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Chapter 6

From Inside a Class

6.1 Relativization

For each formula and class we define what this formula becomes when the sets involved are
the ones that belong to the class. For this purpose, we recall' that a class C is nothing but a
formula with one free variable — that may or may not have other free variables that behave as
parameters — pc. Notice that for every formula ¢(z1,...,x;) whose free variable are among
Z1,...,Tk, there is a formula 1 (y) with one free variable y such that ¢(z1,...,zx) holds if and
only if d)( (x1,..., k) ) holds; namely:

Y(y) == V... Vg (y =(x1,...,2) —> ap(xl,...,a:k)).

Definition 164 (Relativization). Let M be any class and o any formula. The formula (o)™ is
defined by induction on ht(p) by:

o (Hx go)M =dzeM (go)M ° (4,00 A WI)M = (SOO)M & (901)M
M — Yo M

° (Vo) " =vae M (o) o (o v 1) i= (o)™ v (o)™

o (azzy)Mzza::y

o (m €Y M =X ey © (<P0 - ‘Pl)M = (‘PO)M = (SOI)M

o (=)™ i= = (p)™ o (po = o)™ i= ()™M & (p)M

So, assuming that the class M is described by the formula ¥n(z), we see that (EI:B gp)M stands
for 3xr e M ((p)M which really is Jx (:1: eM A ((p)M), ie., Jx <¢M(:v) A ((p)M) Idem with

IThis can be found in Section
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the universal quantifier: the formula (Vac @)M really is Vx (wM () — (go)M).

Remark 165. Notice that the relativization of various notions that we introduced requires to
go back to the original definition. For instance,

(1) (z < y)M «— (¥ n M) <y holds since

oxCy «— Vz(zex— z€y)

(Vz(zex—>zey))M = VzeM(zexz—zey)
— znMcy.

(2) (P(m))M ={zeM|zn M C z} holds.
In case M is transitive, (P(w))M = P(z) n M. Indeed,

oy=Px) < Vz (zey«— z2<Sx)

o (VZ(zey<—>zgx))M:=VzeM<z6y<—>(z§w)M)

el VzeM(zeyH(zgx)M) — VzeM(zey«—»zmng).

From now on, we may use expressions such as “ZF proves that ¢ holds true in M” or “ZFC
proves that the theory T holds true in M”, where each time, being true in M refers to the
relativized formula. So,

Definition 166. Given any formula @ and any theory T,
(1) “¢ holds true in M ” or “M |= ¢ 7 stands for “(p)™”

“T holds true in M ”
(2) or equivalently stands for the assumption that for every p € T, “(o)™M 7.
“M is a model of T ”

This means that when we say, for a given class M, that
“ ZFC proves M |= 2% = Ry 7,
what we really mean is the statement:
ZFC - (2% = %)™

For instance, we will see that “ ZF proves L = Va 2% =R, 17, which strictly speaking means

ZF - (Vo 2% = Rop)".
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We will also say, working with ZF, that “ L = ZFC”; where what we mean is that for every
axiom ¢ € ZFC, one has ZF -, (gp)L.

Lemma 167. Let ¢ be any closed formula and M be any non-empty class.

if @ holds, then (Lp)M holds as well.

Proof of Lemma[167: By the completeness Theorem, the statement comes down to

= == ()M

But, since = ¢ holds true, it follows that in any model M = (|M]|,€rq) one has M = ¢ —
meaning in any set | M| equipped with the membership relation ¢ holds. So, in particular, for
every set |[M| n M, we have

(IM| A M, € pmjam) = ¢

[ 67
6.2 Consistency and Model Existence

Lemma 168. Let S, T be any L>-theory, and M any non-empty class.

Sth L
and = T A L.
Sk “M is amodel of T 7

Proof of Lemma Towards a contradiction, we assume 7 +, L. For some (any) closed formula
, one has
T k(e A —o)

so there exist finitely many formulas g, ..., @, € T such that

N ¢i b (o A —p)

o<isn

which gives

h( AN %—%W\W))

0<isn

2L stands for the language of set theory. i.e., its signature is {€, =}.
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hence, by Lemma [167,
M
h( A Soi—’(SO/\_‘SD)>
0<i<n

which yields

= ( AN\ @)™ — (@™ A ﬂ(w)M))-

0<isn

S+ “ M is amodel of T 7 yields S I ()™ (any i < n), hence

o<isn

and by modus ponens:
Sk (@M A =(p)™)

contradicting the fact that S is consistent.

[]068



Chapter 7

The Mostowski Collapse

7.1 Recursion on Well-founded and “Set-Like” Relations

This section is concerned with collapsing certain classes in order to render them transitive.
Morever, the collapsed class and the original one are then isomorphic and the isomorphism is
unique. This gives a very natural way of transforming a class — that possibly satisfies various
axioms of ZFC — into a transitive one which is often easier to handle.

Definition 169 (ZF ~\ {AF}). Let M be any class, and R € M x M.

R is “set-like” on M < VYyeM R ![{y}] = {x € M| zRy} is a set.

