Part VII

Set Theory with Atoms






Chapter 23

Atoms and Permutation Models

Set theory with atoms — denoted ZFA — is slightly different from ZF in that the empty set is
not the only set which does not contain any other set. There are also some other sets that do
not contain anything but are still different from each other. This is a blatant contradiction to
the axiom of Extensionality.These other basic elements are known as atoms or as Urelements
(usually written urelements).

23.1 Zermelo-Fraenkel with Atoms (ZFA)

The language of ZFA is the same as the language of ZF augmented with a constant symbol A

whose interpretation is a “set of atoms” denoted by A. So, ZFA is still a theory of first order logic
with equality, but the signature of the language becomes now {A,€}. Essentially, the axioms
remain the same except that one must take into account the special features of the atoms. So,
Extensionality and Comprehension Schema are modified, and an Empty Set Existence
for ZFA as well as an axiom of Atoms are added to the theory. Since atoms do not contain
any element, the axiom of extensionality is modified and a few other axioms are added to ZF.

Empty Set Existence for ZFA
Jx(Vyy¢axnx¢A).
This axiom claims that the empty set exists and is different from any atom.
Extensionality for ZFA
V:ch((:c¢.A/\y¢.A)—> (V2 (zex«—»zey)—>x=y)).

This axiom claims that all sets that are not atoms are the same if and only if they contain
the same elements. Notice that the Axiom of Extensionality for ZFA implies that the
empty set is unique, which guarantees the use of the usual constant symbol &.
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axiom of Atoms
Vo (ze A « (z# @ AVzz2¢1)).

This axiom claims that, apart from the empty set — which is not an atom — the atoms
are the only sets which do not contain any other set.

Comprehension Schema for ZFA

By convention, we assume also that the Comprehension Schema is strengthened in
order to have the empty subset of any set to be the empty set as opposed to some atom.
This gives rise to the Comprehension Schema for ZFA:

For each formula ¢, ., ..w,) Whose free variables — if any — are among , z, w1, ..., wy,
and y is not free in ©(; - w;...w,), the following formula is an axiom:

Vszl...anEIny<<:): EY «—> (ac €z A ‘P(a:,Z,w1,...7wn))> A ((x €z —> ﬁ‘P(:c,z,wh--.,wn)) — oy = @))

The whole theory of ZFA is developed the same way the theory of ZF is — in particular ordinals
are constructed from the empty set and not from atoms. The tree representation of a set —
as a well-founded tree, since we work with Foundation — still holds. The only difference is
that with ZF each leaf corresponds to the empty set, whereas with ZFA, the leaves can also
represent atoms and not just the empty set.

Example 383. We assume a,b € A. Below is a tree that represents the set {{{b}, a}, {o} }

Definition 384 (ZFA). Given any set S, we define P™(S) by transfinite recursion.

o PYS) =S
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o P(S) =P(S)u Z(P*(9))

o P*S) = U’Pﬁ(S) (when « is limit).

(<a

PAS) = | P).

aeOn

If A is any set of atoms, and M is any model of ZFA | then P*(A) = U P “(A) is a subdivision

aeOn
of the elements of M, into some hierarchy, the same way the von Neumann hierarchy V =

U V («) is a subdivision of the sets from any model M of ZF or ZFC.

aeOn

M =Yz ze PYA).

Definition 385 (ZFA). If A is any set of atoms, M any model of ZFA, and x € M, then

Thpea (1) = least a € On such that =€ P*T1(A).

Remark 386. If A is any set of atoms, and M is any model of ZFA , then the kernel :
PHD) " M

is the domain of a model of ZF.
Moreover, for each x € P(&) n M we have

rhpem (2) = Thpeg) (x) = rk(2) .
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Figure 23.1: The Classes P™(A) and P™(2).

23.2 Permutation Models

The key idea that gave rise to the notion of permutation model is not far removed from the
one that brought the concept of symmetric submodel of a generic extension. A permutation
model of set theory is obtained from a model of ZFA by mean of a group of permutations of
the atoms, whereas a symmetric submodel is constructed using a group of automorphism of a
forcing poset. But unlike in the cas of symmetric submodel where the refinement of the model
obtained came from working on P-names, here we sort sets directly without reference to another
structure (except for the permutation normal filter).
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Definition 387 (ZFA). Let 7 : A 295 A be any permutation.
The class-function i : P*(A) — P™(A) is defined for every set x by

o ifx =, then 1 (Q) = @
o if x €A, then 7 (z) = 7(x)

o if x ¢ AU {@}, then % (z) = {7 (y) | y € }.

Example 388. We assume the set of atoms is A = {a,b, c}.
From the tree that represents the set in the left picture:

z = {{{o,b}.a},{c, 2} }
we obtain the set in the right picture:
7 (2) = {{{2.c}, b}, {a, 2} }

by applying the following permutation: i
.

o oo >

LUl

® o T >
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Definition 389. Given any model M, a class-function f : M Y M is an e-automorphism
if it satisfies for all x,y € M

rey < f(x)e f(y).

Lemma 390. Given any set of atoms A, any permutation m : A LY yields a class-function

7 PXA) — PX(A) which satisfies
(1) Vo e PHA) Yy e PHA) (zey 7 (2)er(y));

(2) 7 is 1-1 and onto, and 7~ ! = ol

Proof of Remark
(1) is immediate.
(2) (a) 7is 1-1: if x # y, then by symmetry, there exists z € x \ y, thence

zex =7 (z2)e7(x)

and = 7 (2) e (x) N7 (y)

zg¢y=7(2)¢7(y)

(b) 7 is onto: towards a contradiction assume that for some minimal ordinal « there
exists some y € PT1(A) such that 7 () # y holds for all z € M. By minimality
of a, every element of y is in the range or 7, hence there exists S € M such that
y = {# (z) | & € S}, which yields y = % (5), a contradiction.

(c) is immediate by induction on rkp«s (x) = least ordinal a such that 2 € P1(A).
O

So, any permutation 7 : A AN yields an e-automorphism 7 : P*(A) — P™(A). We recall that
a group ¢ of permutations of A is some subgroup of {7T :A— A|mis1-1 and onto}. equipped

with o: (g, f) — go f.
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Definition 391 (Permutation Normal Filter). Let M be any model of ZFA with A as set of
atoms, and ¢ be a group of permutations of A. % is a normal filter on G if % is a set of
subgroups of G such that for all subgroups H, IC of G and all m € G:

(1) Ge Z,

(2) if He F and H < K, then K € .7,

(3) ifHe F and K € F, then H n K € Z,
(1) ifHe F, thentoHon L e Z,

(5) for each atoma€ A, {me G |n(a) =a} e Z.

Definition 392 (Symmetry Group, Symmetric and Hereditarily Symmetric Set). Let M be
any model of ZFA with A as set of atoms, G any subgroup of the group of permutations of A,
and % any normal filter on G. For each set x € M,

o the symmetry group of x is
symg (v) = {w € G | 7 (z) = x};
o we write “x is symmetric” for
symy (z) € F;
o we write “x is hereditarily symmetric” for

symy (z) € F
re HS, — and
x < HS,.

