
Part VI

ZF without the Axiom of Choice





Chapter 19

Cardinality Revisited

With the axiom of choice out of hand, we cannot use the notion of the cardinality of a set A as
it was defined when we had the axiom of choice at hand. The reason if that if the least ordinal ω
such that there exists a bijection A

bij.
!!Ñ ω always exists when A can be well-ordered — because

the order type of this well-ordering yields at least one ordinal which satisfies A
bij.
!!Ñ ω, so the

class of all ordinals that are equipotent to A being non-empty admits a minimal element. This
may not be the case when deprived of the axiom of choice. For instance, as we will see in Section
22.2 Theorem 379, one can force the set of reals to lack any well-ordering at all.

19.1 Injections and Surjections Revisited

We first introduce some notations for the existence of an injection or a surjection.

Notation 352 (ZF). Given any sets A,B, we write

˝ A
1 ´ 1
!!!Ñ
!!!Ñ

À B whenever there exists some injective mapping f : A
1´1
!!Ñ B;

˝ A
1 ´ 1
!!!Ñ
!!!Ñ

!!À B whenever A
1 ´ 1
!!!Ñ
!!!Ñ

À B does not hold;

˝ A
onto
"!!!
"!!!

ÀB whenever there exists some surjective mapping f : B
onto
!!Ñ A;

˝ A
onto
"!!!
"!!!

!!À B whenever A
onto
"!!!
"!!!

ÀB does not hold.

The following definition of being infinite is known as “Dedkind-infinite ”. A set is “Dedkind-
infinite ” if one can inject the set of integers into it, and “Dedkind-finite ” otherwise.

Definition 353. Let A be any set.

A is Dedekind-infinite if ε
1 ´ 1
!!!Ñ
!!!Ñ

À A.

(A is Dedekind-finite if ε
1 ´ 1
!!!Ñ
!!!Ñ

!!À A.)
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We will see later1 that — unless inconsistent — ZF does not prove that every Dedekind-finite-set

is finite. But of course ZFC proves that every set can be well-ordered, therefore ε
1 ´ 1
!!!Ñ
!!!Ñ

!!À A only
holds when A is finite.

Lemma 354.

ZF $c

´
AC !Ñ @A@B

`
A

onto
"!!!
"!!!

ÀB !Ñ A
1 ´ 1
!!!Ñ
!!!Ñ

À B
˘¯

Proof of Lemma 354:
The result is trivial when A is empty, for B must be empty as well. So, we assume A and B are

non-empty. Since A
onto
"!!!
"!!!

ÀB, take any g : B
onto
!!Ñ A and form

!
g´1

paq | a P A
(
which is a non-empty

set of non-empty sets. By AC, one obtains a choice function c which for each a P A provides a

unique cpaq P B such that cpaq P g´1
paq. By construction, c : A

1´1
!!Ñ B witnesses that A

1 ´ 1
!!!Ñ
!!!Ñ

À B.
l 354

Corollary 355. Given any sets A,B,

ZFC $c

´`
A

1 ´ 1
!!!Ñ
!!!Ñ

À B ^ B
onto
"!!!
"!!!

ÀA
˘

!Ñ A » B
¯
.

Proof of Corollary 355: Immediate from Lemma 354 and Cantor-Schröder-Bernstein Theorem
(page 57).

l 355

However, as we will see later, A
onto
"!!!
"!!!

ÀB ùñ A
1 ´ 1
!!!Ñ
!!!Ñ

À B may fail in the absence of the axiom of choice.
Nonetheless, we have this equivalence between the axiom of choice and the existence of inverses
of surjections.

Lemma 356.

ZF $c

`
AC "Ñ @A@B @g : B

onto
!!Ñ A Df : A

1´1
!!Ñ B g ˝ f “ id

˘

Proof of Lemma 356:

(ùñ) Given any family pAiqiPI of non-empty disjoint sets, we obtain a choice function f : I Ñ"

iPI
Ai by letting g :

"

iPI
Ai

onto
!!Ñ I be defined as gpaq “ i i! a P Ai and f : I

1´1
!!Ñ

"

iPI
Ai be

any function such that g ˝ f “ id — which guarantees that fpiq P Ai holds for every i P I.

1Such a result can be found in Claim 380 on page 347
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(#ù) The result is trivial when A is empty, for B must be empty as well. So, we assume A and

B are non-empty. Since g : B
onto
!!Ñ A, form

!
g´1

paq | a P A
(
which is a non-empty set of

non-empty sets. By AC, one obtains a choice function f which for each a P A provides a

unique fpaq P g´1
paq. By construction, f : A

1´1
!!Ñ B and g ˝ f “ id both hold.

l 356

Lemma 357 (ZF). Given any non-empty sets A and B,

(1) if there exists f : A
1´1
!!Ñ B, then there exists g : B

onto
!!Ñ A,

(2) if there exists f : A
1´1
!!Ñ B, then there exists g : PpAq

1´1
!!Ñ PpBq.

Proof of Lemma 357:

(1) Assume f : A
1´1
!!Ñ B, then take any element a1

P A and define g : B
onto
!!Ñ A by gpxq “ a1

if x R f rAs, and gpxq “ a if fpaq “ x. The fact that f is 1-1 guarantees that g is onto.

(2) Given f : A
1´1
!!Ñ B, define g : PpAq

1´1
!!Ñ PpBq by gpCq “ f rCs.

l 357

19.2 Hartogs’ Lemma

Without the axiom of choice, there may be sets that do not inject into any ordinal number. But,
for any set, there is always some ordinal which does not injects into that set.

Hartogs’ Lemma (ZF). Given any set A, there exists some ordinal ω such that

ω
1 ´ 1
!!!Ñ
!!!Ñ

!!À A.

Proof of Hartogs’ Lemma: We consider the following set:

W “ tpB,$Bq % A ˆ P pA ˆ Aq | pB,$Bq is a well-orderingu .

Notice that this set is non-empty since the empty ordering p⊋,⊋q belongs to W. We then
consider the class-function F : W Ñ On defined by

F
`
pB,$Bq

˘
“ the unique ordinal ϑ s.t. pϑ, Pωq » pB,$Bq.
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We set
ω “ sup

!
F

`
pB,$Bq

˘
` 1 | pB,$Bq P W

)
.

It turns out that ω
1 ´ 1
!!!Ñ
!!!Ñ

!!À A holds; for otherwise if we let f : ω
1´1
!!Ñ A and set

B “ f rωs and $B“
!`
fpϖq, fpϱq

˘
| ϖ $ ϱ $ ω

(
,

we then obtain pB,$Bq P W, hence ω P FrWs, contradicting ω & F
`
pB,$Bq

˘
.

l Hartogs’ Lemma

19.3 Cardinals without the axiom of choice

Definition 359 (ZF). Given any set A, we define the cardinal of A — denoted by |A| — by

|A| “ tB P Vε`1 | B » Au

where ω is the least ordinal such that there exists some B P Vε`1 that satisfies B » A.

Notation 360 (ZF). Given any set A, we by denote ω|A| the least ordinal such that there exists
some B P Vε`1 that satisfies B » A.

With this definition we notice that

Lemma 361 (ZF). Given any non-empty sets A and A1,

(1) |A| is a set;

(2) |A| “ |A1
| #ñ A » A1;

(3) |A| “ |A1
| #ñ A

1 ´ 1
!!!Ñ
!!!Ñ

À A1 and A1
1 ´ 1
!!!Ñ
!!!Ñ

À A.

Proof of Lemma 361:

(1) Obvious.

(2) (ùñ) If |A| “ |A1
|, then we have the following equality between non-empty sets

!
B P Vε|A|`1 | B » A

)
“

!
B P Vε|A1|`1 | B » A1

)
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which yields ω|A| “ ω|A1|, hence

!
B P Vε|A|`1 | B » A

)
“

!
B P Vε|A|`1 | B » A1

)

which leads to A » A1.

(#ù) If A » A1, then A1
» B holds for every B such that A » B. Therefore A1

» B holds

for all B P |A| “

!
B P Vε|A|`1 | B » A

)
which yields ω|A1| ’ ω|A|. By symmetry,

one also has ω|A| ’ ω|A1|, thus ω|A| “ ω|A1|, which leads to |A| “ |A1
|.

(3) This is immediate via Cantor-Schröder-Bernstein Theorem (page 57).

l 361



312 Set Theory



Chapter 20

About R without the axiom of choice

20.1 Variations on the Reals

In this chapter, we will not really be interested at the reals as an algebraic structure nor a
topological structure. We will concentrate on the reals as a set which is equipotent to the power
set of the integers. This is the reason why we first recall the following relations:

Lemma 362 (ZF).
R »

ϑR »
ϑε »

ω
p
ϑεq »

ϑ2 »
ω

p
ϑ2q.

Proof of Lemma 362:

(1) R »
ϑε »

ϑ2;

We recall ϑε “
!
fε Ñ ε

(
and ϑ2 “

!
f : ε Ñ t0, 1u

(
.

By Cantor-Schröder-Bernstein Theorem (page 57), we only need to show R
1 ´ 1
!!!Ñ
!!!Ñ

À
ϑε

1 ´ 1
!!!Ñ
!!!Ñ

À
ϑ2

1 ´ 1
!!!Ñ
!!!Ñ

À R

RRR
1 ´ 1
!!!Ñ
!!!Ñ

À
ωω: assume every real r is written in base 10 as

˝ in case 0 ’ r:

r “ ` e0 e1 e2 . . . ek, d0 d1 d2 d3 . . . dn dn`1 dn`2 . . . . . .

˝ in case r $ 0:

r “ ´ e0 e1 e2 . . . ek, d0 d1 d2 d3 . . . dn dn`1 dn`2 . . . . . .

where

(a) k is finite,

(b) for each i ’ k and each j P ε, ei, dj P t0, 1, 2, 3, 4, 5, 6, 7, 8, 9u
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(c) e0 “ 0 ùñ k “ 0,

(d) →dj{j P ε↑ satisfies @j Dj1
& j dj ‰ 9. i.e., it is not ultimately constant with value

9. This means for instance that the real 0, 23999999999999 . . . is rather repre-
sented by `0, 24000000000000 . . . and the integer ´3 by ´3, 00000000000 . . ..

