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Gödel’s Constructible Universe





Chapter 11

The Constructible Sets

11.1 Definability

Definition 259 (Definability). Given any set Y , we say that X ! Y is definable over Y if there
exists some Lst-formula ω :“ ωpx, x1, . . . , xnq whose free variables are among x, x1, . . . , xn and
parameters a1, . . . , an P Y such that

X “

"
x P Y |

´
ωpx, a1{x1, . . . , an{xnq

¯
Y

*
.

Definition 260 (Definable subsets). Let Y be any set. The set of the definable subsets of Y is
defined as

tX ! Y | X is definable over Y u .

Notice that this definition does not fall under the strict framework of set theory. As such it
quantifies over first order formulas which are not members of set theory. So, there are two
options here in order to properly define it.

We can easily define a way of coding Lst-formulas and proofs within ZF (or ZFC, or etc.) such
that — among others — the following sets are Prim. Rec.:

˝ The set of all codes of Lst-formulas

!
xωy | ω is a formula from Lst

(
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˝ The set of all codes of formulas from Lst that contain the variable xn

F✁x “
!`

xωy, n
˘

| ω is a formula from Lst and ω contains xn
(

˝ The set of all codes of formulas from Lst that do not contain the variable xn

F✂x “
!`

xωy, n
˘

| ω is a formula from Lst and ω does not contain xn
(

˝ The set of all codes of formulas from Lst that contain xn as a free variable

F✁x free “
!`

xωy, n
˘

| ω is a formula from Lst and xn is free in ω
(

˝ The set of all codes of formulas from Lst that contain xn as a bound variable

F✁x bound “
!`

xωy, n
˘

| ω is a formula from Lst and xn is bound in ω
(

˝ The set of all codes of closed formulas from Lst

F✁closed “
!

xωy | ω is a closed formula from Lst

(

We define a class-relation Correct ! ε ˆ V ˆ V by

Correct pk, S, Y q "ñ

$
’’’’’’’’’’&

’’’’’’’’’’%

“ k “ xωy codes an Lst-formula ω ”

^

“S is a mapping from some (finite) set of integers to Y ”

^

“ for every integer n s.t. xn is free in ω, n P dom pSq ”.

We also define a class-relation Holds ! ε ˆ V ˆ V by induction on the integers by
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Holds pk, S, Y q "ñ

$
’’’’’’’’’’’’’’’’’’’’’’’’’’’’’&

’’’’’’’’’’’’’’’’’’’’’’’’’’’’’%

k “ xωy ^ Correct pxωy, S, Y q

"
¨

˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˝

xωy “ xxi “ xjy ^ Spiq “ Spjq

_

xωy “ xxi P xjy ^ Spiq P Spjq

_

`
xωy “ x#ϑy ^ #Holds pxϑy, S, Y q

˘

_

`
xωy “ x

`
ϑ ^ ϖ

˘
y ^ Holds pxϑy, S, Y q ^ Holds pxϖy, S, Y q

˘

_

xωy “ xDxi ϑy ^ Dy P Y Holds
`
xϑy, pi, yq Y S æ

`
dom pSq ⊋ tiu

˘
, Y

˘

˛

‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‚

Definition 261 (Definability defined inside set theory). We define a “ set-like ” class-relation
Definable Over ! V ˆ V

Definable Over pX,Y q

"ñ

Dn P ε Dxωy

¨

˚̊
˚̊
˚̊
˚̋

“ω has exactly x0, x1, . . . , xn as free variables ”

^

DS “S is a mapping from t1, . . . , nu to Y ”

@x0 P Y
´
x0 P X $Ñ Holds pxωy, S Y tp0, x0qu , Y q

¯
.

˛

‹‹‹‹‹‹‹‚

Definition 262 (Definable subsets defined inside set theory). Let Y be any set The set Def pY q

of the definable subsets of Y is defined as

Def pY q “ tX ! Y | Definable Over pX,Y qu .



190 Set Theory

Definition 263 (Definability defined outside set theory). Given any set Y , we say that X ! Y
is definable over Y if there exists some Lst-formula ω :“ ωpx, x1, . . . , xnq whose free variables
are among x, x1, . . . , xn and parameters a1, . . . , an P Y such that

X “

!
x P Y | ωpx, a1{x1, . . . , an{xnq

Y

)
.

Remark 264. (Equivalence of the definition of definability outside set theory and inside set
theory). Given any sets X ! Y ,

X is definable over Y

"ñ

Dn P ε Dxωy

¨

˚̊
˚̊
˚̊
˚̋

“ω has exactly x0, x1, . . . , xn as free variables ”

^

DS “S is a mapping from t1, . . . , nu to Y ”

@x0 P Y
´
x0 P X $Ñ Holds pxωy, S Y tp0, x0qu , Y q

¯
.

˛

‹‹‹‹‹‹‹‚

Proof of Remark 264: Exercise. l 264

Notation 265. Given any set A, we denote by Pfin. pAq the set of all finite subsets of A.

Lemma 266 (ZF). Let Y be any set.

(1) Y P Def pY q

(2) Pfin. pY q ! Def pY q ! P pY q

(3) Y transitive ùñ Y ! Def pY q

(4) (AC) |Y | % →0 ùñ |Def pY q | “ |Y |.

Proof of Lemma 266:

(1) Clearly,

Y “ tx P Y | x “ xu “

!
x P Y | px “ xq

Y

)
.
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(2) Clearly ⫅̸ P Def pY q. If ⫅̸ ‰ X P Pfin. pY q, then there exists a1, . . . , an such that X “

ta1, . . . , anu. One has

X “

#
x P Y |

#

1!i!n

x “ ai

+
“

$
&

%x P Y |

˜
#

1!i!n

x “ ai

¸
Y

,
.