Remark 393. Let M be any model of ZFA with A as set of atoms, G any subgroup of the group
of permutations of A, and .# any normal filter on G. For all sets x,y € M and all permutations

TEeQ,

(1) z=y < 7(x) =7 ()
(2) e HS, < 7 (z) € HS,.
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Proof of Remark

(1) zey < w(x)en(y) ylelds xSy < Vzex z€ey

Thus,
r=y < zcxCyandy<x
— 7 (z) €7 (y) and 7 (y) < 7 (v)
— i (2) = 7 (y)

9

(2) (a) We show that symy (z) € F = symy (7 (z) ) €
For every permutation p we have

7 lopor(z)=x

Pl

which shows
7 opoit e symy (v) = p € symy (7 (z))
or, equivalenty,
7o symy (x) o 7L S symy (ﬁ' (x) )
Since % is a normal filter, it follows that

-1

>

(z)) -

v

symy (x) == 7 0 symy (z) o 7
NG - ~

€T €T €T

and 7 o symy () o # C symy

1=

m
)

(b) We show that x € HS, = 7 (z) € HS by induction on rkp-s () = least ordinal «
such that x € P2T1(A).

o If rkp=p (z) = 0, then z is a set — possibly empty — of atoms.

by (a
symg () e F L symy (% (1)) € F
and and

reHS, = — 7 (z) € HS,.

Vaexr ac HS, == Vaex 7(x)eHS,
— o

—
VaeA symey (a)eF VaeA symy (a)eF
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o If rkpen () >0

symy (z) € F by:@ symgy (7 (x)) € F

zeHS, — and and — 7 (z) € HS,.
Vyex ye HS, = VYyex 7(y) e HS,

by induction hypothesis

We have shown z € HS, = 7 (z) € HS, holds for all z and all %. So, in particular for
x:=7(z) and % := 7~ we have

7(x)e HS, == 7 lox(z)eHS,

(]
Lemma 394. Let M be any model of ZFA with A as set of atoms, G any subgroup of the group

of permutations of A. Let ¢(z1,...,2,) be any Lsp-formula whose free variables are among
T1,...,%n. If T € G, then for all by, ..., b, € M,

ME by, by) = MEo(Eb),..., 7% (b)),

Proof of Lemma As always, the proof is by induction on the height of . Without loss of
generality, we may assume that ¢ only contains — and A as connectors and 7 as sole quantifier.

(1) If ¢ is an atomic formula, then we already saw that

o M)Zblzbg — M):'ﬁ(bl):'ﬁ'(bQ)
e} M’:blebQ = M):ﬁ'(bl)eu(bg).

(2) If ¢ = =1, then

M):So(blaabn)@Mbéw(blaabn)

(3) If ¢ = (¢ A 6), then

M):go(bl,...,bn)@)./\/l):w(bl,...,bn) andM)zH(bl,...,bn)
— MEYE D), 7 (b)) and M EO(7 (b1), ..., 7 (bn) )
= MEp(T(b),...,7(b)).
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(4) If ¢ = Jzp(z,x1,...,2y), then

M= (by,...,b,) < there exists ye M, M EvY(y,b1,...,by)
<= there exists 7 (y) e M, M ¢ (7(y), % (b1),...,7 (by))
= ME Yz, 7 (b),.... 7 (b))
— ME(F (), 7 (b)),

(]394

We now define the symmetric submodel of M — denoted by M"* — as the restriction of M
to HS,.

Figure 23.2: The class M, its core model (P™(@) )M, and the permutation model MHS7

Definition 395 (Permutation Model). Let M be any model of ZFA with A as set of atoms, G
any subgroup of the group of permutations of A, and % any normal filter on G. The submodel
of M formed of all the symmetric sets of M is called the permutation model and denoted by:

M = M n HS;.
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We show that every permutation model satisfies ZFA.

Proposition 396. Let M be any transitive model of ZFA with A as set of atoms, G any
subgroup of the group of permutations of A, and F any normal filter on G.

(1) MY is transitive;
(2) PH(2) < MM
(8) M satisfies ZFA.

Proof of Proposition [396:

(1) If z € y € M™ | then z € M since M is transitive and = € HS since y € HS, hence
reMnHS, = M

(2) For all z € PX(2), and for all 7 € G,

o 7 (x) =z, hence symy () = G € F;
r e HS,
o tc(z) € PHX(2), hence x < HS,

(3) MM satisfies ZFA:

Empty Set Existence for ZFA comes from P*(@) € MM,
Extensionality for ZFA is from M"" being transitive.

Comprehension Schema We want to show that for all w,w,...,w, € M- and for-
mula 80(337 Y, Yy, - -- ayn):

A
w={vew| (p(o/r,w/y /... wnfy))” }emm.
For this it is enough to consider the following subgroup of S € .%:
S = symy () o symy () 0 symg (w3) O ... A symy (wn)

Notice that, for any m € S and v € w, we have

M 0/ 0y, 01 [yt a) = M = o (7 (0) f 7 () 7 () s 7 () fm)
= M (7 (0) [ w0y, w - wn )

So, for every v € M™ and every m € S, we have v € v <= 7 (v) € u. Since
7 (u) = {# (v) | v € u}, we have shown that shows that # (u) = u holds for every
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v € MM Hence,

S = symg (w) N symy (w1) N symg (w2) N ... O symg (wn) S symy (u).

eF e
which shows that u e M-,

Pairing If 2,y € M™ then {z,y} € HS, since symy ({z,y}) 2 symy (x) N symy (y)
and z,y € HS,. We obtain

Union Let z € HS;, to prove that | Jx € M™, it is enough to show that there exists
u € HS; such that Jz < u.

u:{%(z)efr[yi] |Jyex (zey A weg)}.
€ MHS,

As described u belongs to M™ and | Jx < u holds. To show that u belongs to HS »,
it is enough to notice that symy (u) = G and every 7 (z) € u satisfies 7 (2) € HS,
since z € HS, holds.

Infinity Since w belongs to the kernel, it belongs to M-,

Power Set Let x € HS,, it is enough to show there exists u € HS; such that L@((a?)) N
M C o,

u={*() | (weP@) r tc9)}
~U{#[P@)Ireg}.

As described u belongs to M"™ and P(x) < u holds. To show that u belongs to
HS, it is enough to notice that symy (u) = G since given any p € G, we have

p) = {p(r ) | weP@)  7e0)|
—{porw) | weP@  req)}

Moreover, every 7 (y) € u satisfies 7 (y) € HS, since y € HS; holds.
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Foundation holds in M™- since M™" is transitive and Foundation holds in M.

Replacement Schema for each formula ¢(z,y, 21, ..., 2,), we want to prove that given
any wy € M% ... w, € M :

Vz e M™ El'y € M™ ((p<$7 Y, ’LUl/Zl, s 7wn/zn))M“s

—

Vue M™ Jve M™ Vzeudyev (p(z,y,wi/z,... ,wn/zn))M

We fix w; € M" ... Jw, € M"™ and u € M"™ and consider (inside M which
satisfies the Replacement Schema since it satisfies ZFA) the following set

v = {y e M™ | (Ela: eu @(x,y,w/z1,.. .,wn/zn))ws}
We consider the subgroup

S = symg (u) N symy (w1) N symy (w2) N ... N symy (wy) .

_

cF
Notice that, for any 7 € S, any x € v and any y € M""| we have 7 (z) € 7 (u) = u
and

M = (g, wn) <= M (7 (2) 7 (1) 7 (1) o 7 (w) )
= M™ (% (z),% (y),wi,...,w).

Since we have x € u <= 7 (z) € u, we have
M™ E3reu ple, ... w,) < M™ £ 3 (2) eu o7 (2), 5 (y),w,...,w,).