A class-relation is “set-like” on a class if the inverse image of every element is a set. Notice that
it is equivalent to say that R is “set-like ” on M if and only if, for all set B € M, R™![B] =
{reM|3Jye B zRy} is a set.

We consider the closure of taking the predecessors of an element = along R.

Definition 170 (ZF \ {AF}). Let M be any class, X € M, z € X and R € M x M. We
define cl([£]1]) by:

o ¢l ([ﬂ%) = [ﬂ% =XnR! [{z}] = {z € X | zRz}
o el (F1R) = U{FIR | 2 € a" (F1R) |
o cl(=}) =U{ear" (4I18) Inew}
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Remark 171. If R is “set-like” on M, then one can easily show by induction on the integers,
that for each integer n,

™ ([£]R) is a set.

Hence,

ol ([21®) = U {czn (21R) | ne w} is a set.

Definition 172 (ZF ~ {AF}). Let M be any class, and R € M x M.

R is “well-founded” on M <— VX c M (X #J—dye XVre X ﬂ:cRy).

So, a class-relation R on a class M is well-founded if every non-empty subset of M has some
R-minimal element.

Remark 173. If R € M x M is both well-founded and “set-like” on M, then for each z € M,
the graph of R on z is a set G = (V, E) defined by:

V={z}uc(®) and E={(a,b)eV xV |bRa}.

This directed graph is acyclic!.

Theorem Schema 174 (ZF \ {AF}). Let M be any class, and R <€ M x M be any well-
founded and “set-like ” relation on M.

VX € M (X#®—>3yeXV:ceX ﬁny).

So, this theorem claims that the property that defines a well-founded class-relation R on a class
M, can be lifted from non-empty subsets to non-empty classes provided that the class-relation
R be “set-like” on M in addition to being well-founded.

Proof of Theorem[174: Take any z € X. If x is R-minimal in X we are done. Otherwise, we
consider ¢/ ([ﬂ%) which is a set since R is “set-like” on M. Since R is well-founded on M and
cl ([£18]) is a subset of M, it follows that ¢l ([£]¥) admits some R-minimal element y. We show

!By well-foundedness of R.
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that y is also R-minimal in X. Indeed, since y € cl ([ﬂ%) there exists some integer k such that
y e cl¥ ([£1%) and any z € X that would satisfy zRy would belong to Ikl ([218) < c([11})
which would contradict the R-minimality of y.

Loz

We saw on page [39| that one can define a class-function by transfinite induction on the ordinals.
This result can easily be extended from the ordinals to any well-founded and “set-like” relation.

Theorem Schema 175 (ZF - {AF}, transfinite recursion along well-founded set-like rela-
tions). Let M be any class, R € M x M be any well-founded and “set-like ” relation on M, and
F: M xV —V be any class-function.

There exists some unique G : M — V such that such that

VeeM G(z)= F(a;,G e )

Proof of Theorem [175:

Uniqueness: Assume there exist two different class-functions Gy and Gg. By Theorem (174
the non-empty class {x € M | G1(z) # Gz(z)} has an R-least element y. By construction,
one comes to the following contradiction:

G1(y) = F(1,G1 lyum) ) = F (.G 1) ) = G2l

Existence: we construct functions that are approximations of G on some proper initial segment
of the ordinals.

i.e., for each x € M, we construct a function g, : cl ([Q]I\R/I) — V such that

Vzed([“1R)  92(2) = F(z,G [Cl(m ) )

So, since R is “set-like” on M, it follows that cl([ﬂ&) is a set, hence g, is a function
with dom (g.) = ¢l ([Z|R;) and ran(gz) = go [cl ([£]R;)] is a set obtained by an instance of
the Replacement Schema.

Clearly, by the same argument as above, g, is unique for any given x € M. So, it is enough
to define G(z) by:

o If there exists some y € M such that x € ¢l ([Y]F;), then

for some (any) y € M such that « € cl ([£]5;).
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o If there exists no y € M such that x € ¢l ([£]f;), then

G(z) = F($,g$ rcl([ﬂﬁ) )

L I75

7.2 The Mostowski Collapsing Functional

We define a class-function which turns Emmentaler into Gruyére (by removing all the holes!)

Definition 176 (ZF ~ {AF}). Let M be any class, R € M x M be any well-founded and
“set-like ” relation on M, the Mostowski collapsing class-function G : M — 'V is defined by

G(@) = {G() |y M A yRa}
—{G@) |ye R[{=}]}
~{Gw e G[R[{z}]| |y e R '[{a}]}.

The class N = G [M)] is called the Mostowski collapse of M.

Lemma 177 (ZF ~ {AF}). Let M be any class, R € M xM be any well-founded and “set-like ”
relation on M, and G : M — V the Mostowski collapsing class-function.

(1) Vee MVyeM (yRz — G(y) € G(z))
(2) N = G [M] is transitive

(3) N < WF.

Proof of Lemma[177:

(1) Voz,ye M (:URy — G(z) € G(y)) is immediate by definition of the Mostowski collapsing
class-function G.

