
Part II

Relativization and Absoluteness





Chapter 6

From Inside a Class

6.1 Relativization

For each formula and class we define what this formula becomes when the sets involved are
the ones that belong to the class. For this purpose, we recall1 that a class C is nothing but a
formula with one free variable — that may or may not have other free variables that behave as
parameters — ωC. Notice that for every formula ωpx1, . . . , xkq whose free variable are among
x1, . . . , xk, there is a formula εpyq with one free variable y such that ωpx1, . . . , xkq holds if and
only if ε

`
→x1, . . . , xk↑

˘
holds; namely:

εpyq :“ @x1 . . .@xk
`
y “ →x1, . . . , xk↑ !Ñ ωpx1, . . . , xkq

˘
.

Definition 164 (Relativization). Let M be any class and ω any formula. The formula pωq
M is

defined by induction on ht pωq by:

˝
`
Dxω

˘M
:“ Dx P M

`
ω

˘M

˝
`
@xω

˘M
:“ @x P M

`
ω

˘M

˝
`
x “ y

˘M
:“ x “ y

˝
`
x P y

˘M
:“ x P y

˝
`
"ω

˘M
:“ "

`
ω

˘M

˝
`
ω0 ^ ω1

˘M
:“ pω0q

M
^ pω1q

M

˝
`
ω0 _ ω1

˘M
:“ pω0q

M
_ pω1q

M

˝
`
ω0 Ñ ω1

˘M
:“ pω0q

M
Ñ pω1q

M

˝
`
ω0 Ø ω1

˘M
:“ pω0q

M
Ø pω1q

M

So, assuming that the class M is described by the formula εMpxq, we see that
`
Dxω

˘M
stands

for Dx P M
`
ω

˘M
which really is Dx

´
x P M ^

`
ω

˘M¯
, i.e., Dx

´
εMpxq ^

`
ω

˘M¯
. Idem with

1This can be found in Section 2.4.
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the universal quantifier: the formula
`
@xω

˘M
really is @x

´
εMpxq Ñ

`
ω

˘M¯
.

Remark 165. Notice that the relativization of various notions that we introduced requires to
go back to the original definition. For instance,

(1)
`
x # y

˘M
$ñ

`
x X M

˘
# y holds since

˝ x # y $ñ @z pz P x !Ñ z P yq

˝

`
@z pz P x !Ñ z P yq

˘M
:“ @z P M pz P x !Ñ z P yq

$ñ x X M # y.

(2)
`
Ppxq

˘M
“ tz P M | z X M # xu holds.

In case M is transitive,
`
Ppxq

˘M
“ Ppxq X M. Indeed,

˝ y “ Ppxq $ñ @z pz P y %Ñ z # xq

˝
`
@z pz P y %Ñ z # xq

˘M
:“ @z P M

´
z P y %Ñ

`
z # x

˘M¯

˝ @z P M
´
z P y %Ñ

`
z # x

˘M¯
$ñ @z P M

`
z P y %Ñ z X M # x

˘
.

From now on, we may use expressions such as “ZF proves that ω holds true in M” or “ZFC
proves that the theory T holds true in M”, where each time, being true in M refers to the
relativized formula. So,

Definition 166. Given any formula ω and any theory T ,

(1) “ω holds true in M ” or “ M |ù ω ” stands for “pωq
M”

(2)
“ T holds true in M ”

or equivalently
“ M is a model of T ”

,
.

- stands for the assumption that for every ω P T , “pωq
M”.

This means that when we say, for a given class M, that

“ ZFC proves M |ù 2→0 “ ↓2 ”,

what we really mean is the statement:

ZFC $c

`
2→0 “ ↓2

˘M
.

For instance, we will see that “ ZF proves L |ù @ϑ 2→ω “ ↓ω`1 ”, which strictly speaking means

ZF $c

`
@ϑ 2→ω “ ↓ω`1

˘L
.
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We will also say, working with ZF, that “ L |ù ZFC ”; where what we mean is that for every

axiom ω P ZFC, one has ZF $c

`
ω

˘L
.

Lemma 167. Let ω be any closed formula and M be any non-empty class.

if $c ω holds, then $c pωq
M holds as well.

Proof of Lemma 167: By the completeness Theorem, the statement comes down to

|ù ω ùñ |ù pωq
M.

But, since |ù ω holds true, it follows that in any model M “
〈
|M|, Pæ|M|

〉
one has M |ù ω —

meaning in any set |M| equipped with the membership relation ω holds. So, in particular, for
every set |M| X M, we have 〈

|M| X M, Pæ|M|XM

〉
|ù ω.

l 167

6.2 Consistency and Model Existence

Lemma 168. Let S, T be any L2-theory, and M any non-empty class.

S &c K

and
S $c “ M is a model of T ”

,
.

- ùñ T &c K.

Proof of Lemma 168: Towards a contradiction, we assume T $c K. For some (any) closed formula
ω, one has

T $c

`
ω ^ "ω

˘

so there exist finitely many formulas ω0, . . . ,ωn P T such that

!

0!i!n

ωi $c

`
ω ^ "ω

˘

which gives

$c

ˆ !