We describe the following mapping f : R 1´1
!!Ñ

ϑε by

˝ If r “ ` e0 e1 e2 . . . ek, d0 d1 d2 d3 . . . dn dn`1 dn`2 . . . . . ., then

fprq “ →8, 1 ` e0, 1 ` e1, . . . , 1 ` ek, 0, 1 ` d0, 1 ` d1, . . . , 1 ` dn, 1 ` dn`1, . . .↑

˝ If r “ `, e0, e1, e2 . . . ek, d0, d1, d2, d3 . . . dn, dn`1, dn`2 . . . . . ., then

fprq “ →9, 1 ` e0, 1 ` e1, . . . , 1 ` ek, 0, 1 ` d0, 1 ` d1, . . . , 1 ` dn, 1 ` dn`1, . . .↑

ωω
1 ´ 1
!!!Ñ
!!!Ñ

À
ω2: we define g : ϑε

1´1
!!Ñ

ϑ2 by

g
`
→ai{i P ε↑

˘
“ 1 0 . . . 0loomoon

a0

1 0 . . . 0loomoon
a1

1 0 . . . 0loomoon
a2

1 . . .

ω2
1 ´ 1
!!!Ñ
!!!Ñ

À RRR: we define h : ϑ2
1´1
!!Ñ R by

g
`
→ai{i P ε↑

˘
“ 0, a0 a1 a2 . . . an an`1 . . . . . .

(2) ϑR »
ω

p
ϑεq »

ω
p
ϑ2q.

It is enough to show that whenever A
1 ´ 1
!!!Ñ
!!!Ñ

À B holds for non-empty sets A and B, then ϑA
1 ´ 1
!!!Ñ
!!!Ñ

À
ϑB

holds as well. So, given any f : A
1´1
!!Ñ B, define h : ϑA

1´1
!!Ñ

ϑB by

h
`
→ai{i P ε↑

˘
“ →fpaiq{i P ε↑ .

(3) ϑ2 »
ω

p
ϑ2q.

ϑ2
1 ´ 1
!!!Ñ
!!!Ñ

À
ω

p
ϑ2q is obvious. We show

ω
p
ϑ2q

1 ´ 1
!!!Ñ
!!!Ñ

À
ϑ2 by providing f :

ω
p
ϑ2q

1´1
!!Ñ

ϑ2 defined by

f
´〈

→ai,j{j $ ε↑ i $ ε
〉¯

“ →bk{k $ ε↑

where bk “ ai,j i! k “
pi`jqpi`j`1q

2 ` i.

Notice that the mapping pi, jq (Ñ
pi`jqpi`j`1q

2 ` i is a bijection between ε ˆ ε and ε.

l 362
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Lemma 363 (ZF).

ε1

onto
"!!!
"!!!

À
ϑ2.

Proof of Lemma 363: We construct f : ϑ2
onto
!!Ñ ε1.

(1) we define a mapping x y : ε ˆ ε
1´1
!!Ñ ε by xn,my “ 2n`1

¨ 3m`1.

(2) For each s “ →ai{i P ε↑ P
ϑ2 we set

˝ if Di@j ) i aj “ 0loooooooomoooooooon
s contains finitely many 1

, then fpsq “ i for the least such i;

˝ if @i Dj ) i aj “ 1loooooooomoooooooon
s contains infinitely many 1

, then

‚ if Di@n@m pai “ 1 ^ xn,my ‰ iq, then fpsq “ 0

‚ if @i Dn Dm pai “ 1 !Ñ xn,my “ iq, then

˛ if
´
ε,

!
pn,mq | axn,my “ 1

( ¯
is not a well-ordering, then fpsq “ 0;

˛ if
´
ε,

!
pn,mq | axn,my “ 1

( ¯
is a well-ordering, then fpsq “ ω where ω is the

unique ordinal isomorphic to
´
ε,

!
pn,mq | axn,my “ 1

( ¯
. Notice that ω P ε1

since ω is countable.

To show that f is onto, it is enough to show that for every infinite countable
ordinal ω there exists some s P

ϑ2 such that fpsq “ ω. For this, notice that

ω being countable, any bijection h : ε
bij.

"Ñ ω induces a well-ordering on ε of
type ω. Namely,

`
ε,$ε

˘
where $ε“ tpn,mq P ε ˆ ε | hpnq $ hpmqu.

By construction, s “ →ai{i P ε↑ P
ϑ2 defined by ai “ 1 i! there exists pn,mq P

$ε such that xn,my “ i.

l 363

We will see later that it is consistent with ZF to have ε1

1 ´ 1
!!!Ñ
!!!Ñ

!!À
ϑ2. This means, if ZF is consistent,

there exists a model of ZF in which there exists some surjection from ϑ2 to ε1, but no injection
from ε1 to ϑ2. i.e.,

ε1

onto
"!!!
"!!!

À
ϑ2 but ε1

1 ´ 1
!!!Ñ
!!!Ñ

!!À
ϑ2.

Nice examples of such models where ε1

1 ´ 1
!!!Ñ
!!!Ñ

!!À
ϑ2 holds are given by those where the set of reals is

a countable union of countable sets (see Section 22.1).
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Notation 364. Given any sets A and B, the disjoint union of A and B is

A Ÿ B :“
`
A ˆ t0u

˘
Y

`
B ˆ t1u

˘
.

Lemma 365 (ZF).
ϑ2 Ÿ ε1

onto
"!!!
"!!!

À
ϑ2.

Proof of Lemma 365: We construct f : ϑ2
onto
!!Ñ

ϑ2 Ÿ ε1. From Lemma 363, we are granted

with a mapping f 1 : ϑ2 onto
!!Ñ ε1. Given any s “ →ai{i P ε↑ P

ϑ2 we define fpsq as follows:

˝ if a0 “ 0, then fpsq “ →ai`1{i P ε↑;

˝ if a0 “ 1, then fpsq “ f 1` →ai`1{i P ε↑
˘
.

l 365

20.2 Outcomes of R as a Countable Union of Countable Sets

Proposition 366 (ZF). If R is a countable union of countable sets, then

ε1

1 ´ 1
!!!Ñ
!!!Ñ

!!À
ϑ2.

Proof of Proposition 366: Notice first that by Lemma 362 we have

R »
ϑR »

ϑε »
ω

p
ϑεq »

ϑ2 »
ω

p
ϑ2q.

Thus, the assumption is equivalent to saying that any of these sets is a countable union of
countable sets. So, we assume that

ω
p
ϑ2q is a countable union of countable sets. i.e., there exists

pGnqn!ϑ where for each integer n, Gn is non-empty, countable and

ω
p
ϑ2q “

"

n!ϑ

Gn.
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First, we set

Hn “

"

S PGn

S rεs

“
#

tS rεs %
ϑ2 | S P Gnu

“ tS pkq P
ϑ2 | S P Gn ^ k P εu

“ ts P
ϑ2 | DS P Gn Dk $ ε S pkq “ su .

We first establish that for each integer n we have

Hn

1 ´ 1
!!!Ñ
!!!Ñ

À ε.

Since Gn is a non-empty countable set, we take any g : Gn

1´1
!!Ñ ε and construct

I : Hn

1´1
!!Ñ ε

s (Ñ I psq “
pi`jqpi`j`1q

2 ` i

(1) i is the least integer such that
s P

`
g´1

piq
˘
rεs

i.e., there exists S P Gn with gpS q “ i, and there exists some k $ ε S pkq “ s;

(2) j is the least such that
`
g´1

piq
˘
pjq “ s.

Towards a contradiction, we then assume that ε1

1 ´ 1
!!!Ñ
!!!Ñ

À
ϑ2 holds, so that there exists some injective

mapping f : ε1
1´1
!!Ñ

ϑ2.

For each integer n, we define

ωn “
$

f´1
rHns

“ min tω P ε1 | fpωq R Hnu .

We then define, by diagonalization, some mapping which will yield a contradiction:

h : ε !!Ñ
ϑ2

n (Ñ fpωnq.

By its very definition, h P
ω

p
ϑ2q “

"

n!ϑ

Gn, hence for some integer n we have h P Gn. We then

consider hpnq P
ϑ2, and discuss whether hpnq belongs to Hn or not:

˝ hpnq P Hn holds since h P Gn and Hn “

"

S PGn

S rεs;
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˝ hpnq R Hn holds too since hpnq “ fpωnq and fpωq R Hn.

This contradiction shows that no injective mapping f : ε1
1´1
!!Ñ

ϑ2 exists; namely ε1

1 ´ 1
!!!Ñ
!!!Ñ

!!À
ϑ2.

l 366

Corollary 367 (ZF). If R is a countable union of countable sets, then there exists some partition
R of R such that R Ä R which stands for

R
1 ´ 1
!!!Ñ
!!!Ñ

À R and R
1 ´ 1
!!!Ñ
!!!Ñ

!!À R.

Proof of Corollary 367: We first show that this statement is equivalent to the existence of some
partition C of ϑ2 such that ϑ2 Ä C, i.e.,

ϑ2
1 ´ 1
!!!Ñ
!!!Ñ

À C and C
1 ´ 1
!!!Ñ
!!!Ñ

!!À
ϑ2.

Indeed, if R Ä R holds, then take any f : R
bij.

"Ñ
ϑ2 and define C “ tf rps | p P Ru. Clearly C is

a partition of ϑ2 that satisfies R » C, which yields ϑ2 Ä C since one has ϑ2 » R Ä R » C.

Similarly, if ϑ2 Ä C holds, then take any g : ϑ2
bij.

"Ñ R in order to obtain the partition R “

tf rps | p P Cu that satisfies C » R which leads to R Ä R since one has R »
ϑ2 Ä C » R.

So, in order to establish the result we simply prove that there exists some partition C of ϑ2 such

that ϑ2 Ä C. For this, we come back to Lemma 365 which stated that ϑ2 Ÿ ε1

onto
"!!!
"!!!

À
ϑ2 holds and

take any f : ϑ2
onto
!!Ñ

ϑ2 Ÿ ε1 to form the partition

C “

!
ts P

ϑ2 | fpsq “ xu | x P
ϑ2 Ÿ ε1

)

“

!
f´1

“
txu

‰
| x P

ϑ2 Ÿ ε1

)
.

We obtain

ω2
1 ´ 1
!!!Ñ
!!!Ñ

À C: The mapping g : ϑ2 !!Ñ C defined by

gpxq “ ts P
ϑ2 | fpsq “ xu

“ f´1
“

txu
‰

is obviously 1-1, hence witnesses that ϑ2
1 ´ 1
!!!Ñ
!!!Ñ

À C holds.