- .

(3) Take any y P Y . Since Y is transitive, it follows y ! Y , hence

y “ tx P Y | x P yu “

!
x P Y | px P yq

Y

)
.

(4) One has Pfin. pY q ! Def pY q, hence |Y | “ |Pfin. pY q | & |Def pY q |. Moreover, since there
are countably many Lst-formulas and |Y "ω

| “ |Y |, one has

|Def pY q | & →0 ¨ |Y "ω
| “ →0 ¨ |Y | “ |Y |.

l 266

11.2 The Constructible Sets

Definition 267 (Gödel’s Constructible Universe). By transfinite recursion on ϱ P On we define
the sets L pϱq by:

˝ L p0q “ ⫅̸

˝ L pϱ ` 1q “ Def pL pϱqq

˝ L pϱq “

$

ε"ϑ

L pςq (ϱ a limit ordinal).

We also define Gödel’s Constructible Universe as the class

L “

$

ϑPOn

L pϱq .

Definition 268. If x P L, then

rk
L

pxq “ the least ϱ P On s.t. x P L pϱ ` 1q .
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We list a few properties of the constructible hierarchy that will prove helpful.
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‚

ϱ
‚

ϱ ` 1

L pϱq

L pϱ ` 1q “ Def pL pϱqq

L “

$

ϑPOn

L pϱq

On

Figure 11.1: The Universe L “

$

ϑPOn

L pϱq.



194 Set Theory

‚
ϱ

‚
ε

‚

ϱ ` 1

L pεq

“

Vpεq

V pϱqL pϱq

L pϱ ` 1q

V pϱ ` 1q

VL

Figure 11.2: The Classes L “

$

ϑPOn

L pϱq and V “

$

ϑPOn

V pϱq.
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Lemma 269 (ZF). Given any ordinals ς ’ ϱ,

(1) L pϱq ! V pϱq

(2) For all ϱ & ε, L pϱq “ V pϱq

(3) L pϱq is a transitive set

(4) L pςq ! L pϱq

(5) L pςq P L pϱq

(6) L pϱq “ tx P L | rk
L

pxq ’ ϱu

(7) ϱ P
`
L pϱ ` 1q ⊋ L pϱq

˘
.

Proof of Lemma 269: The di!erent proofs all go by induction on ϱ

(1) is obvious by definition of both L pϱq and V pϱq.

(2) is immediate by Lemma 266 (2).

(3) ω :“ 0 immediate since L p0q “ ⫅̸;

ω :“ ω ` 1 if x P X P L pϱ ` 1q, then x P X ! L pϱq. So, x P L pϱq and also x ! L pϱq

since by induction hypothesis L pϱq is transitive. Then, one has

x “ ty P L pϱq | y P xu “

!
y P L pϱq | py P xq

Lpϑq
)

P L pϱ ` 1q .

ω limit If x P X P L pϱq, then x P X P L pςq holds for some ς ’ ϱ. By induction
hypothesis, L pςq is transitive which yields x P L pςq ! L pϱq.

(4) By induction on ϱ.

ω :“ 0 immediate since there is no ς ’ ϱ.

ω :“ ω ` 1 One has

(a) L pϱq ! L pϱ ` 1q — by Lemma 266 (3) —

(b) L pςq ! L pϱq — by induction hypothesis —

which yields
L pςq ! L pϱq ! L pϱ ` 1q ,

hence, L pςq ! L pϱ ` 1q.

ω limit Immediate since L pϱq “

$

ε"ϑ

L pςq.
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(5) One has

(a) L pς ` 1q ! L pϱq — by Lemma 269 (4)

(b) L pςq P L pς ` 1q — by Lemma 266 (1)

So, all together, one obtains L pςq P L pϱq.

(6) Clearly, one has

(a)
`
x P L pϱq ùñ rk

L
pxq ’ ϱ

˘
: since L pϱq “

$

ε!ϑ

L pςq hods by Lemma 269 (4)

(b)
`
rk

L
pxq ’ ϱ ùñ x P L pϱq

˘
: since rk

L
pxq “ ς ’ ϱ ùñ x P L pς ` 1q ! L pϱq .

(7) First, notice that rk pϱq “ ϱ, hence ϱ P
`
V pϱ ` 1q ⊋V pϱq

˘
.

(a) ϱ R L pϱq holds since L pϱq ! V pϱq and ϱ R V pϱq.

(b) ϱ P L pϱ ` 1q is shown by induction on ϱ.

ω :“ 0 is immediate since L p1q “ t⫅̸u.

ω :“ ω ` 1 for every ordinal ς & ϱ

ς P L pϱ ` 1q

holds since we have
`
ς P L pς ` 1q

˘
by induction hypothesis, and

`
L pς ` 1q !

L pϱq
˘
by Lemma 269 (4). So, one has both

˝ ϱ ! L pϱ ` 1q

˝ ϱ P L pϱ ` 1q

which yields

ϱ ` 1 “
!
y P L pϱ ` 1q | y P ϱ _ y “ ϱ

(

“

!
y P L pϱ ` 1q |

`
y P ϱ _ y “ ϱ

˘Lpϑ`1q)
P L pϱ ` 2q .

ω limit for every ς ’ ϱ, the induction hypothesis gives

ς P L pς ` 1q

which yields
L pϱq X On “ ϱ.