0!i!n

ωi !Ñ
`
ω ^ "ω

˘˙

2L stands for the language of set theory. i.e., its signature is tP,“u.
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hence, by Lemma 167,

$c

ˆ !

0!i!n

ωi !Ñ
`
ω ^ "ω

˘˙M

which yields

$c

ˆ !

0!i!n

pωiq
M

!Ñ
`
pωq

M
^ "pωq

M˘˙
.

S $c “ M is a model of T ” yields S $c pωiq
M (any i & n), hence

S $c

!

0!i!n

pωiq
M

and by modus ponens:
S $c

`
pωq

M
^ "pωq

M˘

contradicting the fact that S is consistent.
l 168



Chapter 7

The Mostowski Collapse

7.1 Recursion on Well-founded and “Set-Like” Relations

This section is concerned with collapsing certain classes in order to render them transitive.
Morever, the collapsed class and the original one are then isomorphic and the isomorphism is
unique. This gives a very natural way of transforming a class — that possibly satisfies various
axioms of ZFC — into a transitive one which is often easier to handle.

Definition 169 (ZF⊋ tAFu). Let M be any class, and R # M ˆ M.

R is “ set-like ” on M $ñ @y P M R´1
rtyus “ tx P M | xRyu is a set.

A class-relation is “ set-like ” on a class if the inverse image of every element is a set. Notice that
it is equivalent to say that R is “ set-like ” on M if and only if, for all set B P M, R´1

rBs “

tx P M | Dy P B xRyu is a set.

We consider the closure of taking the predecessors of an element x along R.

Definition 170 (ZF⊋ tAFu). Let M be any class, X # M, x P X and R # M ˆ M. We
define cl

`
rxsRX

˘
by:

˝ cl 0
`
rxsRX

˘
“ rxsRX “ X X R´1

rtxus “ tz P X | zRxu

˝ cln`1
`
rxsRX

˘
“

" !
rzsRX | z P cln

`
rxsRX

˘ )

˝ cl
`
rxsRX

˘
“

" !
cln

`
rxsRX

˘
| n P ϖ

)
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Remark 171. If R is “ set-like ” on M, then one can easily show by induction on the integers,
that for each integer n,

cln
`
rxsRX

˘
is a set.

Hence,

cl
`
rxsRX

˘
“

" !
cln

`
rxsRX

˘
| n P ϖ

)
is a set.

Definition 172 (ZF⊋ tAFu). Let M be any class, and R # M ˆ M.

R is “well-founded” on M $ñ @X # M
´
X ‰ H !Ñ Dy P X @x P X "xRy

¯
.

So, a class-relation R on a class M is well-founded if every non-empty subset of M has some
R-minimal element.

Remark 173. If R # M ˆ M is both well-founded and “ set-like ” on M, then for each x P M,
the graph of R on x is a set G “ pV,Eq defined by:

V “ txu Y cl
`
rxsRM

˘
and E “

#
pa, bq P V ˆ V | bRa

(
.

This directed graph is acyclic1.

Theorem Schema 174 (ZF⊋ tAFu). Let M be any class, and R # M ˆ M be any well-
founded and “ set-like ” relation on M.

@X # M
´
X ‰ H !Ñ Dy P X@x P X "xRy

¯
.

So, this theorem claims that the property that defines a well-founded class-relation R on a class
M, can be lifted from non-empty subsets to non-empty classes provided that the class-relation
R be “ set-like ” on M in addition to being well-founded.

Proof of Theorem 174: Take any x P X. If x is R-minimal in X we are done. Otherwise, we
consider cl

`
rxsRX

˘
which is a set since R is “ set-like ” on M. Since R is well-founded on M and

cl
`
rxsRX

˘
is a subset of M, it follows that cl

`
rxsRX

˘
admits some R-minimal element y. We show

1By well-foundedness of R.
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that y is also R-minimal in X. Indeed, since y P cl
`
rxsRX

˘
there exists some integer k such that

y P cl k
`
rxsRX

˘
and any z P X that would satisfy zRy would belong to cl k`1

`
rxsRX

˘
# cl

`
rxsRX

˘

which would contradict the R-minimality of y.
l 174

We saw on page 39 that one can define a class-function by transfinite induction on the ordinals.
This result can easily be extended from the ordinals to any well-founded and “ set-like ” relation.

Theorem Schema 175 (ZF⊋ tAFu, transfinite recursion along well-founded set-like rela-
tions). Let M be any class, R # MˆM be any well-founded and “ set-like ” relation on M, and
F : M ˆ V Ñ V be any class-function.
There exists some unique G : M Ñ V such that such that

@x P M Gpxq “ F
´
x ,G æ

cl
´

rxsRM
¯

¯
.

Proof of Theorem 175:

Uniqueness: Assume there exist two di!erent class-functions G1 and G2. By Theorem 174
the non-empty class tx P M | G1pxq ‰ G2pxqu has an R-least element y. By construction,
one comes to the following contradiction:

G1pyq “ F
´
y ,G1 æ

cl
´

rysRM
¯

¯
“ F

´
y ,G2 æ

cl
´

rysRM
¯

¯
“ G2pyq.