C
1 ´ 1
!!!Ñ
!!!Ñ

!!À
ω2: Towards a contradiction, we assume C

1 ´ 1
!!!Ñ
!!!Ñ

À
ϑ2. We notice that ε1

1 ´ 1
!!!Ñ
!!!Ñ

À C holds for the
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following mapping is 1-1: h : ε1 !!Ñ C defined by

hpxq “ ts P
ϑ2 | fpsq “ xu

“ f´1
“

txu
‰

Therefore, we have both

ε1

1 ´ 1
!!!Ñ
!!!Ñ

À C and C
1 ´ 1
!!!Ñ
!!!Ñ

À
ϑ2

which leads to ε1

1 ´ 1
!!!Ñ
!!!Ñ

À
ϑ2, contradicting Proposition 366.

l 367
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Chapter 21

Symmetric Submodels of Generic
Extensions

21.1 Symmetry Groups and Hereditarily Symmetric P-names

We recall Definition 342 which states that given M any c.t.m. of “ZFC ” and pP,’,1q any

partial order over M, an automorphism of P is a mapping ς : P
bij.

"Ñ P such that

@p P P @q P P
`
p ’ q "Ñ ςppq ’ ςpqq

˘
.

We also recall that this definition implies ςp1q “ 1 and any such automorphism ς induces an
automorphism ς̃ on the class of P-names MP defined by transfinite recursion (see Definition
344):

ς̃ : MP
!Ñ MP

φ (!Ñ tpς̃p↼q,ςppqq | p↼, pq P φu .

r
q s

p

q r s

q

r q p

r p q

p

Figure 21.1: The P-name φ .
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εprq

εpqq εpsq

εppq

εpqq εprq εpsq

εpqq

εprq εpqq εppq

εprq

εppq

εpqq

εppq

Figure 21.2: The P-name ς̃pφq.

Notice that we have ς̃p⊋q “ ⊋. Also, for every canonical P-name x̌, we have ς̃px̌q “ x̌.

By Lemma 346, for all G P-generic over M, and all automorphism ς,

M
“
ςrGs

‰
“ MrGs.

Moreover, by Lemma 347, for all φ1, . . . , φn P MP, and p P P,

p , ↽ pφ1, . . . , φnq #ñ ςppq , ↽
`
ς̃pφ1q, . . . , ς̃pφnq

˘
.

Definition 368 (Symmetry Group). Let M be any c.t.m. of “ZFC ”, pP,’,1q any partial
order over M, and G any subgroup of the group of automorphisms of P.
For each P-name φ the symmetry group of φ is

symG pφq “ tς P G | ς̃pφq “ φu .

Lemma 369. Let M be any c.t.m. of “ZFC ”, pP,’,1q any partial order over M, and G any
subgroup of the group of automorphisms of P. Let φ be any P-name.

symG pφq is a subgroup of G.

Proof of Lemma 369: We check that symG pφq is closed under products and inverses.
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Closed under pε,ϑq (Ñ ϑ ˝ ε: Given any automorphisms ς, ⇀ P symG pφq,

⇀̃ ˝ ς̃pφq “ ⇀̃
`
ς̃pφq

˘

“ ⇀̃
`
φ

˘

“ φ

which shows that ⇀ ˝ ς P symG pφq.

Closed under ε (Ñ ε´1: Given any automorphism ς P P, the following holds:

@p↼, pq P MP
ˆ P

´
p↼, pq P φ "Ñ

`
ς̃ p↼q ,ςppq

˘
P ς̃ pφq

¯
.

Notice that we have ς P symG pφq if and only if φ “ ς̃pφq. Or, to say it di!erently,

φ “ ς̃pφq #ñ @p↼, pq P MP
ˆ P

´
p↼, pq P φ "Ñ

`
ς̃ p↼q ,ςppq

˘
P φ

¯
.

Notice also that @p↼, pq P MP
ˆ P

p↼, pq P φ #ñ
`%ς´1p↼q,ς´1

ppq
˘

P %ς´1pφq

and
`
ς̃ p↼q ,ςppq

˘
P φ #ñ

`%ς´1 ˝ ς̃p↼q,ς´1
˝ ςppq

˘
P %ς´1pφq

#ñ p↼, pq P %ς´1pφq.

So, we end up with

φ “ ς̃pφq #ñ @p↼, pq P MP
ˆ P

´
p↼, pq P φ "Ñ

`
ς̃ p↼q ,ςppq

˘
P φ

¯

#ñ @p↼, pq P MP
ˆ P

´
p↼, pq P φ "Ñ p↼, pq P %ς´1pφq

¯

#ñ φ “ %ς´1pφq.

which shows that ς P symG pφq if and onyl if ς´1
P symG pφq.

l 369

We notice:

(1) For any canonical P-name x̌,

symG px̌q “ tς P G | ςpx̌q “ x̌u “ G.
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(2) For all P-name φ , and all automorphism ς P G, one has

symG

`
ς̃pφq

˘
“ ς ˝ symG pφq ˝ ς´1

since, given any automorphism µ P symG pφq, we have

pς̃ ˝ µ̃ ˝ ς̃´1
qpς̃pφqq “ ς̃ ˝ µ̃ ˝ pς̃´1

˝ ς̃qpφq “ ς̃ ˝ µ̃pφq “ ς̃pφq.

Definition 370 (Normal Filter). Let M be any c.t.m. of “ZFC ”, pP,’,1q any partial order
over M, and G any subgroup of the group of automorphisms of P.

F is a normal filter on G if

F is a set of subgroups of G such that for all subgroups H,K % G and all ς P G:

(1) G P F

(2) if H P F and H % K, then K P F

(3) if H P F and K P F , then H X K P F

(4) if H P F , then ς ˝ H ˝ ς´1
P F

Granted with some normal filter, we focus on P-names whose symmetry group belongs to the
filter, and even more, whose symmetry group hereditarily belongs to the filter:

Definition 371 (Hereditarily Symmetric P-names). Let M be any c.t.m. of “ZFC ”, pP,’,1q

any partial order over M, and G any subgroup of the group of automorphisms of P, and F any
normal filter on G.
The set of all hereditarily symmetric P-names HSF % MP is defined by transfinite recursion:

φ P HSF #ñ symG pφq P F and t↼ | Dp P P p↼, pq P φu % HSF .
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r
p s

p

q r s

q

r q p

r p q

p

Figure 21.3: The P-name φ .

(1)

(2) p

(3) q

(4) r

(5)

r s

q

(6)

p q

p

(7)

r q

r

p

p q

p

(8)

r
p s

p

q r s

q

r q p

r p q

p

Figure 21.4: φ P HSF i! symG p↼q P F holds for every above P-name ↼.
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So we have

HSF “
!
φ P MP

| symG pφq P F and t↼ | Dp P P p↼, pq P φu % HSF

(
.

Notice that

˝ every canonical P-name x̌ P HSF since symG px̌q “ G P F .

˝ If φ P HSF , then ς̃pφq P HSF holds for any ς P G, because we have

symG

`
ς̃pφq

˘
“ ς ˝ symG pφq ˝ ς´1

Hence, for all P-name φ P MP and all automorphism ς P G, we have

φ P HSF #ñ ς̃pφq P HSF .

21.2 The Symmetric Submodel

We now define the symmetric submodel of a generic extension as its restriction to the only
elements that admit an hereditarily symmetric P-name.

Definition 372 (Symmetric Submodel). Let M be any c.t.m. of “ZFC ”, pP,’,1q any partial
order over M, and G any subgroup of the group of automorphisms of P, and F any normal filter
on G. The symmetric submodel of the generic extension MrGs is

{MrGs
F

“
!

pφq
G

P MrGs | φ P HSF

(
.

A symmetric submodel is a structure which lies in between M (since every canonical P-name is
hereditarily symmetric) and the generic extension MrGs (since hereditarily symmetric P-names
are particular P-names). The properties that make the symmetric submodel very interesting is
that it is transitive and satisfies all the axioms of ZF, but contrary to the generic extension, it
does not necessarily satisfy the axiom of choice (AC).

Lemma 373. Let M be any c.t.m. of “ZFC ”, pP,’,1q any partial order over M, and G any
subgroup of the group of automorphisms of P, and F any normal filter on G.

(1) M % {MrGs
F

% MrGs;

(2) {MrGs
F

is a transitive set;

(3) {MrGs
F

satisfies “ ZF ”.
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MrGs

M {MrGs
F

‚
P

‚
G

Figure 21.5: The symmetric submodel {MrGs
F

of MrGs the generic extension of M.

Notice that if G the generic filter over M is a member of {MrGs
F

then the whole construction
is not of much interest. Indeed, in Lemma 311, we showed that MrGs is the %-least transitive
model N of “ZFC ” with satisfies both M % N and G P N. Therefore, if there exists some

P-name for G that is hereditarily symmetric, then we end up with {MrGs
F

“ MrGs, rendering
the entire construction useless.

Proof of Lemma 373:

(1) is immediate.

(2) Assume x P pφq
G

P {MrGs
F

with φ P HSF . Then, there exists p P G and ↼ P MP such that

p↼, pq P φ and x “ p↼q
G
. Since φ P HSF , it follows that ↼ P HSF , hence x “ p↼q

G
P {MrGs

F

.

(3) {MrGs
F

satisfies “ ZF ”:

Extensionality holds in {MrGs
F

since {MrGs
F

is transitive.

Comprehension Schema We want to show that for all ↼,
˜
z1, . . . ,

˜
zn P HSF and ↽px, y1, . . . , ynq:

u “

#
z P p↼q

G
|

´
↽

`
z,

`

˜
z1

˘
G
, . . . ,

`

˜
zn

˘
G

˘¯ {MrGsF
+

P {MrGs
F

.
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We must find some φ P HSF such that u “ pφq
G
. For this purpose, we first modify ↼

and consider ↼ instead:

↼ “ tp
˜
z, pq P HSF ˆ P | Dq P P p ’ q and p

˜
z, qq P ↼u

Notice that p↼q
G

“ p↼q
G
holds because:

˝ ↼ % ↼ implies p↼q
G

% p↼q
G
, and

˝ for every p P G and p
˜
z, pq P ↼, there exists some p

˜
z, qq P ↼ with p ’ q, hence

q P G, which shows that if p
˜
zq

G
belongs to p↼q

G
, it also belongs to p↼q

G
.

We now show that ↼ P HSF .

Claim 374.
symG p↼q % symG p↼q .