Using the fact that “x is an ordinal ” is a ”0´rud
0 -formula, hence absolute for

transitive classes (see Lemma 199) we obtain:

ϱ “
!
x P L pϱq | “x is an ordinal ”

(

“

!
x P L pϱq |

`
“x is an ordinal ”

˘Lpϑq)
P L pϱ ` 1q .
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l 269

Since for all integer n, we have V pnq “ L pnq, we notice that |L p0q | “ |V p0q | “ |⫅̸| “ 0 and
for each n |L pn ` 1q | “ |V pn ` 1q | “ 2n. Therefore |V pεq | “ |L pεq | “ →0 holds. But as soon
as ε ’ ϱ, the whole picture of the cardinality of L pϱq becomes very di!erent from the one of
V pϱq. Indeed, assuming AC, the cardinality of V pε ` ϱq is ⫆̸ϑ (see Definition 122) whereas
we will see that the cardinality of L pε ` ϱq is simply the cardinality of ϱ: compare ⫆̸ϑ with |ϱ|!

Lemma 270 (ZFC). Given any ε & ϱ P On,

|L pϱq | “ |ϱ|.

Proof of Lemma 270: By induction on ϱ % ε.

ω :“ ε In this case, L pεq “ V pεq, hence |L pεq | “ |V pεq | “ →0 “ |ε|.

ω :“ ω ` 1 since |ϱ ` 1| “ |ϱ|, it is enough to show |L pϱq | “ |L pϱ ` 1q |.

(1) |L pϱq | & |L pϱ ` 1q |: immediate from L pϱq ! L pϱ ` 1q.

(2) |L pϱq | % |L pϱ ` 1q |:

L pϱ ` 1q “ Def
`
L pϱq

˘

“ tX ! L pϱq | X is definable over L pϱqu

“
!
X ! L pϱq | X “

!
x P L pϱq | ωpx,a1{x1,...,an{xnqLpϑq((

for some ωpx,x1,...,xnq and ↑a1, . . . , an↓ P L pϱq
"ω .

Since there are →0-many Lst-formulas and |L pϱq
"ω

| “ |L pϱq |, we obtain

|L pϱ ` 1q | & →0 ¨ |L pϱq | “ |L pϱq |.

ω limit Since L pϱq “

$

ε"ϑ

L pςq, the induction hypothesis and Lemma 104 yield

|L pϱq | “

ˇ̌
ˇ̌
$

ε"ϑ

L pςq

ˇ̌
ˇ̌ & |ϱ|.

Also, for each ς ’ ϱ, we have L pςq ! L pϱq and ς “ |L pςq | & |L pϱq |, hence

|ϱ| “ | sup
ε"ϑ

ς| & |L pϱq |.

So, we end up with |L pϱq | “ |ϱ|.

l 270
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11.3 The Constructible Universe Satisfies ZF

This section is devoted to showing that L |ù ZF. This means that for each formula1 ω P ZF we
need to show that L |ù ω. The proof is done within ZF, i.e., we show ZF $c pωq

L.

Theorem 271.
ZF $c pZFq

L.

Proof of Theorem 271:

(1) pExtensionalityq
L since L is transitive (see Lemma 187).

(2)
`
Comprehension Schema

˘L
: at first glance, we may think of using the condition stated

as a special case in Lemma 188 which assures that if M is closed under the powerset
operation which maps x to P pxq, then

`
Comprehension Schema

˘M
. But we cannot

show that L is closed under this powerset operation. In fact, if it were the case then we
would have in particular that for each ordinal ϱ, V pϱq ! L would hold, which would yield
V “ L.

We are then left with — the main condition of Lemma 188, i.e., — proving that for each
ωpx,X, z1, . . . , zkq with free variables among tx,X, z1, . . . , zku, one has

@X P L @z1 P L . . .@zk P L
!
x P X |

`
ωpx,X, z1, . . . , zkq

˘L)
P L.

In order to complete the proof we need a very general result known as as a reflection
principle.

to be continued...

11.4 A Reflection Principle for L

We first need to prove a reflection principle for L which is a copy of the reflection principle for
V due to Azriel Lévy and Richard Montague [27].

Reflection Principle (Lévy & Montague). Let ω0, . . . ,ωn be any Lst-formulas.

ZF $c @ϱ P On Dφ ( ϱ “ω0, . . . ,ωn are absolute for V pφq, V. ”

Proof of the Reflection Principle: Identical to the proof of Theorem 273, mutatis mutandis.
l Reflection Principle

1Each axiom or instance of axiom schema.
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In particular, the Reflection Principle states that given any finite subtheory ” of ZF and any
ordinal ϱ, there exists some ordinal φ (way larger than ϱ) such that V pφq |ù ”. In particular,
V pφq is a set which is a model of ”. So, for every finite subtheory of ” ! ZF, we have
ZF $c “” has a model ”. Notice that ZFC proves the compactness theorem which says that
given any first order theory T , the following holds:

T has a model if and only if every finite subtheory of T has a model.

So, at first glance it seems that a consequence is that ZF has a model, which contradicts
“ZF &c cons

`
ZF

˘
”. But what is required to be able to apply the compactness theorem is

not just that for for every finite subtheory of ” ! ZF, we have ZF $c “” has a model ”, but
rather ZF proves that for all finite subtheory of ” ! ZF, ZF $c “” has a model ”. This is the
di!erence between for each instance of a problem schema, proving that particular instance and
proving the problem schema.

