
Part VII

Set Theory with Atoms





Chapter 23

Atoms and Permutation Models

Set theory with atoms — denoted ZFA — is slightly di!erent from ZF in that the empty set is
not the only set which does not contain any other set. There are also some other sets that do
not contain anything but are still di!erent from each other. This is a blatant contradiction to
the axiom of Extensionality.These other basic elements are known as atoms or as Urelements
(usually written urelements).

23.1 Zermelo-Fraenkel with Atoms (ZFA)

The language of ZFA is the same as the language of ZF augmented with a constant symbol A
whose interpretation is a “set of atoms” denoted by A. So, ZFA is still a theory of first order logic
with equality, but the signature of the language becomes now tA, Pu. Essentially, the axioms
remain the same except that one must take into account the special features of the atoms. So,
Extensionality and Comprehension Schema are modified, and an Empty Set Existence
for ZFA as well as an axiom of Atoms are added to the theory. Since atoms do not contain
any element, the axiom of extensionality is modified and a few other axioms are added to ZF.

Empty Set Existence for ZFA

Dxp@y y R x ^ x R Aq.

This axiom claims that the empty set exists and is di!erent from any atom.

Extensionality for ZFA

@x@y
´

px R A ^ y R Aq !Ñ
`
@z pz P x "Ñ z P yq !Ñ x “ y

˘¯
.

This axiom claims that all sets that are not atoms are the same if and only if they contain
the same elements. Notice that the Axiom of Extensionality for ZFA implies that the
empty set is unique, which guarantees the use of the usual constant symbol ⊋.
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axiom of Atoms
@x

`
x P A "Ñ px ‰ ⊋ ^ @z z R xq

˘
.

This axiom claims that, apart from the empty set — which is not an atom — the atoms
are the only sets which do not contain any other set.

Comprehension Schema for ZFA

By convention, we assume also that the Comprehension Schema is strengthened in
order to have the empty subset of any set to be the empty set as opposed to some atom.
This gives rise to the Comprehension Schema for ZFA:

For each formula ωpx,z,w1...wnq whose free variables — if any — are among x, z, w1, . . . , wn

and y is not free in ωpx,z,w1...wnq, the following formula is an axiom:

@z@w1...@wnDy@x

ˆ´
x P y "Ñ

`
x P z ^ωpx,z,w1,...,wnq

˘¯
^

´`
x P z !Ñ #ωpx,z,w1,...,wnq

˘
!Ñ y “ H

¯˙
.

The whole theory of ZFA is developed the same way the theory of ZF is — in particular ordinals
are constructed from the empty set and not from atoms. The tree representation of a set —
as a well-founded tree, since we work with Foundation — still holds. The only di!erence is
that with ZF each leaf corresponds to the empty set, whereas with ZFA, the leaves can also
represent atoms and not just the empty set.

Example 383. We assume a,b P A. Below is a tree that represents the set
!!

tbu, a
(
, t⊋u

)
.

a ⊋ ⊋

b b

a ⊋ ⊋

b b

!!
tbu, a

(
, t⊋u

)

!
tbu, a

(
t⊋u

tbu

Definition 384 (ZFA). Given any set S, we define P8
pSq by transfinite recursion.

˝ P 0
pSq “ S
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˝ P ω`1
pSq “ P ω

pSq Y P
`
P ω

pSq
˘

˝ P ω
pSq “

"

ε!ω

P ε
pSq (when ε is limit).

P8
pSq “

"

ωPOn

P ω
pSq .

If A is any set of atoms, and M is any model of ZFA, then P8
pAq “

"

ωPOn

P ω
pAq is a subdivision

of the elements of M, into some hierarchy, the same way the von Neumann hierarchy V “"

ωPOn

V pεq is a subdivision of the sets from any model M of ZF or ZFC.

M |ù @x x P P8
pAq .

Definition 385 (ZFA). If A is any set of atoms, M any model of ZFA, and x P M, then

rkP8
pAq pxq “ least ε P On such that x P P ω`1

pAq .

Remark 386. If A is any set of atoms, and M is any model of ZFA, then the kernel :

P8
p⊋q X M

is the domain of a model of ZF.
Moreover, for each x P P8

p⊋q X M we have

rkP8
pAq pxq “ rkP8

pHq pxq “ rk pxq .
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A

‚
ε

‚

ε ` 1

P ω
pAq

P ω`1
pAq

P8
pAq

P8
p⊋q

Figure 23.1: The Classes P8
pAq and P8

p⊋q.

23.2 Permutation Models

The key idea that gave rise to the notion of permutation model is not far removed from the
one that brought the concept of symmetric submodel of a generic extension. A permutation
model of set theory is obtained from a model of ZFA by mean of a group of permutations of
the atoms, whereas a symmetric submodel is constructed using a group of automorphism of a
forcing poset. But unlike in the cas of symmetric submodel where the refinement of the model
obtained came from working on P-names, here we sort sets directly without reference to another
structure (except for the permutation normal filter).
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Definition 387 (ZFA). Let ϑ : A
bij.

"Ñ A be any permutation.
The class-function ϑ̆ : P8

pAq Ñ P8
pAq is defined for every set x by

˝ if x “ ⊋, then ϑ̆ p⊋q “ ⊋

˝ if x P A, then ϑ̆ pxq “ ϑpxq

˝ if x R A Y t⊋u, then ϑ̆ pxq “
!
ϑ̆ pyq | y P x

(
.

Example 388. We assume the set of atoms is A “ ta,b, cu.
From the tree that represents the set in the left picture:

x “

!!
t⊋,bu, a

(
, tc,⊋u

)

we obtain the set in the right picture:

ϑ̆ pxq “

!!
t⊋, cu,b

(
, ta,⊋u

)

by applying the following permutation:
ϑ : A

bij.
"Ñ A

a $Ñ b
b $Ñ c
c $Ñ a

a c ⊋

⊋ b

!!
t⊋,bu, a

(
, tc,⊋u

)

!
t⊋,bu, a

(
tc,⊋u

t⊋,bu
b a ⊋

⊋ c

!!
t⊋, cu,b

(
, ta,⊋u

)

!
t⊋, cu,b

(
tc,⊋u

t⊋, cu
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Definition 389. Given any model M, a class-function f : M bij.
!!Ñ M is an P-automorphism

if it satisfies for all x, y P M
x P y %ñ fpxq P fpyq.

Lemma 390. Given any set of atoms A, any permutation ϑ : A
bij.

"Ñ A yields a class-function
ϑ̆ : P8

pAq Ñ P8
pAq which satisfies

(1) @x P P8
pAq @y P P8

pAq

´
x P y "Ñ ϑ̆ pxq P ϑ̆ pyq

¯
;

(2) ϑ̆ is 1-1 and onto, and ϑ̆´1
“

˘ϑ´1.

Proof of Remark 390:

(1) is immediate.

(2) (a) ϑ̆ is 1-1: if x ‰ y, then by symmetry, there exists z P x⫅̸ y, thence

z P x ùñ ϑ̆ pzq P ϑ̆ pxq

and

z R y ùñ ϑ̆ pzq R ϑ̆ pyq

,
/.

/-
ùñ ϑ̆ pzq P ϑ̆ pxq ⫅̸ ϑ̆ pyq

(b) ϑ̆ is onto: towards a contradiction assume that for some minimal ordinal ε there
exists some y P P ω`1

pAq such that ϑ̆ pxq ‰ y holds for all x P M. By minimality
of ε, every element of y is in the range or ϑ̆, hence there exists S P M such that
y “

!
ϑ̆ pxq | x P S

(
, which yields y “ ϑ̆ pSq, a contradiction.

(c) is immediate by induction on rkP8
pAq pxq “ least ordinal ε such that x P P ω`1

pAq.

l 390

So, any permutation ϑ : A
bij.

"Ñ A yields an P-automorphism ϑ̆ : P8
pAq Ñ P8

pAq. We recall that
a group G of permutations of A is some subgroup of

!
ϑ : A !Ñ A | ϑ is 1-1 and onto

(
. equipped

with ˝ : pg, fq $Ñ g ˝ f .
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Definition 391 (Permutation Normal Filter). Let M be any model of ZFA with A as set of
atoms, and G be a group of permutations of A. F is a normal filter on G if F is a set of
subgroups of G such that for all subgroups H, K of G and all ϑ P G:

(1) G P F ,

(2) if H P F and H & K, then K P F ,

(3) if H P F and K P F , then H X K P F ,

(4) if H P F , then ϑ ˝ H ˝ ϑ´1
P F ,

(5) for each atom a P A,
!
ϑ P G | ϑpaq “ a

(
P F .

Definition 392 (Symmetry Group, Symmetric and Hereditarily Symmetric Set). Let M be
any model of ZFA with A as set of atoms, G any subgroup of the group of permutations of A,
and F any normal filter on G. For each set x P M,

˝ the symmetry group of x is

symG pxq “ tϑ P G | ϑ̆ pxq “ xu ;

˝ we write “ x is symmetric ” for

symG pxq P F ;

˝ we write “ x is hereditarily symmetric ” for

x P HSF %ñ

$
’&

’%

symG pxq P F

and

x & HSF .

Remark 393. Let M be any model of ZFA with A as set of atoms, G any subgroup of the group
of permutations of A, and F any normal filter on G. For all sets x, y P M and all permutations
ϑ P G,
(1) x “ y %ñ ϑ̆ pxq “ ϑ̆ pyq;

(2) x P HSF %ñ ϑ̆ pxq P HSF .
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Proof of Remark 393:

(1) x P y %ñ ϑ̆ pxq P ϑ̆ pyq yields x & y %ñ @z P x z P y

%ñ @z P x ϑ̆ pzq P ϑ̆ pyq

%ñ @ϑ̆ pzq P ϑ̆ pxq ϑ̆ pzq P ϑ̆ pyq

%ñ ϑ̆ pxq & ϑ̆ pyq .

Thus,

x “ y %ñ x & y and y & x

%ñ ϑ̆ pxq & ϑ̆ pyq and ϑ̆ pyq & ϑ̆ pxq

%ñ ϑ̆ pxq “ ϑ̆ pyq .

(2) (a) We show that symG pxq P F ùñ symG

`
ϑ̆ pxq

˘
P F .

For every permutation ϖ we have

ϑ̆´1
˝ ϖ̆ ˝ ϑ̆pxq “ x ùñ ϑ̆ ˝ ϑ̆´1

˝ ϖ̆ ˝ ϑ̆pxq “ ϑ̆ pxq

ùñ ϖ̆
`
ϑ̆ pxq

˘
“ ϑ̆ pxq

ùñ ϖ P symG

`
ϑ̆ pxq

˘
;

which shows
ϑ̆´1

˝ ϖ̆ ˝ ϑ̆ P symG pxq ùñ ϖ P symG

`
ϑ̆ pxq

˘

or, equivalenty,
ϑ̆ ˝ symG pxq ˝ ϑ̆´1

& symG

`
ϑ̆ pxq

˘
.