Proof of Claim 374: Take any automorphism ς P symG p↼q and any p
˜
z, pq P ↼ with

p ’ q and p
˜
z, qq P ↼. Since ς P symG p↼q,

`
ς̃p
˜
zq,ςpqq

˘
P ↼ holds. Because p ’ q, we

have ςppq ’ ςpqq; thus, by the very definition of ↼ we have
`
ς̃p
˜
zq,ςppq

˘
P ↼ which

shows ς̃p↼q % ↼. To show the other inclusion, namely that ς̃p↼q * ↼ holds, it is
enough to notice that

ς P symG p↼q if and only if ς´1
P symG p↼q

and
%ς´1p↼q % ↼ ùñ ς̃

ˆ
%ς´1p↼q

˙
% ς̃ p↼q

ùñ ς̃ ˝ %ς´1p↼q % ς̃ p↼q

ùñ ˜idp↼q % ς̃ p↼q

ùñ ↼ % ς̃ p↼q .

l 374

So, we obtain symG p↼q P F since we have shown

symG p↼qloooomoooon
PF

% symG p↼q ,

Moreover, since dom p↼q “ dom p↼q % HSF , it follows ↼ P HSF .

We set

˜
u “

!
p
˜
z, pq P ↼ | p ,P,M ↽p

˜
z,

˜
z1, . . . ,

˜
znq

)
.
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We show
˜
u P HSF . Since ↼ P HSF , it only remains to show that symG p

˜
uq P F . For

this, we consider

G 1
“ symG p↼q X symG

`

˜
z1

˘
X . . . X symG

`

˜
zn

˘

G 1
P F holds since F is a filter, and for each ς P G 1, one has

ς̃p↼q “ ↼, ς̃p

˜
z1q “

˜
zn, . . . , ς̃p

˜
znq “

˜
zn.

and also

ς̃p
˜
uq “

!`
ς̃p
˜
zq,ςppq

˘
| p
˜
z, pq P

˜
u

)

“

!`
ς̃p
˜
zq,ςppq

˘
| p
˜
z, pq P ↼ ^ p ,P,M ↽p

˜
z,

˜
z1, . . . ,

˜
znq

)

“

!`
ς̃p
˜
zq,ςppq

˘
|

`
ς̃p
˜
zq,ςppq

˘
P ς̃p↼q ^ ςppq ,P,M ↽

`
ς̃p
˜
zq, ς̃p

˜
z1q, . . . , ς̃p

˜
znq

˘)

“

!`
ς̃p
˜
zq,ςppq

˘
|

`
ς̃p
˜
zq,ςppq

˘
P ↼ ^ ςppq ,P,M ↽

`
ς̃p
˜
zq,

˜
z1, . . . ,

˜
zn

˘)

“

!`
ς̃p
˜
zq,ςppq

˘
P ↼ | ςppq ,P,M ↽

`
ς̃p
˜
zq,

˜
z1, . . . ,

˜
zn

˘)

“

!
p
˜
z1, p1

q P ↼ | p1
,P,M ↽p

˜
z1

q,
˜
z1, . . . ,

˜
znq

)

“
˜
u

We have just shown G 1
% symG p

˜
uq, which proves that symG p

˜
uq P F and completes

the proof that
˜
u P HSF .

It remains to show that p
˜
uq

G
“ u.

p
˜
uqG % u: if p

˜
zqG P p

˜
uq

G
, then there exists p P G such that both the following hold:

p
˜
z, pq P ↼ and p ,P,M ↽p

˜
z,

˜
z1, . . . ,

˜
znq

which yields
´
↽

`
p
˜
zq

G
,
`

˜
z1

˘
G
, . . . ,

`

˜
zn

˘
G

˘¯ {MrGsF
.

By construction, there exists q ) p such that p
˜
z, qq P ↼. Now, q ) p and p P G

yields q P G, which gives p
˜
zqG P p↼q

G
. Putting all this together, we obtain

p
˜
zqG P p↼q

G
and

´
↽pp

˜
zq

G
,
`

˜
z1

˘
G
, . . . ,

`

˜
zn

˘
G

q

¯ {MrGsF

which shows that p
˜
zqG P u holds.
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p
˜
uqG * u: if z P u, then we have both

z P p↼q
G

and
´
↽

`
z,

`

˜
z1

˘
G
, . . . ,

`

˜
zn

˘
G

˘¯ {MrGsF
.

So, there exists some q P G and some — necessarily hereditarily symmetric —
P-name

˜
z such that p

˜
z, qq P ↼ and p

˜
zq

G
“ z. By construction of ↼ we have

p
˜
z, qq P ↼. We have both

´
↽

`
p
˜
zq

G
,
`

˜
z1

˘
G
, . . . ,

`

˜
zn

˘
G

˘¯ {MrGsF
and q P G.

Therefore, by a direct application of the Truth Lemma, there exists some r P G
such that

r ,P,M ↽p
˜
z,

˜
z1, . . . ,

˜
znq.

q
‚

r ,P,M ↽p
˜
z,

˜
z1, . . . ,

˜
znq

‚

p,P,M ↽p
˜
z,

˜
z1, . . . ,

˜
znq

‚

Since G is a filter and q, r P G, there exists also some p P G which satisfies both
p ’ q and p ’ r, and also (since p ’ q):

p ,P,M

´
↽p
˜
z,

˜
z1, . . . ,

˜
znq

¯ {MrGsF
,

which shows that p
˜
z, pq P

˜
u, and finally z “ p

˜
zq

G
P p

˜
uq

G
.

Pairing If p
˜
xq

G
“ x,

`

˜
y

˘
G

“ y P {MrGs
F

— i.e., with
˜
x,
˜
y P HSF — then

!
p
˜
x,1q, p

˜
y,1q

(
P

HSF since symG

`!
p
˜
x,1q, p

˜
y,1q

(˘
*

PFhkkkkkkkkkkkkikkkkkkkkkkkkj
symG p

˜
xqlooomooon

PF

X symG

`

˜
y

˘
loooomoooon

PF

. We obtain

!
p
˜
x,1q, p

˜
y,1q

(
G

“

!
p
˜
xq

G
,
`

˜
y

˘
G

)
“ tx, yu P {MrGs

F

.

Union Let ↼ P HSF , to prove that
#

p↼q
G

P {MrGs
F

, it is enough to show that there
exists φ P HSF such that

#
p↼q

G
% pφq

G
. We recall that

dom p↼q “ tϱ P HSF | Dp P P pϱ, pq P ↼u

We set
X “

" !
dom pϱq | ϱ P dom p↼q

(
.
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¨

˚̊
˚̊
˚̊
˝

˜
x

˜
y

‚

‚ ‚1 1

˛

‹‹‹‹‹‹‚

G

“

x y

‚

‚ ‚

Figure 21.6: An hereditarily symmetric P-name for the pair tx, yu.

Notice that, for every ς P symG p↼q, ς̃pXq “ X holds since ↼ P HSF . Thus, X ˆ t1u

belongs to HSF and pX ˆ t1uq
G

*
#

↼.

Infinity Since ε P M, one has ε̌ P HSF , hence ε “ pε̌q
G

P {MrGs
F

.

Power Set Let ↼ P HSF , it is enough to show there exists φ P HSF such that P
`

p↼q
G

˘
X

{MrGs
F

% pφq
G
.

Notice first that for every subset X % dom p↼q, the P-name ↼X “
!

p
˜
x,1q |

˜
x P X

(

belongs to HSF since every
˜
x belongs to HSF and symG p↼Xq * symG p↼q P F holds

for every X % dom p↼q.

We consider :
φ “

!
p↼X ,1q | X % dom p↼q

(

Notice that φ P HSF since every ↼X belongs to HSF and

symG pφq *

&

X"dompϖq
symG p↼Xqlooooomooooon

#symG pϖqlooooooooooomooooooooooon
#symG pϖq P F

.

Given any Y % p↼q
G
, it appears that Y P pφq

G
, since

Y “

´
↼!

˜
y|p

˜
yq

G
PY

(
¯

G

and by construction Y P pφq
G
.

Foundation holds in {MrGs
F

since {MrGs
F

is transitive and Foundation holds in the
ground model M as well as in the generic extension MrGs. (Indeed, the P-well-
foundedness of each element of MP yields the P-well-foundedness of each element of

HSF , hence each element of {MrGs
F

.)
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Replacement Schema for each formula ↽px, y, z1, . . . , znq, we want to prove that:

@z1 P MrGs . . .@zn P MrGs

¨

˚̊
˚̊
˚̋

@x P {MrGs
F

D!y P {MrGs
F `

↽px, y, z1, . . . , znq
˘ {MrGsF

!Ñ

@u P {MrGs
F

Dv P {MrGs
F

@x P u Dy P v
`
↽px, y, z1, . . . , znq

˘ {MrGsF

˛

‹‹‹‹‹‚
.

We fix z1 “ p

˜
z1qG, . . . , zn “ p

˜
znqG, and u “ p

˜
uq

G
.

Inside M we define:

F : dom p
˜
uq ˆ P Ñ On

p
˜
x, pq Ñ

#
least ω s.t. D

˜
y P HSF X Vε p , ↽p

˜
x,
˜
y,

˜
z1, . . . ,

˜
znq

HSF

0 otherwise.

Since M satisfies the instances of the various replacement schema that we need to
complete the proof, there exists ϑ P

`
On

˘M
such that F rdom p

˜
uq ˆ Ps % ϑ. We claim

that v “ Vω works:

Let p
˜
xq

G
P p

˜
uq

G
, by hypothesis there exists — a unique —

`

˜
y

˘
G
such that

´
↽

`
p
˜
xq

G
,
`

˜
y

˘
G
,
`

˜
z1

˘
G
, . . . ,

`

˜
zn

˘
G

˘¯ {MrGsF
.

Therefore there exists p P G such that

p , ↽p
˜
x,
˜
y,

˜
z1, . . . ,

˜
znq

HSF

It follows that there exists ˆ
˜
y P Vω such that

p , ↽p
˜
x, ˆ
˜
y,

˜
z1, . . . ,

˜
znq.

The Truth Lemma yields

{MrGs
F

|ù ↽
`

p
˜
xq

G
,
`
ˆ
˜
y

˘
G
,
`

˜
z1

˘
G
, . . . ,

`

˜
zn

˘
G

˘HSF

so, by unicity, we obtain
`

˜
y

˘
G

“
`
ˆ
˜
y

˘
G
. Therefore Vω is (one of) the set we were

looking for, since it satisfies

#
`

˜
y

˘
G

P {MrGs
F

| D p
˜
xq

G
P p

˜
uq

G

´
↽

`
p
˜
xq

G
,
`

˜
y

˘
G
,
`

˜
z1

˘
G
, . . . ,

`

˜
zn

˘
G

˘¯ {MrGsF
+

% Vω “
`
V̌ω

˘
G
.

l 373
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Theorem 375. Let M be any c.t.m. of “ZFC ”, pP,’,1q any partial order over M, and G any
subgroup of the group of automorphisms of P, and F any normal filter on G.