Therefore, we have y € v <= 7 (y) € v, which shows that 7 (v) = v, hence

S = symy (u) N symg (w1) N symy (wa2) N ... O symy (wp) S symey (v),
. N—

~
eF eF

which shows that v € MUS-.

(1398

23.3 The Basic Fraenkel Model
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Definition 397 (Basic Fraenkel Model). Let M be any transitive model of ZFA with any
countable infinite set of atoms A, & be the group of permutations of A, and F < P(¥) be the
normal filter generated by

{firgy(F) = 4 | F € Psin(A)}

where
fitg(F) ={mre ¥ |VzeF 7 (z) =z}

The submodel of M formed of all its symmetric sets is the permutation model known as the
basic Fraenkel Model:
M =M HS;.

To say that the filter .7 is generated by {fizy(F) S ¥ | F € Pfn(A)} means that
F = {H C G | H is a subgroup of G and fizy, (F) < H holds for some finite F' < A}.

This set .# of subgroups of G is a normal filter on G because for all subgroups H, K of G and
all permutations 7 € G we have:

(1) ¢ € .7 because ¥ = firy (D).

(2) If H e F and H < K, then firy(F) < H < K holds for some finite F' = A, which shows
Ke%Z.

(3) If He F and K € .7, then fizy(F) € H and fizy(F) < K holds for some finite E, F' < A.
Thus, fizy(E U F') € H n K also holds, which shows that H n K € .Z.

(4) If H € .Z, then given any finite F' € A such that fizy (F') € H, one has, for any permutation
7, 7o fitg(F) o n~" = fizy(n[F]); so that fizy(x[F]) € moH on~!, which shows that
noHon leZ.

(5) For each atom a € A, {r € G | w(a) = a} = fizy({a}) € Z.

For any set x, we call support of x any F, € Ps,(A) which satisfies fiz, (F;) < symg (). Notice
that if F, is a support of x and F, < F' € Pg,(A) holds, then fizy (F') < fizy(F,) S symgy (x)
holds as well, so that F' is also a support of x.

Lemma 398. We use the same assumptions as in Deﬁnition (the definition of MZ ).
If F e Pgn(A), S < A and firy(F) < symy (S) € &, then

o S is either finite or co-finite (i.e., AN S is finite);

o if S is finite, then S € F;

o if S is co-finite, then (AN S) € F.
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Proof of Lemma[398: We distinguish between S n (AN F) =@ and Sn (AN F) # @.
o If SN (AN F) =, then S < F, and in particular S is finite.

oIf Sn(ANF) # @, we show that S 2 (A~ F), and in particular S is co-finite. We fix
some a € S n (AN F) and consider any b € (A~ F) such that b # a — since A\ F is
infinite, such b exists. The permutation 7,.,; which exchanges a and b, and is the identity
everywhere else, belongs to fizy (F'). Now we have

aeS < Teop(a)e waap(S)
= Taop(a)€ S
— be S

which shows that (AN F) € S.

So, we have shown that we have either S € F or (A~ S) € F, which also shows that S is either
finite or co-finite.
U

We now show that inside the basic Fraenkel model, there exists some set which is both infinite
and Dedekind-finite.

Proposition 399. Let M2 be the basic Fraenkel model with A as set of atoms.

M Ry Z A,

So, although the basic Fraenkel model is built from a set of atoms which is infinite and countable,
the model itself cannot recognize this fact, for there is no injection from the integers to the set
of atoms.

Proof of Proposition 399# Towards a contradiction, we assume that inside M3 there exists
f:Rg ==L A. Then the set
S={f2n)eA|new}

belongs to M since M is a model of ZFA. So, we have symg, (S) € #, hence there exists
some finite F' < A such that fizy(F) S symg (S). By Lemma [398, either S finite or A \ S is
finite; a contradiction.

L]

Proposition 400. Let M} be the basic Fraenkel model with A as set of atoms.

M %) £ PA).
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Proof of Proposition Towards a contradiction, we assume that inside M2 there exists
Firg =5 P(A). Since f belongs to M, there exists some finite Fy < A such that

fizy(Fy) < symgy (f) .

By Lemma any S < A that satisfies fizy (Ff) S symgy (S) satisfies also either S < Fy or
(AN S) © Fy. Therefore, there exist only finitely many such sets S. So, take any n € w such
that f(n) < A satisfies

fizg(Fp) & symy (f(n).
Take any 7 € fizy (Fy) \ symy (f(n)) in order to have both

#(f) =f and #(f(n)) # f(n).

Since n belongs to the kernel, 7 (n) = n holds, which leads to f(# (n)) = f(n).

By construction,

So that, in particular, we have
7 (f) (n) =7 (f(n)).
But, since 7 € fizgy(Fy), we also have 7 (f) = f, hence 7 (f)(n) = f(n) which contradicts
7(f(n)) # f(n).
(] E00

23.4 The Second Fraenkel Model

Definition 401 (Second Fraenkel Model). Let M be any transitive model of ZFA whose set of
atoms is
A= UP”’ where (Pp)new is a family of disjoint pairs®;
new
and the subgroup of permutations 4 is

%:{W:AﬁA]Vnew 7 (Pn) = Po};

(i.e., 9 is the group of permutations of A which preserves the pairs).
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Let also F < P(¥) be the normal filter generated by

{firgy(F) = 4 | F € Psin(A)}

where
fizy(F)={re¥ |VzeF % (z) =z}

The submodel of M formed of all its symmetric sets is the permutation model known as the
second Fraenkel Model:
M = M HS,;.

Notice that the set of atoms of the second Fraenkel model is made of the elements of countably
many disjoints pairs.

Lemma 402. Let M} be the second Fraenkel model as described in Definition [401]. i.e., its
set of atoms is A = UP” with each P, being a pair, and for all # m, P, n P,, = &. We then

new
have

(1) for each integer n, the set P, belongs to MZ,

(2) the mapping f = {(n,P,) | n € w} belongs to M.

Proof of Lemma [402:

(1) By construction, every 7 € G satisfies 7 (P,) = P,, hence symgy (Pn) =G e Z. So, each
set P, is symmetric, hence hereditarily symmetric, so it belongs to M.

(2) For each m € G, and each n € w, we have 7 (n) = n because n belongs to the kernel.
Therefore,

%(f)z%({(n,Pn) |new}> - {(%(n),fr(Pn)) \new} —{(n,P,) | new} =f.

So, symy (f) = G € .F which shows that f is symmetric. Since all elements of f are
hereditarily symmetric, f is hereditarily symmetric as well, hence f belongs to M.

Tt would not be wise here to present the pair P, by saying P, = {an,bn}, because this would mean that we

already have some ordering on the elements of P, , from which we could easily get a choice function ¢ : w — A
which chooses one item in each pair. For instance the following

c:w—A

n — ap

which is precisely what we want to prevent from happening as Theorem will show on page W
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[ ] [02]

Theorem 403. Let MP> be the second Fraenkel model — described in Definition — whose
set of atoms is A = UP”’ and each P, is a pair.

new

M = “{P, | new} does not admit any choice function”.
1.e.,

M B “there is some mapping ¢ : w —> A that satisfies ¥Ynew c(n)e P, ”.

This theorem says that there is no function ¢ : w —— A which satisfies that for each integer n,
c(n) belongs to P,. Since each set P, contains exactly two elements, one may think of these
elements as socks which the model considers so indistinguishable that it cannot make up its
mind when it comes to picking exactly one of them in each pair.