Since F is a normal filter, it follows that

symG pxqlooomooon
PF

ùñ ϑ̆ ˝ symG pxq ˝ ϑ̆´1
loooooooooomoooooooooon

PF

and ϑ̆ ˝ symG pxq ˝ ϑ̆´1
loooooooooomoooooooooon

PF

& symG

`
ϑ̆ pxq

˘
loooooomoooooon

PF

.

(b) We show that x P HSF ùñ ϑ̆ pxq P HSF by induction on rkP8
pAq pxq “ least ordinal ε

such that x P P ω`1
pAq.

˝ If rkP8
pAq pxq “ 0, then x is a set — possibly empty — of atoms.

x P HSF ùñ

$
’’’’’&

’’’’’%

symG pxq P F
by paq
ùñ symG pϑ̆ pxqq P F

and and

@a P x a P HSFlooooooooomooooooooon
@aPA symG paqPF

ùñ @a P x ϑ̆ pxq P HSFlooooooooooomooooooooooon
@aPA symG paqPF

,
/////.

/////-

ùñ ϑ̆ pxq P HSF .
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˝ If rkP8
pAq pxq ’ 0

x P HSF ùñ

$
’’’’’&

’’’’’%

symG pxq P F
by paq
ùñ symG pϑ̆ pxqq P F

and and

@y P x y P HSF ùñ @y P x ϑ̆ pyq P HSFlooooooooooomooooooooooon
by induction hypothesis

,
/////.

/////-

ùñ ϑ̆ pxq P HSF .

We have shown x P HSF ùñ ϑ̆ pxq P HSF holds for all x and all ϑ̆. So, in particular for
x :“ ϑ̆ pxq and ϑ̆ :“ ϑ̆´1 we have

ϑ̆ pxq P HSF ùñ ϑ̆´1
˝ ϑ̆ pxq P HSF

ùñ x P HSF .

l 393

Lemma 394. Let M be any model of ZFA with A as set of atoms, G any subgroup of the group
of permutations of A. Let ωpz1, . . . , znq be any Lst-formula whose free variables are among
x1, . . . , xn. If ϑ P G, then for all b1, . . . , bn P M,

M |ù ω pb1, . . . , bnq %ñ M |ù ω
`
ϑ̆ pb1q , . . . , ϑ̆ pbnq

˘
.

Proof of Lemma 394: As always, the proof is by induction on the height of ω. Without loss of
generality, we may assume that ω only contains # and ^ as connectors and D as sole quantifier.

(1) If ω is an atomic formula, then we already saw that

˝ M |ù b1 “ b2 %ñ M |ù ϑ̆ pb1q “ ϑ̆ pb2q

˝ M |ù b1 P b2 %ñ M |ù ϑ̆ pb1q P ϑ̆ pb2q.

(2) If ω “ #ϱ, then

M |ù ω pb1, . . . , bnq %ñ M * ϱ pb1, . . . , bnq

%ñ M * ϱ
`
ϑ̆ pb1q , . . . , ϑ̆ pbnq

˘

%ñ M |ù ω
`
ϑ̆ pb1q , . . . , ϑ̆ pbnq

˘
.

(3) If ω “ pϱ ^ ςq, then

M |ù ω pb1, . . . , bnq %ñ M |ù ϱ pb1, . . . , bnq and M |ù ς pb1, . . . , bnq

%ñ M |ù ϱ
`
ϑ̆ pb1q , . . . , ϑ̆ pbnq

˘
and M |ù ς

`
ϑ̆ pb1q , . . . , ϑ̆ pbnq

˘

%ñ M |ù ω
`
ϑ̆ pb1q , . . . , ϑ̆ pbnq

˘
.
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(4) If ω “ Dxϱpx, x1, . . . , xnq, then

M |ù ω pb1, . . . , bnq %ñ there exists y P M, M |ù ϱ py, b1, . . . , bnq

%ñ there exists ϑ̆ pyq P M, M |ù ϱ
`
ϑ̆ pyq , ϑ̆ pb1q , . . . , ϑ̆ pbnq

˘

%ñ M |ù Dxϱ
`
x, ϑ̆ pb1q , . . . , ϑ̆ pbnq

˘

%ñ M |ù ω
`
ϑ̆ pb1q , . . . , ϑ̆ pbnq

˘
.

l 394

We now define the symmetric submodel of M — denoted by MHSF — as the restriction of M
to HSF .

A

`
P8

p⊋q
˘M

M “
`
P8

pAq
˘M M X HSF “ MHSF

Figure 23.2: The class M, its core model
`
P8

p⊋q
˘M

, and the permutation model MHSF .

Definition 395 (Permutation Model). Let M be any model of ZFA with A as set of atoms, G
any subgroup of the group of permutations of A, and F any normal filter on G. The submodel
of M formed of all the symmetric sets of M is called the permutation model and denoted by:

MHSF
“ M X HSF .
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We show that every permutation model satisfies ZFA.

Proposition 396. Let M be any transitive model of ZFA with A as set of atoms, G any
subgroup of the group of permutations of A, and F any normal filter on G.

(1) MHSF is transitive;

(2) P8
p⊋q & MHSF ;

(3) MHSF satisfies ZFA.

Proof of Proposition 396:

(1) If x P y P MHSF , then x P M since M is transitive and x P HSF since y & HSF , hence
x P M X HSF “ MHSF

(2) For all x P P8
p⊋q, and for all ϑ P G,

˝ ϑ̆ pxq “ x, hence symG pxq “ G P F ;

˝ tc pxq & P8
p⊋q, hence x & HSF

+
x P HSF

(3) MHSF satisfies ZFA:

Empty Set Existence for ZFA comes from P8
p⊋q & MHSF .

Extensionality for ZFA is from MHSF being transitive.

Comprehension Schema We want to show that for all w,w1, . . . , wn P MHSF and for-
mula ωpx, y, y1, . . . , ynq:

u “

!
v P w |

´
ω

`
v{x,w{y, w1{y1, . . . , wn{yn

˘¯MHSF
)

P MHSF .

For this it is enough to consider the following subgroup of S P F :

S “ symG pwq X symG pw1q X symG pw2q X . . . X symG pwnq .

Notice that, for any ϑ P S and v P w, we have

MHSF |ù ω
`
v{x,w{y, w1{y1, . . . , wn{yn

˘
%ñ MHSF |ù ω

´
ϑ̆ pvq {x, ϑ̆ pwq {y, ϑ̆ pw1q {y1, . . . , ϑ̆ pwnq {yn

¯

%ñ MHSF |ù ω
`
ϑ̆ pvq {x,w{y, w1{y1, . . . , wn{yn

˘

So, for every v P MHSF and every ϑ P S, we have v P u %ñ ϑ̆ pvq P u. Since
ϑ̆ puq “

!
ϑ̆ pvq | v P u

(
, we have shown that shows that ϑ̆ puq “ u holds for every
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v P MHSF . Hence,

S “ symG pwq X symG pw1q X symG pw2q X . . . X symG pwnqloooooooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooooooon
PF

& symG puqlooomooon
PF

.

which shows that u P MHSF .

Pairing If x, y P MHSF , then
!
x, y

(
P HSF since symG

`
tx, yu

˘
( symG pxq X symG pyq

and x, y P HSF . We obtain

Union Let x P HSF , to prove that
#

x P MHSF , it is enough to show that there exists
u P HSF such that

#
x & u.

u “

!
ϑ̆ pzq P ϑ̆

” "
xloomoon

PMHSF

ı
| Dy P x pz P y ^ ϑ P Gq

)
.

As described u belongs to MHSF and
#

x & u holds. To show that u belongs to HSF ,
it is enough to notice that symG puq “ G and every ϑ̆ pzq P u satisfies ϑ̆ pzq P HSF

since z P HSF holds.

Infinity Since φ belongs to the kernel, it belongs to MHSF .

Power Set Let x P HSF , it is enough to show there exists u P HSF such that P
`
pxq

˘
X

MHSF & u.

u “

!
ϑ̆ pyq | py P Ppxq ^ ϑ P Gq

)

“
# !

ϑ̆
”
Ppxq

ı
| ϑ P G

)
.

As described u belongs to MHSF and Ppxq & u holds. To show that u belongs to
HSF , it is enough to notice that symG puq “ G since given any ϖ P G, we have

ϖ̆ puq “

!
ϖ̆

`
ϑ̆ pyq

˘
| py P Ppxq ^ ϑ P Gq

)

“

!
ϖ̆ ˝ ϑ̆ pyq | py P Ppxq ^ ϑ P Gq

)

“

!
ϖ̆ ˝ ϖ̆´1

˝ ϑ̆1
pyq |

`
y P Ppxq ^ ϖ̆´1

˝ ϑ̆1
P G

˘ )

“

!
ϑ̆1

pyq | py P Ppxq ^ ϑ̆1
P Gq

)

“ u.

Moreover, every ϑ̆ pyq P u satisfies ϑ̆ pyq P HSF since y P HSF holds.
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Foundation holds in MHSF since MHSF is transitive and Foundation holds in M.

Replacement Schema for each formula ωpx, y, z1, . . . , znq, we want to prove that given
any w1 P MHSF , . . . , wn P MHSF :

¨

˝
@x P MHSF D!y P MHSF

`
ωpx, y, w1{z1, . . . , wn{znq

˘MHSF

!Ñ

@u P MHSF Dv P MHSF @x P u Dy P v
`
ωpx, y, w1{z1, . . . , wn{znq

˘MHSF

˛

‚.

We fix w1 P MHSF , . . . , wn P MHSF and u P MHSF and consider (inside M which
satisfies the Replacement Schema since it satisfies ZFA) the following set

v “

!
y P MHSF

|
`
Dx P u ωpx, y, w1{z1, . . . , wn{znq

˘MHSF

)

We consider the subgroup

S “ symG puq X symG pw1q X symG pw2q X . . . X symG pwnqloooooooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooooooon
P F

.

Notice that, for any ϑ P S, any x P u and any y P MHSF , we have ϑ̆ pxq P ϑ̆ puq “ u
and

MHSF |ù ωpx, y, w1, . . . , wnq %ñ MHSF |ù ω
´
ϑ̆ pxq , ϑ̆ pyq , ϑ̆ pw1q , . . . , ϑ̆ pwnq

¯

%ñ MHSF |ù ω
`
ϑ̆ pxq , ϑ̆ pyq , w1, . . . , wn

˘
.