In particular, a consequence of the Reflection Principle is that, assuming ZF is consistent, ZF
is not finitely axiomatizable. Otherwise, there would exist some formula ωZF such that

˝ ZF $c ωZF

˝ ωZF $c ϑ, holds for every ϑ P ZF

˝ V pφq |ù ωZF holds for some (infinitely many indeed!) ordinal φ.

Hence, V pφq |ù ZF would hold, contradicting Gödel’s second incompleteness theorem.

Theorem 273 (Reflection Principle for L). Let ω0, . . . ,ωn be any Lst-formulas.

ZF $c @ϱ P On Dφ ( ϱ “ω0, . . . ,ωn are absolute for L pφq ,L. ”

Proof of Theorem 273: First, without loss of generality we may assume that the set of formulas
tω0, . . . ,ωnu is closed under sub-formulas and only contains formulas using #,^ as connectors
and D as quantifiers.
For each integer i & n such that ωi is of the form Dx ωjpx, y1, . . . , ykiq, we define a class-function
Gi : L ˆ . . . ˆ Llooooomooooon

ki

Ñ On by

Gipy1, . . . , ykiq “ 0 if
´

#Dx ωjpx, y1, . . . , ykiq
¯L

“ least ϖ s.t. Dx P L pϖq
`
ωjpx, y1, . . . , ykiq

˘L
otherwise.

Then, for each integer i & n we define a class-function Fi : On Ñ On by

Fipςq “ sup tGipy1, . . . , ykiq | y1, . . . , yki P L pςqu if Gi is defined

Fipςq “ 0 otherwise.
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Given any ordinal ϱ, one defines the strictly increasing sequence pφkqnPω and a limit ordinal φ
by:

˝ φ0 “ ϱ

˝ φk`1 “ sup
!
φk ` 1,F1pφkq, . . . ,Fnpφkq

(

˝ φ “ supkPω φk

We show — by induction on the height of the formula — that for each integer i & n, one has

@y1 P L pφq . . .@yki P L pφq

´
ωipy1, . . . , ykiq

Lpϖq
$Ñ ωipy1, . . . , ykiq

L
¯

(11.1)

If ωi is an atomic formula:

˝ If ωi is y1 “ y2, then one has py1 “ y2q
Lpϖq

“ py1 “ y2q
L

“ py1 “ y2q, hence

@y1 P L pφq @y2 P L pφq

´
py1 “ y2q

Lpϖq
$Ñ py1 “ y2q

L
¯

comes down to

@y1 P L pφq @y2 P L pφq

´
y1 “ y2 $Ñ y1 “ y2

¯

which trivially holds

˝ If ωi is y1 P y2, then one has py1 P y2q
Lpϖq

“ py1 P y2q
L

“ py1 “ y2q, hence

@y1 P L pφq @y2 P L pφq

´
py1 P y2q

Lpϖq
$Ñ py1 P y2q

L
¯

comes down to

@y1 P L pφq @y2 P L pφq

´
y1 P y2 $Ñ y1 P y2

¯

which trivially holds as well.

˝ If ωi is either y1 “ y1 or y1 P y1, theses cases are taken care of by the previous cases
by taking y2 “ y1.

So, in any case, when ωi is an atomic formula, the formula 11.1 is satisfied.

If ωi :“ #ωjpy1, . . . ,yki
q: by induction hypothesis, one has

@y1 P L pφq . . .@yki P L pφq

´
ωjpy1, . . . , ykiq

Lpϖq
$Ñ ωjpy1, . . . , ykiq

L
¯

which yields

@y1 P L pφq . . .@yki P L pφq

´
#

`
ωjpy1, . . . , ykiq

˘Lpϖq
$Ñ #

`
ωjpy1, . . . , ykiq

˘L¯
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and finally gives

@y1 P L pφq . . .@yki P L pφq

´`
#ωjpy1, . . . , ykiq

˘Lpϖq
$Ñ

`
#ωjpy1, . . . , ykiq

˘L¯

which shows that formula 13.1 is satisfied.

If ωi :“ pωjpy1, . . . ,yki
q ^ ωkpy1, . . . ,yki

qq: by induction hypothesis, one has both

@y1 P L pφq . . .@yki P L pφq

´
ωjpy1, . . . , ykiq

Lpϖq
$Ñ ωjpy1, . . . , ykiq

L
¯

and
@y1 P L pφq . . .@yki P L pφq

´
ωkpy1, . . . , ykiq

Lpϖq
$Ñ ωkpy1, . . . , ykiq

L
¯
.

Now, given any y1, . . . yki P L pφq, one has that both formulas ωjpy1, . . . , ykiq and ωkpy1, . . . , ykiq
hold in L pφq if and only if they both hold in L. Therefore,

`
ωjpy1, . . . , ykiq^ωkpy1, . . . , ykiq

˘

holds in L pφq if and only if it holds in L. This shows that formula 11.1 is satisfied.

If ωi :“ Dx ωjpx,y1, . . . ,yki
q: we have to check that

@y1 P L pφq . . .@yki P L pφq

´`
Dx ωjpx, y1, . . . , ykiq

˘Lpϖq
$Ñ

`
Dx ωjpx, y1, . . . , ykiq

˘L¯

i.e., Clearly, the direction

@y1 P L pφq . . .@yki P L pφq

´
Dx P L pφq ωjpx, y1, . . . , ykiq

Lpϖq
)Ñ Dx P L ωjpx, y1, . . . , ykiq

L
¯

is taken care of by the induction hypothesis. So, we show

@y1 P L pφq . . .@yki P L pφq

´
Dx P L ωjpx, y1, . . . , ykiq

L
)Ñ Dx P L pφq ωjpx, y1, . . . , ykiq

Lpϖq
¯

We fix y1 P L pφq , . . . , yki P L pφq. For some large enough integer p, one has

ty1, . . . , ykiu ! L pφpq .