Proof of Theorem Towards a contradiction, we assume that inside M there exists such

a choice function ¢ : w % U {Pn | ne w}. Since ¢ belongs to MZ*, there exists some finite
F. < A such that
fizg (Fe) € symy (c).

Pick k large enough such that F, N P, = @ as well as 7 € fiz, (F;) that satisfies 7 (c(k)) # c(k).
i.e., if P, = {ag, by}, this means that we both have 7 (ax) = by and 7 (bg) = ar (we should not
mention aj, nor by, but rather go with the more convoluted #(c(k)) # c(k)).

We then have the following contradiction:

(c) = c (because 7 € fizy(Fy)),

¢

o

¢

©)

(c(k)) # c(k) (by construction), and

o #(c) = {%(n,c(n)) Ine w}
_ {(%(n),%(c(n))) |new}
_ {(n,fr(c(n))) Ine w} 3 (k, c(k))
£c= {(n, c(n)) |ne w} 5 (k, c(k))

which contradicts the fact that 7 € symy (c).
(@3
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We can make use of the same model to show that there exists a model that does not satisfy
Ko6nig Lemma which is the following well-known result:

Konig Lemma (AC,,). Every infinite finitely branching tree admits an infinite branch.

Weak Ko6nig Lemma (AC,). Every infinite binary branching tree admits an infinite branch.

Proof of Konig Lemma: Let T < E=“ be infinite. Since T is finitely branching, for every integer
n, T n "E is finite, hence T is countable?. With the help of AC, we can equip T" with a
well-ordering <.

Given any finite sequence s € T, we use the notation 7|, to denote the subtree rooted at s,
namely:

Tig = {s' eE~¥|s"s € T} .
Notice first that given any infinite finitely branching tree 7', the following set is non-empty:
{s € 'E | T} is infinite} .
By recursion on the integers we define b : w — T such that for each n we have b(n) e T n"E.
o b(0)=2
o b(n+ 1) =<, -least element in {s eT A" E| (s n=>bn) AT is inﬁnite)}.

Then (b, )new is the desired infinite branch of 7.
[] Kénig Lemma

As we already said, Theorem typically contradicts Weak Konig Lemma:

Theorem 406. Let M be the second Fraenkel model from Definition whose set of atoms
18 made up of
A= UP”’ where each P, is a pair,

new

M = “there is an infinite binary tree without any infinite branch”.

1.€.,
M e “Weak Konig Lemma ”.
Fo

2Notice that since we assume AC,, we have that a countable union of countable sets is countable.



378 EPFL Set Theory

Proof of Theorem We set

T = U{se”AWkens(k)ePk}.

new

Any infinite branch would yield a choice function picking, for each integer n, an element inside
P,,, hence contradicting Theorem [403.
L]
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23.5 The Ordered Mostowski Model

Definition 407 (Ordered Mostowski Model). Let M be any transitive model of ZFA whose
set of atoms is a countable set A equipped with a binary relation <pm<S A X A which is a dense
order without least nor greatest element. i.e., (A, <m) is isomorphic to (Q, <).

We let & be the group of all order preserving permutations of A. i.e.,
G = {w:A%AwaeAVbeA (a<m b > (@) <m Tr<b))}.
Let % < P(¥) be the normal filter generated by
{fizg(F) = 9 | F € Pn(A)},

which can be proved to be normal.

The ordered Mostowski model My is the corresponding permutation model.

Notation 408. Given any set y, we call support of y any Fy € Pgn(A) which satisfies

fizy(Fy) < symy (y) .

Notice that if F, is a support of y and Fy, < F' € Pf,(A) holds, then F is also a support of y
since we have

fizg(F) € fizg(Fy) < symy (y) -

Lemma 409. Let MLy be the ordered Mostowski model described in Definition .

(1) The order <m belongs to My, where

<M= {(a,b) eAxA|a<M b}
(2) (a) If F and F' are two supports of y, then F n F' is also a support of y.

(b) For each set x € MUy, there exists some S-least support of x.

(¢) The following class is symmetric:

{(z,E) € MY x Psn(A) | E is the < -least support of z}.

(3) For all F € Pgy(A), if F has n elements, then there exist ezactly 2*"*1 sets S belonging to
P(A) such that F is a support of S.
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Proof of Lemma [409:

(1) For every permutation m € ¢ and every (a,b) € A x A we have

(2)

(a,b)e<M — a<mb
«— w(a) <m 7(b)
= (7(a),n(b)) e <m)
— 77'(3., b) e<M -

Hence, we have shown that TV['( <M ) =< holds for every permutation 7 € ¢, which

HS

yields symy ( <m ) = ¢ € .7, thus <y e M.

(a) Notice that given any permutation 7 € fizy (F n F'), there exist — for some k large

enough —permutations

Pro-..spi € firg(F) and ph,....ph € fizy(F')

such that
P1OPLOP2OPYO. .. PO Pl =T

This is better seen on an example: assume F' = {a;,aq,a3,a4} and F/' = {a;,bo, a4}
with F'n F' = {a;,a4} and

a; <y A2 <M b2 <m a3 <m A4

Assume 7 satisfies a2 <py m(a2) <m b2 <nm 7w(b2) <nm 7(a3) <m @s, then take:
(A) p' defined by
oon|—o,a],p=m
o on |ag, bo[, p/ = 6 for some (any) order isomorphism between ]ag, bo[ and
Im(a2), ba|
o p'(b2) = by
o on |be,as[, p) = 0 for some (any) order isomorphism between |by,as[ and
12, w(a3)[
o p(ag) = m(as)
o on |ag, +x], p) =
(B) p defined by
o on | —oo,m(ag)], p=id

o

on |m(az),bs[, p satisfies o p =
p(b2) = 7(b2)
on |bg,as[, p satisfies dop =7

p(as) = as

o

o

o
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o on laz, +x], p = id
Notice that p’ € fizy(F') and p € fizy(F) and po p/ = 7.
(b) Take any F' € Pgy,(A) such that fiz, (F) < symg (x) and consider

E=({F < F| fizy(F') < symy (z) }.

Clearly fizy(E) S symg () and E is S-minimal.

(c) For any m € & we have #(z,E) = (% (x),% (E)). Moreover, fizy(% (E)) = 7o
-1

firy(E) o w1 and symy (7 (z)) = o symy () o7
of x, then 7 (F) is the S-least support of 7 (). Therefore, we have shown that for
all Te ¥,

. So, if F is the C-least support

SYymey ({(x,E) € ML% X Ppn(A) | E is least support of :L'}) =Ye7.

(3) Assume F = {a1,...,an} with a; <p ... <m @, and F is a support of S. We have for
every b e S:

(a) if b <p a1, then {C eA|cC<m al} C S holds since for any ¢ <pp a; there exists
some mapping 7 € fizg(F') which satisfies m(b) = ¢. So, we have

beS= n(b)ex(9)
=cCceS.

(b) if &, <m b, then {C eAla, <m C} C S since for any a, <w C there exists some
mapping m € fizy (F') which satisfies 7(b) = ¢. So, we have

beS— n(b)e#(S)

= CceS.

(c) if a; <m b <M @;4+1 then {C eAla;, <M C<m a,-+1} C S since for any a; <y € <m
a;+1 there exists some mapping 7 € fizy (F') which satisfies 7(b) = c. So, we have

beS= n(b)er(S)

=CceS.
So, there are

o exactly n + 1 such intervals, such that, for each of them, either it entirely belongs to
S or it is disjoint from S.

o exactly n atoms in F', each of which may or may not belong to S.
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So, there are as many sets of the form S < A with F' as support, as there are mappings
from n + 1 +n to {0, 1} which makes a total of 227! different subsets of A whose support
is a finite subset of A with n many atoms.