(2) Take any v € w € N = G[M]. By definition of Mostowski collapsing class-function G,
there exist x,y € M such that w = G(z) and v = G(y) € G(x), hence v € N.

(3) Since R is well-founded, we show, by induction on R, that G(z) € WF holds for every
x € M.
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o If x € M is R-minimal: G(x) = {G(y) lye M A ny} =ge W (1) € WF.

o If x € M is not R-minimal: G(x) = {G(y) lye M A yRaj}. Since R is “set-like”

on M, R [{z}] is a set. By induction hypothesis, G(y) € WF holds for each yRu.
Hence, by an instance of the Replacement Schema, one has

{rk(G(y)) lye M A ny}
is a set of ordinals. Therefore
a = sup {rk:(G(y)) +1|yeM A ny}

is well defined and z € W (o) € WF.

Vi

Definition 178 (ZF ~\ {AF}). Let M be any class, R € M x M is extensional on M if
Vre M Vye M (VZEM (sz —> zRy) —>x=y>.

i.e.,
VoeMVyeM (z4y— = # [115).

Remark 179. Notice, that when one replaces the class-relation R by the membership relation
€, this assertion becomes

Vre M Vye M (VzeM(z€$<—>zey)—>x=y>
which is exactly
M
(VxVy(Vz(zex<—>zey)—>x=y)))

in other words:
(Extensionality) M

So, essentially, one requires a class-relation to be extensional when one wants the Mostowski
collapse to satisfy the Axiom of Extensionality.

Lemma 180. If M is any transitive class, then the membership relation € is extensional on M.
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Proof of Lemma Take any =,y € M with x # y. By symmetry, there exists either z € x \ y
or z € y \ x; which can be summarized by there exists some z such that (z € z «— z ¢ y). Since
zex e M and M is transitive, one has z € M, which shows

VieMVyeM(z#y—>3zeM(zez «— z¢y))
i.e.,
M
<VxVy(m;ﬁy—>32(Z€3?<—>Z¢y))>
i.e.,
M
(VxVy(Vz(zex<—>z€y)—>iE=y))>

in other words:
(Extensionality) M

[ ][I0

Lemma 181 (ZF \ {AF}). Let M be any class, R € M xM be any well-founded and “set-like ”
relation on M, and G : M — V the Mostowski collapsing class-function.
If R is extensional on M, then

G:M — N = G [M] is an isomorphism from (M,R) to (N,€).

Proof of Lemma[181:
o We show that G : M — N is 1-1. Otherwise, we consider any z that is R-minimal in

{:UEMHyEM(G(fU):G(?J) A :L'?ﬁy)}

and for this = a fixed y.

Since R is extensional on M and x # y holds, one has [2]R # [£|R. By symmetry, we
assume [Z]R \ [Y]R # & and pick any z € ([£]R; ~ [Y]R;). One has

G(z) € G(z) since zRx and G(z)€ G(y) since G(z) = G(y).
Therefore, there exists some 2z’ € M such that
7Ry and G(z) = G(Z) € G(y).

Thus, we have found some z # 2’ such that G(z) = G(z’) and 2Rz, which contradicts the
R-minimality of x.

o SinceG: M > Nisl-land N=G[M], G: M Qi N, Thus, G being a bijection, it
follows that G is an isomorphism since we have:
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e if xRy, then G(z) € G(y) holds by definition of G;

e if G(z) € G(y), then xRy holds since, from G(z) € G(y) = {G(z) |zeM A zRy},

pick some z € M, such that G(z) = G(z) and zRy and notice that G being 1-1, one
has z = z and zRy.

pesy

Mostowski Collapsing Theorem (ZF ~\ {AF}). Let M be any class, R € M x M be any
well-founded, “set-like ”, and extensional relation on M.

(1) there exists a transitive class N, and
(2) an isomorphism G : (M, R) Lsom, (N,e);

(8) moreover, the isomorphism is unique.

Proof of the Mostowski Collapsing Theorem:
(1) The existence of N and the fact it is transitive is Lemma [177
(2) The fact G : (M,R) Jsoms, (N, €) is an isomorphism is Lemma I@
(3) Towards a contradiction, assume there exist isomorphisms G : M — N = G [M] and

G’ : M — N’ = G’ [M] between respectively (M, R) and (N, €) and (M, R) and (N’, €).
By induction on R, we show that Vo e M G(z) = G/(z).

o If x is R-minimal, then G, G’ being isomorphisms gives
vye M (—yRe — (G(y) ¢ G(z) A G'(y) ¢ G'(x)).
Hence (since G, G’ are bijective and N, N’ are transitive)

VzeN 2¢ G(z) A Vze N 2 ¢ G'(x).

Which yields G(z) = G/(z) = @.

o If x is not R-minimal, then one has
(Vy €M (yRz «— G(y) € G(z)) A Yye M (yRx «— G/(y) € G/(:):)))
which leads to

Yy e M ((yR:E —> G(y) € G(z)) A (yRz «—— G'(y) € G’(x)))
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Vye M (ny > Gy eGz) — Gy e G’(:z)).
By induction hypothesis, this gives
VyeM (ny <> G(y) eGz) «— G(y)e G’(x)).
So, in particular,
Yy e M (G(y) e G(z) «— G(y)e G’(x)).
Therefore we obtain (since G, G’ are bijective and N, N’ are transitive)
G(r) = G/'(2).