{MrGs
F

is a countable transitive model of “ZF ”

Proof of Theorem 375: Immediate from Lemma 373. l 375
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Chapter 22

Some Applications of the Symmetric
Submodel Technique

22.1 Forcing R as a Countable Union of Countable Sets

The following blatantly contradicts the countable axiom of choice (CC) which is precisely the
statement that we used in order to prove Lemma 104 which established that any countable union
of countable sets is countable. Keep in mind that, with the help of Cantor’s Theorem (see page
61), we proved that the set of reals is uncountable. So, we will have an uncountable set (R)
which is a countable union of countable sets.

Theorem 376 (Feferman & Lévy).

cons
`
ZF

˘
ùñ cons

`
ZF ` “R is a countable union of countable sets”

˘
.

Proof of Theorem 376: Instead of showing that there exists some model that satisfies

“R is a countable union of countable sets”

we will show that there exists some model that satisfies the equivalent1 statement

“Ppεq is a countable union of countable sets”.

We start with M any c.t.m. of “ZFC+@n $ ε 2→n “ ↓n`1 ” and force with the poset pPLevy,’,1q

defined inside M by

PLevy “

!
f : ε ˆ ε Ñ ↓ϑ | dom pfq is finite ^ @n P ε @m P ε fpn,mq P ↓n

)

1See Lemma 362 on page 313 for the equivalence between the two statements.
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and f ’ g #ñ f * g, so that 1 “ ⊋.

We let G be PLevy-generic over M and construct a symmetric submodel {MrGs
F

of MrGs. For this,
we consider the group Gper. of the permutations of εˆε which do not move the first coordinate.
i.e.,

Gper. “

!
ς : ε ˆ ε

bij.
"Ñ ε ˆ ε | @i, j, k, n $ ε

`
ςpk, iq “ pn, jq !Ñ k “ n

˘)
.

For each integer n, any such permutation ς induces a permutation ςn of ε defined by

@i $ ε ςpn, iq “
`
n,ςnpiq

˘
.

Every permutation ς P Gper. induces an automorphism ς : P aut.
!!Ñ P by having for each forcing

condition p P P:

dom pςppqq “ ς rdom pςqs “
!

pn,ςnpiqq | pn, iq P dom ppq
(

and
ςppq

`
n,ςnpiq

˘
“ ppn, iq.

Or, to say it directly,

ςppq “

!`
n,ςnpiq,ω

˘
| pn, i,ωq P p

)
.

We let Gaut. be the group of automorphisms of P induced by the group of permutations Gper.:

Gaut. “
!
ς | ς P Gper.

(
.

We check that Gaut. is closed under products and inverses.

˝ Closed under p⇀,ςq (Ñ ⇀ ˝ ς: Given any ς, ⇀ P Gaut., we have

⇀ ˝ ςppq “ ⇀

ˆ!`
n,ςnpiq,ω

˘
| pn, i,ωq P p

)˙

“

!´
n, ⇀n

`
ςnpiq

˘
,ω

¯
| pn, i,ωq P p

)

“

!`
n, ⇀n˝ςnpiq,ω

˘
| pn, i,ωq P p

)
.

Since both ⇀ and ς belong to Gper., it is immediate to see that

@i $ ε ⇀˝ςpn, iq “
`
n, ⇀n˝ςnpiq

˘
,

hence ⇀˝ς belongs to Gper.; so that ⇀ ˝ ς P Gaut..

˝ Closed under ς (Ñ ς´1: it is immediate to see that if ς belongs to Gper., so does ς´1

(indeed, Gper. is a subgroup of the group of permutations on ε ˆ ε) and

ς´1
ppq “

!`
n,ς´1

n piq,ω
˘

| pn, i,ωq P p
)
.
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We let Hk be the subgroup of Gaut. formed of all automorphisms ς such that for every integer
n $ k, the permutation ςn is the identity. i.e.,

Hk “

!
ς P Gaut. | @n $ k @i $ ε ςpn, iq “ pn, iq

)
.

We also let F be the filter:

F “

!
S % Gaut. | “ S is a subgroup ” ^ Dn $ ε Hn % S

)
.

F is a normal filter on Gaut. since F is a set of subgroups of Gaut. such that for all subgroups
S , T of Gaut.:

(1) Gaut. P F holds since Gaut. “ H0;

(2) if S P F and S % T for T some subgroup of Gaut., then there exists n $ ε such that
Hn % S % T , hence T P F ;

(3) if S P F and T P F , then there exist n, k $ ε Hn % S and Hk % T , hence Hsuptn,ku %

S X T which gives S X T P F ;

(4) if S P F , then there exists n $ ε such that Hn % S and for all ς P Gaut., one has
ς ˝Hn ˝ς´1

“ Hn, so that Hn “ ς ˝Hn ˝ς´1
% ς ˝S ˝ς´1 which shows ς ˝S ˝ς´1

P F .

We then construct a canonical symmetric P-name for each real2 (subset of the integers).

Claim 377. Let
`
x P Ppεq

˘ {MrGsF
and

˜
x be any P-name in HSF for x. Then,

˜
x “

!
p
˜
k, pq P HSF ˆ P | Dp

˜
k, rq P

˜
x

`
p ’ r ^ p ,P,M

˜
k P ε̌

˘)

is another P-name in HSF which satisfies

p
˜
xq

G
“ p

˜
xq

G
“ x.

Proof of Claim 377: We show
˜
x P HSF . It is enough to show that symG p

˜
xq % symG p

˜
xq. For

this, take any ς P symG p
˜
xq. We have

ς P symG p
˜
xq #ñ @p

˜
k, rq P HSF ˆ P

´
p
˜
k, rq P

˜
x "Ñ

`
ς̃ p

˜
kq ,ςprq

˘
P
˜
x

¯

2As is common among set theorists, we freely use the word “ real ” to designate any subset of ω.
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Now, for all p
˜
k, pq P HSF ˆ P we have

p
˜
k, pq P

˜
x #ñ Dp

˜
k, rq P

˜
x

`
r ) p ^ p ,P,M

˜
k P ε̌

˘

#ñ D
`
ς̃ p

˜
kq ,ςprq

˘
P ς̃ p

˜
xq

`
ςprq ) ςppq ^ ςppq ,P,M ς̃ p

˜
kq P ς̃ pε̌q

˘

#ñ D
`
ς̃ p

˜
kq ,ςprq

˘
P
˜
x

`
ςprq ) ςppq ^ ςppq ,P,M ς̃ p

˜
kq P ε̌

˘

#ñ
`
ς̃ p

˜
kq ,ςppq

˘
P
˜
x,

which shows that ς P symG p
˜
xq.

We show p
˜
xq

G
“ p

˜
xq

G

˝ p
˜
xq

G
* p

˜
xq

G
: if p

˜
kq

G
P p

˜
xq

G
, then there exist p P G and p

˜
k, pq P

˜
x. By construction, there

exists r ) p such that p
˜
k, rq P

˜
x. Since p P G and p ’ r, it follows that r P G, hence

p
˜
kq

G
P p

˜
xq

G
.

˝ p
˜
xq

G
% p

˜
xq

G
: if p

˜
kq

G
P p

˜
xq

G
, then there exists p

˜
k, pq P

˜
x with p P G. Now, since the

following holds:
{MrGs

F

|ù p
˜
kq

G
P x % ε

also holds
{MrGs

F

|ù p
˜
kq

G
P ε

or to say it di!erently,
{MrGs

F

|ù p
˜
kq

G
P pε̌q

G
,

by the Truth Lemma, there exists some q P G which satisfies

q ,P,M
˜
k P ε̌.

Since both p, q P G, there also exists some r P G, r ’ p, q which necessarily satisfies

r ,P,M
˜
k P ε̌.

p
‚ q ,P,M

˜
k P ε̌‚

r ,P,M
˜
k P ε̌

‚

By construction we have p
˜
k, rq P

˜
x and since r P G, we obtain p

˜
kq

G
P p

˜
xq

G
.

l 377
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So, Without loss of generality we may ask that

˜
x %

!
p
˜
k, pq P HSF ˆ P | p ,P,M

˜
k P ε̌

)
.

Notice also that because for any filter J which is P-generic over M and contains p, we have

MrJs |ù p
˜
kq

J
P p

˜
xq

J
,

we also have for any p
˜
k, pq P

˜
x,

p ,P,M
˜
k P

˜
x.

So, by combining both results mentioned above, we have

@p
˜
k, pq P

˜
x p ,P,M

`
˜
k P ε̌ ^

˜
k P

˜
x

˘
.

Now, since
˜
x P HSF , there exists some integer n

˜
x such that Hn

˜
x % symGaut.

p
˜
xq. So, given any

automorphism ς P Hn
˜
x , since ς P symGaut.

p
˜
xq we have:

ς̃p
˜
xq “

!
pς̃p

˜
kq,ςppqq | p

˜
k, pq P

˜
x

)

“
˜
x

We define another canonical P-name
9̃
x for x by:

9̃
x “

!
pň, qq | Dp

˜
k, pq P

˜
x Dr P P

`
r ’ p ^ q “ r æn

˜
xˆϑ ^r ,P,M

˜
k “ ň

˘)
.

p
˜
k, pq P

˜
x

p
‚

r æn
˜
xˆϑ“ q ,P,M

˜
k “ ň

‚

pň, qq P

9̃
x

r ,P,M
˜
k P ε̌

‚

We first check that
9̃
x P HSF . Notice first that given any ς P Hn

˜
x and pň, qq P

9̃
x, we have

ς̃pň, qq “
`
ň,ςpqq

˘
.

Since dom pqq % n
˜
x ˆ ε and ς P Hn

˜
x , we also have ςpqq “ q. So that we obtain

ς̃pň, qq “ pň, qq,

which yields
ς̃p

9̃
xq “

9̃
x.
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We have shown that
9̃
x is symmetric. Since every P-name ↼ P dom

`

9̃
x

˘
is of the form ↼ “ ň, it

follows that ↼ P HSF , which shows that
9̃
x belongs to HSF .

Now that we know that both
˜
x and

9̃
x belong to HSF , we need to show that they both give birth

to the same set x. Namely,

Claim 378. `

9̃
x

˘
G

“ p
˜
xq

G
.

