obtain l\f[\G]? Ene(z)qg

() = (x)G : If k € (2), then there exists (k,p) € x such that both pe G and p IFpm & € @.

Since there exists some integer n such that
1\7[5]'} E(kewnkexan=k),
by the Truth Lemma, there exists some g € G such that

qglrpm (kewnkex nn=Ek);
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hence, there exists some r < p and r < g with r € G which satisfies
T l-p,M (@ewAljezp/\ﬁ:lj).

This yields (72,7 [n,xw) € T because

T = {(ﬁ,Q) |3(k,p)ex IreP (r<parq=r7lnxw AT IFpM lf=ﬁ)}-

Finally, from r < r [, and r € G, we obtain r [, € G, which gives both k = (k)¢ and

ke (@)G 9”

LIBT3

¢

Now that we have these “canonical” P-names z for the reals that belong to 1\//1[\6’]?, we shift

our attention to some P-names for which we will show that

(1) they give countable sets of reals and (2) their union gives the entire set of reals.

For each integer n, we set

R, =D, x {1} = {(:g, 1) | “z is a canonical P-name for a real” A z € Dn}

where
D, = {g:eP|VmewVpeP V(i,7) € dom(p) ((m,p)€§—>i<n)}.

Now, for every 7 € J7,, we have 7(R,) = R,, hence /7, < sym, <R,,> € 7. Since every

TE dom (@n) belongs to HS, it follows that R, € HS;, hence

(r,), = MIGT

We recall that couple : MP x MP — MPFP was introduced in Example so that given any
7,0 € M", and any G P-generic over M one has (couple(r,0)) o = ((T)g,(0)g ). This is

couple(t,0) = {({(T,]l)},]l), ({(T,]l), (a,]l)},ll)}.
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We set R, = (En)(; = { (@) G | T € Dn} and define some P-name for the function that maps
n to Ry:

F= {(couple(h,ﬁn),]l) |ne w}

By construction, F' € HS;, therefore, the function

(F)GIW_’I\//I[E]iz

n— R,

belongs to hm ", Notice that, for any real x € 1\7[\G]j, by the very construction of z, we have

||
/"‘—'\

q) | 3k, p) exEIreP( p/\q=r[ngxw/\TH—P,Ml§=fz)}
Q{nq | dom(q) < ny x w}

F

so that (z,1) € Ry,, and finally x € R,,,. This shows that every real that belongs to m

belongs to some R,, so that

M[G] | P(w) = | J{Bn I new},

or equivalently

(P(w) = U{R" |ne w})m

So, it just remains to prove that, for each n,
M[G] E “R, is countable”.
(1) We first compute the size of R,, inside the ground model. Since

R, = {(g, 1) | “z is a canonical P-name for a real” A x € Dn}

it is enough to count how many canonical P-names of the form z there are inside D,,.
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T = {(h,q) | 3(k,p)ezIreP(r<pag=r Mg xw Arll—p,Mkzﬁ)}.

By construction, if (72,q) € z and (z,1) € Ry, then dom(q) is finite and ¢ : n x w — V.
So, inside M there are at most R, many such forcing conditions ¢ and Ng many canonical
P_-names of the form 7. So, there are X, - Ry = R,, many (7, ¢), which yields 2% many .
Since M satisfies Yk < w 28 = N1, we obtain .

M
(1] < 2% =Rt

(2) We define, for each integer n, a P-name Jn that we will show gives rise to some mapping

onto
fniw—> Ry:

fn = {(couple(fc,d),p) | peP Adom(p) € (n+1) xwAp(n k)= oz}.

(a) By construction, syme, (j;n> > .1 and couple(k,&) € HS,. Therefore, fn €
HS,, hence f, = (fa), € M[G] .

—_—

(b) We now show that, inside M[G]y, we have (flL)G = f w220 (Rp,)M:
f,, is a function from w to (R,)™:
o fn < w x (R,)™ holds by construction.
o If both (k,«) and (k, () belong to f,, then there exist p,,pg € G with
Pa(n, k) = a and pg(n, k) = . Since both p, and pg belong to G, they agree
on their common domain, hence p,(n, k) = pg(n, k). ie., a = B.
f, is onto: Given any a € (R, )™, the set

{pe P|dom(p) = (n+1) xw A Ikew ((n,k) € dom(p) A p(n, k) = 04)}.
is dense which shows that there exists some integer k such that f,(k) = a.