[] Mostowski Collapsing Theorem

Remark 183. Assume M is a class, R € M x M is well-founded, “set-like”, and extensional
on M. Then, we associate, to each & € M, the following colored tree T, defined by:

o The colors are among {z} U ¢l ([£]R);
o the unique root is colored with x;

o for each node n colored by b and for each a such that aRb, there exists a unique node m
which is a child of n and which is colored with a.

Notice that for each « € M:
(1) the colored tree T, has no infinite branch (since R € M x M is well-founded);

(2) on any branch of T, there is no color that appears twice (otherwise, R would be ill-

founded);

(3) if two different nodes n and m are colored with the same color a, then the colored sub-tree
induced by n and the colored sub-tree induced by m are identical.

Now if we associate to any node n colored by a, the set
a= {B | b is the color of a child ¢ of n}

as we did for instance in Remark[150/and Examples[151]and [I52]— we obtain exactly at the root
r, the set 7 to which « is mapped to through the Mostowski collapsing class-function described
in Definition [176. i.e., T = G(x).
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Example 184. Below is a tree T, generated as explained in the above Remark|[183. Notice that
the tree is well-founded.

In a second step, let us take into account the fact R is extensional. The first thing we notice is
that the leaves should all have the same color since

Vae M Va' e M (VzeM (2Ra «— zRa’)—>a:a’>.
So, we should have
(1) b=fogmizj=lom=n,
() a=c=h=p=gq;

(3) d = k.

Which shows that T, is the following tree:

We can also get rid of one of the two copies of a as well as its induced sub-tree, so that the tree
T, really looks like the one in the next picture:
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We obtain in fact the following colored tree which is nothing but the way of coloring a well-
founded tree that was described in Remark[150 on page[89; so it is indeed the colored tree T :

The next tree is another representation of the same colored tree, obtained by taking into account
the equalities 0 = @, 1 = {@}, and 2 = {@,{@}}:
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{1,2,3}

Example 185. Assume one has a non transitive model M in which
o the set named 3 does not contain any set,

o the set named 7 only contains 3,

O

the set named 9 only contains 3,7,

(@)

the set named w only contains 3,7, 9,
o the set named w? 4+ w - 3 + 2 only contains 3,7,9,w.

Then, the tree-like representation — as explained in Remark[185 — of the membership relation
looks like:

The Mostowski collapsing functionnal yields the following replacements:
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We obtain in fact the following colored tree which is nothing but the way of coloring a well-
founded tree that was described in Remark[150 on page[89; so it is indeed the colored tree Ty :

The next tree is another representation of the same colored tree, obtained by taking into account
the equalities 0 = @, 1 = {@}, and 2 = {@,{@}}:

{1,2,3)
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We now go back to the Mostowski Collapsing Theorem on page [113] and notice that in the
particular case where we work with the axiom of Foundation, the class-relation € € V x V is

(1) well-founded, (3) extensional.

(2) “set-like” 2

Therefore, the Mostowski Collapsing Theorem immediately yields:

Corollary 186 (ZF). If M is any class, € is extensional on M. Then there exist

o a transitive class N,

o an isomorphism G : (M, €) Jeoms, (N,€e); i.e.,

VeeM Vye M (mey<—>G(m)eG(y)>;

o moreover, the isomorphism is unique.

Proof of Corollary It is enough to notice that

(1) ZF I, “ € is well-founded on M 7, (3) ZF . “ € is extensional on M 7 |
(2) ZF I, “ € is set-like on M 7,

and apply the Mostowski Collapsing Theorem (page [113).
1086

*For any set z, €' [2] = {y eEV]|ye x} = x.
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Chapter 8

Preservation under Relativization

8.1 Relativization of ZF

In this section, we concentrate on some of the properties which ensure that a class satisfies
certain axioms of ZFC.

Lemma 187. Let M be any non-empty class.
If M is transitive, then (E:z:tensionality)M

i.e.,

(V:L‘GM:UQM—> (Va:Vy(Vz(zex<—>zey)—>x:y)))M>.

Proof of Lemma[187: This was Lemma [I80]
ey
Lemma 188. Let M be any non-empty class.

o If for each Y(gy 2 ... ;) With free variables among {,y,21,..., 2k}, one has

Vye MVz eM ...Vz, e M {mey|(go)M( }eM.

TyY521 50412k
Then (Comprehension Schema)M

o In particular, if M is closed under &2 : M — V that maps x to & (z) (i.e., P|M] < M)
then (Comprehension Schema)M
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Proof of Lemma[188:

(Comprehension Schema)M = (Vszl...VanIXVx(:p eX < (rey A (p)))M
=VyeMVzieM .. Vz,eMIdXeMVreM
(zeX > (zey A go))M
=VyeMVzeM .. Vzy,eMidXeMVreM
(reX > (zey A (gp)M))

So, taking X = {x ey | (‘p)M(x,y7z1,.-~,Zk)} works since this set belongs to M by assumption.
WTEE]

Lemma 189. Let M be any non-empty class. If M is transitive, then
O
(Power Set)M

<

VeeM3iyeM (Z(z) nM) Cy.

o In particular, if M is closed under & : M — V that maps x to & (x) (i.e., [M] < M)
M
then (Power Set) .