Existence: we construct functions that are approximations ofG on some proper initial segment
of the ordinals.

i.e., for each x P M, we construct a function gx : cl
`
rxsRM

˘
Ñ V such that

@z P cl
`
rxsRM

˘
gxpzq “ F

´
z ,G æ

cl
´

rzsRM
¯

¯
.

So, since R is “ set-like ” on M, it follows that cl
`
rxsRM

˘
is a set, hence gx is a function

with dom pgxq “ cl
`
rxsRM

˘
and ran pgxq “ gx

“
cl

`
rxsRM

˘‰
is a set obtained by an instance of

the Replacement Schema.

Clearly, by the same argument as above, gx is unique for any given x P M. So, it is enough
to define Gpxq by:

˝ If there exists some y P M such that x P cl
`
rysRM

˘
, then

Gpxq “ gypxq

for some (any) y P M such that x P cl
`
rysRM

˘
.
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˝ If there exists no y P M such that x P cl
`
rysRM

˘
, then

Gpxq “ F
´
x , gx æ

cl
´

rxsRM
¯

¯
.

l 175

7.2 The Mostowski Collapsing Functional

We define a class-function which turns Emmentaler into Gruyère (by removing all the holes!)

Definition 176 (ZF⊋ tAFu). Let M be any class, R # M ˆ M be any well-founded and
“ set-like ” relation on M, the Mostowski collapsing class-function G : M Ñ V is defined by

Gpxq “

!
Gpyq | y P M ^ yRx

)

“

!
Gpyq | y P R´1

rtxus

)

“

!
Gpyq P G

”
R´1

rtxus

ı
| y P R´1

rtxus

)
.

The class N “ G rMs is called the Mostowski collapse of M.

Lemma 177 (ZF⊋ tAFu). Let M be any class, R # MˆM be any well-founded and “ set-like ”
relation on M, and G : M Ñ V the Mostowski collapsing class-function.

(1) @x P M@y P M
`
yRx !Ñ Gpyq P Gpxq

˘

(2) N “ G rMs is transitive

(3) N # WF.

Proof of Lemma 177:

(1) @x, y P M
`
xRy !Ñ Gpxq P Gpyq

˘
is immediate by definition of the Mostowski collapsing

class-function G.

(2) Take any v P w P N “ G rMs. By definition of Mostowski collapsing class-function G,
there exist x, y P M such that w “ Gpxq and v “ Gpyq P Gpxq, hence v P N.

(3) Since R is well-founded, we show, by induction on R, that Gpxq P WF holds for every
x P M.
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˝ If x P M is R-minimal: Gpxq “

!
Gpyq | y P M ^ yRx

)
“ ⫅̸ P W p1q # WF.

˝ If x P M is not R-minimal: Gpxq “

!
Gpyq | y P M ^ yRx

)
. Since R is “ set-like ”

on M, R´1
rtxus is a set. By induction hypothesis, Gpyq P WF holds for each yRx.

Hence, by an instance of the Replacement Schema, one has

!
rk

`
Gpyq

˘
| y P M ^ yRx

)

is a set of ordinals. Therefore

ϑ “ sup
!
rk

`
Gpyq

˘
` 1 | y P M ^ yRx

)

is well defined and x P W pϑq # WF.

l 177

Definition 178 (ZF⊋ tAFu). Let M be any class, R # M ˆ M is extensional on M if

@x P M @y P M
´

@z P M
`
zRx %Ñ zRy

˘
!Ñ x “ y

¯
.

i.e.,

@x P M @y P M
´
x ‰ y !Ñ rxsRM ‰ rysRM

¯
.

Remark 179. Notice, that when one replaces the class-relation R by the membership relation
P, this assertion becomes

@x P M @y P M
´

@z P M
`
z P x %Ñ z P y

˘
!Ñ x “ y

¯

which is exactly ´
@x @y

`
@z pz P x %Ñ z P yq Ñ x “ yq

˘¯M

in other words: `
Extensionality

˘M
.

So, essentially, one requires a class-relation to be extensional when one wants the Mostowski
collapse to satisfy the Axiom of Extensionality.

Lemma 180. If M is any transitive class, then the membership relation P is extensional on M.
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Proof of Lemma 180: Take any x, y P M with x ‰ y. By symmetry, there exists either z P x⊋ y
or z P y⊋x; which can be summarized by there exists some z such that pz P x %Ñ z R yq. Since
z P x P M and M is transitive, one has z P M, which shows

@x P M @y P M
`
x ‰ y Ñ Dz P M pz P x %Ñ z R yq

˘

i.e., ´
@x @y

`
x ‰ y Ñ Dz pz P x %Ñ z R yq

˘¯M

i.e., ´
@x @y

`
@z pz P x %Ñ z P yq Ñ x “ yq

˘¯M

in other words: `
Extensionality

˘M
.

l 180

Lemma 181 (ZF⊋ tAFu). Let M be any class, R # MˆM be any well-founded and “ set-like ”
relation on M, and G : M Ñ V the Mostowski collapsing class-function.
If R is extensional on M, then

G : M !Ñ N “ G rMs is an isomorphism from pM,Rq to pN, Pq.

