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Chapter 11

The Constructible Sets

11.1 Definability

Definition 259 (Definability). Given any set Y, we say that X <Y is definable overY if there
exists some Lgr-formula ¢ := p(x,x1,...,z,) whose free variables are among x,x1,. .., T, and
parameters ai,...,a, €Y such that

X = {x ey | ((p(m,al/xl, .. .,an/mn)>y}.

Definition 260 (Definable subsets). Let Y be any set. The set of the definable subsets of Y is
defined as
{X CY | X is definable over Y} .

Notice that this definition does not fall under the strict framework of set theory. As such it
quantifies over first order formulas which are not members of set theory. So, there are two
options here in order to properly define it.

We can easily define a way of coding L¢;-formulas and proofs within ZF (or ZFC, or etc.) such
that — among others — the following sets are Prim. Rec.:

o The set of all codes of Lgr-formulas

{ | ¢ is a formula from ,CST}
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O

The set of all codes of formulas from Lgr that contain the variable x,,

Fra = {(r;‘j’n) | ¢ is a formula from Lsy and ¢ contains xn}

O

The set of all codes of formulas from Lgr that do not contain the variable z,,

a

Fxg = {(r; ,n) | ¢ is a formula from Lsr and ¢ does not contain xn}

o

The set of all codes of formulas from Lgr that contain z,, as a free variable

Fra jree = {(';', n) | ¢ is a formula from Lgr and x,, is free in go}

O

The set of all codes of formulas from Ly that contain x,, as a bound variable

Fa vound = {(';', n) | ¢ is a formula from Lsr and x, is bound in (p}

O

The set of all codes of closed formulas from Lgr

F/closed = {rgj | ¢ is a closed formula from L’ST}

We define a class-relation Correct € w x V x V by

“k ="' codes an Lgp-formula ¢”
A
Correct (k,S,Y) <= { “S is a mapping from some (finite) set of integers to Y7

AN

“ for every integer n s.t. x, is free in ¢, n € dom(S) ”.
\

We also define a class-relation Holds € w x V x V by induction on the integers by
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Holds (k,S,Y) — A

A Holds (

A dyeY Holds(

A —Holds (

\

k= A Correct (¢, S,Y)
A
- A S00) = SO)

,8,Y))
,S,Y) A Holds (

,5,Y))

,(,y)u St (dom(S) ~ {2}),Y)

Definition 261 (Definability defined inside set theory). We define a “set-like ” class-relation
Definable Over 2V x V
Definable_Over(X,Y)

<

”

“© has exactly xg,x1,...,xy as free variables

A
dnewd
1S “S is a mapping from {1,...,n} toY”

VzgeY <x0€X<—>Holds( ,Su{(O,ajo)},Y)).

Definition 262 (Definable subsets defined inside set theory). Let Y be any set The set Def (Y')
of the definable subsets of Y is defined as

Def(Y)={X CY | Definable_Over(X,Y)}.
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Definition 263 (Definability defined outside set theory). Given any setY, we say that X €'Y
is definable over Y if there exists some Lgp-formula ¢ = p(z,x1,...,x,) whose free variables
are among T,xi,...,T, and parameters ai,...,an €Y such that

X = {x eY | gp(x,al/xl,...,an/xn)y}.

Remark 264. (Equivalence of the definition of definability outside set theory and inside set
theory). Given any sets X € Y,
X is definable over Y

S
“p has exactly xg, x1,...,x, as free variables ”
A
dnewd
3S “S is a mapping from {1,...,n} to Y”
VzpeY (xo € X «— Holds (v, S u {(0,z0)} ,Y)).
Proof of Remark Exercise. !

Notation 265. Given any set A, we denote by &, (A) the set of all finite subsets of A.

Lemma 266 (ZF). Let Y be any set.
(1) Y € Def (V)
(2) @, (Y) S Def(Y) < 2 (Y)
(3) Y transitive —> Y < Def (V)

(4) (AC) Y| =Ry — [Def(Y)|=[Y].

Proof of Lemma [266:

(1) Clearly,
Y={meY|a::x}={a:€Y|(mzm)y}.
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(2) Clearly @ e Def (V). If @ # X € &, (Y), then there exists ay,...,a, such that X =
{ai,...,an}. One has

Xz{:veY \/ x:al}: xey|<\/ x=ai>y

1<i<n 1<i<n
(3) Take any y € Y. Since Y is transitive, it follows y € Y, hence
y={zxeY|zey}= {xeY|(wey)Y}.