Proof of Lemma[189: We first notice that
VueM (uez—-uezx) < znMC z.

Also, if M is transitive and z € M, then z n M = z because z € M.
We have:
(Power Set)M = (VxEIyVZ(Vu (uezauex)HzEyDM

= VzeM3ye MVzeM (Yu (uez—>uex)—>zey)M
= VzeMIyeMVzeM (Vue M (uez—>ucxz)—>zey)
= VmeMﬂyeMVzeM(zmMgaz—nzey)
(:)VmeMEyeMVzeM(zgxazEy)
—=VzeMiIyeM (Z(z) nM) Cy.

(] O%9
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Lemma 190. Let M be any non-empty class.
VeeMVyeM dze M (mez A yez).

<

(P airin, g) M

Proof of Lemma[190: We have

(Pairing)M = (V:UVyEIZ(J: EzZ AYE z))M
=VzeMVyeMdzeM (xez A yez)M

=VzeMVyeMdzeM (IEGZ A yez).

[ 1190
Lemma 191. Let M be any non-empty class.
VeeM3IyeM (ngy).
=
(Union)M
Proof of Lemma[191: We have
. \M M
(Union) ™ = (VxEIyVa Vb ((a€b rbex)—>ac y))
—VeeM3IyeMVYae MVbeM ((ach A bex) —>acy)™
=VeeMIyeMVae MVbeM ((acb A bex) >acy)
=VzeMIyeMVaVb ((acb A bex)—>acy)
=VzeMIyeM (Uzcy)
e
Lemma 192. Let M be any non-empty class, ¢ := @y Aw,,....w,) b€ any formula with free

variables among x,y, A, w1, ..., Wy,.
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VAe M VYwi e M...Vw, e M

(VxeAmM MyeM ()M —3BeM {yeMerAmM(cp)M}gB)

S

(Instance of Replacement Schema for go) M

We recall 3!y ¢ abbreviates 3y (cp(x,%A’wl,m,wn) A Yz (go(x, z, Aywy, .. wy) — 2 = y)))
Proof of Lemma[192: We have

VA Yw; ... Yw, [V:U(:EEA—»EI!ygp)—>EIBV:B(:U€A—>EIy(yEB A cp))]

where

(Instance of Replacement Schema for cp) M

(VAle...an (Vx(meA—>E|!y ) — IABVz(zre A— Jy(ye B A (p))))M

VAe MVYwieM.. . Vw, e M

(VreM(wed—3yeM (™) —3IBeMVaecM (re d—JyeMyeB A (o))

YVAe M Yw, e M.. . Yw, e M
(vxeAmMalyeM(¢)M—>aBevaeAmM3yeBmM ((p)M)

—VAeMVYweM...Vw, e M

(VxeAmMH!yeM(w)MﬁﬂBeM {yeM|3meAmM(<p)M}gB>

[ 1[92

Lemma 193 (ZF ~\ {AF}). Let M be any non-empty class.

M c WF

—

(Foundation)M

Proof of Lemma (193}  Assuming M € WF, one has €'mxmS M x M is well-founded and
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“set-like” on M. So, by Theorem [174] one also has

VXgM(X;é@—ﬁyexvxexmy).

(Foundation) M

<VX<EIyyeX—>EIy(y€X A ﬁﬂx(:neX A xey))))M

- VXeM(HyeMyeXaHyeM(yeX A—dzeM (zeX AxEy)))
= VXeM(EIyeMmX—»EIyeMmXVxeMmXxg’éy)

—V¥XcM (X#Q—>3yeXVmeX :Ugéy).

(193]

Lemma 194 (ZF \ {AF}).

(1) ZF ~ {AF} I, (ZF ~ {Infinity} )"

(2) ZF ~ {AF} -, (ZF ~ {Infinity}) " .
(3) ZF ~ {AF} |, (zF) ™F.

Proof of Lemma[194t Both W (w) and WF are transitive classes closed under & : M — V
that maps = to & (z). So, one has

o Extensionality W) o Extensionality W¥

o Comprehension Schema W ®) o Comprehension Schema V¥
o (Power Set)w(w) o (Power Set)WF

o (Pairing)w(w) o (Pairing)WF

o (Union)w(w) °© (Union)WF

For the Replacement Schema, we consider any formula ¢ = ¥y Aw,.....w,) With free vari-
ables among x,y, A, w1, ..., Wy

(1)
W (w)

(Instance of Replacement Schema for Lp)

—
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VAe W (w) Ywi e W (w)...Yw, € W (w)
(Vx e AW (w) Iy e W (@) ()Y@ 3B e W () {y EW (W) [IzednW (W) (@)W@*’)} c B)

—

VAe W (w) Ywi € W (w)...Yw, € W (w) (since W (w) is transitive)
(Vaz Ay e W (W) (V@ L 3BeW (W) {y eW (w)|3zeA (gp)W(“)} c B)
which holds since A € W (w) implies A € W (n) holds for some integer n. Thus, both
A and {y EW(w)|dze A (gp)w(w)}
are finite. We set
k = sup {rk:(y) +1eOn|yeW(w) A 3zrcd (¢)W(W>}

which leads to
{yeW @) 3@V e Wk eWw).