— 7 1-1

Inside M[G] , since w = (R,)™, we have w < (R,,)™. Now, define g, : (%)M -=5 w by

gn(a) =[V{kew] fu(k) = a},

or, in other words, g,(«) is the least integer k such that f,,(k) = « (notice that such an
integer k always exists because f,, is onto). So, we have shown

Notice that by Cantor-Schroder-Bernstein Theorem (see page , we obtain w ~ (Nn)M.
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—F

. M[G]
It remains to show that (Rn < (Nn)M> . For this purpose, we notice that since

N M
<‘En’ <27 = Nn+1> )
so there exists inside M some mapping

gn : dom <Rin> RN (Nn+1)M

which maps injectively each z € dom (Rn) to some ordinal o € (NnH)M. We consider

B = {(couple(g,d),]l) | = gn(gz)}

We set (B) = B. Since every z belongs to HS -, we notice B also belongs to HS >, hence
Be l\f[\Gf and

B = {(couple(ag,o?))G ] ((g:,]l) € Ry A gn(z) = a)}
~{(@ga) [ (&) € Ba r gal2) = ) .

— 7 1-1 M b

Inside M[G] , we define hy, : R, — (RXp41)" by

ha(z) = (V{a e Rps)™ | (z,0) € B}.

(Notice this is well defined since gy, is 1 — 1, and also an injection for the same reason.)

11

Since inside l\f[\G]¢ we already have (NnH)M < w, we have proved
R, g‘ (Nn+1)M Siw

1-1
hence R, < w, which means

M[G]y = “ R, is countable 7.
All in all, we have shown

- 1.1 M[G]
(P(w) = J{BnInew} A ¥new (Ru< )™ A )M < N0)>

i.e.,

1\//1‘[\G]y EPw) = U {Rn|new} A Vnew “ Ry, is countable 7.
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which proves R
M[G] E “P(w) is a countable union of countable sets”.

i

Moreover, since M[G]g satisfies “ ZF 7 and “ ZF 7 -, R ~ P(w), we have
M[G] R~ P(w);

from which we easily obtain

M[G] E “Ris a countable union of countable sets”.

(1378

Among the major consequences of this result is Proposition [366 which states that if R is a
countable union of countable sets, then

wl/{:R.

Notice that this result holds in a model which satisfies “ ZF ”, hence in which there is no
bijection between w and R. In other words, the real numbers are uncountable and the model
knows it, but there is no injection from the least uncountable ordinal to the set of real numbers.

Another disturbing result, which is a consequence of the real numbers being a countable union
of countable sets, is Corollary which states that if R is a countable union of countable sets,
then there exists some partition R of R together with an injection from R to R (showing that this
partition is extremely fine) but somehow, no injection from the partition to the real numbers:

R < R.

Such a result of course, highly contradicts the axiom of choice since

(1) inside a world where AC holds, one could precisely make use of this axiom to pick from ev-
ery element of the partition which is non-empty, some element to then form a 1-1 mapping
from R to R.

(2) Also, getting used of working with the axiom of choice at hand, our initial reaction is to
understand R £ R as saying that the set of all the real numbers is strictly smaller than
some partition of it, which seems extremely bizarre.

22.2 Forcing the Well-Orderings of the Reals Out

In this section we show that it is consistent with ZF that there exists no well-ordering of the
reals. Notice that this implies that there is no bijection between any ordinal and the set of all
reals, and even that there is no injection of the reals into the class of the ordinals.
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Theorem 379 (Cohen).

cons(ZF) — cons(ZF + “there is no well-ordering of R”).

Proof of Theorem To do so, we prove that given M any c.t.m. of “ZFC” with Py, € M,
if G is Py,-generic over M, then there exists some countable set of reals® A € M[G] and

a symmetric submodel M[G]g, such that inside M[G] : A still exists, remains infinite, but
contains no proper subset B < A such that B ~ A.