Proof of Claim 378:

`

9̃
x

˘
G

% p
˜
xq

G
: Let n P

`

9̃
x

˘
G
, and consider any q P G such that pň, qq P

9̃
x. So, there exists

p
˜
k, pq P

˜
x and r ’ p such that

r ’ p and r æn
˜
xˆϑ“ q and r ,P,M

˜
k “ ň.

Now, for every condition r1
’ q, we may find a condition r2 and an automorphism ς P Hn

˜
x

such that the picture below holds.

r æn
˜
xˆϑ“ q

r1

r2
,P,M

`
ς̃p
˜
kq “ ň ^ ς̃p

˜
kq P

˜
x

˘

‚

‚

‚

‚

‚

‚

ςprq ,P,M
`
ς̃p
˜
kq “ ň ^ ς̃p

˜
kq P

˜
x

˘

r ,P,M p
˜
k “ ň ^

˜
k P

˜
xq

p ,P,M p
˜
k P ε̌ ^

˜
k P

˜
xq

i.e., both r2
’ r1 and r2

’ ςprq hold. Notice first the following:

˝ p ,P,M p
˜
k P ε̌ ^

˜
k P

˜
xq holds because p

˜
k, pq P

˜
x (this was shown on page 339).

˝ r ,P,M p
˜
k “ ň ^

˜
k P

˜
xq holds since we have both

‚ r ,P,M
˜
k “ ň, by assumption on

9̃
x, and

‚ r ,P,M
˜
k P

˜
x since r ’ p and p ,P,M

˜
k P

˜
x holds.

˝ ςprq ,P,M
`
ς̃p
˜
kq “ ň ^ ς̃p

˜
kq P

˜
x

˘
since ςprq ,P,M

`
ς̃p
˜
kq “ ň ^ ς̃p

˜
kq P ς̃p

˜
xq

˘
and

ς̃p
˜
xq “

˜
x.

˝ q “ r æn
˜
xˆϑ“ ςprq æn

˜
xˆϑ
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So, in particular since q “ ςprq æn
˜
xˆϑ and r1

’ q holds, we necessarily have ςprq, r and r1

agree on dom pqq, which is a finite subset of n
˜
x ˆ ε. i.e.,

ςprq æn
˜
xˆϑ“ r æn

˜
xˆϑ“ q “ r1

ædompqq .

So, for each n ) n
˜
x we consider the following sets:

˝ Un “
!
i P ε

`
| pn, iq P dom prq X dom pr1

q ^ rpn, iq ‰ r1
pn, iq

˘(

˝ Vn %
!
i P ε | pn, iq R dom prq Y dom pr1

q
(
is any set of the same cardinality as Un.

˝ fn : Un

bij.
"Ñ Vn, any permutation between Un and Vn.

Let ς P Gper. be such that

(1) for every integer n $ n
˜
x, the permutation ςn is the identity.

(2) for every integer n ) n
˜
x, the permutation ςn satisfies:

(a) If pn, iq R Un Y Vn, then ςnpiq “ i;

(b) If pn, iq P Un, then ςnpiq “ fnpiq;

(c) If pn, iq P Vn, then ςnpiq “ f´1
n piq.

The family pςnqn!ϑ induces a permutation ς P Gper., which itself induces an automorphism
ς P Gaut..

We notice that ς belongs to Hn
˜
x and also ςprq agrees with r1 on their common domain.

Therefore, there exists some r2
P PLevy such that both r2

’ r1 and r2
’ ςprq hold. Such a

forcing condition r2 necessarily satisfies

r2
,P,M

`
ς̃p
˜
kq “ ň ^ ς̃p

˜
kq P

˜
x

˘
,

since we have r2
’ ςprq and this statement is already forced by ςprq. So, given any

r1
’ q, we have found r2

’ r1 such that r2
,P,M ň P

˜
x holds. This shows that the set

D “
!
r2

P P | r2
,P,M ň P

˜
x

(
is dense below q. So, there exists some r2

P D X G, and by

the Truth Lemma, we finally obtain {MrGs
F

|ù n P p
˜
xq

G
.

p
˜
xq

G
%

`

9̃
x

˘
G

: If k P p
˜
xq

G
, then there exists p

˜
k, pq P

˜
x such that both p P G and p ,P,M

˜
k P ε̌.

Since there exists some integer n such that

{MrGs
F

|ù
`
k P ε ^ k P x ^ n “ k

˘
,

by the Truth Lemma, there exists some q P G such that

q ,P,M
`
˜
k P ε̌ ^

˜
k P

˜
x ^ ň “

˜
k

˘
;
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hence, there exists some r ’ p and r ’ q with r P G which satisfies

r ,P,M
`
˜
k P ε̌ ^

˜
k P

˜
x ^ ň “

˜
k

˘
.

This yields pň, r æn
˜
xˆϑq P

9̃
x because

9̃
x “

!
pň, qq | Dp

˜
k, pq P

˜
x Dr P P

`
r ’ p ^ q “ r æn

˜
xˆϑ ^r ,P,M

˜
k “ ň

˘)
.

Finally, from r ’ r æn
˜
x and r P G, we obtain r æn

˜
xP G, which gives both k “ p

˜
kq

G
and

k P
`

9̃
x

˘
G
.

l 378

Now that we have these “ canonical ” P-names
9̃
x for the reals that belong to {MrGs

F

, we shift
our attention to some P-names for which we will show that

(1) they give countable sets of reals and (2) their union gives the entire set of reals.

For each integer n, we set

%
Rn “ Dn ˆ t1u “

!
p

9̃
x,1q | “

9̃
x is a canonical P-name for a real” ^

9̃
x P Dn

)

where
Dn “

!

9̃
x P P | @m P ε @p P P @pi, jq P dom ppq

`
pm̌, pq P

9̃
x !Ñ i $ n

˘)
.

Now, for every ς P Hn, we have ς̃p
%
Rnq “

%
Rn, hence Hn % symGaut.

´

%
Rn

¯
P F . Since every

9̃
x P dom

´

%
Rn

¯
belongs to HSF , it follows that

%
Rn P HSF , hence

´

%
Rn

¯

G

P {MrGs
F

.

We recall that couple : MP
ˆ MP

Ñ MP was introduced in Example 309 so that given any
φ,↼ P MP, and any G P-generic over M one has

`
couplepφ,↼q

˘
G

“
`

pφq
G
, p↼q

G

˘
. This is

couplepφ,↼q “

"´!
pφ,1q

(
,1

¯
,
´!

pφ,1q, p↼,1q
(
,1

¯*
.
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¨

˚̊
˚̊
˚̊
˝ pωqG pωqG pεqG

‚ ‚

‚

‚

‚

‚

1

1

1

1 1

˛

‹‹‹‹‹‹‚

G

“

pωqG pωqG pεqG

‚ ‚

‚

‚

‚

‚

We set Rn “

´

%
Rn

¯

G

“

! `

9̃
x

˘
G

|

9̃
x P Dn

)
and define some P-name for the function that maps

n to Rn:

˜
F “

!´
couplepň,

%
Rnq,1

¯
| n P ε

)

By construction,
˜
F P HSF , therefore, the function

p
˜
F q

G
: ε Ñ {MrGs

F

n (Ñ Rn

belongs to {MrGs
F

. Notice that, for any real x P {MrGs
F

, by the very construction of
9̃
x, we have

9̃
x “

!
pň, qq | Dp

˜
k, pq P

˜
x Dr P P

`
r ’ p ^ q “ r æn

˜
xˆϑ ^r ,P,M

˜
k “ ň

˘)

%
!

pň, qq | dom pqq % n
˜
x ˆ ε

(

so that p

9̃
x,1q P

%

Rn
˜
x , and finally x P Rn

˜
x . This shows that every real that belongs to {MrGs

F

belongs to some Rn, so that

{MrGs
F

|ù Ppεq “

" !
Rn | n P ε

(
,

or equivalently
´
Ppεq “

" !
Rn | n P ε

(¯ {MrGsF
.

So, it just remains to prove that, for each n,

{MrGs
F

|ù “Rn is countable ”.

(1) We first compute the size of
%
Rn inside the ground model. Since

%
Rn “

!
p

9̃
x,1q | “

9̃
x is a canonical P-name for a real” ^

9̃
x P Dn

)

it is enough to count how many canonical P-names of the form
9̃
x there are inside Dn.
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9̃
x “

!
pň, qq | Dp

˜
k, pq P

˜
x Dr P P

`
r ’ p ^ q “ r æn

˜
xˆϑ ^r ,P,M

˜
k “ ň

˘)
.

By construction, if pň, qq P

9̃
x and p

9̃
x,1q P

%
Rn, then dom pqq is finite and q : n ˆ ε Ñ ↓n.

So, inside M there are at most ↓n many such forcing conditions q and ↓0 many canonical
PLevy-names of the form ň. So, there are ↓n ¨ ↓0 “ ↓n many pň, qq, which yields 2→n many

9̃
x.

Since M satisfies @k $ ε 2→k “ ↓k`1, we obtain

´
|

%
Rn| ’ 2→n “ ↓n`1

¯M
.

(2) We define, for each integer n, a P-name
%
fn that we will show gives rise to some mapping

fn : ε
onto
!!Ñ Rn:

%
fn “

!´
couplepǩ, ω̌q, p

¯
| p P P ^ dom ppq % pn ` 1q ˆ ε ^ ppn, kq “ ω

)
.

(a) By construction, symGaut.

´

%
fn

¯
* Hn`1 and couplepǩ, ω̌q P HSF . Therefore,

%
fn P

HSF , hence fn “
`

%
fn

˘
G

P {MrGs
F

.

(b) We now show that, inside {MrGs
F

, we have
`

%
fn

˘
G

“ fn : ε
onto
!!Ñ p↓nq

M:

fn is a function from ω to p→nq
M:

˝ fn % ε ˆ p↓nq
M holds by construction.

˝ If both pk,ωq and pk,ϑq belong to fn, then there exist pε, pω P G with
pεpn, kq “ ω and pωpn, kq “ ϑ. Since both pε and pω belong to G, they agree
on their common domain, hence pεpn, kq “ pωpn, kq. i.e., ω “ ϑ.

fn is onto: Given any ω P p↓nq
M, the set

!
p P P | dom ppq % pn ` 1q ˆ ε ^ Dk P ε

`
pn, kq P dom ppq ^ ppn, kq “ ω

˘)
.

is dense which shows that there exists some integer k such that fnpkq “ ω.