(Instance of Replacement Schema for go) WE
—

VA e WF Yw; € WF .. Yw, € WF

(V:peAmWF Jy e WF (0)VF . 3B e WF {yeWFerAmWF (gp)WF}gB)

—

VYA e WF Yw; € WF .. . Yw, € WF (since WF is transitive)
(Vaz e A3lye WF (0)"F . 3Bc WF {y e WF |3z e A (@)WF} c B)
which holds since A € WF implies
{y e WF |3ze A (go)WF} c WF
By Lemma [145] this leads to

{y eWF |Jze A (@WF} € WF.

(3) w belongs to WF since every ordinal o belongs to WF because it satisfies € is well-founded
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on tc(a) = «a; hence by Theorem a e WF.

Lemma [193 takes care of the Axiom of Foundation since obviously both W (w) € WF and
WF < WF hold.

L]Mo4

8.2 Absoluteness

Definition 195. Let M, N be non-empty classes, and ¢y, . .
among Ti,...,Ty.

) @ formula with free variables

n

(1) If M < N,
© is absolute for M, N

<

VeieM ... Vo, e M ((cp)M — (@)N).
(2) ¢ is absolute for M if ¢ is absolute for M, V. i.e.,

VeieM ... Vo, e M ((go)M —> ).

Remark 196.
Mc N

¢ is absolute for M ¢ == ¢ is absolute for M, N.

@ is absolute for N

Absolute formulas are closed under boolean operations.

Lemma 197. Let M € N be non-empty classes, and ¢z, ... z,) @ formula with free variables
among Ti, ..., Ty

(1)

© 1s absolute for M,N = —v is absolute for M, N.
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(2)

( (gp A 1/1) is absolute for M, N
© is absolute for M, N (go v 1,!)) is absolute for M, N
Y is absolute for M, N — (gp — 1/}) 1s absolute for M, N
L (cp - ¢) s absolute for M, N.

Proof of Lemma[197: Immediate from the definition of both relativization and absoluteness.

(1097

Definition 198. ¢ is a Aj "™ -formula if
o ==y cCpi=rey
or
o 9 is a AY ™ -formula and
* =1
or

o o, p1 are AY-formulas and

o v:=(po A1) o v:=(po— ¢1)
e p:=(poV 1) o = (po < ¢1)

or

o 1 is a AJ-formula and

ogp:zflzv(xey/\w) 0(p:=VSE(IE?/—>¢).

As usual, “3Jz (a: EYA 1/)) ” is abbreviated as “dx ey ¥”, and “Vzx (m ey — w) ” is shortened
to “Veeyy”.
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Lemma 199. Let M be any non-empty class, and ¢ any A)~"*-formula.
If M is transitive, then ¢ is absolute for M.

Proof of Lemma @: The proof is by induction on At (p). The only case that matters is
p:=dx (x EYA w). Assuming that the free variables of 1) are among x1, ..., x,, one has

Vye MVzie M .. Vo, e M ()™ < o)
— VyeMVe;eM...Vz,eM ((EI:B (:Uey/\¢))M<—>EI:U(xey/\¢)>
—=VyeMVrieM .. Vx,eM (Ha;eM(xey/\(w)M)Hﬂx(a;ey/\w))

To show that we have

Vye MV e M ...V, e M <3xeM(wey/\ (w)M) < Jz (xey/\z/})>
notice that since the induction hypothesis yields ((¢)M < w), we have both

(1) weM(zeya (w)M) — IreM(zeyny) =3z (zcy )
(2) and the transitivity of M gives us that = belongs to M (since z € y € M) which leads to

EIxeM(:L‘ey/\(w)M)<=E|$€M(xeyAw)¢EI:U (:vey/\w)

[J o0

Lemma 200. Let M < N be non-empty classes, p(x1,...,2,) and ¥(x1,...,x,) be any Lgr-
formulas whose free variables are among x1,...,xy, and T some Lgp-theory.
If the following conditions are satisfied

o TR Vz1.. Vao(p o ¢) o ZF 1 (T)™ o ZF 1 (T)Y,
then

ZF + “p is absolute for M,N 7 «—— “ s absolute for M, N 7.

Proof of Lemma[200: Exercise.
O

In particular, if ¢ is equivalent to some A ~"**-formula, then ¢ is absolute for transitive models.
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Proposition 201. The following relations and functions are provably equivalent in ZF to
A -formulas, hence they are absolute for transitive models of ZF.