By construction, there exists x P L pGipy1, . . . , ykiqq such that
`
ωjpx, y1, . . . , ykiq

˘L
. Since

Gipy1, . . . , ykiq & Fipφpq & φp`1, it follows that there exists x P L pφp`1q ! L pφq such

that
`
ωjpx, y1, . . . , ykiq

˘L
. Finally, by induction hypothesis, there exists x P L pφq such

that
`
ωjpx, y1, . . . , ykiq

˘Lpϖq
.

l 273

We now resume the proof that the Comprehension Schema holds inside Gödel’s constructible
universe.
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(2) ...proof of Theorem 271 continued: Proving
`
Comprehension Schema

˘L
comes down to

showing

@X P L @z1 P L . . .@zk P L
!
x P X |

`
ωpx,X, z1, . . . , zkq

˘L)
P L.

So, we fix tX, z1, . . . , zku ! L and consider any ϱ ( sup trk
L

pXq , rk
L

pz1q , . . . , rk
L

pzkqu.
By the Reflection Principle for L (Theorem 273) there exists some φ ( ϱ such that the
formula

`
x P X ^ ωpx,X, z1, . . . , zkq

˘
is absolute for L pφq ,L.

Therefore,

!
x P X | ωpx,X, z1, . . . , zkq

L
)

“

!
x P L |

´
x P X ^ ωpx,X, z1, . . . , zkq

¯L)

“

"
x P L pφq |

´
x P X ^ ωpx,X, z1, . . . , zkq

¯Lpϖq*
P L pφ ` 1q .

(3) pPairingq
L is almost immediate, since we only need to show

@x P L @y P L Dz P L
`
px P z ^ y P zq

˘L

i.e.,
@x P L @y P L Dz P L px P z ^ y P zq

Take any ϱ ( max trk
L

pxq , rk
L

pyqu. One has x, y P L pϱq, hence

tx, yu “
!
z P L pϱq | px “ z _ y “ zq

(

“

!
z P L pϱq |

`
px “ z _ y “ zq

˘L)
P L pϱ ` 1q ! L.

(4) pUnionq
L is easy. We simply show that given any X P L, the set

%
X also belongs to L.

So, we assume X P L pϱq. Since L pϱq is transitive, tc pXq ! L pϱq holds and

%
X “

!
x P tc pXq | Dy px P y ^ y P Xq

(

“

!
x P tc pXq | Dy

`
px P y ^ y P Xq

˘Lpϑq)

“

!
x P tc pXq | Dy P L pϱq

`
px P y ^ y P Xq

˘Lpϑq)

“

!
x P L pϱq | Dy P L pϱq

`
px P y ^ y P Xq

˘Lpϑq)

“

!
x P L pϱq |

`
Dy px P y ^ y P Xq

˘Lpϑq)
P L pϱ ` 1q ! L.

(5) pInfinityq
L is immediate since by Lemma 269 (7) LXOn “ On; so in particular ε belongs

to L.
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(6) pPower Setq
L is proved by making use of the fact that L is transitive and following

Lemma 189 which states that it is enough to establish

@x P L Dy P L
`
P pxq X L

˘
! y.

Given any x P L we set

ϱ “ sup trk
L

pzq ` 1 | z P L ^ z ! xu ,

so we obtain
´
P pxq X L

¯
! L pϱq.

(7) pFoundationq
L is immediate because working within ZF every class is P-well-founded.

(8) pReplacement Schemaq
L holds since, by Lemma 192, we need to show that given any

formula ω :“ ωpx, y,A,w1, . . . , wnq whose free variables are among x, y,A,w1, ..., wn,

@A P L @w1 P L . . .@wn P L
´

@x P A X L D!y P L pωq
L

)Ñ DB P L
!
y P L | Dx P A X L pωq

L
)

! B
¯

Given any A P L, w1 P L, . . . , wn P L, we set

ϱ “ sup
´ !

rk
L

pyq ` 1 | Dx P A pωpx, y,A,w1, . . . , wnqq
L

)
Y

!
rk

L
pAq ` 1

(¯
.

in order to get

!
y P L | Dx P A X L pωpx, y,A,w1, . . . , wnqq

L
)

“

!
y P L | Dx P A pωpx, y,A,w1, . . . , wnqq

L
)

(since L is transitive)

“

!
y P L | Dx

`
x P A ^ pωpx, y, A,w1, . . . , wnqq

L˘)
(by definition of Dx P A)

“

!
y P L | Dx

`
x P A ^ ωpx, y,A,w1, . . . , wnq

˘L)
(by definition of relativization)

“

!
y P L | Dx P L

`
x P A ^ ωpx, y, A,w1, . . . , wnq

˘L)
(since A ! L)

“

"
y P L |

´
Dx

`
x P A ^ ωpx, y, A,w1, . . . , wnq

˘¯L
*

(by definition of relativization)

By the Reflection Principle for L (on page 199), there exists some φ ( ϱ such that
the formula Dx