Proof of Lemma 181:

˝ We show that G : M Ñ N is 1-1. Otherwise, we consider any x that is R-minimal in

!
x P M | Dy P M

`
Gpxq “ Gpyq ^ x ‰ y

˘)

and for this x a fixed y.

Since R is extensional on M and x ‰ y holds, one has rxsRM ‰ rysRM. By symmetry, we
assume rxsRM ⊋ rysRM ‰ H and pick any z P

`
rxsRM ⊋ rysRM

˘
. One has

Gpzq P Gpxq since zRx and Gpzq P Gpyq since Gpxq “ Gpyq.

Therefore, there exists some z1
P M such that

z1Ry and Gpzq “ Gpz1
q P Gpyq.

Thus, we have found some z ‰ z1 such that Gpzq “ Gpz1
q and zRx, which contradicts the

R-minimality of x.

˝ Since G : M Ñ N is 1-1 and N “ G rMs, G : M
bij.

%Ñ N. Thus, G being a bijection, it
follows that G is an isomorphism since we have:
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‚ if xRy, then Gpxq P Gpyq holds by definition of G;

‚ if Gpxq P Gpyq, then xRy holds since, from Gpxq P Gpyq “

!
Gpzq | z P M ^ zRy

)
,

pick some z P M, such that Gpxq “ Gpzq and zRy and notice that G being 1-1, one
has z “ x and xRy.

l 181

Mostowski Collapsing Theorem (ZF⊋ tAFu). Let M be any class, R # M ˆ M be any
well-founded, “ set-like ”, and extensional relation on M.

(1) there exists a transitive class N, and

(2) an isomorphism G : pM,Rq
isom.

%!!Ñ pN, Pq;

(3) moreover, the isomorphism is unique.

Proof of the Mostowski Collapsing Theorem:

(1) The existence of N and the fact it is transitive is Lemma 177

(2) The fact G : pM,Rq
isom.

%!!Ñ pN, Pq is an isomorphism is Lemma 181.

(3) Towards a contradiction, assume there exist isomorphisms G : M Ñ N “ G rMs and
G1 : M Ñ N1

“ G1
rMs between respectively pM,Rq and pN, Pq and pM,Rq and pN1, Pq.

By induction on R, we show that @x P M Gpxq “ G1
pxq.

˝ If x is R-minimal, then G,G1 being isomorphisms gives

@y P M
´

"yRx !Ñ
`
Gpyq R Gpxq ^ G1

pyq R G1
pxq

˘¯
.

Hence (since G,G1 are bijective and N,N1 are transitive)

@z P N z R Gpxq ^ @z P N1 z R G1
pxq.

Which yields Gpxq “ G1
pxq “ ⫅̸.

˝ If x is not R-minimal, then one has

´
@y P M

`
yRx %Ñ Gpyq P Gpxq

˘
^ @y P M

`
yRx %Ñ G1

pyq P G1
pxq

˘¯
.

which leads to

@y P M
´`

yRx %Ñ Gpyq P Gpxq
˘

^
`
yRx %Ñ G1

pyq P G1
pxq

˘¯
.
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i.e.,

@y P M
´
yRx %Ñ Gpyq P Gpxq %Ñ G1

pyq P G1
pxq

¯
.

By induction hypothesis, this gives

@y P M
´
yRx %Ñ Gpyq P Gpxq %Ñ Gpyq P G1

pxq

¯
.

So, in particular,

@y P M
´
Gpyq P Gpxq %Ñ Gpyq P G1

pxq

¯
.

Therefore we obtain (since G,G1 are bijective and N,N1 are transitive)

Gpxq “ G1
pxq.

l Mostowski Collapsing Theorem

Remark 183. Assume M is a class, R # M ˆ M is well-founded, “ set-like ”, and extensional
on M. Then, we associate, to each x P M, the following colored tree Tx defined by:

˝ The colors are among txu Y cl
`
rxsRM

˘
;

˝ the unique root is colored with x;

˝ for each node n colored by b and for each a such that aRb, there exists a unique node m

which is a child of n and which is colored with a.

Notice that for each x P M:

(1) the colored tree Tx has no infinite branch (since R # M ˆ M is well-founded);

(2) on any branch of Tx, there is no color that appears twice (otherwise, R would be ill-
founded);

(3) if two di!erent nodes n and m are colored with the same color a, then the colored sub-tree
induced by n and the colored sub-tree induced by m are identical.

Now if we associate to any node n colored by a, the set

pa “

!
pb | b is the color of a child c of n

)

as we did for instance in Remark 150 and Examples 151 and 152 — we obtain exactly at the root
r, the set pr to which x is mapped to through the Mostowski collapsing class-function described
in Definition 176. i.e., pr “ Gpxq.
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Example 184. Below is a tree Tx generated as explained in the above Remark 183. Notice that
the tree is well-founded.

x

a

b

c d
e

f g h

i

j p k

l m q

n

In a second step, let us take into account the fact R is extensional. The first thing we notice is
that the leaves should all have the same color since

@a P M @a1
P M

´
@z P M

`
zRa %Ñ zRa1˘

!Ñ a “ a1
¯
.