(1) z=y (8) z Uy
(2) zey (9) zny

(3) zcy (10) z U {x}

(4) @ (11) Ny

(5) {z,y} (12) |z

(6) {x} (13) Nz (v #2)
(7) (z,y) (14) “x is transitive ”.

Proof of Proposition 201}
1) Immediate

2) immediate

) xcyiff Vzex zey

5) p={z,y}iff (Vzep(p=azvp=y) r (xepnr yep))

(
(
(
(
(
(

)
)
)
4) x = @ iff =3z € x or equivalently Vz € z —z = 2
)
)

6) s ={a}iff (wes A Vzes z=z)
(7) ¢ = (z,y) iff (Vzec (z={a} v z={z,9}) A ({z}ec A {x,y}ec))
(8) u:a:uyiff<v,zeu(zex v zey) A (zSu A ygu))

(9) i=znyift (Vrez(zey — 2ei) A (icz A icy))
(10)y:xu{m}iﬂ((xey/\xgy) /\Vzey(zexvz:a:))
(11)d=a:\yiff<d§:cAVzex(ﬁzey<—>zed))

(12) u=Jz iff (Vzeu Jyex 2€y A Vyez ySu)
(13) i =z (assuming (@ = @) iff
((Vzei Vyex zey A Vyeaz Vzey(Vy ez zey — z€4)) A (m=®—>i=®))
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(14) “x is transitive” iff Vye x Vzey zex

[ 1 201]

Definition 202. Let M < N be any non-empty class.

(1) A class-relation R < V x ... x V is absolute for M,N if there exists some formula
—_

n
o(x1,...,xy) whose free variables are among x1,...,x, which is is absolute for M, N
and such that
V...V, ((CL’l,...,.’L’n) ER «—— 90(551,...,:%)).

(2) A class-function F : V x ... x V. — V is absolute for M, N if there exists some formula
—

n
o(T1,...,Tn,y) whose free variables are among x1, ..., T,y which is is absolute for M, N

and such that
V... Ve, Yy (F(:Cl, cey ) =Y — (a1, .. ,xn,y)).
Formally, ¢ must also satisfy:

o Vxy... Vr,ly o(x1,...,2n,Y)
oVeieM.. Ve, e MAlye M o¢(z1,...,Tn,Y)
oVr1 e N...Vz, e NAlye N o(z1,...,2n,Y)

Lemma 203. Let M < N be non-empty classes, ¢(x1,...,x,) any Lgr-formula whose free
variables are among x1,...,Tn, and F : Vx ... XV -V, G : Vx...xV >V, ... . Gy:
S—— S——
n k

V x ... x V any class-functions.
—_—
k

(1) If “o,G1,...,Gp are absolute for M;N 7,
then “go(Gl(zl, cesZk)s -y Gnl(z1, .00y zk)> is absolute for M,N 7.

(2) If “F,G1q,...,Gyq are absolute for M, N 7,
then “F (Gl(zl, cey2k)y -+, Gn(z1, .- ,zk)) is absolute for M, N 7.

Proof of Remark Exercise.
(]
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Proposition 204. The following relations and functions are absolute for transitive models of

ZF.

(1) “cis a couple” (8) “fis a 1-1 function”

(2) C=AxB (9) “ois an ordinal”

(8) “R is a (binary) relation” (10) “«a is a limit ordinal ”

(4) d = dom(R) (R a relation) (11) “a is a successor ordinal”
(5) r = ran(R) (R a relation) (12) “o is a finite ordinal”

(6) “fis a function” (13) z =w

(7) y = f(z) (14) © =4

Proof of Proposition [206}

(1) “cisacouple” iff 3z € Jec IyeJe (z,y) =c.
More precisely, “c is a couple” iff ¢(G1(c),Ga(c),Gs(c)) where Gi(c) = Ga(c) = Jc
which is absolute, G3(c¢) = ¢, and <p(w1, To, xg) is the following Aj~"“-formula:

¢(x1, 22, 23) := Ir € 21 Ty € x5 (VZ cc (z={z} vz={z,y}) A {z}ecn {z,y}e c))

Vzec ((zez A Vdez 2/=a) v Viez(F=av=y))
A
=drex; Jyexs Jsec(rxes A Vzes z=u1x)

A

EIpec(Vzep(pzxvpzy) A (zepn yep))
(2) C=AxBiff (Vae AVye B (z,y)€C A VzeCIze Adye B (z,y) = 2)
(3) “R is a (binary) relation” iff Vx € R “x is a couple”

(4) d = dom (R) iff

(VmedﬂyeUUR (x,y) e R A VyeUUR (HwEUUR (x,y)eR—»azed))
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(5) r = ran(R) iff
(VyerﬂerUR (r,y) € R A VyeUUR(H:L‘eUUR (a:,y)eR—»yer))
(6) “f is a function” iff

“fis a relation”

7AN

VeeUUf YyeUUSf VzeUU S (((x,y)ef A (a:,z)ef) —>y=z>
(7) y = f(x) iff “f is a function” A (x,y) € f
(8) “fis a 1-1 function” iff

“fis a function”
A

Vo € dom (f) Vo' € dom (f) Yy € ran (f) ((f(:v)zy A f(a:/)zy)—>:c=x'>

(9) We make use of the following

Claim 205 (ZF). Let A be any set.