[][09]

Theorem 410. Let M. be the ordered Mostowski model described in Definition .
(In particular, its set of atoms is a countable set A equipped with a binary relation <p<S A x A
which is a dense order without least nor greatest element.)

wi. = there exists some mapping f : Ppn(A) onto, P(A) 7.

Proof of Theorem

(1) For all support F' = {ay,...,a,} with a; <p1 ... <m @, define a mapping

S Infly 5 P(A)
x = JKX

so that {.(x) | x € ?**12} is the set of all subsets of A whose support is F'. Namely,
S0 = J{lksAlo<k<n A x(2k) =1} U{areAll<k<n A x(2k—1) =1}
where

o Ip=]—ow,a[={beA|b<pai}
o I =]ak,ak+1[= {b eA | ar <m b <m akH} (any 1<k< n)

o I =]an, +o[= {beAla, <m b}.

(2) We are now able to show that inside the Mostowski model MYy there exists some mapping
F o Pan(A) 222 P(A).
We equip 2<% with the lexicographic ordering <,, defined by
X <X = 3 (x@) =0 A X() =1 A Vi <ix() = X))

2<% we write X for the sequence obtained from y by swapping

For every sequence y €
0’s and 1’s. Namely, X has the same length as x, and for every integer n < Ih(x),

x(n) =1- N (n) holds.



Set Theory with Atoms 383

We define a mapping g : 2<% — 2<% by ¢(@) = & and for any non-empty sequence X,

gx) = x if x(0)=0

So, g(x) is the only sequence inside {x, X } which starts with a 0.

For every integer n and every sequence x € 2" we write x~ (0) for the sequence in 2"+!
which satisfies x~ (0) | n = x and x~ (0) (n) = 0.

We define an ordering <,, on 2"*!2 by
X <aX = g(x"(0)) <w. g(X'" (0)).
and denote by
X(n) : 92n+1 Onto 2nt1q
i = X(n,i)

the enumeration of "*12 along <,,. i.e., we have
X(n,0) <n X(n,1) <n -+ <n X(n,227+1_1)-

We finally define the surjection by

1 Pan(A) 2% P(A)
F#o  — (xqr,r))

(%) — J.

So, if the cardinality of F' is n, then x(p|,r|) is the n'™ mapping — with regard to the
ordering <, — of the form x : 2n + 1 — {0, 1}.

This mapping belongs to the Mostowski model My, essentially because, as a permutation

model, it satisfies ZFA .

It remains to show that f is onto. For this purpose, take any S € P(A) \ &. Assume the
C-least support of S is some F' € Pg,(A) with |F| = n. By the construction presented in
on page m together with the enumeration above, there exists some integer i < 22"+1

such that

S (X(ni)) = S-
Because of the whole construction and mainly the following two different facts, we have
1= n.

o F being the C-least support of S, there can be neither 3 consecutive 0’s nor 3 con-
secutive 1’s in X(; ;). Otherwise one could eliminate at least one atom from F' while
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still preserving the fact that £ is a support of

U{Ir cA[0<E<n A X40(2k) =1}
S=SXtms)) = U
{ar e Al1<k<n A Xx@uy(2k—1) =1}

o By construction of the ordering <, the fact that it relies on the mapping g(x) which

picks the only sequence inside {X, w)? } which starts with a 0, and compares not the
sequences g(x) lexicographically, but the sequences g(x~ (0)), as shown by

X <n X' = gx"(0) <w. g(X(0))
guarantees that ¢ > n holds.
So, if i = n, then we are done.

Otherwise, it is tedious but straightforward to check that F' can be extended into a set
E 2 F which satisfies |E| =i and .7 (x(;4)) = -*(X(n,i)), Which this time gives the result.

(] @10



Chapter 24

Simulating Permutation Models by
Symmetric Models

The main result in this chapter is that one can simulate arbitrary large fragments of permutation
models by symmetric submodels of generic extensions. Indeed, we may have P7(A), for v as

.

large as needed, embed into some symmetric submodel M[G]j. This way, most of the results
obtained in the context of permutation models, henceforth in the realm of ZFA as opposed
to ZF, may now be transferred to proper models of ZF. This is the case, for instance, of
Proposition [399 which states that the basic Fraenkel model cannot recognize that it is built
from some infinite and countable set of atoms. This is also the case of Theorem which says
that there is a countable family of pairs for which no choice function succeeds in picking exactly
one element in each pair.

24.1 The Jech-Sochor Embedding Theorem

The Jech-Sochor Embedding Theorem. Let Z be any model of ZFA with A as set of atoms,
Ga any subgroup of the group of permutations of A, and Fa any normal filter on Ga. Let Z%%~
be the permutation model induced by Z and Fp. Let also v be any ordinal and

2" = ZFA + (AC)”.

There exist

o a symmetric model
MIG]

o an embedding:
1 a4

(.)g: 2™ —> MIG]

Lo (@’)G
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o whose restriction to P7(A) n 2" is an €-isomorphism:

(s 2 Py <2 (pr((0),) )"

r = (@)G

Figure 24.1: The Class P™(A) embedded inside a symmetric submodel of M[G].
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Proof of the Jech-Sochor Embedding Theorem: We let M be the kernel of the model of ZFA.:
M =PH2)n Z.

Inside Z, we pick any set .4 that belongs to the kernel (A € M) and satisfies |A| = |A|, together
with any bijection ¢ : A LS A that witnesses that 4 and A have same cardinalities.

Inside M we choose a cardinal « large enough so that the following holds:
M E “k is a regular cardinal” and |P7(A)| < k.

We force with (P, <, 1) defined by

p={p:(Ax,@xn)*{0’”“510’”“(]’)'“}

By choice of x, P is a k-closed notion of forcing. i.e., if (p¢/§ < 0) is a <-decreasing sequence

for some § < k, then ’Ud()m (pe) ‘ < K, hence p = Upg e P.
£<6 £<6

We then define, for each element z of Z, some canonical P-name z which belong to M as follows.
For each a e A and ¢ < &, we set

(1)
%'a,g = {(éap) ’pe P /\p(l'(a>7§7<) = 1}

2)
a={(zae.1)|€cn)

(3)
A= {g|aeA}.

Finally, for each set z € Z, by recursion, we define

z = {(y,]l)|y€z} if z¢A.
= a it z=aeA
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Claim 412. Let G which is P-generic over M. For all x € Z, for alla,a’ € A, and for all £ < k,
we have

(1) a+a = (a)
(2) (2)q ¢ (@)q

(3) (&)g # (2ag)q-

o * @),

Proof of Claim [412}
(1) (@a,é)G = (ga’{’)a < a=a and {=¢"

(=) We show (a#ad or{ #¢) = (%‘avé)g # (“?a/:i/)a’ So, we assume that either
a#a or{ # ¢ holds and first show that the following set is dense:

S = {pE P | <k p(L(a),f,C) =1 /\p(L(a/),€/7C) = 0}
Indeed, take any g € P. Since |dom (q) | < k and cof (k) = K, we have

{¢<r|(a).&C) ¢ dom(q) } n{¢<r|((a),&,¢) ¢ dom(q)} # 2

Take any ordinal ¢ in this set and form p such that

dom (p) = dom (q) v {(¢(a),&,¢), («(&'),£'.¢)}

with p(L(a)v 3 C) = 1 and p(L(a/)a 5/7 C) =0
Since S € M and S is dense, there exists some p € S nG. Therefore, for some ordinal
¢ < Kk, one has ({,p) € Tae and (¢, p) ¢ Ta ¢ Henceforth, za¢ # za ¢

(<) is immediate.