So, we should have

(1) b “ f “ g “ i “ j “ l “ m “ n;

(2) a “ c “ h “ p “ q;

(3) d “ k.

Which shows that Tx is the following tree:

x

a

b

a d
e

b b a

b

b a d

b b a

b

We can also get rid of one of the two copies of a as well as its induced sub-tree, so that the tree
Tx really looks like the one in the next picture:
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x

a d
e

b b a

b

b a d

b b a

b

Finally, the operation a ’Ñ pa as described in Remark 183 on page 114 yields the following:

xÑ

"
t⫅̸u,

#
⫅̸, t⫅̸u

(
,
!
⫅̸, t⫅̸u,

#
⫅̸, t⫅̸u

()*

aÑ t⫅̸u dÑ
#
⫅̸, t⫅̸u

( eÑ

!
⫅̸, t⫅̸u,

#
⫅̸, t⫅̸u

()

bÑ ⫅̸ b a

b

b a d

b b a

b

We obtain in fact the following colored tree which is nothing but the way of coloring a well-
founded tree that was described in Remark 150 on page 89; so it is indeed the colored tree Tpx:

"
t⫅̸u,

#
⫅̸, t⫅̸u

(
,
!
⫅̸, t⫅̸u,

#
⫅̸, t⫅̸u

()*

t⫅̸u
#
⫅̸, t⫅̸u

(
!
⫅̸, t⫅̸u,

#
⫅̸, t⫅̸u

()

⫅̸ ⫅̸ t⫅̸u

⫅̸

⫅̸ t⫅̸u
#
⫅̸, t⫅̸u

(

⫅̸ ⫅̸ t⫅̸u

⫅̸

The next tree is another representation of the same colored tree, obtained by taking into account
the equalities 0 “ ⫅̸, 1 “ t⫅̸u, and 2 “

#
⫅̸, t⫅̸u

(
:
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t1, 2, 3u

1 2
3

0 0 1

0

0 1 2

0 0 1

0

Example 185. Assume one has a non transitive model M in which

˝ the set named 3 does not contain any set,

˝ the set named 7 only contains 3,

˝ the set named 9 only contains 3, 7,

˝ the set named ϖ only contains 3, 7, 9,

˝ the set named ϖ2
` ϖ ¨ 3 ` 2 only contains 3, 7, 9,ϖ.

Then, the tree-like representation — as explained in Remark 183 — of the membership relation
looks like:

ω2
` ω ¨ 3 ` 2

7 9
ω

3 3 7

3

3 7 9

3 3 7

3

The Mostowski collapsing functionnal yields the following replacements:
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ω2
` ω ¨ 3 ` 2Ñ

"
t⫅̸u,

#
⫅̸, t⫅̸u

(
,
!
⫅̸, t⫅̸u,

#
⫅̸, t⫅̸u

()*

7Ñ t⫅̸u 9Ñ
#
⫅̸, t⫅̸u

( ωÑ

!
⫅̸, t⫅̸u,

#
⫅̸, t⫅̸u

()

3Ñ ⫅̸ 3 7

3

3 7 9

3 3 7

3

We obtain in fact the following colored tree which is nothing but the way of coloring a well-
founded tree that was described in Remark 150 on page 89; so it is indeed the colored tree Tpx:

"
t⫅̸u,

#
⫅̸, t⫅̸u

(
,
!
⫅̸, t⫅̸u,

#
⫅̸, t⫅̸u

()*

t⫅̸u
#
⫅̸, t⫅̸u

(
!
⫅̸, t⫅̸u,

#
⫅̸, t⫅̸u

()

⫅̸ ⫅̸ t⫅̸u

⫅̸

⫅̸ t⫅̸u
#
⫅̸, t⫅̸u

(

⫅̸ ⫅̸ t⫅̸u

⫅̸

The next tree is another representation of the same colored tree, obtained by taking into account
the equalities 0 “ ⫅̸, 1 “ t⫅̸u, and 2 “

#
⫅̸, t⫅̸u

(
:

t1, 2, 3u

1 2
3

0 0 1

0

0 1 2

0 0 1

0
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We now go back to the Mostowski Collapsing Theorem on page 113, and notice that in the
particular case where we work with the axiom of Foundation, the class-relation P # V ˆ V is

(1) well-founded,

(2) “ set-like ” 2

(3) extensional.

Therefore, the Mostowski Collapsing Theorem immediately yields:

Corollary 186 (ZF). If M is any class, P is extensional on M. Then there exist

˝ a transitive class N,

˝ an isomorphism G : pM, Pq
isom.

%!!Ñ pN, Pq; i.e.,

@x P M @y P M
´
x P y %Ñ Gpxq P Gpyq

¯
;

˝ moreover, the isomorphism is unique.

Proof of Corollary 186: It is enough to notice that

(1) ZF $c “ P is well-founded on M ”,

(2) ZF $c “ P is set-like on M ”,

(3) ZF $c “ P is extensional on M ” ,

and apply the Mostowski Collapsing Theorem (page 113).
l 186

2For any set x, P´1rxs “ #
y P V | y P x

( “ x.
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Chapter 8

Preservation under Relativization

8.1 Relativization of ZF

In this section, we concentrate on some of the properties which ensure that a class satisfies
certain axioms of ZFC.