`
x P A ^ ωpx, y,A,w1, . . . , wnq

˘
is absolute for L pφq ,L. So, since the

formula Dx
`
x P A ^ ωpx, y,A,w1, . . . , wnq

˘
holds in L, it also holds in L pφq. Since

A P L pϱq ! L pφq and L pφq is transitive, every element x P A belongs also to L pφq.
The same holds for every element y which is — so to speak — the image through the
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class-function ω :“ ωpx, y,A,w1, . . . , wnq of some element x of A: such a y belongs to
L pϱq ! L pφq. Therefore we are left with

!
y P L | Dx P A pωpx, y,A,w1, . . . , wnqq

L
)

“

"
y P L |

´
Dx

`
x P A ^ ωpx, y,A,w1, . . . , wnq

˘¯L
*

“

"
y P L |

´
Dx

`
x P A ^ ωpx, y,A,w1, . . . , wnq

˘¯Lpϖq*
(by the Reflection Principle)

“

"
y P L pφq |

´
Dx

`
x P A ^ ωpx, y,A,w1, . . . , wnq

˘¯Lpϖq*
(since y P L pϱq ! L pφq )

P L pφ ` 1q ! L.

So, we have found a set — namely L pφ ` 1q — which contains all constructible images of
elements of A by the class function-like formula ω :“ ωpx, y,A,w1, . . . , wnq.

l 271



Chapter 12

AC and CH inside Gödel’s
Constructible Universe

12.1 The Axiom of Constructibility and the axiom of choice

Not only the Constructible Universe satisfies the Axiom of Choice — since it satisfies the
equivalent statement that every set can be well-ordered — but it satisfies that one can define a
“ set-like ” class-relation on the whole universe of Constructible Sets that well-orders it.

Theorem 274.
ZF $c pACq

L

Proof of Theorem 274: By induction on ϱ P On, one defines a (strict) well-ordering Ÿϑ on
L pϱq such that for all ordinals φ ’ ϱ, Ÿϑ extends Ÿϖ . i.e., one has

Ÿϑ X L pφq ˆ L pφq “ Ÿϖ and for every x P L pφq and y P L pϱq ⊋ L pφq, x Ÿϑ y.

Before we define Ÿϑ, we need some notation.

Assuming X ! Y ! L pϱq and Ÿϑ is a well-ordering on L pϱq, we define the well-ordering Îϑ

on ε ˆ ε ˆ L pϱq
"ω as the lexicographic ordering induced by the usual ordering on the integers

and the well-ordering Ÿϑ on L pϱq:

pn, k, SqÎϑpn1, k1, S1
q "ñ

¨

˚̊
˚̊
˚̊
˚̊
˚̋

n ’ n1

_

n “ n1
^ k ’ k1

_

n “ n1
^ k “ k1

^ lh pSq ’ lh pS1
q

_

n “ n1
^ k “ k1

^ lh pSq “ lh pS1
q ^ S Ÿlex.ϑ S1

˛

‹‹‹‹‹‹‹‹‹‚
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where
↑a0, a1, . . . , am↓ Ÿlex.ϑ

〈
a1
0, a

1
1, . . . , a

1
m

〉

"ñ

D p & m
`
@i ’ p ai “ a1

i ^ ap Ÿϑ a1
p

˘

Given any sets X,Y such that Definable Over pX,Y q, we denote by Wittn. Def. Over pX,Y q

the following set:
Wittn. Def. Over pX,Y q

“
$
’’’&

’’’%
pxωy, n, Sq P ε ˆ ε ˆ Y "ω

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ

¨

˚̊
˚̋

“ω has exactly x0, x1, . . . , xn as free variables ”
^

“S is a mapping from t1, . . . , nu to Y ”

@x0 P Y
´
x0 P X $Ñ Holds pxωy, S Y tp0, x0qu , Y q

¯
.

˛

‹‹‹‚

,
///.

///-

Finally, we define the well-orderings Ÿϑ on L pϱq by induction on ϱ by:

ω :“ 0 Obviously Ÿ0 “ ⫅̸

ω :“ ϑ ` 1 Ÿϑ is defined by @x, y P L pϱq,

x Ÿϑ y

"ñ

¨

˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˝

x, y P L pφq ^ x Ÿϖ y

_

x P L pφq ^ y R L pφq

_

x, y R L pφq ^

¨

˚̊
˚̋

Îϖ -least pxωy, n, Sq P Wittn. Def. Over px,L pφqq

Îϖ

Îϖ -least pxω1y, n1, S1
q P Wittn. Def. Over py,L pφqq

˛

‹‹‹‚

˛

‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‚

ω limit Ÿϑ is defined by: @x, y P L pϱq, let φ “ sup trk
L

pxq ` 1, rk
L

pyq ` 1u. Notice that
φ ’ ϱ and x, y P L pφq and set

x Ÿϑ y "ñ x Ÿϖ y.

So far, we have constructed for each ordinal ϱ, a well-ordering Ÿϑ of L pϱq. It remains to show
that every set X P L can be well-ordered. For this, it is enough to consider ϱ “ rk

L
pXq since



AC and CH inside Gödel’s Constructible Universe 207

both X ! L pϱq and pL pϱq ,Ÿϑq is a well-ordering, which yields pX,Ÿϑq.
l 274

Since for every ordinal φ ’ ϱ, the well-ordering Ÿϑ on L pϱq is an extension of the well-ordering
Ÿϖ on L pφq, we may easily define a class-relation ’L that well-orders the whole universe of
constructible sets.

Definition 275 (Well-ordering of L). We define a class-relation ’L that well-orders L by

x ’L y "ñ

´
x Ÿϑ y and ϱ “ max trk

L
pxq , rk

L
pyqu ` 1

¯
.

Definition 276 (Axiom of Constructibility).