(4) One has &, (Y) < Def (Y), hence |Y| = |Z, (Y)]| < |Def (Y')|. Moreover, since there

fi
are countably many Lgr-formulas and |Y=*| = |Y|, one has

Def (V)| < Ng - |[Y=Y| =Ry |Y|=[Y].

[ 1266l

11.2 The Constructible Sets

Definition 267 (Godel’s Constructible Universe). By transfinite recursion on o € On we define
the sets L («) by:

o L(0)=o
o L(a+1) =Def(L(a))
o L(a)= UL €3} (v a limit ordinal).

E<a

We also define Godel’s Constructible Universe as the class

L= [JL(a).

aeOn

Definition 268. If x € L, then

rk, (x) = the least « € On s.t. xe L(a+1).
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We list a few properties of the constructible hierarchy that will prove helpful.
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Figure 11.1: The Universe L = U L («).

aeOn



194 EPFL Set Theory

Figure 11.2: The Classes L = U L(a) and V = U V ().

aeOn a€eOn
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Lemma 269 (ZF). Given any ordinals § < «,
(1) L(a) €V (o)

(2) For alla < w, L(a) =V (a)

(
(4) L(§) < L(a)
(5) L(§) e L(a)
(6) L(a)={xeL|rk (z) <a}

Proof of Lemma[269: The different proofs all go by induction on «

(1) is obvious by definition of both L (a) and V («).

(2) is immediate by Lemma
(3) @ :=0 immediate since L (0) = &;

a:=a+1lifre XeL(a+1),thenze X € L(a). So, z € L(a) and also z € L («)
since by induction hypothesis L («) is transitive. Then, one has

:Uz{yeL(a)|yem}:{yeL(a)|(y€m)L(°‘)}eL(a+1).

a limit If z € X € L(a), then z € X € L(§) holds for some £ < «. By induction
hypothesis, L (£) is transitive which yields z € L (¢) € L ().

(4) By induction on a.

a := 0 immediate since there is no £ < a.

o := o+ 1 One has

(a) L(a) cL(a+1) — by Lemma [266][(3)] —
(b) L(§{) <L () — by induction hypothesis —

which yields
L) <cL(o)<cL(a+1),
hence, L (§) < L (a + 1).
a limit Immediate since L (o) = U L ().

(<a
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(5) One has
(a) L(+1) <cL(a) — by Lemma [269 [(4)]
(b) L(§eL(§+1) — by Lemma [266/[(1)]

So, all together, one obtains L (§) € L ().

(6) Clearly, one has

(a) (xeL(a) = 7k, (z) <a): since L () = UL (€) hods by Lemma [269

{<a

)
(b) (rk, (z) <o = zeL(a)): since rk, (z) =& <a = zeL((+1) S L(a).
(7) First, notice that rk(a) = a, hence € (V(a+1) NV (a)).

(a) a ¢ L () holds since L (a) € V () and a ¢ V («).
(b) @€ L(«+ 1) is shown by induction on a.
o := 0 is immediate since L (1) = {&}.

a:=a + 1 for every ordinal £ < «
(eL(a+1)

holds since we have (£ € L (¢ + 1)) by induction hypothesis, and (L (£ + 1)
L (a)) by Lemma So, one has both

oaCL(a+1)

oaceL(a+1)
which yields

a+l={yeL(a+1)|ycavy=a}
:{yeL(a—kl)\(yeavyza)L(aH)}eL(a—FQ).

a limit for every £ < a, the induction hypothesis gives
EeL(£+1)

which yields
L(a) nOn = a.

Using the fact that “z is an ordinal” is a AJ ™‘-formula, hence absolute for
transitive classes (see Lemma [199) we obtain:

a={zeL(a)| “zisan ordinal "}
= {;p eL(a)| (“zisan ordinal”)L(a)} eL(a+1).
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(1269

Since for all integer n, we have V (n) = L (n), we notice that |L(0)| = [V (0)| = |&| = 0 and
foreachn [L(n+1)| = |V (n+ 1)| = 2". Therefore |V (w) | = |L (w) | = g holds. But as soon
as w < «, the whole picture of the cardinality of L (a) becomes very different from the one of
V («). Indeed, assuming AC, the cardinality of V (w + «) is 3, (see Definition whereas
we will see that the cardinality of L (w + «) is simply the cardinality of a: compare J, with |c|!