Lemma 187. Let M be any non-empty class.

If M is transitive, then
`
Extensionality

˘M
.

i.e., ˆ
@x P M x # M !Ñ

´
@x @y

`
@z pz P x %Ñ z P yq Ñ x “ yq

˘¯M
˙
.

Proof of Lemma 187: This was Lemma 180.
l 187

Lemma 188. Let M be any non-empty class.

˝ If for each ωpx,y,z1,...,zkq with free variables among tx, y, z1, . . . , zku, one has

@y P M @z1 P M . . .@zk P M
!
x P y | pωq

M
px,y,z1,...,zkq

)
P M.

Then
`
Comprehension Schema

˘M
.

˝ In particular, if M is closed under P : M Ñ V that maps x to P pxq (i.e., PrMs # M)

then
`
Comprehension Schema

˘M
.
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Proof of Lemma 188:

`
Comprehension Schema

˘M
“

´
@y@z1 . . .@znDX@x

`
x P X %Ñ px P y ^ ωq

˘¯M

“ @y P M @z1 P M . . .@zn P M DX P M @x P M
`
x P X %Ñ px P y ^ ωq

˘M

“ @y P M @z1 P M . . .@zn P M DX P M @x P M
`
x P X %Ñ px P y ^ pωq

M
q
˘
.

So, taking X “

!
x P y | pωq

M
px,y,z1,...,zkq

)
works since this set belongs to M by assumption.

l 188

Lemma 189. Let M be any non-empty class. If M is transitive, then

˝ `
Power Set

˘M

$ñ

@x P M Dy P M
`
P pxq X M

˘
# y.

˝ In particular, if M is closed under P : M Ñ V that maps x to P pxq (i.e., PrMs # M)

then
`
Power Set

˘M
.

Proof of Lemma 189: We first notice that

@u P M pu P z Ñ u P xq $ñ z X M # x.

Also, if M is transitive and z P M, then z X M “ z because z # M.
We have:

`
Power Set

˘M
“

´
@x Dy @z

`
@u pu P z Ñ u P xq Ñ z P y

˘¯M

“ @x P M Dy P M @z P M
`
@u pu P z Ñ u P xq Ñ z P y

˘M

“ @x P M Dy P M @z P M
`
@u P M pu P z Ñ u P xq Ñ z P y

˘

“ @x P M Dy P M @z P M
`
z X M # x Ñ z P y

˘

$ñ @x P M Dy P M @z P M
`
z # x Ñ z P y

˘

$ñ @x P M Dy P M
`
P pxq X M

˘
# y.

l 189
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Lemma 190. Let M be any non-empty class.

@x P M @y P M Dz P M
`
x P z ^ y P z

˘
.

$ñ

`
Pairing

˘M
.

Proof of Lemma 190: We have

`
Pairing

˘M
“

´
@x@yDz

`
x P z ^ y P z

˘¯M

“ @x P M @y P M Dz P M
`
x P z ^ y P z

˘M

“ @x P M @y P M Dz P M
`
x P z ^ y P z

˘
.

l 190

Lemma 191. Let M be any non-empty class.

@x P M Dy P M
` $

x # y
˘
.

ùñ

`
Union

˘M
.

Proof of Lemma 191: We have

`
Union

˘M
“

´
@x Dy @a @b

`
pa P b ^ b P xq Ñ a P y

˘¯M

“ @x P M Dy P M @a P M @b P M
`
pa P b ^ b P xq Ñ a P y

˘M

“ @x P M Dy P M @a P M @b P M
`
pa P b ^ b P xq Ñ a P y

˘

$ @x P M Dy P M @a @b
`
pa P b ^ b P xq Ñ a P y

˘

“ @x P M Dy P M
` "

x # y
˘

l 191

Lemma 192. Let M be any non-empty class, ω :“ ωpx,y,A,w1,...,wnq be any formula with free
variables among x, y,A,w1, ..., wn.
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@A P M @w1 P M . . .@wn P M
´

@x P A X M D!y P M pωq
M

!Ñ DB P M
!
y P M | Dx P A X M pωq

M
)

# B
¯

$ñ

`
Instance of Replacement Schema for ε

˘ M

We recall D!y ω abbreviates Dy
´
ωpx,y,A,w1,...,wnq ^ @z

`
ωpx, z, A,w1, . . . , wnq !Ñ z “ yq

˘¯
.

Proof of Lemma 192: We have

@A @w1 . . .@wn

”
@x

`
x P A !Ñ D!y ωq !Ñ DB @x

`
x P A !Ñ Dy py P B ^ ωq

˘ı

where

`
Instance of Replacement Schema for ε

˘ M

“

ˆ
@A @w1 . . .@wn

´
@x

`
x P A !Ñ D!y ωq !Ñ DB @x

`
x P A !Ñ Dy py P B ^ ωq

˘¯˙M

“ @A P M @w1 P M . . .@wn P M
´

@x P M
`
x P A !Ñ D!y P M pωq

M
q !Ñ DB P M @x P M

`
x P A !Ñ Dy P M py P B ^ pωq

M
q
˘¯

“ @A P M @w1 P M . . .@wn P M
´

@x P A X M D!y P M pωq
M

!Ñ DB P M @x P A X M Dy P B X M pωq
M

¯

$ñ @A P M @w1 P M . . .@wn P M
´

@x P A X M D!y P M pωq
M

!Ñ DB P M
!
y P M | Dx P A X M pωq

M
)

# B
¯

l 192

Lemma 193 (ZF⊋ tAFu). Let M be any non-empty class.