Since we have x P u %ñ ϑ̆ pxq P u, we have

MHSF
|ù Dx P u ω

`
x, y, w1, . . . , wn

˘
%ñ MHSF

|ù Dϑ̆ pxq P u ω
`
ϑ̆ pxq , ϑ̆ pyq , w1, . . . , wn

˘
.

Therefore, we have y P v %ñ ϑ̆ pyq P v, which shows that ϑ̆ pvq “ v, hence

S “ symG puq X symG pw1q X symG pw2q X . . . X symG pwnqloooooooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooooooon
P F

& symG pvqlooomooon
P F

,

which shows that v P MHSF .

l 396

23.3 The Basic Fraenkel Model
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Definition 397 (Basic Fraenkel Model). Let M be any transitive model of ZFA with any
countable infinite set of atoms A, G be the group of permutations of A, and F & PpG q be the
normal filter generated by !

fixG pF q & G | F P PfinpAq
(

where
fixG pF q “

!
ϑ P G | @x P F ϑ̆ pxq “ x

(
.

The submodel of M formed of all its symmetric sets is the permutation model known as the
basic Fraenkel Model:

MHSF

F0
“ M X HSF .

To say that the filter F is generated by
!
fixG pF q & G | F P PfinpAq

(
means that

F “

!
H & G | H is a subgroup of G and fixG pF q & H holds for some finite F & A

)
.

This set F of subgroups of G is a normal filter on G because for all subgroups H, K of G and
all permutations ϑ P G we have:

(1) G P F because G “ fixG p⊋q.

(2) If H P F and H & K, then fixG pF q & H & K holds for some finite F & A, which shows
K P F .

(3) If H P F and K P F , then fixG pEq & H and fixG pF q & K holds for some finite E,F & A.
Thus, fixG pE Y F q & H X K also holds, which shows that H X K P F .

(4) If H P F , then given any finite F & A such that fixG pF q & H, one has, for any permutation
ϑ, ϑ ˝ fixG pF q ˝ ϑ´1

“ fixG pϑrF sq; so that fixG pϑrF sq & ϑ ˝ H ˝ ϑ´1, which shows that
ϑ ˝ H ˝ ϑ´1

P F .

(5) For each atom a P A,
!
ϑ P G | ϑpaq “ a

(
“ fixG ptauq P F .

For any set x, we call support of x any Fx P PfinpAq which satisfies fixG pFxq & symG pxq. Notice
that if Fx is a support of x and Fx & F P PfinpAq holds, then fixG pF q & fixG pFxq & symG pxq

holds as well, so that F is also a support of x.

Lemma 398. We use the same assumptions as in Definition 397 (the definition of MHSF

F0
).

If F P PfinpAq, S & A and fixG pF q & symG pSq P F , then

˝ S is either finite or co-finite (i.e., A ⫅̸ S is finite);

˝ if S is finite, then S & F ;

˝ if S is co-finite, then pA ⫅̸ Sq & F .
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Proof of Lemma 398: We distinguish between S X pA ⫅̸ F q “ ⊋ and S X pA ⫅̸ F q ‰ ⊋.

˝ If S X pA ⫅̸ F q “ ⊋, then S & F , and in particular S is finite.

˝ If S X pA ⫅̸ F q ‰ ⊋, we show that S ( pA ⫅̸ F q, and in particular S is co-finite. We fix
some a P S X pA ⫅̸ F q and consider any b P pA ⫅̸ F q such that b ‰ a — since A ⫅̸ F is
infinite, such b exists. The permutation ϑaØb which exchanges a and b, and is the identity
everywhere else, belongs to fixG pF q. Now we have

a P S %ñ ϑ̆aØbpaq P ϑ̆aØbpSq

%ñ ϑ̆aØbpaq P S
%ñ b P S

which shows that pA ⫅̸ F q & S.

So, we have shown that we have either S & F or pA⫅̸Sq & F , which also shows that S is either
finite or co-finite.

l 398

We now show that inside the basic Fraenkel model, there exists some set which is both infinite
and Dedekind-finite.

Proposition 399. Let MHSF

F0
be the basic Fraenkel model with A as set of atoms.

MHSF

F0
|ù →0

1 ´ 1
!!!Ñ
!!!Ñ

!!À A.

So, although the basic Fraenkel model is built from a set of atoms which is infinite and countable,
the model itself cannot recognize this fact, for there is no injection from the integers to the set
of atoms.

Proof of Proposition 399: Towards a contradiction, we assume that inside MHSF

F0
there exists

f : →0
1´1
!!Ñ A. Then the set

S “
!
fp2nq P A | n P φ

(

belongs to MHSF

F0
since MHSF

F0
is a model of ZFA. So, we have symG pSq P F , hence there exists

some finite F & A such that fixG pF q & symG pSq. By Lemma 398, either S finite or A ⫅̸ S is
finite; a contradiction.

l 399

Proposition 400. Let MHSF

F0
be the basic Fraenkel model with A as set of atoms.

MHSF

F0
|ù →0

1 ´ 1
!!!Ñ
!!!Ñ

!!À PpAq.



374 Set Theory

Proof of Proposition 400: Towards a contradiction, we assume that inside MHSF

F0
there exists

f : →0
1´1
!!Ñ PpAq. Since f belongs to MHSF

F0
, there exists some finite Ff & A such that

fixG pFf q & symG pfq .

By Lemma 398, any S & A that satisfies fixG pFf q & symG pSq satisfies also either S & Ff or
pA ⫅̸ Sq & Ff . Therefore, there exist only finitely many such sets S. So, take any n P φ such
that fpnq & A satisfies

fixG pFf q ) symG

`
fpnq

˘
.

Take any ϑ P fixG pFf q ⫅̸ symG

`
fpnq

˘
in order to have both

ϑ̆ pfq “ f and ϑ̆
`
fpnq

˘
‰ fpnq.

Since n belongs to the kernel, ϑ̆ pnq “ n holds, which leads to f
`
ϑ̆ pnq

˘
“ fpnq.

By construction,

ϑ̆ pfq “ ϑ̆
´!`

k, fpkq
˘

| k P φ
(¯

“

!´
ϑ̆ pkq , ϑ̆

`
fpkq

˘¯
| k P φ

)

“

!´
k, ϑ̆

`
fpkq

˘¯
| k P φ

)
.

So that, in particular, we have
ϑ̆ pfq pnq “ ϑ̆

`
fpnq

˘
.

But, since ϑ P fixG pFf q, we also have ϑ̆ pfq “ f , hence ϑ̆ pfq pnq “ fpnq which contradicts
ϑ̆

`
fpnq

˘
‰ fpnq.

l 400

23.4 The Second Fraenkel Model

Definition 401 (Second Fraenkel Model). Let M be any transitive model of ZFA whose set of
atoms is

A “

"

nPϑ
Pn, where pPnqnPϑ is a family of disjoint pairs1;

and the subgroup of permutations G is

G “
!
ϑ : A

bij.
!!Ñ A | @n P φ ϑ̆ pPnq “ Pn

(
;

(i.e., G is the group of permutations of A which preserves the pairs).
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Let also F & PpG q be the normal filter generated by

!
fixG pF q & G | F P PfinpAq

(

where
fixG pF q “

!
ϑ P G | @x P F ϑ̆ pxq “ x

(
.

The submodel of M formed of all its symmetric sets is the permutation model known as the
second Fraenkel Model:

MHSF

F2
“ M X HSF .

Notice that the set of atoms of the second Fraenkel model is made of the elements of countably
many disjoints pairs.

Lemma 402. Let MHSF

F2
be the second Fraenkel model as described in Definition 401. i.e., its

set of atoms is A “

"

nPϑ
Pn with each Pn being a pair, and for all ‰ m, Pn X Pm “ ⊋. We then

have

(1) for each integer n, the set Pn belongs to MHSF

F2
,

(2) the mapping f “
!

pn, Pnq | n P φ
(
belongs to MHSF

F2
.

Proof of Lemma 402:

(1) By construction, every ϑ P G satisfies ϑ̆ pPnq “ Pn, hence symG

`
Pn

˘
“ G P F . So, each

set Pn is symmetric, hence hereditarily symmetric, so it belongs to MHSF

F2
.

(2) For each ϑ P G, and each n P φ, we have ϑ̆ pnq “ n because n belongs to the kernel.
Therefore,

ϑ̆ pfq “ ϑ̆
´!

pn, Pnq | n P φ
(¯

“

!`
ϑ̆ pnq , ϑ̆ pPnq

˘
| n P φ

)
“

!
pn, Pnq | n P φ

(
“ f.

So, symG pfq “ G P F which shows that f is symmetric. Since all elements of f are
hereditarily symmetric, f is hereditarily symmetric as well, hence f belongs to MHSF

F2
.

1It would not be wise here to present the pair Pn by saying Pn “ tan, bnu, because this would mean that we

already have some ordering on the elements of Pn, from which we could easily get a choice function c : ω !!Ñ A
which chooses one item in each pair. For instance the following

c : ω !!Ñ A

n "Ñ an

which is precisely what we want to prevent from happening as Theorem 403 will show on page 376.
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l 402

Theorem 403. Let MHSF

F2
be the second Fraenkel model — described in Definition 401 — whose

set of atoms is A “

"

nPϑ
Pn, and each Pn is a pair.

MHSF

F2
|ù “

!
Pn | n P φ

(
does not admit any choice function”.

i.e.,

MHSF

F2
* “ there is some mapping c : φ !!Ñ A that satisfies @n P φ cpnq P Pn ”.

This theorem says that there is no function c : φ !!Ñ A which satisfies that for each integer n,
cpnq belongs to Pn. Since each set Pn contains exactly two elements, one may think of these
elements as socks which the model considers so indistinguishable that it cannot make up its
mind when it comes to picking exactly one of them in each pair.

Proof of Theorem 403: Towards a contradiction, we assume that inside MHSF

F2
there exists such

a choice function c : φ
1´1
!!Ñ

# !
Pn | n P φ

(
. Since c belongs to MHSF

F2
, there exists some finite

Fc & A such that
fixG pFcq & symG pcq .

Pick k large enough such that Fc XPk “ ⊋ as well as ϑ P fixG pFcq that satisfies ϑ̆
`
cpkq

˘
‰ cpkq.

i.e., if Pk “ tak, bku, this means that we both have ϑ̆ pakq “ bk and ϑ̆ pbkq “ ak (we should not
mention ak nor bk, but rather go with the more convoluted ϑ̆

`
cpkq

˘
‰ cpkq).