Lemma 270 (ZFC). Given any w < o € On,

IL() ] = lal.

Proof of Lemma[270: By induction on a > w.

a :=w In this case, L (w) = V (w), hence |L (w)| = |V (w) | =No = |w|.
a:= a+ 1 since |a + 1| = |a/, it is enough to show |L (o) | = |[L(a+ 1) |.
(1) L(a)| < |L(a+1)|: immediate from L (o) € L (o + 1).

(2) [L(a)| = [L{a+ 1)
L(a+1) =Def(L(x))
={X € L(a) | X is definable over L (a)}
)

= {X cL (a ’ X = {.f e L (Oé) ‘ (P(x,m/xl,...,an/xn)L(a)}}
for some @4 . 2, and (a1,...,a,) € L (@)=,

Since there are Ng-many Lgr-formulas and |L ()= | = |L () |, we obtain

L{a+1)[ <R [L(e)]=[L(a)].

a limit Since L (« U L (£), the induction hypothesis and Lemma [104] yield

{<a

@)=

Jr©|<lal

{<a

Also, for each € < a, we have L (§) € L («) and £ = |L(£) | < |L () |, hence
laf = [sup¢| < [L(a) |.
{<a

So, we end up with |L (a) | = |«].

[ 1270



198 EPFL Set Theory

11.3 The Constructible Universe Satisfies ZF

This section is devoted to showing that L = ZF. This means that for each formula! ¢ € ZF we
need to show that L = ¢. The proof is done within ZF, i.e., we show ZF |, (gp)L.

Theorem 271.
ZF . (ZF)".

Proof of Theorem 271}

(1) (Extensionality)” since L is transitive (see Lemma [187).

(2) (Comprehension Schema)L: at first glance, we may think of using the condition stated
as a special case in Lemma [I88 which assures that if M is closed under the powerset
operation which maps z to & (z), then (Comprehension Schema)M. But we cannot
show that L is closed under this powerset operation. In fact, if it were the case then we
would have in particular that for each ordinal o, V () € L would hold, which would yield

V =L.
We are then left with — the main condition of Lemma [188] i.e., — proving that for each
o(z, X, 21, ..., 2) with free variables among {x, X, z1,..., z;}, one has

VXeLVzael .. Vel {xeX | (gp(x,X,zl,...,zk))L}eL.

In order to complete the proof we need a very general result known as as a reflection
principle.

11.4 A Reflection Principle for L

We first need to prove a reflection principle for L which is a copy of the reflection principle for
V due to Azriel Lévy and Richard Montague [27].

Reflection Principle (Lévy & Montague). Let ¢y, ..., ¢, be any Lgr-formulas.

ZF - YaeOn 38 >a “go,...,n are absolute for V (B), V.”

Proof of the Reflection Principle: Identical to the proof of Theorem 273, mutatis mutandis.
[] Reflection Principle

!Each axiom or instance of axiom schema.
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In particular, the Reflection Principle states that given any finite subtheory A of ZF and any
ordinal «, there exists some ordinal 5 (way larger than «) such that V (5) = A. In particular,
V (B) is a set which is a model of A. So, for every finite subtheory of A < ZF, we have
ZF . “A has a model”. Notice that ZFC proves the compactness theorem which says that
given any first order theory .7, the following holds:

7 has a model if and only if every finite subtheory of .7 has a model.

So, at first glance it seems that a consequence is that ZF has a model, which contradicts
“ZF £, cons(ZF) ?. But what is required to be able to apply the compactness theorem is
not just that for for every finite subtheory of A € ZF, we have ZF ., “A has a model”, but
rather ZF proves that for all finite subtheory of A € ZF, ZF +, “A has a model”. This is the
difference between for each instance of a problem schema, proving that particular instance and
proving the problem schema.