This will clearly give the result because if there would exist a well-ordering of the reals, then
every subset of the reals would also be well-ordered. So, in particular there would exist a well
ordering (A, <4) whose order-type would be some infinite ordinal. From there, designing a
proper subset B ¢ A such that B ~ A would be an easy exercise.

We force with P = (PNO, <, ]l) where
Py, = {f:wxw—>{0,1} | dom (f) z’sﬁm’te}; f<g e fog 1=0.
Given any G P-generic over M, we have | JG = F € M[G] satisfies
F:wxw—{0,1}.
For each integer k, we set

ar = {(,p) € dom (@) x P | p(k,n) = 1} and A= {(ag, 1) | k€ w}.

We let (%) = ay, and (4), = A, so that we have

G
ar = {n <w| F(k,n) =1} and A= {ax | kew}.

Since for all integers [, m,n the following sets D,,; and FE,, ,, are dense in P:

Dpy={peP|3k>1 p(nk)=1}

and
Epm={peP |3k <w plnk)#pim,k)}.

Using the notation [w]* for the set of infinite subsets of w, it follows that
o (an € [w]*)M),

o Ae M[G] ~M, and

3Here, reals stand for subsets of integers.
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o (Vnew(anEA/\Vmew(n;ém<—>an9éam)))M[G].

Therefore, A is infinite.

We then construct a symmetric submodel l\mf which still contains the infinite set A but no
injection from w to A.

Every permutation of the integers p : w <% w induces an automorphism T, P & P defined
by

mp(p) = {((p(n),m),z) < (wxw) xw| ((n,m),1) ep}.

We consider the group of such automorphisms

gz{ﬂ”p:w&w

and .Z < P(¥) the filter generated by
{fiag (F) € 9 | F e Pyu(w)}
where

fizg(F) = {1, €94 |VneF p(n)=n}.

% is a normal filter on G since .% is a set of subgroups of G such that for all subgroups H, K of
G and all m € G:

(1) ¢ € .7 because ¥ = firy (D).

(2) f He # and H < K, then firy(F) < H < K holds for some finite ' < w, which shows
KeZ.

(3) If He.Z and K € .#, then both fizy(F) < H and fizy(E) < K hold for finite E, F € w.
Thus, firy(E U F) € H n K € .% holds which shows that H n K € .Z.

(4) If H € .Z, then given any finite F € w such that fizy(F) S H, one has 7,0 fizy(F)om, 1 =

p
fizg (p[F]); so that fizy (p[F]) € 70 Hom,!. Thus, m,oHom, ' e.Z.

L —

So, we can define HS, as the class of all hereditarily symmetric P-names, and M[G]f as the
symmetric submodel of the generic extension M[G] induced by HS .

Notice that for each integer k and each 7, € ¢, we have

Folar) = { (7o), my(p)) € dom (@) x P | p(k,n) =1}
(. 7o(p)) € dom (@) x P | 7, (p) (p(k),n) =1}

(2, q) € dom (@) x P | q(p(k),n) = 1}

Il
Q —~ =~
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We see that for every permutation p such that p(k) = k, we have 7,(ax) = a,(k) = ak- Therefore,

fizg({k}) S symg (ar). And since each element of dom (ax) which is of the form 7 is in HS,

—_

F
we have a;, € HS;, hence a, € M[G] . Moreover, for each 7, € 4, we have

— 7

Which shows that ¢ < symy (A4), hence A € HS, and A € M[G] .

We already have (an € [W]W)M[G]

itel
(Vnew(aneA/\Vmew(n;ﬁm<—>an;&am))> )

—_—

The set [w]® belongs to M[G] since it belongs to M. So, we have for each integer n,

e ___z 7
(an € [w]‘“)M[G] and (“A is inﬁnite”)M[G] We show that (“A is Dedekind—ﬁnite”)M[G]
— see Definition [353]

Claim 380.