We then have the following contradiction:

˝ ϑ̆ pcq “ c (because ϑ P fixG pFcq),

˝ ϑ̆
`
cpkq

˘
‰ cpkq (by construction), and

˝ ϑ̆ pcq “

!
ϑ̆

`
n, cpnq

˘
| n P φ

)

“

"´
ϑ̆

`
n

˘
, ϑ̆

`
cpnq

˘¯
| n P φ

*

“

"´
n, ϑ̆

`
cpnq

˘¯
| n P φ

*
S

`
k, cpkq

˘

‰ c “

!`
n, cpnq

˘
| n P φ

)
Q

`
k, cpkq

˘

which contradicts the fact that ϑ P symG pcq.
l 403
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We can make use of the same model to show that there exists a model that does not satisfy
König Lemma which is the following well-known result:

König Lemma (ACϑ). Every infinite finitely branching tree admits an infinite branch.

Weak König Lemma (ACϑ). Every infinite binary branching tree admits an infinite branch.

Proof of König Lemma: Let T & E!ϑ be infinite. Since T is finitely branching, for every integer
n, T X

nE is finite, hence T is countable2. With the help of ACϑ we can equip T with a
well-ordering *T .

Given any finite sequence s P T , we use the notation Trss to denote the subtree rooted at s,
namely:

Trss “

!
s1

P E!ϑ
| s↭s1

P T
)
.

Notice first that given any infinite finitely branching tree T , the following set is non-empty:

!
s P

1E | Trss is infinite
(
.

By recursion on the integers we define b : φ Ñ T such that for each n we have bpnq P T X
nE.

˝ bp0q “ ⊋

˝ bpn ` 1q “*T -least element in
!
s P T X

n`1E |
`
s æ n “ bpnq ^ Trss is infinite

˘)
.

Then pbnqnPϑ is the desired infinite branch of T .
l König Lemma

As we already said, Theorem 406 typically contradicts Weak König Lemma:

Theorem 406. Let MHSF

F2
be the second Fraenkel model from Definition 401, whose set of atoms

is made up of
A “

"

nPϑ
Pn, where each Pn is a pair,

MHSF

F2
|ù “ there is an infinite binary tree without any infinite branch”.

i.e.,
MHSF

F2
* “Weak König Lemma”.

2Notice that since we assume ACω, we have that a countable union of countable sets is countable.
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Proof of Theorem 406: We set

T “

"

nPϑ

!
s P

nA | @k P n spkq P Pk

)
.

Any infinite branch would yield a choice function picking, for each integer n, an element inside
Pn, hence contradicting Theorem 403.

l 406
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23.5 The Ordered Mostowski Model

Definition 407 (Ordered Mostowski Model). Let M be any transitive model of ZFA whose
set of atoms is a countable set A equipped with a binary relation *M& A ˆ A which is a dense
order without least nor greatest element. i.e., pA,*Mq is isomorphic to pQ,*q.

We let G be the group of all order preserving permutations of A. i.e.,

G “

!
ϑ : A

bij.
!!Ñ A | @a P A @b P A

`
a *M b "Ñ ϑpaq *M ϑpbq

˘)
.

Let F & PpG q be the normal filter generated by

!
fixG pF q & G | F P PfinpAq

(
,

which can be proved to be normal.

The ordered Mostowski model MHSF

ost. is the corresponding permutation model.

Notation 408. Given any set y, we call support of y any Fy P PfinpAq which satisfies

fixG pFyq & symG pyq .

Notice that if Fy is a support of y and Fy & F P PfinpAq holds, then F is also a support of y
since we have

fixG pF q & fixG pFyq & symG pyq .

Lemma 409. Let MHSF

ost. be the ordered Mostowski model described in Definition 407.

(1) The order *M belongs to MHSF

ost. , where

*M“
!

pa,bq P A ˆ A | a *M b
(
.

(2) (a) If F and F 1 are two supports of y, then F X F 1 is also a support of y.

(b) For each set x P MHSF

ost. , there exists some &-least support of x.

(c) The following class is symmetric:

!
px,Eq P MHSF

ost. ˆ PfinpAq | E is the & -least support of x
(
.

(3) For all F P PfinpAq, if F has n elements, then there exist exactly 22n`1 sets S belonging to
PpAq such that F is a support of S.
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Proof of Lemma 409:

(1) For every permutation ϑ P G and every pa,bq P A ˆ A we have

pa,bq P *M %ñ a *M b

%ñ ϑpaq *M ϑpbq

%ñ
`
ϑpaq,ϑpbq

˘
P *Mq

%ñ ϑ̆
`
a,b

˘
P *M .

Hence, we have shown that ϑ̆
`

*M

˘
“*M holds for every permutation ϑ P G , which

yields symG

`
*M

˘
“ G P F , thus *M P MHSF

ost. .

(2) (a) Notice that given any permutation ϑ P fixG pF X F 1
q, there exist — for some k large

enough —permutations

ϖ1, . . . , ϖk P fixG pF q and ϖ1
1, . . . , ϖ

1
k

P fixG pF 1
q

such that
ϖ1 ˝ ϖ1

1 ˝ ϖ2 ˝ ϖ1
2 ˝ . . . ϖk ˝ ϖ1

k
“ ϑ.

This is better seen on an example: assume F “ ta1, a2, a3, a4u and F 1
“ ta1,b2, a4u

with F X F 1
“ ta1, a4u and

a1 *M a2 *M b2 *M a3 *M a4

Assume ϑ satisfies a2 *M ϑpa2q *M b2 *M ϑpb2q *M ϑpa3q *M a3, then take:

(A) ϖ1 defined by

˝ on s ´ 8, a2s, ϖ1
“ ϑ

˝ on sa2,b2r, ϖ1
“ ς for some (any) order isomorphism between sa2,b2r and

sϑpa2q,b2r

˝ ϖ1
pb2q “ b2

˝ on sb2, a3r, ϖ1
“ ↼ for some (any) order isomorphism between sb2, a3r and

sb2,ϑpa3qr

˝ ϖ1
pa3q “ ϑpa3)

˝ on sa3,`8s, ϖ1
“ ϑ

(B) ϖ defined by

˝ on s ´ 8,ϑpa2qs, ϖ “ id

˝ on sϑpa2q,b2r, ϖ satisfies ς ˝ ϖ “ ϑ

˝ ϖpb2q “ ϑpb2q

˝ on sb2, a3r, ϖ satisfies ↼ ˝ ϖ “ ϑ

˝ ϖpa3q “ a3
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˝ on sa3,`8s, ϖ “ id

Notice that ϖ1
P fixG pF 1

q and ϖ P fixG pF q and ϖ ˝ ϖ1
“ ϑ.

(b) Take any F P PfinpAq such that fixG pF q & symG pxq and consider

E “

$ !
F 1

& F | fixG pF 1
q & symG pxq

(
.

Clearly fixG pEq & symG pxq and E is &-minimal.

(c) For any ϑ P G we have ϑ̆
`
x,E

˘
“

`
ϑ̆ pxq , ϑ̆ pEq

˘
. Moreover, fixG pϑ̆ pEqq “ ϑ ˝

fixG pEq ˝ ϑ´1 and symG pϑ̆ pxqq “ ϑ ˝ symG pxq ˝ ϑ´1. So, if E is the &-least support
of x, then ϑ̆ pEq is the &-least support of ϑ̆ pxq. Therefore, we have shown that for
all ϑ P G ,

symG

´!
px,Eq P MHSF

ost. ˆ PfinpAq | E is least support of x
(¯

“ G P F .

(3) Assume F “ ta1, . . . , anu with a1 *M . . . *M an and F is a support of S. We have for
every b P S:

(a) if b *M a1, then
!
c P A | c *M a1

(
& S holds since for any c *M a1 there exists

some mapping ϑ P fixG pF q which satisfies ϑpbq “ c. So, we have

b P S ùñ ϑpbq P ϑ̆ pSq

ùñ c P S.

(b) if an *M b, then
!
c P A | an *M c

(
& S since for any an *M c there exists some

mapping ϑ P fixG pF q which satisfies ϑpbq “ c. So, we have

b P S ùñ ϑpbq P ϑ̆ pSq

ùñ c P S.

(c) if ai *M b *M ai`1 then
!
c P A | ai *M c *M ai`1

(
& S since for any ai *M c *M

ai`1 there exists some mapping ϑ P fixG pF q which satisfies ϑpbq “ c. So, we have

b P S ùñ ϑpbq P ϑ̆ pSq

ùñ c P S.

So, there are

˝ exactly n ` 1 such intervals, such that, for each of them, either it entirely belongs to
S or it is disjoint from S.

˝ exactly n atoms in F , each of which may or may not belong to S.
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So, there are as many sets of the form S & A with F as support, as there are mappings
from n` 1` n to t0, 1u which makes a total of 22n`1 di!erent subsets of A whose support
is a finite subset of A with n many atoms.

l 409

Theorem 410. Let MHSF

ost. be the ordered Mostowski model described in Definition 407.
(In particular, its set of atoms is a countable set A equipped with a binary relation *M& A ˆ A
which is a dense order without least nor greatest element.)

MHSF

ost. |ù “ there exists some mapping f : PfinpAq
onto
!!Ñ PpAq ”.

Proof of Theorem 410:

(1) For all support F “ ta1, . . . , anu with a1 *M . . . *M an, define a mapping

S : 2n`12 !!Ñ PpAq

↽ $Ñ S p↽q

so that
!
S p↽q | ↽ P

2n`12
(
is the set of all subsets of A whose support is F . Namely,

S p↽q “

" !
Ik & A | 0 + k + n ^ ↽p2kq “ 1

(
Y

!
ak P A | 1 + k + n ^ ↽p2k ´ 1q “ 1

(

where

˝ I0 “s ´ 8, a1r“
!
b P A | b *M a1

(

˝ Ik “sak, ak`1r“
!
b P A | ak *M b *M ak`1

(
(any 1 + k * n)

˝ In “san,`8r“
!
b P A | an *M b

(
.

(2) We are now able to show that inside the Mostowski model MHSF

ost. there exists some mapping

f : PfinpAq
onto
!!Ñ PpAq.

We equip 2!ϑ with the lexicographic ordering *lex. defined by

↽ *lex. ↽
1

%ñ Di
´
↽piq “ 0 ^ ↽piq “ 1 ^ @j * i ↽pjq “ ↽1

pjq

¯
.

For every sequence ↽ P 2!ϑ, we write
ú
↽ for the sequence obtained from ↽ by swapping

0’s and 1’s. Namely,
ú
↽ has the same length as ↽, and for every integer n * lh p↽q,

↽pnq “ 1´
ú
↽ pnq holds.
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We define a mapping g : 2!ϑ
Ñ 2!ϑ by gp⊋q “ ⊋ and for any non-empty sequence ↽,

gp↽q “ ↽ if ↽p0q “ 0

“
ú
↽ if ↽p0q “ 1

So, gp↽q is the only sequence inside
!
↽,

ú
↽

(
which starts with a 0.