In particular, a consequence of the Reflection Principle is that, assuming ZF is consistent, ZF
is not finitely axiomatizable. Otherwise, there would exist some formula @, such that

o ZF + pzr
0 Ygzr ¥, holds for every i) € ZF

o V(8) = @z holds for some (infinitely many indeed!) ordinal §.
Hence, V () = ZF would hold, contradicting Goédel’s second incompleteness theorem.

Theorem 273 (Reflection Principle for L). Let ¢y, ..., ¢, be any Lsp-formulas.

ZF —VYaeOn 3 >a “po,...,on are absolute for L (5),L.”

Proof of Theorem First, without loss of generality we may assume that the set of formulas
{©0,-..,pn} is closed under sub-formulas and only contains formulas using —, A as connectors
and 3 as quantifiers.
For each integer ¢ < n such that ¢; is of the form 3z ¢;(x, y1, ..., Yk, ), we define a class-function
G;:Lx...xL— On by

ﬁ(,—J

L
Gi(ylv cee 7yk1) =0 if (_'EL’E (pj(w7y17 ce 7ykz)>
=least 0 s.t. Iz e L(0) (p;(z,v1,... ,yki))L otherwise.

Then, for each integer ¢ < n we define a class-function F; : On — On by

i(&) =sup{Gi(y1,---,Yx;) | y1,---,yk, € L (&)} if G; is defined

F
F;(&) = 0 otherwise.
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Given any ordinal «, one defines the strictly increasing sequence (fj)new and a limit ordinal 3
by:

o Bo=a
o Br+1 =sup{Be + L, F1(Bk),...,Fn(Br)}

o f = supye, Bk

We show — by induction on the height of the formula — that for each integer ¢ < n, one has
Vyr e L(B)... Yy, € L(B) (%’(yl, k)" — i, 7yki)L) (11.1)
If ; is an atomic formula:

o If p; is y1 = yg, then one has (y; = yz)L(ﬁ) — (y1 = o)™ = (y1 = o), hence

W e L(B) Ve e L(B) ((n = 12" — (= 1)")
comes down to
Yy € L(B) Vy2 € L(B) (yl =Yy = yz)

which trivially holds

)L(ﬁ)

o If ¢ is Y1 € Yo, then one has (y1 € yo =(y1 € yg)L = (y1 = y2), hence

Vy1 € L(B) Yy € L(B) ((yl e )" — (g € yz)L)
comes down to
Vy1 € L(B) Vy2 € L(B) (yl €Yo < Y1 € y2)

which trivially holds as well.

o If ¢j is either y; = y1 or y; € y1, theses cases are taken care of by the previous cases
by taking yo = 1.

So, in any case, when ¢; is an atomic formula, the formula is satisfied.

If ¢; := —¢j(y1,--.,¥K): by induction hypothesis, one has

Vyre L(B)...Yyr, € L(B) (sog'(yh-..,yki)r“(m — %(yh-.-?yki)l‘)

which yields

Vyre L(B)... Yy, € L(B) (_‘(Wj(yla . 7yki))L(5) e (2 1( ,yk,-))L)
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If ¥i

If ¢

and finally gives

L L
Ve L(B) Yy e L) ((mswe o vu)™” e (i) )
which shows that formula [13.1]is satisfied.

= (p5(¥y1,- - ¥K) A Yk(¥1,---,¥k)): by induction hypothesis, one has both

e L(B) . vy € L(B) (i)™ — oy m)")

and
Vyre L(B)... Yy, € L(B) (Sok(yh o) M s oy, 7%)1’)-

Now, given any y1, ... yx, € L (8), one has that both formulas ¢;(y1, ..., yx,) and ox(y1, ..., Ug,)
hold in L ($3) if and only if they both hold in L. Therefore, (cpj(yl, e Yk AR (YL, ykz))
holds in L () if and only if it holds in L. This shows that formula is satisfied.