7
(“ There is no 1-1 mapping from w to A ”)M[G]

Proof of Claim Towards a contradiction, we assume that there exists in M an hereditarily

—_—

F
symmetric name f € HS; for some mapping that exists inside M[G] , namely,

f= (I)G tw— A.
So, there exists p € G such that
plFP,Mfi@i’A-

Since f € HS;, we have symy (f) € .#, hence there exists some finite set Fy & w such that

fizg (Fy) S symgy (f) Then, f being injective, there exist ny € w \ Fy and k € w such that
flk) = an;. So, by the Truth Lemma, there also exists py € G with py < p and

Pf lFp M f(if) = Qny;-

We consider any permutation p : w &y such that 7p € fixg(Fy), p(ny) # ny and there exists
q < m,(py),py — ie., m,(py) and py are compatible. )
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From m, € fizy(Fy), we obtain 7, € symg (f), hence 7,(f) = f. So, we have

To(pf) FpM 7~Tp(f) (ﬁp(k)) = p(any)
i.e.,
To(pf) ke f(K) = Dp(ny)-
Any ¢ € P which satisfies both ¢ < 7,(py) and ¢ < py yields both

q I-p,Mm f(/;?) = Qn;

and

q FpMm f(k) = Qp(ny)>
hence
qI-PM @ny = Ap(n;)-

Now, for every filter H which is P-generic over M and contains ¢ we have

M[H
(a”f = aP(”f)) -

but since ny # p(ny), this contradicts

)M[H].

(Vnemeew(n#m%an;ﬁam))

This proves that there is no hereditarily symmetric P-name for an injection from w to A.
L]

So, we have shown that there is no hereditarily symmetric name for an injection from w to the
infinite set A. This result implies that there is no well-ordering of R, since any well-ordering of

the reals would yield some bijection f : « Pl R which would yield an injection ¢ : w LNy
defined by recursion on the integers by

g(n) = f(B) where Bzmin{gea | f(§) e AN{g(i)|i< n}}
:min{gea | (f(&) e A A Vi<n (&) ¢g(i))}.

1B
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22.3 Forcing Every Ultrafilter on w is Principal

Definition 381. Let X be any non-empty set.

o An ultrafilter % on X is any non-empty set % < P (X) which satisfies

(1) @ ¢«

(2) if A,Be %, then AnBe % Filter
(3) if A€ % and A < B, then Be %

(4) foral A X, Ae ¥ or Ae % } Ultra

o An ultrafilter % on X s principal (or trivial) if there exists some A € X such that

% ={B< X|Ac Bj}.

o An ultrafilter % on X is free if it is non-principal

An ultrafilter is trivial if and only if it contains some C-least element. Every filter .# < &7 (X)
which contains some C-least element A can trivially be extended into an ultrafilter, namely

% ={BcX|3CeF Cc B}
={Bc X |Ac B}
This question is far more involved with non-trivial filters. With the axiom of choice, of course,
every filter can be extended into an ultrafilter. But the converse is not necessarily true. Even

for the Fréchet Filter — Fecher = {A Cw|w~Ais ﬁnite} — as shown by the next result, it
is consistent with ZF that it cannot be extended by any ultrafilter.

Theorem 382 (Feferman).

cons(ZF) S cons(ZF + “every ultrafilter on w is tm'vial”).

Proof of Theorem As with the proof of Theorem [379] we start with M any c.t.m. of
“ZFC” and force with P = (Py,,<,1) where

PNoz{f:wxw—>{0,1}|d0m(f) z'sﬁm’te}; f<g = f2g¢9 1=0.
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Given any G which is P-generic over M, we have | JG = F € M[G] satisfies
F:iwxw—{0,1}.
For each integer k, we set

ar, = {(n,p) € dom (@) x P | p(k,n) = 1}.

We let (%>G = a,, so that we have

ar = {n <w|F(k,n) =1}
Since for all integers [, m,n the sets D,,; and E, ,, below are dense in P:
Dpy={peP|3k>1 p(nk) =1}

and
Epm={peP |3k <w p(n,k)+#p(m,k)}
it follows that
)M[G]

(ane[w]“’ AVnewVmew (n#m <« ap # am)

We construct a symmetric submodel M[G] ’ by considering, for each S € wxw, an automorphism

msg: P 9%, P defined for each p € P by:

ms(p) : dom(p) — 2
1—p(n,m) if (n,m)e S
p(n,m) if (n,m) ¢ S.

(n,m) —

We let & be the group of all such automorphisms and given any F' € Pg,(w),
fizg(F x w) ={ng €9 | S (F xw) =2},
and .Z < P(¥) be the filter generated by
{ﬁxg(F xw)c ¥ |Fe Pﬁn(w)}.