For every integer n and every sequence ↽ P 2n we write ↽↭ ↑0↓ for the sequence in 2n`1

which satisfies ↽↭ ↑0↓ æ n “ ↽ and ↽↭ ↑0↓ pnq “ 0.

We define an ordering !n on 2n`12 by

↽ !n ↽1
%ñ gp↽↭ ↑0↓q *lex. gp↽1↭ ↑0↓q.

and denote by

↽pn,´q : 22n`1 onto
!!Ñ

2n`12

i $Ñ ↽pn,iq

the enumeration of 2n`12 along !n. i.e., we have

↽pn,0q !n ↽pn,1q !n . . . !n ↽pn,22n`1´1q.

We finally define the surjection by

f : PfinpAq
onto
!!Ñ PpAq

F ‰ ⊋ $Ñ p↽p|F |,|F |qq

⊋ $Ñ ⊋.

So, if the cardinality of F is n, then ↽p|F |,|F |q is the nth mapping — with regard to the
ordering !n — of the form ↽ : 2n ` 1 Ñ t0, 1u.

This mapping belongs to the Mostowski model MHSF

ost. , essentially because, as a permutation
model, it satisfies ZFA .

It remains to show that f is onto. For this purpose, take any S P PpAq ⫅̸⊋. Assume the
&-least support of S is some F P PfinpAq with |F | “ n. By the construction presented in
(1) on page 382 together with the enumeration above, there exists some integer i * 22n`1

such that
S p↽pn,iqq “ S.

Because of the whole construction and mainly the following two di!erent facts, we have
i , n.

˝ F being the &-least support of S, there can be neither 3 consecutive 0’s nor 3 con-
secutive 1’s in ↽pn,iq. Otherwise one could eliminate at least one atom from F while
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still preserving the fact that F is a support of

S “ S p↽pn,iqq “

¨

˚̊
˚̊
˝

# !
Ik & A | 0 + k + n ^ ↽pn,iqp2kq “ 1

(

Y

!
ak P A | 1 + k + n ^ ↽pn,iqp2k ´ 1q “ 1

(
.

˛

‹‹‹‹‚

˝ By construction of the ordering !n, the fact that it relies on the mapping gp↽q which

picks the only sequence inside
!
↽,

ú
↽

(
which starts with a 0, and compares not the

sequences gp↽q lexicographically, but the sequences gp↽↭ ↑0↓q, as shown by

↽ !n ↽1
%ñ gp↽↭ ↑0↓q *lex. gp↽1↭ ↑0↓q

guarantees that i , n holds.

So, if i “ n, then we are done.

Otherwise, it is tedious but straightforward to check that F can be extended into a set
E ( F which satisfies |E| “ i and S p↽pi,iqq “ S p↽pn,iqq, which this time gives the result.

l 410
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Simulating Permutation Models by
Symmetric Models

The main result in this chapter is that one can simulate arbitrary large fragments of permutation
models by symmetric submodels of generic extensions. Indeed, we may have P ϖ

pAq, for ⇀ as

large as needed, embed into some symmetric submodel {MrGs
F

. This way, most of the results
obtained in the context of permutation models, henceforth in the realm of ZFA as opposed
to ZF, may now be transferred to proper models of ZF. This is the case, for instance, of
Proposition 399 which states that the basic Fraenkel model cannot recognize that it is built
from some infinite and countable set of atoms. This is also the case of Theorem 403 which says
that there is a countable family of pairs for which no choice function succeeds in picking exactly
one element in each pair.

24.1 The Jech-Sochor Embedding Theorem

The Jech-Sochor Embedding Theorem. Let Z be any model of ZFA with A as set of atoms,
GA any subgroup of the group of permutations of A, and FA any normal filter on GA. Let ZHSFA

be the permutation model induced by Z and FA. Let also ⇀ be any ordinal and

ZHSFA |ù ZFA `
`
AC

˘P8
p⊋q

.

There exist

˝ a symmetric model
{MrGs

FA

˝ an embedding:
`

9̃

˘
G
: ZHSFA

1´1
!!Ñ {MrGs

FA

x $Ñ
`

9̃
x

˘
G
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˝ whose restriction to P ϖ
pAq X ZHSFA is an P-isomorphism:

`

9̃

˘
G
: ZHSFA X P ϖ

pAq
P´isom.

"!!!!Ñ

ˆ
P ϖ

´`

9̃
A

˘
G

¯ ˙{MrGs
FA

x $Ñ
`

9̃
x

˘
G
.

‚
ε

‚

ε ` 1

´
V pεq

¯{MrGs
FA

´
V pε ` 1q

¯{MrGs
FA

{MrGs
FA

P8
´`

9̃
A

˘
G

¯

`

9̃
A

˘
G

Figure 24.1: The Class P8
pAq embedded inside a symmetric submodel of MrGs.
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Proof of the Jech-Sochor Embedding Theorem: We let M be the kernel of the model of ZFA:

M “ P8
p⊋q X Z.

Inside Z, we pick any set A that belongs to the kernel (A P M) and satisfies |A| “ |A|, together

with any bijection ⇁ : A
bij.

"Ñ A that witnesses that A and A have same cardinalities.

Inside M we choose a cardinal κ large enough so that the following holds:

M |ù “κ is a regular cardinal ” and |P ϖ
pAq | * κ.

We force with pP,+,1q defined by

P “

"
p :

`
A ˆ κ ˆ κ

˘
Ñ t0, 1u

∣∣∣|dom ppq | * κ

*

p + q %ñ p ( q

1 “ ⊋

.

By choice of κ, P is a κ-closed notion of forcing. i.e., if ↑pε{ξ * ↼↓ is a +-decreasing sequence

for some ↼ * κ, then
ˇ̌
ˇ
"

ε!ϱ

dom ppεq

ˇ̌
ˇ * κ, hence p “

"

ε!ϱ

pε P P.

We then define, for each element z of Z, some canonical P-name
9̃
z which belong to M as follows.

For each a P A and ξ * κ, we set

(1)

9̃
xa,ε “

!
p▷̌, pq | p P P ^ p

`
⇁paq, ξ, ▷

˘
“ 1

)

(2)

9̃
a “

!
p

9̃
xa,ε,1q | ξ P κ

)

(3)

9̃
A “

!

9̃
a | a P A

)
.

Finally, for each set z P Z, by recursion, we define

9̃
z “

!
p

9̃
y,1q | y P z

)
if z R A.

“

9̃
a if z “ a P A.
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Claim 412. Let G which is P-generic over M. For all x P Z, for all a, a1
P A, and for all ξ * κ,

we have

(1) a ‰ a1
ñ

`

9̃
a

˘
G

‰
`

9̃
a1˘

G

(2)
`

9̃
x

˘
G

R
`

9̃
a
˘
G

(3)
`

9̃
x

˘
G

‰
`

9̃
xa,ε

˘
G
.

Proof of Claim 412:

(1)
`

9̃
xa,ε

˘
G

“
`

9̃
xa1,ε1

˘
G

%ñ a “ a1 and ξ “ ξ1.

pùñq We show pa ‰ a1 or ξ ‰ ξ1
q ùñ

`

9̃
xa,ε

˘
G

‰
`

9̃
xa1,ε1

˘
G
. So, we assume that either

a ‰ a1 or ξ ‰ ξ1 holds and first show that the following set is dense:

S “

!
p P P | D▷ * κ p

`
⇁paq, ξ, ▷

˘
“ 1 ^ p

`
⇁pa1

q, ξ1, ▷
˘

“ 0
)

Indeed, take any q P P. Since |dom pqq | * κ and cof pκq “ κ, we have

!
▷ * κ | p⇁paq, ξ, ▷q R dom pqq

(
X

!
▷ * κ | p⇁pa1

q, ξ1, ▷q R dom pqq
(

‰ ⊋

Take any ordinal ▷ in this set and form p such that

dom ppq “ dom pqq Y
!

p⇁paq, ξ, ▷q, p⇁pa1
q, ξ1, ▷q

(

with p
`
⇁paq, ξ, ▷

˘
“ 1 and p

`
⇁pa1

q, ξ1, ▷
˘

“ 0.

Since S P M and S is dense, there exists some p P S XG. Therefore, for some ordinal
▷ * κ, one has p▷̌, pq P

9̃
xa,ε and p▷̌, pq R

9̃
xa1,ε1 . Henceforth,

9̃
xa,ε ‰

9̃
xa1,ε1 .

p%ùq is immediate.

(2)
`

9̃
xa,ε

˘
G

‰
`

9̃
x

˘
G
holds for all x P P8

p⊋q X Z.

Notice first that for any x P P8
p⊋q X Z, by construction we precisely have

9̃
x “ x̌, so that

px̌q
G

“ x. So, it is enough to show that
`

9̃
xa,ε

˘
G

R M. Towards a contradiction, we assume`

9̃
xa,ε

˘
G

P M. Then, the following set also belongs to M:

D “

#
p P P | D▷ * κ

ˆ`
⇁paq, ξ, ▷

˘
P dom ppq ^

´
p

`
⇁paq, ξ, ▷

˘
“ 1 "Ñ ▷ R

`

9̃
xa,ε

˘
G

¯˙+

We show that D is dense. Indeed, given any p P P, there exists some ▷ * κ, with`
⇁paq, ξ, ▷

˘
R dom ppq so that we can extend p by q and r the following way:
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˝ dom pqq “ dom prq “ dom ppq Y
!

p⇁paq, ξ, ▷q
(
,

˝ q æ dom ppq “ r æ dom ppq “ p,

˝ q
`
⇁paq, ξ, ▷

˘
“ 1 and r

`
⇁paq, ξ, ▷

˘
“ 0.

Since we have q K r, we have either q P D or r P D, which shows D is dense.

Now, since D is dense, we take any p P D X G, and any ▷ which satisfy

p
`
⇁paq, ξ, ▷

˘
“ 1 "Ñ ▷ R

`

9̃
xa,ε

˘
G
.

Then, the definition of
`

9̃
xa,ε

˘
G
leads to the following contradiction.

▷ P
`

9̃
xa,ε

˘
G

"Ñ p
`
⇁paq, ξ, ▷

˘
“ 1 "Ñ ▷ R

`

9̃
xa,ε

˘
G
.

So, we have shown
`

9̃
xa,ε

˘
G

R M.

(3) For all x P Z and all a P A,
`

9̃
x

˘
G

R
`

9̃
a
˘
G
.

We recall that `

9̃
a

˘
G

“

´!
p

9̃
xa,ε,1q | ξ P κ

)¯

G

“

!
p

9̃
xa,εqG | ξ P κ.