(2) (%Caf)c # (@')G holds for all z € PX(@) n 2.

Notice first that for any x € P(g) n Z, by construction we precisely have T = &, so that
(%) = . So, it is enough to show that (%"a,s) o ¢ M. Towards a contradiction, we assume
(%Ca,é) o € M. Then, the following set also belongs to M:

D= {pe Pl <k <(L(a),§,<) € dom(p) A (p(a(a),ﬁ,g“) =1« (¢ (53»5)(;))}

We show that D is dense. Indeed, given any p € P, there exists some ( < k, with
(L(a), £, C) ¢ dom (p) so that we can extend p by g and r the following way:
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o dom(q) = dom(r) = dom(p) L { (1(a),&,¢) },
o q I dom(p) =r [ dom(p) =p,
o q(u(a),&,¢) =1 and r(u(a),&,¢) = 0.

Since we have g L r, we have either ¢ € D or r € D, which shows D is dense.

Now, since D is dense, we take any p € D n GG, and any  which satisfy

p(1(2),€,¢) =1 (¢ (zae),

Then, the definition of (gﬂa,g) p leads to the following contradiction.

(€ (zag), — p(1(a),&C) =1 <= (¢ (zag),
So, we have shown (g;a,g)G ¢ M.

(3) For all z € Z and all a€ A, (Q:)G ¢ (Q)G

We recall that
@)= ({@ac ) 1€er}) = {@ags | e r]

Towards a contradiction, we assume that there exists some £ € x such that (;B) o= (agaf) G
ie.,

G

- <{(5’p) [pePAp(ua).&,¢) = 1})
{(Og13pe G p(ua)€¢) =1}
{C<”|HPEGP(( ),€,¢) =1}.

a) fr =a €A, thenz =a ={(vae,1) | & €kt and
: & ral g

(#)g = @)g
{ iCa/ 5/ ’ fl € K})G
l'algl G’fleli}

= (a
- (
-{(
{ Q)¢ |3peC p(ua )75/76)=1}|£’e/@}
-

(<n|3peC pia >,§’,<)=1}r§’en}

(&)
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Now, it is enough to show that no set . (¢') = {C <k|IpeCG p(@), ¢, ¢) = 1} is
an ordinal to get a contradiction. To see this, simply notice that the following set is
trivially dense in P:

(u@),&,¢) e dom(p) ~ p(u@),&.¢) =
peP | A< <k and

(L(a’),gl7 CI) € dom (p) A p(L(a’),g', C) _

which implies that . (£’) is a non-empty set of ordinals which is not an initial segment
of the ordinals, henceforth it is not an ordinal.

(b) If x ¢ A, then z = {(y,]l) |y €z} and (%‘)G = {(y)G |y €}
o If tc (x) does not contain any atom (x belongs to the kernel), then by construction

r = Z and by Claim “. we have (asa g) # () -
o If tc(x) contains an atom &', then tc((x)) contains (&), which is impossible by

case|(3)(a)

[ A1l

Claim 413. Let G be P-generic over M. For all x,y € Z, we have
MI[G]
(1) wey)® = (@ge W)

@ (¢=9)° = (@)= We

Proof of Claim The proof is by induction on 7kp= (y). We prove simultaneously and

rkp-s (y) = 0: corresponds to y being an atom of the form a € A.

(=) (ze a) never holds, so the result is immediate.
MI[G]
(=) ( ( ) (g) G) never holds, as we saw above, so the result is immediate.
(2)] (=) is trivial.
(=) e Ifzx=a €A, then (7)G: (g’)Gzaza/

o If 2 ¢ A then:v—{z]l | z € 2} and (z

a) ., implies g € (@) G
holds for some z € x, which contradicts Clalm Ei

rkp-s (y) > 0: corresponds to y being an atom of the form a € A.

(1)] (=) follows by definition of £ and y.
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(«<=) by construction of y = {(z,1) | z € y}, there exists some z € y such that

(2)| (=) is trivial.

(=) If (a: # y) then by symmetry, there exists (z EYynzé a:)z and by (24.1) we
obtain (g)G € (Q)G and (g)G ¢ (g:)G which yields (QJ)G # (y)G

)
( ) ( ) . By induction hypothesis, we obtain (:c = z)z, hence (:t: € y)z
)
)

(JEI3

We then associate to every permutation p € Ga (where p : A P4, A and Ga is the subgroup of

the group of permutations of A) the following set II, of permutations 7 : A x & LN A X Kt

HPZ{WZAXK—@;AXK|V36AV£<KE|C</€ w(L(a),g):(L(p(a)),C)}
b
={W:AXK£AXF@\V&EA W[{i(\%}xn]={a(m)}xm}.

The intuition behind all this is that A x x should be regarded as as many disjoint copies of &
bi

as there are atoms (A-many or equlvalently A-many). Then every permutation pa : A LN

induces a permutation py : A %, A via the bijection ¢ : A LIy Now, we only consider the

permutations 7 : A X K Y Ax gk which, for every a € A, map {a} X K to {b} x k — where the
relation between a and b is given by ¢(a) = a and ¢ o p(a) = b.

So, as shown in Figure each permutation in II, can be regarded as as many permutations
of K as there are atoms, since for every a € A:

Tia}xk ° {a} X K b, {b} X K.

We set
Ga = U{Hp |pe gA}

For every subgroup Ha S Ga, we set

Ha = U{Hp | pEHA}.

. bij. . . bij.
Now, every permutation 7 : A X K 2%, A x  induces an automorphism 7p : P %, P defined by

(7 (3,€),¢) = (a,€,¢)

or, to say it differently:
P (a7 57 C) = (71-71 (a7 5) ) C)
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Figure 24.2: The permutation of blocks induced by 7 € II,.

Following this, we regard every permutation m € G 4 as the automorphism 7p of P that it induces.
For every F' € Ppn(A x k) we set

firg, (F) = {r e G4 | ¥(a,§) € F m(2,€) = (2,6)}
Finally, we set F 4 is the filter generated by
{Ha|Hae Fa} v {fiz, (F) | F € Ppn(Axk)}.

i.e.,
Hin...nH, € H< G4 and for some Hq,...,Hy €

He Fy <
=7 { {HA|HAGFA}u{ﬁng(F)\FePﬁn(Ax,‘i)}.

Clearly, {7—[ A | Ha € ]:A} is closed under finite intersections because Fa is closed under finite
intersections. Also, {fiz, (F) | F € Pn(A x r)} is closed under finite intersections because for
Fi,...,F, € Pan(A x k), we have

fizy (F1) ..o fig, (Fn) = firg, (FL o ... U Fy).
Therefore,
JeFa <= Han fir, (F)S J < Ga for some Ha € Fa and F' € Ppp(A x k).

We check that F 4 is a normal filter on G 4. i.e., F4 is a set of subgroups of G4 such that for all
subgroups H 4, K of G and all m € G 4:

(1) G4 € Fy: we have Gy = U{Hp | pegA} and Ga € Fa 8o, G4 € {’HA | ’HAEJ-'A} c Fa.