= 3x ¢j(X,¥1,-..,YK): we have to check that

Vyr e L(B)...Vy, € L(B) ((333 wj(x,y1,. .. ,yki))L(B) — (Fz iz, 1, . .. ,yki))L)

i.e., Clearly, the direction

vyl € L(B) . vykl € L(ﬁ) (31’ € L(ﬁ) Spj(x7y1>7yk‘z)L(18) — Jze L ij(xaylw"ayki)L)

is taken care of by the induction hypothesis. So, we show

Vyl € L(B) e vykz eL (5) (31’ eL (Pj(xayla e 7yk¢)L —dr e L(/B) (Pj(l',yl, oo 7ykz)L(B))

We fix y1 € L(5),...,yx, € L (/). For some large enough integer p, one has

ikt S L(Bp) -

By construction, there exists x € L (G;(y1, ..., Yk, )) such that (npj(a:, Ylye - ,yki))L. Since
Gi(y1,---»Yr) < Fi(Bp) < Bpt1, it follows that there exists € L (fp+1) S L (B) such

that (cpj(m,yl, ... ,yki))L. Finally, by induction hypothesis, there exists z € L () such

that (@j($7y1, e 7yk‘i))L(B)'

mls

We now resume the proof that the Comprehension Schema holds inside Godel’s constructible

universe.
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(2) ...proof of Theorem mut inued: Proving (Comprehension Schema)L comes down to
showing

VXeLVzeL ...V el {xeX| (go(x,X,zl,...,zk))L}eL.

So, we fix {X, z1,...,2;} € L and consider any « > sup {rk, (X), 7k, (z1),..., 7k, (2)}.
By the Reflection Principle for L (Theorem there exists some 8 > « such that the
formula (a: eX Aoz, X, 21,... ,zk)) is absolute for L (3), L.

Therefore,

{xeX | w(x,X,zl,...,zk)L} = {xeL| <xeX A(p(l’,X,Zl,...,Zk))L}

:{xeL(ﬁ) | (a;eXAw(x,X,zl,...,zk))L(ﬁ)}eL(,8+1).

(3) (Pairing)™ is almost immediate, since we only need to show
VeeLVyeL3zeL ((xez A yez)”

ie.,
VeeLVyeL3zeL (zez A yez)

Take any o > max {7k, (z),7k_ (y)}. One has z,y € L («), hence

{z,y} ={z€eL(a) | (z=2 v y=2)}
:{zeL(a)\((m:zvy:z))L}eL(a—i—l)gL.

(4) (Union)" is easy. We simply show that given any X € L, the set J X also belongs to L.
So, we assume X € L («). Since L () is transitive, tc(X) € L («) holds and

UX={zetc(X)|Iy(zey n ye X)}
=Szete(X) | (zey A ye X))
=Jzetec(X)|yeLl(a) ((zey A ye X))
={zeL(a)|yeL(x) ((mey/\yeX))L(a)}
= xeL(a)\(Ely(xey/\yeX))L(a)}eL(oH—l)gL.

L(a)

L(a)

(5) (Inﬁnity)L is immediate since by Lemma L~ On = On; so in particular w belongs
to L.
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(6)

(Power Set)L is proved by making use of the fact that L is transitive and following
Lemma which states that it is enough to establish

VzeL3yeL (#Z(z)nL) c
Given any z € L we set
a=sup{rk (z)+1|zeL A zCua},

so we obtain (@ (x) N L) c L(a).

(Foundation)" is immediate because working within ZF every class is e-well-founded.

(Replacement Schema)L holds since, by Lemma we need to show that given any
formula ¢ := p(z,y, A, w1, ..., w,) whose free variables are among x,y, A, w1, ..., W,

YVAeLVYwieL.. . Vw, €L

(vxeAmLalyeL(p)L—»HBeL {yeLerAmL(g:)L}gB)

Given any Ae L, wy € L,...,w, € L, we set

a = sup ({rkL (y)+1]3xe A (p(z,y, A wy,... ,wn))L} U {rk, (A) + 1})

in order to get

{yEL |dIxe AnL (cp(a:,y,A,wl,...,wn))L}

= {y eL|3zeA (p(x,y, A wr,... ,wn))L} (since L is transitive)
- {y eL|dz(ze A A (p(z,y, Aw,. .. ,wn))L)} (by definition of 3z € A)
= {y eL|3z(zeA A olz,y, A w,..., n))L} (by definition of relativization)

{ye L|3zeL (z€A A ¢(z,y, A, wl,...,wn))L} (since A< L)
= {y eL | <3m(:c eA A p(x,y, A w,. .. ,wn))>L} (by definition of relativization)