V “ L is the statement “ @x Dϱ P On x P L pϱq ”.

We have just proved

Theorem 277.
ZF ` V “ L $c AC.

12.2 The Axiom of Constructibility and the Generalized Con-
tinuum Hypothesis

We now come to GCH assuming V “ L. This is slightly more complicated than AC. Our goal

is to show that L |ù GCH or more precisely that ZF $c

`
GCH

˘L
or equivalently to prove the

following theorem:

Theorem 278.
ZF ` V “ L $c GCH.

This main theorem is a direct consequence of the following lemma which shows that if a subset
of a cardinal number ↼ appears somewhere 1 in the construction of the Constructible Universe,
then it appears in less than ↼` steps.

1As opposed to never appearing anywhere, for the reason that it is simply not constructible.
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Lemma 279 (ZF). If V “ L, then for every infinite cardinal ↼,

P p↼q ! L
`
↼`˘

.

Proof of Theorem 278: The result follows easily from Lemma 279 and Lemma 270 which stated
that given any infinite ordinal ϱ, one has |L pϱq | “ |ϱ|. Indeed, we obtain for every infinite
cardinal ↼,

↼ ’ 2ϱ “ |P p↼q | & |L
`
↼`˘

| “ |↼`
| “ ↼`.

l 278

We now concentrate on proving the main lemma.

For this purpose, we make use of the notion of an Lst-elementary submodel.

Definition 280 (Elementary Submodel). Let X ! Y be sets. X is an elementary submodel of
Y — denoted X ! Y — if and only if for all Lst-formula ωpx1, . . . , xnq — whose free variables
are among x1, . . . , xn — and all a1 P X, . . . , an P X,

´
ωpa1{x1, . . . , an{xnq

¯
X

$Ñ

´
ωpa1{x1, . . . , an{xnq

¯
Y

.

In words, X is an elmentary submodel of Y if X ! Y and both structures satisfy the same
formulas whose parameters are taken from the smaller one.

We now show that every subset of L pϱq can be extended in an elementary submodel of L pϱq

whose cardinality does not exceed the one of X, provided that X is infinite.

Lemma 281 (ZFC). If ε ’ ϱ any limit ordinal, and X is any set such that X ! L pϱq. Then,

there exists M such that |M | “ sup t|X|,→0u, X ! M , and M ! L pϱq.

Proof of Lemma 281: We make use of the Tarski-Vaught criterion [2, 3, 4, 5, 6, 33]. This
criterion states that

M ! L pϱq

"ñ

for each Lst-formula ωpx0, x1, . . . , xnq and a1 P M, . . . , an P M
`
Dx0 ωpx0, x1, . . . , xnq

˘Lpϑq
)Ñ

`
Dx0 ωpx0, x1, . . . , xnq

˘
M
.

We construct M that satisfies the Tarski-Vaught criterion by recursion on the integers:
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˝ M0 “ X Y ε

˝ Mn`1 “ Mn Y

$
’’’’’’’&

’’’’’’’%

x P L pϱq

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ

there exist ωpx, x1, . . . , xkq, a1 P Mn, . . . , ak P Mn

`
ωpx, a1, . . . , akq

˘Lpϑq

^

@y P L pϱq

´`
ωpy, a1, . . . , akq

˘Lpϑq
)Ñ y *’L x

¯

,
///////.

///////-

˝ M “

$

nPω
Mn.

It is then easy to check that M satisfies the following:

(1) X Y ε ! M ! L pϱq.

(2) |M0| “ |X Y ε| “ sup t|X|,→0u “ |X|.

(3) |Mn`1| “ |Mn| since |Mn| & |Mn`1| & |Mn| ` |M"ω
n | ¨ →0 “ sup t|X|,→0u “ |Mn|.

(4) |M | “ |X| since |X| & |M | “ |

$

nPω
Mn & |M0| ¨ →0 “ |X| ¨ →0 “ |X|.

l 281

We now see that every elementary submodel of some L pϱq for some limit ordinal ϱ is in fact
isomorphic to some L pφq for some limit ordinal φ & ϱ.

Lemma 282 (ZF). Let M be any set and ε ’ ϱ any limit ordinal. If M ! L pϱq, then

there exists φ & ϱ, and an isomorphism ↽ :
`
M, P

˘
«

`
L pφq , P

˘
.

Proof of Lemma 282: We simply consider the Mostowski collapse ↽ :
`
M, P

˘
Ñ

`
N, P

˘
. We

recall that for each y P M , one has

↽pyq “
!
↽pxq | x P y

(
.

Since M ! L pϱq and
`
Dx x “ a

˘
M

holds for every element a P M , we obtain
`
Dx x “ a

˘Lpϑq

holds as well for every element a P M . Therefore, M ! L pϱq implies M ! L pϱq.

Moreover, since L pϱq is transitive, L pϱq is also extensional2 by Lemma 187. It follows that P is
also extensional on M because from M ! L pϱq we have

´
@x @y

`
@z pz P x $Ñ z P yq Ñ x “ yq

˘¯
M

$Ñ

´
@x @y

`
@z pz P x $Ñ z P yq Ñ x “ yq

˘¯Lpϑq
.

2We recall that P is extensional on “L pωq ” means
´

@x @y `@z pz P x !Ñ z P yq Ñ x “ yq˘¯
Lpωq

.
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i.e., `
Extensionality

˘
M

$Ñ
`
Extensionality

˘Lpϑq
.