M # WF

ùñ

`
Foundation

˘M
.

Proof of Lemma 193: Assuming M # WF, one has PæMˆM# M ˆ M is well-founded and
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“ set-like ” on M. So, by Theorem 174 one also has

@X # M
´
X ‰ H !Ñ Dy P X@x P X x R y

¯
.

`
Foundation

˘M
“

ˆ
@X

´
Dy y P X Ñ Dy

`
y P X ^ "Dx

`
x P X ^ x P y

˘˘¯˙M

“ @X P M
´

Dy P M y P X Ñ Dy P M
`
y P X ^ "Dx P M px P X ^ x P yq

˘¯

“ @X P M
`
Dy P M X X Ñ Dy P M X X @x P M X X x R y

˘

$ù @X # M
´
X ‰ H !Ñ Dy P X@x P X x R y

¯
.

l 193

Lemma 194 (ZF⊋ tAFu).

(1) ZF⊋ tAFu $c

`
ZF⊋ tInfinityu

˘ Wpεq

(2) ZF⊋ tAFu $c

`
ZF⊋ tInfinityu

˘ WF
.

(3) ZF⊋ tAFu $c

`
ZF

˘ WF
.

Proof of Lemma 194: Both W pϖq and WF are transitive classes closed under P : M Ñ V
that maps x to P pxq. So, one has

˝ ExtensionalityWpεq

˝ Comprehension SchemaWpεq

˝
`
Power Set

˘Wpεq

˝
`
Pairing

˘Wpεq

˝
`
Union

˘Wpεq

˝ ExtensionalityWF

˝ Comprehension SchemaWF

˝
`
Power Set

˘WF

˝
`
Pairing

˘WF

˝
`
Union

˘WF

For the Replacement Schema, we consider any formula ω :“ ωpx,y,A,w1,...,wnq with free vari-
ables among x, y,A,w1, ..., wn.

(1) `
Instance of Replacement Schema for ε

˘ Wpεq

$ñ
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@A P W pϖq @w1 P W pϖq . . .@wn P W pϖq

´
@x P AXW pϖq D!y P W pϖq pωq

Wpεq
!Ñ DB P W pϖq

!
y P W pϖq | Dx P A X W pϖq pωq

Wpεq
)

# B
¯

$ñ

@A P W pϖq @w1 P W pϖq . . .@wn P W pϖq (since W pϖq is transitive)

´
@x P A D!y P W pϖq pωq

Wpεq
!Ñ DB P W pϖq

!
y P W pϖq | Dx P A pωq

Wpεq
)

# B
¯

which holds since A P W pϖq implies A P W pnq holds for some integer n. Thus, both

A and
!
y P W pϖq | Dx P A pωq

Wpεq
)

are finite. We set

k “ sup
!
rk pyq ` 1 P On | y P W pϖq ^ Dx P A pωq

Wpεq
)

which leads to !
y P W pϖq | Dx P A pωq

Wpεq
)

# W pkq P W pϖq .

(2) `
Instance of Replacement Schema for ε

˘ WF

$ñ

@A P WF @w1 P WF . . .@wn P WF
´

@x P AXWF D!y P WF pωq
WF

!Ñ DB P WF
!
y P WF | Dx P A X WF pωq

WF
)

# B
¯

$ñ

@A P WF @w1 P WF . . .@wn P WF (since WF is transitive)

´
@x P A D!y P WF pωq

WF
!Ñ DB P WF

!
y P WF | Dx P A pωq

WF
)

# B
¯

which holds since A P WF implies

!
y P WF | Dx P A pωq

WF
)

# WF

By Lemma 145 this leads to

!
y P WF | Dx P A pωq

WF
)

P WF.

(3) ϖ belongs to WF since every ordinal ϑ belongs to WF because it satisfies P is well-founded
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on tc pϑq “ ϑ; hence by Theorem 161, ϑ P WF.

Lemma 193 takes care of the Axiom of Foundation since obviously both W pϖq # WF and
WF # WF hold.

l 194

8.2 Absoluteness

Definition 195. Let M,N be non-empty classes, and ωpx1,...,xnq a formula with free variables
among x1, . . . , xn.

(1) If M # N,
ω is absolute for M,N

$ñ

@x1 P M . . .@xn P M
`
pωq

M
%Ñ pωq

N˘
.

(2) ω is absolute for M if ω is absolute for M,V. i.e.,

@x1 P M . . .@xn P M
`
pωq

M
%Ñ ω

˘
.

Remark 196.

M # N

ω is absolute for M

ω is absolute for N

,
///.