By the Reflection Principle for L (on page , there exists some 8 > « such that
the formula 3z(z € A A @(z,y, A, wi,...,wy)) is absolute for L (8),L. So, since the
formula EI:E(:U eA A @(m,y,A,wl,...,wn)) holds in L, it also holds in L (). Since
A€ L(a) € L(B) and L(5) is transitive, every element x € A belongs also to L (/).
The same holds for every element y which is — so to speak — the image through the
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class-function ¢ := ¢(x,y, A,w,...,wy,) of some element = of A: such a y belongs to
L (a) € L(B). Therefore we are left with

{veL|3zea (p(e.y A w, .. w)"}

L
:{ye 3$$€AA§0(ch,Aw1,..., n))) }
L(B) ‘ o
= {yeL Elx (e A A olz,y, Awr,...,w n))) } (by the Reflection Principle)
L(B) ,
=<yeL(pB EIx(xeA A gp(m,y,A,wl,...,wn))) } (since y € L(a) S L (5) )

e L(B+1) <

So, we have found a set — namely L (8 + 1) — which contains all constructible images of
elements of A by the class function-like formula ¢ := p(z,y, A, w1, ..., wy,).

[ BTl



Chapter 12

AC and CH inside Godel’s
Constructible Universe

12.1 The Axiom of Constructibility and the axiom of choice

Not only the Constructible Universe satisfies the Axiom of Choice — since it satisfies the
equivalent statement that every set can be well-ordered — but it satisfies that one can define a
“set-like” class-relation on the whole universe of Constructible Sets that well-orders it.

Theorem 274.
ZF - (AC)"

Proof of Theorem 274: By induction on a € On, one defines a (strict) well-ordering <, on
L (o) such that for all ordinals 8 < «, <, extends <ig. i.e., one has

<a NL(B) x L(B) = <p and for every x € L () and y € L (o) N L (53), x <4 .

Before we define <a,,, we need some notation.

Assuming X € Y € L (a) and <, is a well-ordering on L («), we define the well-ordering <,
on w x w x L (a)=* as the lexicographic ordering induced by the usual ordering on the integers
and the well-ordering <1, on L («):

n<n'
v
n=n A k<k
(n,k,S)<a(n', K, S = v
n=n" A k=k A h(S)<Ih(S)
v

n=n" A k=k A hS)=1h(S") A S<ezraS
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where
<a07a17 ey am> <Ler.a <a'/07 a'lla cee 7a;n>

<
E|p<m(V7j<pa~=a’-Aa<1a/)
= 7 ) P Tap

Given any sets X,Y such that Definable Over (X,Y), we denote by Wittn. Def. Over (X,Y)
the following set:
Wittn. Def. Over (X,Y)

”

“¢ has exactly xg,x1,...,x, as free variables

VAN
("p'in,S)ewxwx Y=Y

“S'is a mapping from {1,...,n} toY”
VegeY (:Uo € X «— Holds('¢',Su {(O,xo)},Y)>.
Finally, we define the well-orderings <1, on L («) by induction on « by:

a := 0 Obviously <9 = @

a:=PB+1 <, is defined by Vz,y € L («),

r<qyY

z,yeL(B) A z<gy

Vv
zeL(B) n y¢L(B)
v
<g -least ("', n, S) € Wittn. Def . Over (x,L (3))
z,y¢L(B) A <5

<p -least ("¢'",n/,S") e Wittn. Def. Over (y,L(f))

a limit <, is defined by: Va,y € L(a), let 8 = sup{rk_ (z) + 1,7k, (y) + 1}. Notice that
B < aand x,y € L(B) and set

Ty = r<3Y.

So far, we have constructed for each ordinal a, a well-ordering <i,, of L («). It remains to show
that every set X € L can be well-ordered. For this, it is enough to consider a = rk, (X) since
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both X € L () and (L («) ,<4) is a well-ordering, which yields (X, <,).
O

Since for every ordinal 8 < «, the well-ordering <1, on L («) is an extension of the well-ordering
<ig on L (), we may easily define a class-relation <y, that well-orders the whole universe of
constructible sets.

Definition 275 (Well-ordering of L). We define a class-relation <y, that well-orders L by

T <py = (:L'<1ay and o = max {rk, (), rk, (y)}—l—l)

Definition 276 (Axiom of Constructibility).

V =L is the statement “¥Yx 3o € On z €L (a) .