We verify that % is a normal filter on G.

F is a set of subgroups of G such that for all subgroups H, K of G and all 7w € G:

(1) ¢ € .7 because ¥ = firy (D) = firy (D x w)

(2) if He F and H < K, then fizy(F x w) € ‘H < K holds for some finite F' € w, which shows

Ke%
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(3) if H e F and K € F, then both fizy(F x w) € H and fizy(E x w) < K hold for finite
E,F C w. Thus, fity((E U F) x w) € H n K € .% holds which shows that H n K € .Z.

1 € 7, then given any finite /' € w such that fix, X w) € H, one has
(4) if He 7, th i finite F h that fizy (F S H h
fizy(F x w) € mg o firg(F x w) o 7T§1,

thus, 7rgo7-[o7r§1 € Z.

So, we can define HS, as the class of all hereditarily symmetric P-names, and 1\7[5]9 as the
symmetric submodel of the generic extension M[G] induced by HS .

We let % be any ultrafilter in 1\//1—[\G]?, together with % € HS, any P-name for %, and any
p € G with
pl-pM % is an ultrafilter over w”.

We take any finite F' € Ppp(w) such that fizy(F x w) S symy (%) as well as any integer k ¢ F.
We distinguish between a; € % and ax ¢ % .

If ap € %: we pick any ¢ € G such that ¢ < p and
ql-p M ax € Y.
we consider any k' € w large enough such that
{(k,n)ewxw|n=k}ndom(q) =2

We notice that § = {(k,n) € w x w | n > k'} satisfies S N (F x w) = @ and form g and
consider by = g (ax) and write by, for (by). By construction, we see that for each integer

n = k' we have
nea, < née¢b

which yields
ap N b, K

which shows that this set is finite. Building on ¢ I-pm a € % , we reach

Ts(q) Ikpm Ts(ax) € Ts(% ).

Since fizy(F x w) = {rg €4 | S' n (F xw) = @} and Sn (F x w) = &, we have
Ts € firy (F x w) < symy (%) ,

which gives
ms(q) I-p.v bk € X
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and since S N dom (q) = &, we have mg(q) = ¢, so that we finally obtain
ql-pM b€ .

So, we end up with both a € % and b, € %, hence a N b, € % . Since a, N by, S k', we

obtain
U={Xcw|cc X}

where c is the finite set defined by
c=ﬂ{Y€% |Y§akmbk}.
Thus, % is principal.
If ap ¢ % : we pick any ¢ € G such that ¢ < p and
ql-pmoak ¢ Y.
we consider any k' € w large enough such that
{(k,n)ewxw|n=k}ndom(q) =@

We notice that S = {(k,n) € w x w | n > k'} satisfies S N (F x w) = @ and form g and
consider by = Ts(ax) and write by, for (by),. By construction, we see that for each integer

n = k' we have
nea, < néebyg

which yields
(w~ap) N (wNby)={new|né¢ayrn¢b}ck,
hence this set is finite. From ¢ IFpn ax ¢ %, we get

75(q) IFpm Ts(ay) ¢ Ts(% ).

Since fizy(F x w) = {1y ¢ 4 | S'n (F xw) =@} and Sn (F xw) = &, we have
ms € fity(F x w) S symy (),

which gives
7s(q) I-p v bk & X

and since S N dom (q) = &, we have mg(q) = ¢, so that we finally obtain

qlFpMm b ¢ ¥ .
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So, we end up with both ay ¢ % and by, ¢ %, which gives (w~\ ax) € % and (w~\ by) € %
and finally (w \ ag) N (w N bg) € Z. Now, since (w \ ax) N (w \ bg) S k', we obtain

U={Xcwl|cc X}
where c is the finite set defined by
c=ﬂ{Y€%\Y§ (w~ag) (W~ by}
Thus, % is principal.

(1582

—7
We have constructed a symmetric submodel M[G] in which there is no free ultrafilter on w
because every ultrafilter on w is principal. So, in particular, the Fréchet filter — which belongs

—

to 1\//1[\67’]? because it belongs to M and M € M[G] — cannot be extended into any ultrafilter.
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