Inside {MrGs
F

, since ε % p↓nq
M, we have ε

1 ´ 1
!!!Ñ
!!!Ñ

À p↓nq
M. Now, define gn : p↓nq

M 1´1
!!Ñ ε by

gnpωq “

& !
k P ε | fnpkq “ ω

(
,

or, in other words, gnpωq is the least integer k such that fnpkq “ ω (notice that such an
integer k always exists because fn is onto). So, we have shown

{MrGs
F

|ù p↓nq
M

1 ´ 1
!!!Ñ
!!!Ñ

À ε.

Notice that by Cantor-Schröder-Bernstein Theorem (see page 57), we obtain ε » p↓nq
M.
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It remains to show that
´
Rn

1 ´ 1
!!!Ñ
!!!Ñ

À p↓nq
M

¯ {MrGsF

. For this purpose, we notice that since

´
|

%
Rn| ’ 2→n “ ↓n`1

¯M
,

so there exists inside M some mapping

gn : dom
´

%
Rn

¯
1´1
!!Ñ p↓n`1q

M

which maps injectively each
9̃
x P dom

´

%
Rn

¯
to some ordinal ω P p↓n`1q

M. We consider

˜
B “

!`
couplep

9̃
x, ω̌q,1

˘
| ω “ gnp

9̃
xq.

)

We set p
˜
Bq

G
“ B. Since every

9̃
x belongs to HSF , we notice

˜
B also belongs to HSF , hence

B P {MrGs
F

and

B “

!`
couplep

9̃
x, ω̌q

˘
G

|
` `

9̃
x,1

˘
P

%
Rn ^ gnp

9̃
xq “ ω

˘)

“

!` `

9̃
x

˘
G
,ω

˘
|

` `

9̃
x,1

˘
P

%
Rn ^ gnp

9̃
xq “ ω

˘)
.

Inside {MrGs
F

, we define hn : Rn

1´1
!!Ñ p↓n`1q

M by

hnpxq “

& !
ω P p↓n`1q

M
| px,ωq P B

(
.

(Notice this is well defined since gn is 1 ´ 1, and also an injection for the same reason.)

Since inside {MrGs
F

we already have p↓n`1q
M

1 ´ 1
!!!Ñ
!!!Ñ

À ε, we have proved

Rn

1 ´ 1
!!!Ñ
!!!Ñ

À p↓n`1q
M

1 ´ 1
!!!Ñ
!!!Ñ

À ε

hence Rn

1 ´ 1
!!!Ñ
!!!Ñ

À ε, which means

{MrGs
F

|ù “ Rn is countable ”.

All in all, we have shown

ˆ
Ppεq “

" !
Rn | n P ε

(
^ @n P ε

`
Rn

1 ´ 1
!!!Ñ
!!!Ñ

À p↓nq
M

^ p↓nq
M

1 ´ 1
!!!Ñ
!!!Ñ

À ↓0

˘˙ {MrGsF

i.e.,
{MrGs

F

|ù Ppεq “

" !
Rn | n P ε

(
^ @n P ε “ Rn is countable ”.
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which proves
{MrGs

F

|ù “Ppεq is a countable union of countable sets ”.

Moreover, since {MrGs
F

satisfies “ ZF ” and “ ZF ” $c R » Ppεq, we have

{MrGs
F

|ù R » Ppεq;

from which we easily obtain

{MrGs
F

|ù “R is a countable union of countable sets”.

l 376

Among the major consequences of this result is Proposition 366 which states that if R is a
countable union of countable sets, then

ε1

1 ´ 1
!!!Ñ
!!!Ñ

!!À R.

Notice that this result holds in a model which satisfies “ ZF ”, hence in which there is no
bijection between ε and R. In other words, the real numbers are uncountable and the model
knows it, but there is no injection from the least uncountable ordinal to the set of real numbers.

Another disturbing result, which is a consequence of the real numbers being a countable union
of countable sets, is Corollary 367 which states that if R is a countable union of countable sets,
then there exists some partition R of R together with an injection from R to R (showing that this
partition is extremely fine) but somehow, no injection from the partition to the real numbers:

R Ä R.

Such a result of course, highly contradicts the axiom of choice since

(1) inside a world where AC holds, one could precisely make use of this axiom to pick from ev-
ery element of the partition which is non-empty, some element to then form a 1-1 mapping
from R to R.

(2) Also, getting used of working with the axiom of choice at hand, our initial reaction is to
understand R Ä R as saying that the set of all the real numbers is strictly smaller than
some partition of it, which seems extremely bizarre.

22.2 Forcing the Well-Orderings of the Reals Out

In this section we show that it is consistent with ZF that there exists no well-ordering of the
reals. Notice that this implies that there is no bijection between any ordinal and the set of all
reals, and even that there is no injection of the reals into the class of the ordinals.
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Theorem 379 (Cohen).

cons
`
ZF

˘
ùñ cons

`
ZF ` “ there is no well-ordering of R”

˘
.

Proof of Theorem 379: To do so, we prove that given M any c.t.m. of “ZFC ” with P→0 P M,
if G is P→0-generic over M, then there exists some countable set of reals3 A P MrGs and

a symmetric submodel {MrGs
F

, such that inside {MrGs
F

: A still exists, remains infinite, but
contains no proper subset B + A such that B » A.
This will clearly give the result because if there would exist a well-ordering of the reals, then
every subset of the reals would also be well-ordered. So, in particular there would exist a well
ordering pA,$Aq whose order-type would be some infinite ordinal. From there, designing a
proper subset B + A such that B » A would be an easy exercise.

We force with P “
`
P→0 ,’,1

˘
where

P→0 “

!
f : ε ˆ ε !Ñ t0, 1u | dom pfq is finite

)
; f ’ g #ñ f * g; 1 “ ⊋.

Given any G P-generic over M, we have
#

G “ F P MrGs satisfies

F : ε ˆ ε Ñ t0, 1u.

For each integer k, we set

’
ak “

!
pň, pq P dom pε̌q ˆ P | ppk, nq “ 1

(
and

˜
A “

!
p

’
ak,1q | k P ε

(
.

We let
`

’
ak

˘
G

“ ak and p
˜
Aq

G
“ A, so that we have

ak “
!
n $ ε | Fpk, nq “ 1

(
and A “

!
ak | k P ε

(
.

Since for all integers l,m, n the following sets Dn,l and En,m are dense in P:

Dn,l “
!
p P P | Dk & l ppn, kq “ 1

(

and
En,m “

!
p P P | Dk ’ ε ppn, kq ‰ ppm, kq

(
.

Using the notation rεs
ϑ for the set of infinite subsets of ε, it follows that

˝
`
an P rεs

ϑ
˘MrGs

,

˝ A P MrGs ⫅̸M, and

3Here, reals stand for subsets of integers.
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˝

´
@n P ε

`
an P A ^ @m P ε pn ‰ m "Ñ an ‰ amq

˘¯MrGs
.

Therefore, A is infinite.

We then construct a symmetric submodel {MrGs
F

which still contains the infinite set A but no
injection from ε to A.

Every permutation of the integers ⇀ : ε
bij.

"Ñ ε induces an automorphism ςϱ : P aut.
"!Ñ P defined

by

ςϱppq “

"´`
⇀pnq,m

˘
, i

¯
% pε ˆ εq ˆ ε |

`
pn,mq, i

˘
P p

*
.

We consider the group of such automorphisms

G “
!
ςϱ | ⇀ : ε

bij.
"Ñ ε

(

and F % PpG q the filter generated by

!
fixG pF q % G | F P Pfinpεq

(

where
fixG pF q “

!
ςϱ P G | @n P F ⇀pnq “ n

(
.

F is a normal filter on G since F is a set of subgroups of G such that for all subgroups H, K of
G and all ς P G:
(1) G P F because G “ fixG p⊋q.

(2) If H P F and H % K, then fixG pF q % H % K holds for some finite F % ε, which shows
K P F .

(3) If H P F and K P F , then both fixG pF q % H and fixG pEq % K hold for finite E,F % ε.
Thus, fixG pE Y F q % H X K P F holds which shows that H X K P F .

(4) If H P F , then given any finite F % ε such that fixG pF q % H, one has ςϱ ˝fixG pF q ˝ς´1
ϱ “

fixG p⇀rF sq; so that fixG p⇀rF sq % ςϱ ˝ H ˝ ς´1
ϱ . Thus, ςϱ ˝ H ˝ ς´1

ϱ P F .

So, we can define HSF as the class of all hereditarily symmetric P-names, and {MrGs
F

as the
symmetric submodel of the generic extension MrGs induced by HSF .

Notice that for each integer k and each ςϱ P G , we have

ς̃ϱp
’
akq “

!`
ς̃ϱpňq,ςϱppq

˘
P dom pε̌q ˆ P | ppk, nq “ 1

)

“

!`
ň,ςϱppq

˘
P dom pε̌q ˆ P | ςϱppq

`
⇀pkq, n

˘
“ 1

)

“

!`
ň, q

˘
P dom pε̌q ˆ P | q

`
⇀pkq, n

˘
“ 1

)

“
˜
aϱpkq.
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We see that for every permutation ⇀ such that ⇀pkq “ k, we have ς̃ϱp
’
akq “

˜
aϱpkq “

˜
ak. Therefore,

fixG ptkuq % symG p
˜
akq. And since each element of dom p

˜
akq which is of the form ň is in HSF ,

we have
˜
ak P HSF , hence ak P {MrGs

F

. Moreover, for each ςϱ P G , we have

ς̃ϱp
˜
Aq “

!`
ς̃ϱp

’
akq,ςϱp1q

˘
| k P ε

)

“

!`
˜
aϱpkq,1

˘
| k P ε

)

“
˜
A.

Which shows that G % symG p
˜
Aq, hence

˜
A P HSF and A P {MrGs

F

.

We already have
`
an P rεs

ϑ
˘MrGs

and

´
@n P ε

`
an P A ^ @m P ε pn ‰ m "Ñ an ‰ amq

˘¯MrGs
.

The set rεs
ϑ belongs to {MrGs

F

since it belongs to M . So, we have for each integer n,
`
an P rεs

ϑ
˘ {MrGsF

and
`
“A is infinite”

˘ {MrGsF
. We show that

`
“A is Dedekind-finite”

˘ {MrGsF

— see Definition 353.

Claim 380.
`
“There is no 1-1 mapping from ε to A ”

˘ {MrGsF
.

Proof of Claim 380: Towards a contradiction, we assume that there exists in M an hereditarily

symmetric name
˜
f P HSF for some mapping that exists inside {MrGs

F

, namely,

f “
`

˜
f

˘
G
: ε

1´1
!!Ñ A.