We have just proved

Theorem 277.
ZF + V=L AC.

12.2 The Axiom of Constructibility and the Generalized Con-
tinuum Hypothesis

We now come to GCH assuming V = L. This is slightly more complicated than AC. Our goal

is to show that L = GCH or more precisely that ZF |-, (GCH)L or equivalently to prove the
following theorem:

Theorem 278.
ZF +V =L+~ GCH.

This main theorem is a direct consequence of the following lemma which shows that if a subset
of a cardinal number k appears somewhere ! in the construction of the Constructible Universe,
then it appears in less than ™ steps.

! As opposed to never appearing anywhere, for the reason that it is simply not constructible.
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Lemma 279 (ZF). If V =L, then for every infinite cardinal k,

2 (k) <L (k).

Proof of Theorem [278: The result follows easily from Lemma and Lemma which stated

that given any infinite ordinal «, one has |L (a)| = |a|. Indeed, we obtain for every infinite
cardinal k,
k<2'=|2 (k)| <|L(k")|=|c"]=r".
(1278

We now concentrate on proving the main lemma.

For this purpose, we make use of the notion of an Lgr-elementary submodel.

Definition 280 (Elementary Submodel). Let X € Y be sets. X is an elementary submodel of
Y — denoted X <Y — if and only if for all Lsr-formula o(x1,...,x,) — whose free variables
are among xi,...,Tyn — and alla; € X,...,ay, € X,

w(a1/x1, ..., an/Ty) X<—> w(a1/x1, ..., an/Ty) Y.
( )

In words, X is an elmentary submodel of Y if X € Y and both structures satisfy the same
formulas whose parameters are taken from the smaller one.

We now show that every subset of L () can be extended in an elementary submodel of L («)
whose cardinality does not exceed the one of X, provided that X is infinite.

Lemma 281 (ZFC). If w < a any limit ordinal, and X is any set such that X < L («). Then,

there exists M such that |M| = sup {| X|,Ro}, X € M, and M < L ().

Proof of Lemma @: We make use of the Tarski-Vaught criterion [2, 3| 4} 5, 16, [33]. This
criterion states that

M < L («a)
<
for each Lgr-formula ¢(xg, x1,...,2,) and ay € M, ... ,a, € M
L(a M
(Fzo (w0, 21, ..., 2y)) @ (Fzo (w0, x1, ..., 2n))

We construct M that satisfies the Tarski-Vaught criterion by recursion on the integers:
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@) MO =Xuw

( 3

there exist ¢(x,z1,...,2),a1 € My, ..., a5 € M,
L(a)

))

P\, at, ..., ak
oMn+1=Mnu .%'EL(OJ) ( (

A

Vy e L(a) ((w(y,al,-.-,ak))L(a)—>y<tL ar) )

o M=UMn.

new

It is then easy to check that M satisfies the following:

(1) Xuw< M < L(a)

(2) [Mo| = |X U w| = sup{[X], R} = |X].

(3) [Mpy1| = |Mp] since | Mp| < [My 1| < [Mp| + [M7<] - Ro = sup {| X[, No} = [Mp].
(4)

new

(12811

We now see that every elementary submodel of some L («) for some limit ordinal « is in fact
isomorphic to some L () for some limit ordinal 8 < a.

Lemma 282 (ZF). Let M be any set and w < « any limit ordinal. If M < L («), then

there exists B < a, and an isomorphism 7 : (M,€ ) ~ (L (B),€).

Proof of Lemma @: We simply consider the Mostowski collapse 7 : (M , € ) — (N ,E ) We
recall that for each y € M, one has

m(y) = {r(z) |z ey}

Since M < L («) and (Ela: T = a)M holds for every element a € M, we obtain (Elx T = a)L(a)

holds as well for every element a € M. Therefore, M < L («) implies M < L («).