(2) if He Fqand H < K, then K € F4: This is by the very definition of F 4.
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(3) if He Fqand K € Fy, then HNK = J € F4: assume for some Ha, Ka € Fa and H, K €

Pfin(A X K)
Han firg, (H) € H and Kqn fiz,, (K) < K.
Then
Ha o firgy (H)nKan firg, (K)SHNK
ie.,

HanKan fizy, (H) firg (K)SHNK
—

JA
with ﬂng (H e K)

Ia=HanKAa

(4) if H e Fa, then roHonr ! e Fy: assume for some Ha € Fa and H € Pgp(A x k)
Han fiz, (H)SH.
Then, since 7 € G 4, there exists some p € Ga such that 7 € II,. Now,
moH gon L =M where Ha' = poHpaop L e Fa

and

7o fiz, (H)or! = {mmfl | 7€Gu and ¥(a, ) e H 7(a,&) = (a,g)}

— {TEQA | V(b,&) e m[H] 7(b,€) = (b,g)} € Fu

Now, since H 4 N fiz,, (H) < H, we have

WOHAoﬂilﬂTFOﬁIgA(H)Oﬂilgﬂ'O/HOﬂ'ilE‘FA.

We let the set of all hereditarily symmetric P-names HS;, < MP
HS;, = {r¢ MP | symg, (1) € Faand {0 |IpeP (o,p) € 7} < HS,,}.

ie.,
TeHS;, < sym, (1)e Faand {o|3IpeP (o,p) e 7} < HS;,,.

We denote the symmetric submodel of the generic extension M[G] by

M[G] = {(1)g e M[G] | T € HS, }.

——F4

We notice that the following sets belong to the symmetric submodel M|G]| :
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o (';Cavé)G (for all a € A and all £ < k) because

sym, (zag) = fir, ({ (:(2),6) }).
> (a),, (for all ae A) because
symg, (8) = | J{T, [ p & symy, (a)}-
o (A),, because

sy, (B) = G

So, we already have (A) each (a)

A a) . and each (ga75)G all belong to the symmetric submodel.

We now show that z belongs to the permutation model Z" if and only if (:5) o belongs to the

————Fa
symmetric submodel of the generic extension M|G] .

Claim 414. For allx € Z,
e Z"™ < geHS;,.

Proof of Claim This comes down to proving
symy, (x) e Fp <= symy, (@) € F4.

=) We have sym, (x) = I, | pe sym, (x);. So, if sym, (x) € Fa, then, by definition,
Ga \% 4 Ga Ga
U {Hp | p € symy, (:L’)} = symy, (:1:) € F4.

— sym, (x) € F 4, then, for some Ha € Fa an € Phin(A x k), we have
If O F 4, then, f Ha € F d FePp(A h

H-A a ‘ﬁng (F) = Symg/\ (gj) < g-A

where H 4 = U{H/’ | pe Ha}. We set

F= {a 13 <k ((a),€) e F}

We have

Ha mﬂ fiz,, (a) < symg, (x) < Ga

eFA acF Fa

"

~
eFA
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since Fa is finite, this shows that sym,, (x) € Fa.

(jzye!

Claim 415. For all x € Z,

A]:A

ze 2™ <= (z),€M[G]

Proof of Claim [415:

————Fa

(=) This is a consequence of Claim |14/ since = € 2" = z € HS;, = (z), € M[G]

/\]:A
(<) We proceed by contradiction, assuming there exists = € Z such that (.gc) o € M[G] "~ but
x ¢ Z™» We assume x be the e-least such set in the sense that y € Z" holds for all

<Q)G € (2)g

_——F

Since (z) o € M[G] ", there exists some P-name z € HS;, and some forcing condition

p,€G such that
Pz = £

Since z € HS;, there exist both Ha € Fa and F € Pg,(A x k) such that

Han ﬁmg,q (F) < symyg, (2) =Ga

Since, sym,, () ¢ Fa, we have, for F = {a eA|I <k (L(a),g) € F},

Ha mﬂ fiz,, (@) & symg, (z) < Ga.

€Fa acF cFa

-

E]:A
Therefore, there exists

pE (HA N ﬂﬁng (a)) ~ symg, ().

aeF

In particular, we have p(z) # x.

Since |dom (p,) | < K, there exists some § < k such that
{(aaf)eAX/€|5<§}m (Fudom(pz) [Axm) =g.

So, in order to have some 7 € II, satisfy both
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(1) me Han firy, (F) (2) m(p,) and p, are compatible.

we can define 7 as follows:

foraeFand € < k: m

fora¢ Fand £ <§: s

fora¢ Fand d<é+1<k: =
We then have

o 7(z) = z (because m € Hy N fiz, (F));

o ps - 7(z) # x (because Z = p(z) # x and by Claim

Zhplz) 1 — M[G] = (Mﬂf))G #(2)g
— M[G] E (7(2))g # (2) )

o there exists ¢ € P such that ¢ < p, and ¢ < 7(p.) which leads to the following
contradiction:

ql-z=z and qI-7(z) #z and ¢l 7(z) = 2.

(] &5

Claim 416. For all x € Z, and all ordinal 7,

_Fa

(@lzeP@nzs) - (@)

Proof of Claim

(S) is immediate.

MGl
(2) The proof is by e-induction. We let x € P7(A) n 2"~ with (Q:)G € (’P7< (A)(;)) and

Y€ M[G]a be such that I\T[E]IA =ye (@)G We consider y any P-name for y. Now, for
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each u € x, the following set is dense:
Dy={qeP|qlruey or ql-uéy}

Since [P7(A) n 2| < k, we have |z| < &, hence [{D, | u € z}| < r and, since P is k-
closed, there exists some forcing condition p € P which “decides” for each u € x, whether
u €y oru¢y holds. Namely,

peGn ﬂ{qu\qll—yeQ or ql-u¢y}

uexT

We take z = {u € z | p IF u € y} so that we have (z)

Z)a =Y and since (g)G belongs to
o : :
M[G] , we also have z € Z" by Claim @

[ ] M6l

l\f[\G]fA satisfies

()¢
{e)g lzePr(A)n 2] - (P”( (A)G)ym

and for all z,y € P7(A) n 2" we have

Claim 416 yields that the embedding Z"~

—
x —

Fa

z% byer = MG E(y)ge (2)g-

So, it follows that the mapping x — (:p) is an e-isomorphism between P7(A) n 2"+ and

G

o F

(P(®.)) -

[] Jech-Sochor Embedding Theorem

24.2 Some applications of the Jech-Sochor Embedding Theorem

Corollary 417. Let Z be any model of ZFA with
o A as set of atoms,
o Ga any subgroup of the group of permutations of A,

o Fa any normal filter on Ga,
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such that the permutation model Z™ induced by Z and Fp satisfies
Z' = ZFA + (AC)”.
Let also « be any ordinal and ¢ be any formula of the form

o= ()
——
Ag—rud
where 1 is some Ay -formula whose quantifiers are all bounded by P ().

— — T4
G

If Z" = ¢, then there exists a symmetric model M[G]h such that M|G] =~ k= ¢.

Proof of Corollary Since Z" =3z ¢(x), we fix
o any B € Z" such that Z" = ¢(B) and
o any large enough ordinal v such that P“(B) < P7(A).

By the Jech-Sochor Embedding Theorem (on page there exists some symmetric submodel
—F4
MJ[G]  together with an e-isomorphism:

€-isomorphism Mic]”
7 P S (o () ) )
hence

= dB € Z" 3y € On (Z"S" = Y(B) and P%(B) < 'PV(A))
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(]ET

Corollary 418. If ZF is consistent, then the following theories are consistent as well:
(1) ZF+ “ there exists some infinite Dedekind-finite set' ”.