)

Towards a contradiction, we assume that there exists some ξ P κ such that
`

9̃
x

˘
G

“
`

9̃
xa,ε

˘
G
.

i.e.,
`

9̃
x

˘
G

“
`

9̃
xa,ε

˘
G

“

ˆ!
p▷̌, pq | p P P ^ p

`
⇁paq, ξ, ▷

˘
“ 1

)˙

G

“

! `
▷̌

˘
G

| Dp P G p
`
⇁paq, ξ, ▷

˘
“ 1

)

“

!
▷ * κ | Dp P G p

`
⇁paq, ξ, ▷

˘
“ 1

)
.

(a) If x “ a1
P A, then

9̃
x “

9̃
a1

“

!
p

9̃
xa1,ε1 ,1q | ξ1

P κ
)
and

`

9̃
x

˘
G

“
`

9̃
a1˘

G

“

´!
p

9̃
xa1,ε1 ,1q | ξ1

P κ
(¯

G

“

!
p

9̃
xa1,ε1qG | ξ1

P κ
)

“

"! `
▷̌

˘
G

| Dp P G p
`
⇁pa1

q, ξ1, ▷
˘

“ 1
)

| ξ1
P κ

*

“

" !
▷ * κ | Dp P G p

`
⇁pa1

q, ξ1, ▷
˘

“ 1
)

loooooooooooooooooooooomoooooooooooooooooooooon
S pε1q

| ξ1
P κ

*
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Now, it is enough to show that no set S pξ1
q “

!
▷ * κ | Dp P G p

`
⇁pa1

q, ξ1, ▷
˘

“ 1
)
is

an ordinal to get a contradiction. To see this, simply notice that the following set is
trivially dense in P:

$
’&

’%
p P P | D▷ * ▷ 1

* κ

¨

˚̋
`
⇁pa1

q, ξ1, ▷
˘

P dom ppq ^ p
`
⇁pa1

q, ξ1, ▷
˘

“ 0

and`
⇁pa1

q, ξ1, ▷ 1˘
P dom ppq ^ p

`
⇁pa1

q, ξ1, ▷
˘

“ 1

˛

‹‚

,
/.

/-

which implies that S pξ1
q is a non-empty set of ordinals which is not an initial segment

of the ordinals, henceforth it is not an ordinal.

(b) If x R A, then
9̃
x “

!
p

9̃
y,1q | y P x

(
and

`

9̃
x

˘
G

“
!`

9̃
y

˘
G

| y P x
(
.

˝ If tc pxq does not contain any atom (x belongs to the kernel), then by construction

9̃
x “ x̌ and by Claim 412 (2) we have

`

9̃
xa,ε

˘
G

‰ px̌q
G
.

˝ If tc pxq contains an atom a1, then tc ppxq
G

q contains pa1
q
G
which is impossible by

case (3)(a).

l 412

Claim 413. Let G be P-generic over M. For all x, y P Z, we have

(1)
`
x P y

˘Z
%ñ

´ `

9̃
x

˘
G

P
`

9̃
y

˘
G

¯MrGs

(2)
`
x “ y

˘Z
%ñ

´ `

9̃
x

˘
G

“
`

9̃
y

˘
G

¯MrGs
.

Proof of Claim 413: The proof is by induction on rkP8
pAq pyq. We prove simultaneously (1) and

(2).

rkP8
pAq pyq “ 0: corresponds to y being an atom of the form a P A.

(1) pùñq
`
x P a

˘Z
never holds, so the result is immediate.

p%ùq

´ `

9̃
x

˘
G

P
`

9̃
a
˘
G

¯MrGs
never holds, as we saw above, so the result is immediate.

(2) pùñq is trivial.

p%ùq ‚ If x “ a1
P A, then

`

9̃
a
˘
G

“
`

9̃
a1˘

G
ùñ a “ a1.

‚ If x R A, then
9̃
x “

!
p

9̃
z,1q | z P x

(
and

`

9̃
x

˘
G

“
`

9̃
a

˘
G

implies
`

9̃
z

˘
G

P
`

9̃
a
˘
G

holds for some z P x, which contradicts Claim 412 (2).

rkP8
pAq pyq ’ 0: corresponds to y being an atom of the form a P A.

(1) pùñq follows by definition of
9̃
x and

9̃
y.
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p%ùq by construction of
9̃
y “

!
p

9̃
z,1q | z P y

(
, there exists some z P y such that

`

9̃
x

˘
G

“
`

9̃
z

˘
G
. By induction hypothesis, we obtain

`
x “ z

˘Z
, hence

`
x P y

˘Z
.

(2) pùñq is trivial.

p%ùq If
`
x ‰ y

˘Z
, then by symmetry, there exists

`
z P y ^ z R x

˘Z
and by (24.1) we

obtain
`

9̃
z

˘
G

P
`

9̃
y

˘
G
and

`

9̃
z

˘
G

R
`

9̃
x

˘
G
which yields

`

9̃
x

˘
G

‰
`

9̃
y

˘
G
.

l 413

We then associate to every permutation ϖ P GA (where ϖ : A
bij.
!!Ñ A and GA is the subgroup of

the group of permutations of A) the following set ”ς of permutations ϑ : A ˆ κ
bij.
!!Ñ A ˆ κ:

”ς “

!
ϑ : A ˆ κ

bij.
!!Ñ A ˆ κ | @a P A @ξ * κ D▷ * κ ϑ

`
⇁paq, ξ

˘
“

´
⇁
`
ϖpaq

˘
, ▷

¯)

“

#
ϑ : A ˆ κ

bij.
!!Ñ A ˆ κ | @a P A ϑ

”!
⇁paqloomoon
a

(
ˆ κ

ı
“

!
⇁
`

bhkkikkj
ϖpaq

˘
loooomoooon

b

)
ˆ κ

+
.

The intuition behind all this is that A ˆ κ should be regarded as as many disjoint copies of κ

as there are atoms (A-many or equivalently A-many). Then, every permutation ϖA : A
bij.
!!Ñ A

induces a permutation ϖA : A bij.
!!Ñ A via the bijection ⇁ : A

bij.
"Ñ A. Now, we only consider the

permutations ϑ : Aˆ κ
bij.
!!Ñ Aˆ κ which, for every a P A, map

!
a

(
ˆ κ to

!
b

(
ˆ κ — where the

relation between a and b is given by ⇁paq “ a and ⇁ ˝ ϖpaq “ b.

So, as shown in Figure 24.2, each permutation in ”ς can be regarded as as many permutations
of κ as there are atoms, since for every a P A:

ϑætauˆφ :
!
a

(
ˆ κ

bij.
!!Ñ

!
b

(
ˆ κ.

We set
GA “

"!
”ς | ϖ P GA

(
.

For every subgroup HA & GA, we set

HA “

"!
”ς | ϖ P HA

(
.

Now, every permutation ϑ : Aˆκ
bij.
!!Ñ Aˆκ induces an automorphism ϑP : P

bij.
!!Ñ P defined by

ϑP
`
ϑ pa, ξq , ▷

˘
“

`
a, ξ, ▷

˘

or, to say it di!erently:
ϑP

`
a, ξ, ▷

˘
“

`
ϑ´1

pa, ξq , ▷
˘
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b b

b-block

a a a-block

↼
↽

⇀ætauˆε:tauˆφ
bij.

!!Ñtbuˆφ

ςA

↽

ςA˝↽
↽˝ςA

ςA ε

Figure 24.2: The permutation of blocks induced by ϑ P ”ς.

Following this, we regard every permutation ϑ P GA as the automorphism ϑP of P that it induces.
For every F P PfinpA ˆ κq we set

fixGA
pF q “

!
ϑ P GA | @pa, ξq P F ϑpa, ξq “ pa, ξq

)

Finally, we set FA is the filter generated by

!
HA | HA P FA

(
Y

!
fixGA

pF q | F P PfinpA ˆ κq
(
.

i.e.,

H P FA %ñ

#
H1 X . . . X Hn & H & GA and for some H1, . . . ,Hn P

!
HA | HA P FA

(
Y

!
fixGA

pF q | F P PfinpA ˆ κq
(
.

Clearly,
!
HA | HA P FA

(
is closed under finite intersections because FA is closed under finite

intersections. Also,
!
fixGA

pF q | F P PfinpA ˆ κq
(
is closed under finite intersections because for

F1, . . . , Fn P PfinpA ˆ κq, we have

fixGA
pF1q X . . . X fixGA

pFnq “ fixGA
pF1 Y . . . Y Fnq.

Therefore,

J P FA %ñ HA X fixGA
pF q & J & GA for some HA P FA and F P PfinpA ˆ κq.

We check that FA is a normal filter on GA. i.e., FA is a set of subgroups of GA such that for all
subgroups HA, K of G and all ϑ P GA:

(1) GA P FA: we have GA “

"!
”ς | ϖ P GA

(
and GA P FA so, GA P

!
HA | HA P FA

(
& FA.

(2) if H P FA and H & K, then K P FA: This is by the very definition of FA.
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(3) if H P FA and K P FA, then HXK “ J P FA: assume for some HA,KA P FA and H,K P

PfinpA ˆ κq

HA X fixGA
pHq & H and KA X fixGA

pKq & K.

Then
HA X fixGA

pHq X KA X fixGA
pKq & H X K

i.e.,
HA X KAloooomoooon

JA
with

JA“HAXKA

XfixGA
pHq X fixGA

pKqlooooooooooomooooooooooon
fixGA

pHYKq

& H X K

(4) if H P FA, then ϑ ˝ H ˝ ϑ´1
P FA: assume for some HA P FA and H P PfinpA ˆ κq

HA X fixGA
pHq & H.

Then, since ϑ P GA, there exists some ϖ P GA such that ϑ P ”ς. Now,

ϑ ˝ HA ˝ ϑ´1
“ HA

1 where HA
1

“ ϖ ˝ HA ˝ ϖ´1
P FA

and

ϑ ˝ fixGA
pHq ˝ ϑ´1

“

!
ϑ ˝ ◁ ˝ ϑ´1

| ◁ P GA and @pa, ξq P H ◁pa, ξq “ pa, ξq

)

“

!
◁ P GA | @pb, ξq P ϑ rHs ◁pb, ξq “ pb, ξq

)
P FA

Now, since HA X fixGA
pHq & H, we have

ϑ ˝ HA ˝ ϑ´1
X ϑ ˝ fixGA

pHq ˝ ϑ´1
& ϑ ˝ H ˝ ϑ´1

P FA.