If A is both transitive and totally ordered by €, then A is an ordinal.

Proof of Claim[205: It is enough to prove that every non-empty B € A contains a €-least
element. By Foundation, we have dy (y eB A —3z (z eEB A zE€ y)) which provides the
requested e-least element.

[ 1205

“a is transitive”
A
“ais an ordinal” iff | VvoeaVyeaVzea ((xe YAYEZ) —> T E z)

A

VeeaVyea (zeyvyexvae=y)
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(10) “a is a limit ordinal” iff “a 1s an ordinal”

AN

Vreadyea xey

- =J
(11) “« is a successor ordinal” iff A

—“a is a limit ordinal”

a=g

(12) “« is a finite ordinal ” iff v

Vreau{a} “x is a successor ordinal”

(13) z = w iff (“x 1 a limit ordinal” A Yy e x “y is a successor ordmal”)

(14) =

4iff x = {@, {o},{2,{2}}, {@, {o},{2, {2} }}}

(1206

Proposition 206. Let M be any transitive model of ZF .

If A< M is finite, then A € M.

Proof of Proposition 206: If A = &, then the result comes from the fact @ is absolute.
Otherwise, let A = {a1,...,ax}. For each 1 < i <k, {a;} € M holds by Proposition [201](6)} and

Proposition [201](8)| yields {a1} U {as} u ... U {ax} € M.
(] 206]

Proposition 207. The following relations and functions are absolute for transitive models of
114 ZF 7)'

(1) “xis finite” (8) x = A<¥ (5) x = type (A, <4)
(2) x = A" (4) “<a well-orders A”
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Proof of Proposition [207:

(1)

(4)

“x is finite” iff there exists some mapping f : z 1=%, W such that ran (f) € w.

Notice that the following formula ¢(z, f) is absolute for transitive models of ZF":
oz, f):= (“fis a I-1 function” A dom(f) =z A ran(f) € w)

So, given M any transitive model of ZF, we only need to show

M \%
(GF el@.n)” — Gf el )Y)
ie.,
M
(Gf @)™ — 3f o 1).
The direction (—) is obvious. For the other direction («—), notice that if f exists in V,
then f is a finite set of couples of elements of M. By absoluteness, M is closed under the
operation
couple: M , M —- M

z oy = (zy)

and by Proposition M contains all its finite subsets, hence it contains f.

The proof is by induction on n. For n = 0, we have = A" iff x = {@} which is absolute.
Forn:=n+1,
z=A"" —= z={su{(n,a)}|se A" nae A}
={su{(n,a)}| (s,a) e A" x A}.
By Proposition A™ x A is absolute for transitive models of ZF. The class-function

F: A"xA — A% is absolute as well; hence z = A™*! is absolute.

(s,a) +— su{(n,a)}

Define the functionnal F(A) by F(A) = {f | f is a function A dom(f)€w A ran(f) <
A}. Since the notions involved are absolute for transitive models of ZF, it turns out that

given any A € M, we have (F(A))M =F(A).

[13

We need to prove (“ <4 well-orders A”)M «— “ <4 well-orders A”.

(«—) Notice that “ <4 totally orders A” is absolute since it corresponds to the following
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A -formula:

Vre AVye A ((m,y)€<A v (y,z)e<yq v xzy)

A
Vee AVye AVze A (((:z:,y)€<A % (y,z)e<A)—>(aj,z)e<A)

For well-ordering, we must check that

VX ((XgA AX#AD) — yeXVreX (z,y)¢<A)

VX ((XgA ANX#AD) — eXVreX (z,y)¢<A>M

i.e.,

M
VX SO(Xv A7 <A> - (VX SO(Xa A7 <A)>

where p(X, A, <4) := ((XQA A X#@) — Jye X Vze X (z,y)¢<A>.

Notice that p(X, A, <4) is absolute form M. Also, that a universal quantification
over an absolute formula relativizes down from V to M. i.e., in this particular case,
given any non-empty (X c A)M, first we notice that (X c A)M holdsiff XnM < A
and since M is transitive, we have X n M = X, hence X nM € A iff X € A. But
since in V <4 well-orders A, there exists some minimal element y € X, which also
exists in M and is <4-minimal.

(—) Notice that M = Ja 3f ¢(a, f, A, <a) where the formula p(a, f, A, <4) is
(“a is an ordinal” A “f is an isomorphism between o and (A, <4) ”),

and that ¢(a, f, A, <4) is absolute for transitive models of ZF. Also, that an exis-
tential quantification over an absolute formula relativizes up from M to V. i.e., in
this particular case, since (“ <a well-orders A”)M holds, there exists in M both an
ordinal o and an isomorphism f, which remain an ordinal and an isomorphism in V
(by absoluteness of ¢(«, f, A, <4)), showing not only that (“ <4 well-orders A”)V
but also that the order type of (A, <4) is unchanged when one goes from M to V.

(5) See the last argument in case right above.

(] B07
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