(2) ZF+ “ there exists some infinite set A such that P(A) is Dedekind-finite ”.

(8) ZF+ “ there exists some countable family of pairs which does not admit any choice func-
tion ”.

(4) ZF+ “ there exists some infinite binary tree without any infinite branch ”.

(5) ZF+ “ there exists an infinite set A and a mapping f : Ppn(A) 210, P(A) 7.

Proof of Corollary First, notice that ZF and ZFC are equiconsistent. Then,

(1) By Proposition the basic Fraenkel model M which was defined on page[372]contains
A, an infinite set of atoms, which is Dedekind-finite:

M %y £ A
For any integer n and any atom a, we have
(n,a) = {{n},{n,a} } e M A P"T3(A),
as well as
(a,n) ={{a},{a,n} } e M} n PT3(A),

Hence, if f is of the form f :w — A and f belongs to M}, then it belongs to P“(A).
So, we have

ME ={fcwxA|frw— A S PUT(A).

Similarly, g is of the form f : A — n for some integer n, and g belongs to MJ*", then it
belongs to P "4 (A). So, we have

MHS»F{ggwaHnew g;A—>n}g’P“(A).

Fo

Moreover,

M3 (AC)™

1See Definition on page , where it was stated that A is Dedekind-finite if w § A does not hold.
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Now,

. 1-1 : 1-1
M =z (Vnew “thereisnog:x ——>n” A “thereis I’lOfiw—>.'L’”>

—
HS, w+1 . 1-1 w1 X 1-1
MP =3z (Vn,ge P (2) (new— —g:x—>n) A VfeP“ ' (2) ~f:w—"ua
—

M?f)zam (ﬂﬂn,g E’Pw+1(x) (new A g:xin) A —3f E'P“’H(x) fwi»a:>

By Corollary there exists some symmetric submodel I\T[E]h such that

T ATA 1-1 1-1
M[G] =3z <ﬁ3n,g (new A g:x—»n) A —3f f:w—>x>,

which is equivalent to

Fa _
M[G] [ 3z “x is infinite and there is no f : w RN

(2) mutatis mutandis, the proof is the same as for By Proposition the basic Fraenkel
model M® contains an infinite set of atoms A which satisfies:

M =Ry Z P(A).
For any integer n and any set of atom B < A, we have

(n,B)e M — (n,B) e M A P“T3(A).

Hence,
M = “P(A) € PUH(A).
we have,
w44
MZP |= “thereisno f:w = P(A)” <= M = (“thereisno f:w = P(A) ”)P T,

So, we have

M =Tz (Vn,gePw+4(:E) (new—>ﬂg:$i>n) A VfeP“(x) ﬂf:wip(x))

—
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M =3z (ﬁﬂn,g e P (x) (new A giﬂ?i’”) n —3f e P () f‘wgp(m))

Since, MP = (AC)P%j> holds, by Corollary there exists some symmetric submodel
l\mh such that the following holds as well:

T 1

M[G]hjzﬂw <ﬂ3n,g (new A g:win) A —3f f:wip(x)),

which is equivalent to

M[G]H = 3z “x is infinite and there is no f: w =L P(x)”.

By Theorem m the second Fraenkel model M* defined on page whose set of atoms
is A= UP”’ where each P, is a pair of two distinct atoms, satisfies not only that the set

new

of all pairs of atoms {Pn | ne w} belongs to M®", but also that
M = “{P, | n € w} does not admit any choice function”.
Now, a choice function is an element f € “A which satisfies
Vnew f(n)e P,.

Since we have,

M EeAS PUHA),

we obtain
M = “ there is no choice function for {P, |n€w}”

=

Perip)
M = (“ there is no choice function for {P, | n € w} ”)

So, we have

. P A
M = (“ there is no choice function for {P, | n € w} ”)

Notice also that it was shown in Lemma ?? that the mapping f = {(n, P, | ne w}
belongs to M hence it belongs to P« (A).
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“g is a set of disjoint pairs of elements from x”

A

: w1 ij.
M =30 3f,y e P4 (@) [ty

A

—Jce P () (c:w—>m A Vnew c(n)ef(n))

Since, M |= (AC)PCL(@), by Corollary @, there exists some symmetric submodel
M[G]h such that

“y is a set of disjoint pairs of elements from z”

A

———7Fa ..
MIGT " =30 31,y ity

A

—dc (c:w—>x A Ynew c(n)ef(n))

or equivalently,

9

—F
M[G] " = “ there is a countable set of pairs with no choice function

(4) By Theorem Weak Kénig Lemma fails inside the second Fraenkel model M} with
A= UP” and P, = {ay,b,} as set of atoms. Because the infinite binary tree

new

T = U{se"A|Vkens(k)ePk}.

new
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does not have any infinite branch (for the reason such an infinite branch would yield a
choice function that would contradict Theorem [403)).

Now, every element of this tree belongs to some P *(A) for some integer k large enough.
Hence, T'< P“(A) which yields

MP T e Pl (A),

Moreover, an infinite branch of 7" would be a mapping b : w — T, hence would satisfy
b < w x T, hence would belong to P“*1(A).

Therefore we obtain

'Pw+1(A)
M = (“ there exists an infinite binary tree on A with no infinite branch ”)

So, we have

“T is an infinite binary tree on x”

M =3 IT e P () A

—3be P (2)“b is an infinite branch of T”

Since, M |= (AC)W(Q), by Corollary , there exists some symmetric submodel
M[G]H such that

“T is an infinite binary tree on x”

M[G] " 3z 3T A

—3b“b is an infinite branch of T7¢

or equivalently,

— 7,
M[G] " |= “ there exists an infinite binary tree with no infinite branch .

(5) On page Definition @ presented the ordered Mostowski model M which comes
with a countable set of atoms A equipped with a binary relation <p1< A x A which makes it
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a dense ordering without least nor greatest element — so that it isomorphic to (Q, <( Q))).

In Theorem 410, we proved that this permutation model satisfies

M5 | ¢ there exists a mapping f : Ppin(A) oo, p(A)”

Now, every element of this mapping is of the form (F, B) for some F < Pg,(A) and
B = P(A). Since both F and B belong to P '(A) we have (F,B) = { {F}, (F,B)} belongs
to P 3(A). This shows that the mapping f belongs to P *(A).

Therefore we obtain
HS . . . . onto P4(A)
= <“ there exist an infinite set A and a mapping f : Ppn(A) — P(A) ”) :

So, we have

w3z (“:c is infinite 7 A If e PHx) f: Ppn(w) onto, P(m))

Translating “x is infinite ” by the formula Vn,g e P“(z) (n Ew— —g:x RN n)

yields

Vn,ge P“(x) (new%ﬂg:xin)

o, = 3T A

IfePUx) f:Phn(z) L2 P(z)

Since, M5 = (AC)Pm(g), by Corollary @, there exists some symmetric submodel
M[G]h such that

v =z (“x is infinite 7 A If e PHx) f: Phn(w) onto, P(az))
which gives

Vn, g (new%ﬂg:xin)

M[G] " 3a

f  f: Ppalz) 2 Pla)
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or equivalently,

M[G]FA = ¢ there exist an infinite set « and a mapping f : Ppn(z) 20, P(z) .

(] EI8
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