By Corollary 186, it follows thatN is both extensional and transitive3. We are going to show that
N “ L pφq for some limit ordinal φ & ϱ. For this, we first consider ↽´1 : N Ñ M ! L pϱq. Given
any Lst-formula ωpx1, . . . , xnq whose free variables are among x1, . . . , xn, and any a1, . . . , an P N ,
since both N « M and M ! L pϱq hold, one has

´
ωpa1{x1, . . . , an{xnq

¯
N

$Ñ

´
ωp↽´1

pa1q{x1, . . . ,↽´1
panq{xnq

¯
M

$Ñ

´
ωp↽´1

pa1q{x1, . . . ,↽´1
panq{xnq

¯Lpϑq

which shows that ↽´1 : N Ñ L pϱq is an elementary injection: both ↽´1 : N
1´1
))Ñ L pϱq is an

injective homomorphism and ↽´1
rN s ! L pϱq.

In particular we have
@ς ’ ϱ Dx P L pϱq x “ L pςqloooomoooon

DyPLpϑq ϑpx, y, ςqloooomoooon
!0´rud
0

where ϑ is some ”0´rud
0 -formula (hence absolute for all transitive classes). So, we have

@ς ’ ϱ Dx P L pϱq x “ L pςq $Ñ @ς P On Dx P L pϱq Dy P L pϱq ϑpx, y, ςq

$Ñ
`
@ς P On Dx Dy ϑpx, y, ςq

˘Lpϑq

$Ñ
`
@ς P On Dx Dy ϑpx, y, ςq

˘
N

$Ñ @ς P On X N Dx P N Dy P N
`
ϑpx, y, ςq

˘
N

$Ñ @ς P On X N Dx P N Dy P N ϑpx, y, ςqlooooooooomooooooooon
x“Lpεq

Set φ “ N XOn (notice that φ is an ordinal by transitivity of N). By the result above we have

@ς ’ φ L pςq P N.

We now use the fact that ϱ is a limit ordinal, to show that φ is also a limit ordinal. For this,
we make use of the fact that “ z P On ” is ”0´rud

0 , hence absolute for transitive classes.

ϱ is a limit ordinal )Ñ @ς P ϱ D⇀ P ϱ ς P ⇀

)Ñ
`
@ς P On D⇀ P On ς P ⇀

˘Lpϑq

)Ñ
`
@ς P On D⇀ P On ς P ⇀

˘
N
.

3As it is the Mostowski collapse of an extensional class (set!) M .



AC and CH inside Gödel’s Constructible Universe 211

So we have

φ is a limit ordinal

@ς ’ φ L pςq P N

,
.

- ùñ L pφq “

$

ε"ϖ

L pςq ! N.

To show N ! L pφq “

$

ε"ϖ

L pςq, it is enough to notice that

@x P L pϱq Dv P L pϱq Dς P On X L pϱq
`

DzPLpϑq

!0´rud
0hkkkkikkkkj

ϑpz, ς, vqhkkkkikkkkj
v “ L pςq ^ x P v

˘

$Ñ

´
@x Dv Dς P On

`
Dz ϑpz, ς, vq ^ x P v

˘¯Lpϑq

$Ñ

´
@x Dv Dς P On

`
Dz ϑpz, ς, vq ^ x P v

˘¯
N

$Ñ @x P N Dv P N Dς P On X N
`
Dz P N ϑpz, ς, vq

N
^ x P v

˘

$Ñ @x P N Dv P N Dς P On X N
`
Dz P N ϑpz, ς, vq ^ x P v

˘

$Ñ @x P N Dv P N Dς P On X N
`
v “ L pςq ^ x P v

˘

$Ñ @x P N Dv P N Dς ’ φ
`
v “ L pςq ^ x P v

˘

which shows that N !

$

ε"ϖ

L pςq “ L pφq.

l 282

Everything is now ready for proving the main Lemma 279 which says: if V “ L, then for every
infinite cardinal ↼, one has P p↼q ! L p↼`

q. In other words, one does not have to look farther
than L p↼`

q in order to find all constructible subsets of ↼.

Proof of Lemma 279: Assume V “ L. Let Y P P p↼q and ϱ be the least limit ordinal such
that Y P L pϱq. We set

X “ ↼ Y tY u

By Lemma 281 there exists M such that

˝ |M | “ sup t|X|,→0u “ ↼ ˝ X ! M ˝ M ! L pϱq.

By Lemma 282 there exist

˝ an ordinal φ & ϱ ˝ ↽ :
`
M, P

˘
«

`
L pφq , P

˘
.

The Mostowski collapsing function is the identity on every transitive set. So, ↼ being an ordinal
is transitive, hence

↽ æ ↼ “ id.
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Thus,

↽pY q “ t↽pςq | ς P Y u

“ tς | ς P Y u

“ Y.

So, it follows
↽pY q “ Y P L pφq .

Since |M | “ ↼ and
`
M, P

˘
«

`
L pφq , P

˘
we obtain

|L pφq | “ ↼.

Finally, by Lemma 270, we get
|L pφq | “ |φ| “ ↼.

Thus we have both
φ ’ ↼` and Y P L pφq .

Se we obtain
Y P L

`
↼`˘

which shows that
P p↼q ! L

`
↼`˘

.

l 279

12.3 Inner Models

Definition 283 (Inner Model). A class M is an inner model of ZFC if

(1) M is transitive (2) On X M “ On X V (3)
`
ZFC

˘M
.

Clearly, the Gödel’s Constructible Universe is an inner model. Moreover, it turns out that L is
the !-least inner model in the following sense: if I is an inner model, then L ! I.
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