We let the set of all hereditarily symmetric P-names HSFA
& MP

HSFA
“

!
◁ P MP

| symGA
p◁q P FA and t0 | Dp P P p0, pq P ◁u & HSFA

(
.

i.e.,
◁ P HSFA

%ñ symGA
p◁q P FA and t0 | Dp P P p0, pq P ◁u & HSFA

.

We denote the symmetric submodel of the generic extension MrGs by

{MrGs
FA

“
!

p◁q
G

P MrGs | ◁ P HSFA

(
.

We notice that the following sets belong to the symmetric submodel {MrGs
FA

:
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˝
`

9̃
xa,ε

˘
G
(for all a P A and all ξ * κ) because

symGA

`

9̃
xa,ε

˘
“ fixGA

`!
p⇁paq, ξq

(˘
.

˝
`

9̃
a
˘
G
(for all a P A) because

symGA

`

9̃
a

˘
“

" !
”ς | ϖ P symGA

paq
(
.

˝
`

9̃
A

˘
G
because

symGA

`

9̃
A

˘
“ GA.

So, we already have
`

9̃
A

˘
G
, each

`

9̃
a
˘
G
, and each

`

9̃
xa,ε

˘
G
all belong to the symmetric submodel.

We now show that x belongs to the permutation model ZHSFA if and only if
`

9̃
x

˘
G
belongs to the

symmetric submodel of the generic extension {MrGs
FA

.

Claim 414. For all x P Z,
x P ZHSFA %ñ

9̃
x P HSFA

.

Proof of Claim 414: This comes down to proving

symGA
pxq P FA %ñ symGA

`

9̃
x

˘
P FA.

pùñq We have symGA

`

9̃
x

˘
“

# !
”ς | ϖ P symGA

pxq
(
. So, if symGA

pxq P FA, then, by definition,

" !
”ς | ϖ P symGA

pxq
(

“ symGA

`

9̃
x

˘
P FA.

p%ùq If symGA

`

9̃
x

˘
P FA, then, for some HA P FA and F P PfinpA ˆ κq, we have

HA X fixGA
pF q & symGA

`

9̃
x

˘
& GA

where HA “

"!
”ς | ϖ P HA

(
. We set

F “

!
a | Dξ * κ

`
⇁paq, ξ

˘
P F

)
.

We have
HAloomoon
PFA

X

$

aPF

fixGA
paqloomoon

PFAlooooooooooomooooooooooon
PFA

& symGA
pxq & GA
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since FA is finite, this shows that symGA
pxq P FA.

l 414

Claim 415. For all x P Z,

x P ZHSFA %ñ
`

9̃
x

˘
G

P {MrGs
FA

Proof of Claim 415:

pùñq This is a consequence of Claim 414 since x P ZHSFA ùñ

9̃
x P HSFA

ùñ
`

9̃
x

˘
G

P {MrGs
FA

.

p%ùq We proceed by contradiction, assuming there exists x P Z such that
`

9̃
x

˘
G

P {MrGs
FA

but
x R ZHSFA. We assume x be the P-least such set in the sense that y P ZHSFA holds for all´

9̃
y

¯

G

P
`

9̃
x

˘
G
.

Since
`

9̃
x

˘
G

P {MrGs
FA

, there exists some P-name
˜
z P HSFA

and some forcing condition
pz P G such that

pz ,
˜
z “

9̃
x.

Since
˜
z P HSFA

, there exist both HA P FA and F P PfinpA ˆ κq such that

HA X fixGA
pF q & symGA

p
˜
zq & GA

Since, symGA
pxq R FA, we have, for F “

!
a P A | Dξ * κ

`
⇁paq, ξ

˘
P F

)
,

HAloomoon
PFA

X

$

aPF

fixGA
paqloomoon

PFAlooooooooooomooooooooooon
PFA

) symGA
pxq & GA.

Therefore, there exists

ϖ P

´
HA X

$

aPF

fixGA
paq

¯
⫅̸ symGA

pxq.

In particular, we have ϖpxq ‰ x.

Since |dom ppzq | * κ, there exists some ↼ * κ such that

!
pa, ξq P A ˆ κ | ↼ * ξ

(
X

`
F Y dom ppzq æ A ˆ κ

˘
“ ⊋.

So, in order to have some ϑ P ”ς satisfy both
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(1) ϑ P HA X fixGA
pF q (2) ϑppzq and pz are compatible.

we can define ϑ as follows:

for a P F and ξ * κ : ϑ
`
⇁paq, ξ

˘
“

`
⇁paq, ξ

˘

for a R F and ξ * ↼ : ϑ
`
⇁paq, ξ

˘
“

`
⇁ ˝ ϖpaq, ↼ ` ξ

˘

ϑ
`
⇁paq, ↼ ` ξ

˘
“

`
⇁ ˝ ϖpaq, ξ

˘

for a R F and ↼ * ξ ` 1 * κ : ϑ
`
⇁paq, ↼ ` ξ

˘
“

`
⇁ ˝ ϖpaq, ↼ ` ξ

˘
.

We then have

˝ ϑ̃p
˜
zq “

˜
z (because ϑ P HA X fixGA

pF q);

˝ pz , ϑ̃p

9̃
xq ‰

9̃
x (because Z |ù ϖpxq ‰ x and by Claim 413 (2)

Z |ù ϖpxq ‰ x %ñ MrGs |ù

´

9
%
ϖpxq

¯

G

‰
`

9̃
x

˘
G

%ñ MrGs |ù
`
ϑ̃p

9̃
xq

˘
G

‰
`

9̃
x

˘
G
.q

˝ there exists q P P such that q + pz and q + ϑppzq which leads to the following
contradiction:

q ,
˜
z “

9̃
x and q , ϑ̃p

9̃
xq ‰

9̃
x and q , ϑ̃p

9̃
xq “

˜
z.

l 415

Claim 416. For all x P Z, and all ordinal ⇀,

! `

9̃
x

˘
G

| x P P ϖ
pAq X ZHSFA

(
“

ˆ
Pϖ

´ `

9̃
A

˘
G

¯˙{MrGs
FA

.

Proof of Claim 416:

p&q is immediate.

p(q The proof is by P-induction. We let x P P ϖ
pAq X ZHSFA with

`

9̃
x

˘
G

P

ˆ
Pϖ

´ `

9̃
A

˘
G

¯˙{MrGs
FA

and

y P {MrGs
FA

be such that {MrGs
FA

|ù y P
`

9̃
x

˘
G
. We consider

˜
y any P-name for y. Now, for
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each u P x, the following set is dense:

Du “
!
q P P | q ,

9̃
u P

˜
y or q ,

9̃
u R

˜
y

(
.

Since |P ϖ
pAq X ZHSFA| * κ, we have |x| * κ, hence |

!
Du | u P x

(
| * κ and, since P is κ-

closed, there exists some forcing condition p P P which “ decides ” for each u P x, whether

9̃
u P

˜
y or

9̃
u R

˜
y holds. Namely,

p P G X

$

uPx

!
q P P | q ,

9̃
u P

˜
y or q ,

9̃
u R

˜
y

(
.

We take z “
!
u P x | p ,

9̃
u P

˜
y

(
so that we have

`

9̃
z

˘
G

“ y and since
`

9̃
z

˘
G

belongs to

{MrGs
FA

, we also have z P ZHSFA by Claim 415.

l 416

Claim 416 yields that the embedding ZHSFA Ñ {MrGs
FA

x $Ñ
`

9̃
x

˘
G

satisfies

! `

9̃
x

˘
G

| x P P ϖ
pAq X ZHSFA

(
“

ˆ
Pϖ

´ `

9̃
A

˘
G

¯˙{MrGs
FA

and for all x, y P P ϖ
pAq X ZHSFA we have

ZHSFA |ù y P x %ñ {MrGs
FA

|ù
`

9̃
y

˘
G

P
`

9̃
x

˘
G
.

So, it follows that the mapping x $Ñ
`

9̃
x

˘
G

is an P-isomorphism between P ϖ
pAq X ZHSFA and

ˆ
Pϖ

´ `

9̃
A

˘
G

¯˙{MrGs
FA

.

l Jech-Sochor Embedding Theorem

24.2 Some applications of the Jech-Sochor Embedding Theorem

Corollary 417. Let Z be any model of ZFA with

˝ A as set of atoms,

˝ GA any subgroup of the group of permutations of A,

˝ FA any normal filter on GA,
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such that the permutation model ZHSFA induced by Z and FA satisfies

ZHSFA |ù ZFA `
`
AC

˘P8
p⊋q

.

Let also ε be any ordinal and ω be any formula of the form

ω :“ Dx ϱpxqloomoon
!0´rud

0

where ϱ is some #0´rud
0 -formula whose quantifiers are all bounded by P ω

pxq.

If ZHSFA |ù ω, then there exists a symmetric model {MrGs
FA

such that {MrGs
FA

|ù ω.

Proof of Corollary 417: Since ZHSFA |ù Dx ϱpxq, we fix

˝ any B P ZHSFA such that ZHSFA |ù ϱpBq and

˝ any large enough ordinal ⇀ such that P ω
pBq & P ϖ

pAq.

By the Jech-Sochor Embedding Theorem (on page 385) there exists some symmetric submodel
{MrGs

FA

together with an P-isomorphism:

I : ZHSFA X P ϖ
pAq

P-isomorphism
"!!!!!!!Ñ

ˆ
P ϖ

´`

9̃
A

˘
G

¯ ˙{MrGs
FA

.

hence

ZHSFA |ù ω %ñ ZHSFA |ù Dx ϱpxq

ùñ DB P ZHSFA D⇀ P On
´
ZHSFA |ù ϱpBq and P ω

pBq & P ϖ
pAq

¯

ùñ ZHSFA X P ϖ
pAq |ù ϱpBq

%ñ

ˆ
P ϖ

´`

9̃
A

˘
G

¯ ˙{MrGs
FA

|ù ϱ
`
I pBq

˘

ùñ

ˆ
P ϖ

´`

9̃
A

˘
G

¯ ˙{MrGs
FA

|ù Dx ϱpxq.

ùñ

ˆ
P ϖ

´`

9̃
A

˘
G

¯ ˙{MrGs
FA

|ù ω.
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l 417

Corollary 418. If ZF is consistent, then the following theories are consistent as well:

(1) ZF`“ there exists some infinite Dedekind-finite set1 ”.

(2) ZF`“ there exists some infinite set A such that PpAq is Dedekind-finite ”.

(3) ZF`“ there exists some countable family of pairs which does not admit any choice func-
tion ”.

(4) ZF`“ there exists some infinite binary tree without any infinite branch ”.

(5) ZF`“ there exists an infinite set A and a mapping f : PfinpAq
onto
!!Ñ PpAq ”.