So, there exists p P G such that

p ,P,M
˜
f : ε̌

1´1
!!Ñ

˜
A.

Since
˜
f P HSF , we have symG

`

˜
f

˘
P F , hence there exists some finite set F

˜
f + ε such that

fixG pF
˜
f q % symG

`

˜
f

˘
. Then, f being injective, there exist nf P ε ⫅̸ Ff and k P ε such that

fpkq “ anf . So, by the Truth Lemma, there also exists pf P G with pf ’ p and

pf ,P,M
˜
fpǩq “

˜
anf .

We consider any permutation ⇀ : ε
bij.

"Ñ ε such that ςϱ P fixG pF
˜
f q, ⇀pnf q ‰ nf and there exists

q ’ ςϱppf q, pf — i.e., ςϱppf q and pf are compatible.
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From ςϱ P fixG pF
˜
f q, we obtain ςϱ P symG

`

˜
f

˘
, hence ς̃ϱp

˜
fq “

˜
f . So, we have

ςϱppf q ,P,M ς̃ϱp

˜
fq

`
ς̃ϱpǩq

˘
“ ς̃ϱp

˜
anf q

i.e.,
ςϱppf q ,P,M

˜
f

`
ǩ

˘
“

˜
aϱpnf q.

Any q P P which satisfies both q ’ ςϱppf q and q ’ pf yields both

q ,P,M
˜
fpǩq “

˜
anf

and

q ,P,M
˜
f

`
ǩ

˘
“

˜
aϱpnf q,

hence
q ,P,M

˜
anf “

˜
aϱpnf q.

Now, for every filter H which is P-generic over M and contains q we have

`
anf “ aϱpnf q

˘MrHs

but since nf ‰ ⇀pnf q, this contradicts

´
@n P ε @m P ε pn ‰ m !Ñ an ‰ amq

˘¯MrHs
.

This proves that there is no hereditarily symmetric P-name for an injection from ε to A.
l 380

So, we have shown that there is no hereditarily symmetric name for an injection from ε to the
infinite set A. This result implies that there is no well-ordering of R, since any well-ordering of

the reals would yield some bijection f : ω
bij.

"Ñ R which would yield an injection g : ε
1´1
!!Ñ A

defined by recursion on the integers by

gpnq “ fpϑq where ϑ “ min
!
⇁ P ω | fp⇁q P A⫅̸ tgpiq | i $ nu

(

“ min
!
⇁ P ω |

`
fp⇁q P A ^ @i $ n fp⇁q ‰ gpiq

˘)
.

l 379
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22.3 Forcing Every Ultrafilter on ϑ is Principal

Definition 381. Let X be any non-empty set.

˝ An ultrafilter U on X is any non-empty set U % P pXq which satisfies

(1) ⊋ R U

(2) if A,B P U , then A X B P U

,
/.

/-
Filter

(3) if A P U and A % B, then B P U

(4) for all A % X, A P U or AA
P U } Ultra

˝ An ultrafilter U on X is principal (or trivial) if there exists some A % X such that

U “
!
B % X | A % B

(
.

˝ An ultrafilter U on X is free if it is non-principal

An ultrafilter is trivial if and only if it contains some %-least element. Every filter F % P pXq

which contains some %-least element A can trivially be extended into an ultrafilter, namely

U “
!
B % X | DC P F C % B

(

“
!
B % X | A % B

(

This question is far more involved with non-trivial filters. With the axiom of choice, of course,
every filter can be extended into an ultrafilter. But the converse is not necessarily true. Even
for the Fréchet Filter — Fréchet “

!
A % ε | ε ⫅̸ A is finite

(
— as shown by the next result, it

is consistent with ZF that it cannot be extended by any ultrafilter.

Theorem 382 (Feferman).

cons
`
ZF

˘
ùñ cons

`
ZF ` “ every ultrafilter on ε is trivial”

˘
.

Proof of Theorem 382: As with the proof of Theorem 379, we start with M any c.t.m. of
“ZFC ” and force with P “

`
P→0 ,’,1

˘
where

P→0 “

!
f : ε ˆ ε !Ñ t0, 1u | dom pfq is finite

)
; f ’ g #ñ f * g; 1 “ ⊋.
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Given any G which is P-generic over M, we have
#

G “ F P MrGs satisfies

F : ε ˆ ε Ñ t0, 1u.

For each integer k, we set

’
ak “

!
pň, pq P dom pε̌q ˆ P | ppk, nq “ 1

(
.

We let
´

’
ak

¯

G

“ an, so that we have

ak “
!
n $ ε | Fpk, nq “ 1

(
.

Since for all integers l,m, n the sets Dn,l and En,m below are dense in P:

Dn,l “
!
p P P | Dk & l ppn, kq “ 1

(

and
En,m “

!
p P P | Dk ’ ε ppn, kq ‰ ppm, kq

(

it follows that ´
an P rεs

ϑ
^ @n P ε @m P ε pn ‰ m "Ñ an ‰ amq

¯MrGs
.

We construct a symmetric submodel {MrGs
F

by considering, for each S % εˆε, an automorphism

ςS : P aut.
!!Ñ P defined for each p P P by:

ςSppq : dom ppq !Ñ 2

pn,mq (Ñ

$
&

%
1 ´ ppn,mq if pn,mq P S

ppn,mq if pn,mq R S.

We let G be the group of all such automorphisms and given any F P Pfinpεq,

fixG pF ˆ εq “
!
ςS P G | S X pF ˆ εq “ ⊋

(
,

and F % PpG q be the filter generated by

!
fixG pF ˆ εq % G | F P Pfinpεq

(
.

We verify that F is a normal filter on G.
F is a set of subgroups of G such that for all subgroups H, K of G and all ς P G:

(1) G P F because G “ fixG p⊋q “ fixG p⊋ ˆ εq

(2) if H P F and H % K, then fixG pF ˆεq % H % K holds for some finite F % ε, which shows
K P F
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(3) if H P F and K P F , then both fixG pF ˆ εq % H and fixG pE ˆ εq % K hold for finite
E,F % ε. Thus, fixG

`
pE Y F q ˆ ε

˘
% H X K P F holds which shows that H X K P F .

(4) if H P F , then given any finite F % ε such that fixG pF ˆ εq % H, one has

fixG pF ˆ εq % ςS ˝ fixG pF ˆ εq ˝ ς´1
S

,

thus, ςS ˝ H ˝ ς´1
S

P F .

So, we can define HSF as the class of all hereditarily symmetric P-names, and {MrGs
F

as the
symmetric submodel of the generic extension MrGs induced by HSF .

We let U be any ultrafilter in {MrGs
F

, together with
˜
U P HSF any P-name for U , and any

p P G with
p ,P,M “

˜
U is an ultrafilter over ε̌ ”.

We take any finite F P Pfinpεq such that fixG pF ˆ εq % symG p
˜
U q as well as any integer k R F .

We distinguish between ak P U and ak R U .

If ak P U : we pick any q P G such that q ’ p and

q ,P,M
’
ak P

˜
U .

we consider any k1
P ε large enough such that

!
pk, nq P ε ˆ ε | n ) k1(

X dom pqq “ ⊋

We notice that S “
!

pk, nq P ε ˆ ε | n ) k1( satisfies S X pF ˆ εq “ ⊋ and form ςS and
consider

˜
bk “ ς̃Sp

’
akq and write bk for p

˜
bkq

G
. By construction, we see that for each integer

n ) k1 we have
n P ak #ñ n R bk

which yields
ak X bk % k1

which shows that this set is finite. Building on q ,P,M
’
ak P

˜
U , we reach

ςSpqq ,P,M ς̃Sp
’
akq P ς̃Sp

˜
U q.

Since fixG pF ˆ εq “
!
ςS1 P G | S1

X pF ˆ εq “ ⊋
(

and S X pF ˆ εq “ ⊋, we have

ςS P fixG pF ˆ εq % symG p
˜
U q ,

which gives
ςSpqq ,P,M

˜
bk P

˜
U ;
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and since S X dom pqq “ ⊋, we have ςSpqq “ q, so that we finally obtain

q ,P,M
˜
bk P

˜
U .

So, we end up with both ak P U and bk P U , hence ak X bk P U . Since ak X bk % k1, we
obtain

U “
!
X % ε | c % X

(

where c is the finite set defined by

c “

& !
Y P U | Y % ak X bk

(
.

Thus, U is principal.

If ak R U : we pick any q P G such that q ’ p and

q ,P,M
’
ak R

˜
U .

we consider any k1
P ε large enough such that

!
pk, nq P ε ˆ ε | n ) k1(

X dom pqq “ ⊋

We notice that S “
!

pk, nq P ε ˆ ε | n ) k1( satisfies S X pF ˆ εq “ ⊋ and form ςS and
consider

˜
bk “ ς̃Sp

’
akq and write bk for p

˜
bkq

G
. By construction, we see that for each integer

n ) k1 we have
n P ak #ñ n R bk

which yields

pε ⫅̸ akq X pε ⫅̸ bkq “
!
n P ε | n R ak ^ n R bk

(
% k1,

hence this set is finite. From q ,P,M
’
ak R

˜
U , we get

ςSpqq ,P,M ς̃Sp
’
akq R ς̃Sp

˜
U q.

Since fixG pF ˆ εq “
!
ςS1 R G | S1

X pF ˆ εq “ ⊋
(

and S X pF ˆ εq “ ⊋, we have

ςS P fixG pF ˆ εq % symG p
˜
U q ,

which gives
ςSpqq ,P,M

˜
bk R

˜
U ;

and since S X dom pqq “ ⊋, we have ςSpqq “ q, so that we finally obtain

q ,P,M
˜
bk R

˜
U .
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So, we end up with both ak R U and bk R U , which gives pε ⫅̸ akq P U and pε ⫅̸ bkq P U
and finally pε ⫅̸ akq X pε ⫅̸ bkq P U . Now, since pε ⫅̸ akq X pε ⫅̸ bkq % k1, we obtain

U “
!
X % ε | c % X

(

where c is the finite set defined by

c “

& !
Y P U | Y % pε ⫅̸ akq X pε ⫅̸ bkq

(
.

Thus, U is principal.

l 382

We have constructed a symmetric submodel {MrGs
F

in which there is no free ultrafilter on ε
because every ultrafilter on ε is principal. So, in particular, the Fréchet filter — which belongs

to {MrGs
F

because it belongs to M and M % {MrGs
F

— cannot be extended into any ultrafilter.
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