Moreover, since L () is transitive, L (a) is also extensional? by Lemma [187. It follows that € is
also extensional on M because from M < L () we have

(VxVy(Vz(zea:<—>zey)—>x=y))>M<—> (vay(VZ(ZEl"‘—’ZeZ/)_’x:@/»)L(Q)

) L(a)

*We recall that € is extensional on “L («)” means (Vm Vy (Vz(z€x > z€y) > = y)))
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i.e.,
)M )L(Oc)'

(Extensionality —> (Extensionality

By Corollary[186, it follows that NV is both extensional and transitive®. We are going to show that
N = L () for some limit ordinal 8 < a. For this, we first consider 7= : N — M < L (a). Given

any Lgp-formula ¢(z1, .. ., x,) whose free variables are among z1, . .., z,, and any a1, ...,a, € N,
since both N ~ M and M < L («) hold, one has

(So(cu/m, ... ,an/xn)>N PN (go(ﬂ—l(al)/xl’ o ’W_l(an)/a:n)>M
— (cp(rl(m)/xl, . ,Wﬂ(an)/xn))ua)

which shows that 7= : N — L («) is an elementary injection: both 7= : N L L (@) is an
injective homomorphism and 77 1[N] < L («).

In particular we have

V€ <adreL(a) x=L(¢
—_——

JyeL(a) ¢($, Y, g)
—_—

0—rud
A9

where ¢ is some Aj“-formula (hence absolute for all transitive classes). So, we have

VE<adzeL(a) z2=L({) «—VéecOnizeL(a) JyeL(a) ¢(z,y,¢)
— (V¢€On 3z Iy Tb(x,yag))L(a)
<—>(V§€On Jdzr Ty 1/1(%%5))]\[
«—V¢eOnnN3reN JyeN (w(x,y,f))N
«—VéeOnnN3zeN 3yeN ¢(z,yf)

+=L(¢)

Set 5 = N n On (notice that § is an ordinal by transitivity of N). By the result above we have
VE< B L(§)€eN.

We now use the fact that « is a limit ordinal, to show that 3 is also a limit ordinal. For this,
we make use of the fact that “z € On” is A", hence absolute for transitive classes.

« is a limit ordinal — Vé e a d(ea e
— (V€€ On 3(eOn ()
— (VéeOn3i¢eOn ¢eq)™.

L(a)

3 As it is the Mostowski collapse of an extensional class (set!) M.
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So we have

[ is a limit ordinal

—L(B) = [JL(©
VE<B L()eN L
To show N € L (5) = U L (£), it is enough to notice that
§<B
Ag—rud

—

JzeL(a) 1[)(2, &, U)
——

VzeL(a) JveL(a) 3€OnnL(a) ( v=L(¢ A T E)
—> (Vw Jv 3¢ € On (Elz P(z,&,v) A xev))L(a)
e (Ve v 3geOn (32 ¥(z60) A xev))N
<—>\meN3veN3§eonmN (3ze N ¥(2,60)N A zev)
«——VYreN Jve N Ie€Onn N (EIzeN 1/12{, v) A TED)
(

«——Vre NJve N IeOnnN
—VzeNIFveNI<p (v=L(g /\xev)

v = /\[BGU)

which shows that N < | JL (§) = L(8).

£<B
(1282

Everything is now ready for proving the main Lemma which says: if V = L, then for every
infinite cardinal &, one has & (k) € L (k™). In other words, one does not have to look farther
than L (k™) in order to find all constructible subsets of &.

Proof of Lemma Assume V = L. Let Y € & (k) and « be the least limit ordinal such
that Y € L (). We set
X =ru{Y}

By Lemma there exists M such that

o |M|=sup{|X|,No} =& o XM o M < L(a).
By Lemma [282] there exist

o an ordinal f < « ow:(M,e)m(L(B),e).

The Mostowski collapsing function is the identity on every transitive set. So, k being an ordinal
is transitive, hence
| k=1d.
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Thus,
m(Y) ={n(§) | €Y}
= {{|€eY}
= Y.
So, it follows
m(Y)=Y eL(p).
Since |[M| =« and (M,e ) ~ (L (B),€ ) we obtain
IL(B)] = k.
Finally, by Lemma we get
IL(B)| = 18] = k.
Thus we have both
B<rktandY eL(B).
Se we obtain
YeL (er)
which shows that
2 (k) <L (k).
L1279

12.3 Inner Models

Definition 283 (Inner Model). A class M is an inner model of ZFC if

(1) M is transitive (2) OnnM=0nnV (3) (ZFC)M.

Clearly, the Godel’s Constructible Universe is an inner model. Moreover, it turns out that L is

the c-least inner model in the following sense: if I is an inner model, then L < 1.
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