Proof of Corollary 418: First, notice that ZF and ZFC are equiconsistent. Then,

(1) By Proposition 399, the basic Fraenkel modelMHSF

F0
which was defined on page 372 contains

A, an infinite set of atoms, which is Dedekind-finite:

MHSF

F0
|ù →0

1 ´ 1
!!!Ñ
!!!Ñ

!!À A.

For any integer n and any atom a, we have

pn, aq “
!

tnu , tn, au
(

P MHSF

F0
X P n`3

pAq,

as well as
pa, nq “

!
tau , ta, nu

(
P MHSF

F0
X P n`3

pAq,

Hence, if f is of the form f : φ Ñ A and f belongs to MHSF

F0
, then it belongs to P ϑ

pAq.
So, we have

MHSF

F0
|ù

!
f & φ ˆ A | f : φ Ñ A

(
& P ϑ`1

pAq.

Similarly, g is of the form f : A Ñ n for some integer n, and g belongs to MHSF

F0
, then it

belongs to P n`4
pAq. So, we have

MHSF

F0
|ù

!
g & φ ˆ A | Dn P φ g : A Ñ n

(
& P ϑ

pAq.

Moreover,
MHSF

F0
|ù

`
AC

˘P8
p⊋q

.

1See Definition 353 on page 307, where it was stated that A is Dedekind-finite if ω
1 ´ 1!!!Ñ!!!ÑÀ A does not hold.
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Now,

MHSF

F0
|ù Dx

´
@n P φ “ there is no g : x

1´1
!!Ñ n ” ^ “ there is no f : φ

1´1
!!Ñ x ”

¯

%ñ

MHSF

F0
|ù Dx

´
@n, g P P ϑ`1

pxq
`
n P φ !Ñ #g : x

1´1
!!Ñ n

˘
^ @f P P ϑ`1

pxq #f : φ
1´1
!!Ñ x

¯

%ñ

MHSF

F0
|ù Dx

ˆ
# Dn, g P P ϑ`1

pxq

´
n P φ ^ g : x

1´1
!!Ñ n

¯
^ # Df P P ϑ`1

pxq f : φ
1´1
!!Ñ x

˙
.

By Corollary 417, there exists some symmetric submodel {MrGs
FA

such that

{MrGs
FA

|ù Dx

ˆ
# Dn, g

´
n P φ ^ g : x

1´1
!!Ñ n

¯
^ # Df f : φ

1´1
!!Ñ x

˙
,

which is equivalent to

{MrGs
FA

|ù Dx “x is infinite and there is no f : φ
1´1
!!Ñ x ”.

(2) mutatis mutandis, the proof is the same as for (1): By Proposition 400, the basic Fraenkel
model MHSF

F0
contains an infinite set of atoms A which satisfies:

MHSF

F0
|ù →0

1 ´ 1
!!!Ñ
!!!Ñ

!!À PpAq.

For any integer n and any set of atom B & A, we have

pn,Bq P MHSF

F0
ùñ pn,Bq P MHSF

F0
X P ϑ`3

pAq.

Hence,
MHSF

F0
|ù

ϑPpAq & P ϑ`4
pAq.

we have,

MHSF

F0
|ù “ there is no f : φ

1´1
!!Ñ PpAq ” %ñ MHSF

F0
|ù

`
“ there is no f : φ

1´1
!!Ñ PpAq ”

˘P ω`4pAq
.

So, we have

MHSF

F0
|ù Dx

´
@n, g P P ϑ`4

pxq
`
n P φ !Ñ #g : x

1´1
!!Ñ n

˘
^ @f P P ϑ`4

pxq #f : φ
1´1
!!Ñ Ppxq

¯

%ñ
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MHSF

F0
|ù Dx

ˆ
# Dn, g P P ϑ`4

pxq

´
n P φ ^ g : x

1´1
!!Ñ n

¯
^ # Df P P ϑ`4

pxq f : φ
1´1
!!Ñ Ppxq

˙
.

Since, MHSF

F0
|ù

`
AC

˘P8
p⊋q

holds, by Corollary 417, there exists some symmetric submodel
{MrGs

FA

such that the following holds as well:

{MrGs
FA

|ù Dx

ˆ
# Dn, g

´
n P φ ^ g : x

1´1
!!Ñ n

¯
^ # Df f : φ

1´1
!!Ñ Ppxq

˙
,

which is equivalent to

{MrGs
FA

|ù Dx “x is infinite and there is no f : φ
1´1
!!Ñ Ppxq ”.

(3) By Theorem 403, the second Fraenkel model MHSF

F2
defined on page 374 whose set of atoms

is A “

"

nPϑ
Pn, where each Pn is a pair of two distinct atoms, satisfies not only that the set

of all pairs of atoms
!
Pn | n P φ

(
belongs to MHSF

F2
, but also that

MHSF

F2
|ù “

!
Pn | n P φ

(
does not admit any choice function”.

Now, a choice function is an element f P
ϑA which satisfies

@n P φ fpnq P Pn.

Since we have,
MHSF

F2
|ù

ϑA & P ϑ`1
pAq,

we obtain
MHSF

F2
|ù “ there is no choice function for

!
Pn | n P φ

(
”

%ñ

MHSF

F2
|ù

´
“ there is no choice function for

!
Pn | n P φ

(
”
¯P ω`1pAq

.

So, we have

MHSF

F2
|ù

´
“ there is no choice function for

!
Pn | n P φ

(
”
¯P ω`1pAq

.

Notice also that it was shown in Lemma ?? that the mapping f “
!

pn, Pnq | n P φ
(

belongs to MHSF

F2
, hence it belongs to P ϑ`1

pAq.
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MHSF

F0
|ù Dx Df, y P P ϑ`1

pxq

¨

˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˚̋

“ y is a set of disjoint pairs of elements from x ”

&

f : φ
bij.
!!Ñ y

&

#Dc P P ϑ`1
pxq

´
c : φ Ñ x ^ @n P φ cpnq P fpnq

¯

˛

‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‚

.

Since, MHSF

F2
|ù

`
AC

˘P8
p⊋q

, by Corollary 417, there exists some symmetric submodel
{MrGs

FA

such that

{MrGs
FA

|ù Dx Df, y

¨

˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˚̋

“ y is a set of disjoint pairs of elements from x ”

&

f : φ
bij.
!!Ñ y

&

#Dc
´
c : φ Ñ x ^ @n P φ cpnq P fpnq

¯

˛

‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‚

or equivalently,

{MrGs
FA

|ù “ there is a countable set of pairs with no choice function ”.

(4) By Theorem 406, Weak König Lemma fails inside the second Fraenkel model MHSF

F2
with

A “

"

nPϑ
Pn and Pn “ tan, bnu as set of atoms. Because the infinite binary tree

T “

"

nPϑ

!
s P

nA | @k P n spkq P Pk

)
.
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does not have any infinite branch (for the reason such an infinite branch would yield a
choice function that would contradict Theorem 403).

Now, every element of this tree belongs to some P k
pAq for some integer k large enough.

Hence, T & P ϑ
pAq which yields

MHSF

F2
|ù T P P ϑ`1

pAq.

Moreover, an infinite branch of T would be a mapping b : φ Ñ T , hence would satisfy
b & φ ˆ T , hence would belong to P ϑ`1

pAq.

Therefore we obtain

MHSF

F2
|ù

´
“ there exists an infinite binary tree on A with no infinite branch ”

¯P ω`1pAq
.

So, we have

MHSF

F2
|ù Dx DT P P ϑ`1

pxq

¨

˚̊
˚̊
˚̊
˚̊
˚̊
˝

“T is an infinite binary tree on x ”

&

#Db P P ϑ`1
pxq“ b is an infinite branch of T ”

˛

‹‹‹‹‹‹‹‹‹‹‚

Since, MHSF

F2
|ù

`
AC

˘P8
p⊋q

, by Corollary 417, there exists some symmetric submodel
{MrGs

FA

such that

{MrGs
FA

|ù Dx DT

¨

˚̊
˚̊
˚̊
˚̊
˚̊
˝

“T is an infinite binary tree on x ”

&

#Db“ b is an infinite branch of T ”c

˛

‹‹‹‹‹‹‹‹‹‹‚

or equivalently,

{MrGs
FA

|ù “ there exists an infinite binary tree with no infinite branch ”.

(5) On page 379, Definition 407 presented the ordered Mostowski model MHSF

ost. which comes
with a countable set of atoms A equipped with a binary relation *M& AˆA which makes it
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a dense ordering without least nor greatest element — so that it isomorphic to pQ,*p Qqq).

In Theorem 410, we proved that this permutation model satisfies

MHSF

ost. |ù “ there exists a mapping f : PfinpAq
onto
!!Ñ PpAq ”

Now, every element of this mapping is of the form
`
F,B

˘
for some F & PfinpAq and

B & PpAq. Since both F and B belong to P 1
pAq we have pF,Bq “

!
tFu ,

`
F,B

˘(
belongs

to P 3
pAq. This shows that the mapping f belongs to P 4

pAq.

Therefore we obtain

MHSF

ost. |ù

´
“ there exist an infinite set A and a mapping f : PfinpAq

onto
!!Ñ PpAq ”

¯P 4pAq
.

So, we have

MHSF

ost. |ù Dx
´
“x is infinite ” ^ Df P P 4

pxq f : Pfinpxq
onto
!!Ñ Ppxq

¯
.

Translating “x is infinite ” by the formula @n, g P P ϑ
pxq

´
n P φ !Ñ #g : x

1´1
!!Ñ n

¯

yields

MHSF

ost. |ù Dx

¨

˚̊
˚̊
˚̊
˚̊
˚̊
˝

@n, g P P ϑ
pxq

´
n P φ !Ñ #g : x

1´1
!!Ñ n

¯

^

Df P P ϑ
pxq f : Pfinpxq

onto
!!Ñ Ppxq

˛

‹‹‹‹‹‹‹‹‹‹‚

.

Since, MHSF

ost. |ù
`
AC

˘P8
p⊋q

, by Corollary 417, there exists some symmetric submodel
{MrGs

FA

such that

MHSF

ost. |ù Dx
´
“x is infinite ” ^ Df P P 4

pxq f : Pfinpxq
onto
!!Ñ Ppxq

¯
.

which gives

{MrGs
FA

|ù Dx

¨

˚̊
˚̊
˚̊
˚̊
˚̊
˝

@n, g
´
n P φ !Ñ #g : x

1´1
!!Ñ n

¯

^

Df f : Pfinpxq
onto
!!Ñ Ppxq

˛

‹‹‹‹‹‹‹‹‹‹‚

.
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or equivalently,

{MrGs
FA

|ù “ there exist an infinite set x and a mapping f : Pfinpxq
onto
!!Ñ Ppxq ”.

l 418
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