///-
ùñ ω is absolute for M,N.

Absolute formulas are closed under boolean operations.

Lemma 197. Let M # N be non-empty classes, and ωpx1,...,xnq a formula with free variables
among x1, . . . , xn.

(1)
ω is absolute for M,N ùñ "ω is absolute for M,N.
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(2)

ω is absolute for M,N

ε is absolute for M,N

,
.

- ùñ

$
’’’’’’&

’’’’’’%

`
ω ^ ε

˘
is absolute for M,N

`
ω _ ε

˘
is absolute for M,N

`
ω Ñ ε

˘
is absolute for M,N

`
ω Ø ε

˘
is absolute for M,N.

Proof of Lemma 197: Immediate from the definition of both relativization and absoluteness.

l 197

Definition 198. ω is a ”0´rud
0 -formula if

˝ ω :“ x “ y ˝ ω :“ x P y

or

˝ ε is a ”0´rud
0 -formula and

‚ ω :“ "ε

or

˝ ω0,ω1 are ”0´rud
0 -formulas and

‚ ω :“
`
ω0 ^ ω1

˘

‚ ω :“
`
ω0 _ ω1

˘
‚ ω :“

`
ω0 !Ñ ω1

˘

‚ ω :“
`
ω0 %Ñ ω1

˘

or

˝ ε is a ”0´rud
0 -formula and

‚ ω :“ Dx
`
x P y ^ ε

˘
‚ ω :“ @x

`
x P y !Ñ ε

˘
.

As usual, “ Dx
`
x P y ^ ε

˘
” is abbreviated as “ Dx P y ε ”, and “@x

`
x P y !Ñ ε

˘
” is shortened

to “@x P y ε ”.
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Lemma 199. Let M be any non-empty class, and ω any ”0´rud
0 -formula.

If M is transitive, then ω is absolute for M.

Proof of Lemma 199: The proof is by induction on ht pωq. The only case that matters is
ω :“ Dx

`
x P y ^ ε

˘
. Assuming that the free variables of ε are among x1, . . . , xn, one has

@y P M@x1 P M . . .@xn P M
`
pωq

M
Ø ω

˘

$ñ @y P M@x1 P M . . .@xn P M
´`

Dx px P y ^ εq
˘M

Ø Dx
`
x P y ^ ε

˘¯

$ñ @y P M@x1 P M . . .@xn P M
´

Dx P M
`
x P y ^

`
ε

˘M˘
Ø Dx

`
x P y ^ ε

˘¯
.

To show that we have

@y P M@x1 P M . . .@xn P M
´

Dx P M
`
x P y ^

`
ε

˘M˘
Ø Dx

`
x P y ^ ε

˘¯

notice that since the induction hypothesis yields
``
ε

˘M
Ø ε

˘
, we have both

(1) Dx P M
`
x P y ^

`
ε

˘M˘
ùñ Dx P M

`
x P y ^ ε

˘
ùñ Dx

`
x P y ^ ε

˘

(2) and the transitivity of M gives us that x belongs to M (since x P y P M) which leads to

Dx P M
`
x P y ^

`
ε

˘M˘
$ù Dx P M

`
x P y ^ ε

˘
$ù Dx

`
x P y ^ ε

˘

l 199

Lemma 200. Let M # N be non-empty classes, ωpx1, . . . , xnq and εpx1, . . . , xnq be any Lst-
formulas whose free variables are among x1, . . . , xn, and T some Lst-theory.
If the following conditions are satisfied

˝ T $c @x1 . . .@xn
`
ω Ø ε

˘
˝ ZF $c

`
T

˘M
˝ ZF $c

`
T

˘N
,

then
ZF $c “ω is absolute for M,N ” %Ñ “ε is absolute for M,N ”.

Proof of Lemma 200: Exercise.

l 200

In particular, if ω is equivalent to some”0´rud
0 -formula, then ω is absolute for transitive models.
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Proposition 201. The following relations and functions are provably equivalent in ZF to
”0´rud

0 -formulas, hence they are absolute for transitive models of ZF.

(1) x “ y

(2) x P y

(3) x # y

(4) ⫅̸

(5) tx, yu

(6) txu

(7) px, yq

(8) x Y y

(9) x X y

(10) x Y txu

(11) x⊋ y

(12)
"

x

(13)
%

x (x ‰ ⫅̸)

(14) “ x is transitive ”.

Proof of Proposition 201:

(1) Immediate

(2) immediate

(3) x # y i! @z P x z P y

(4) x “ ⫅̸ i! "Dz P x or equivalently @z P x "z “ z

(5) p “ tx, yu i!
`
@z P p pp “ x _ p “ yq ^ px P p ^ y P pq

˘

(6) s “ txu i! px P s ^ @z P s z “ xq

(7) c “ px, yq i!
´

@z P c
`
z “ txu _ z “ tx, yu

˘
^

`
txu P c ^ tx, yu P c

˘¯

(8) u “ x Y y i!
´

@z P u pz P x _ z P yq ^ px # u ^ y # uq

¯

(9) i “ x X y i!
´

@z P x pz P y !Ñ z P iq ^ pi # x ^ i # yq

¯

(10) y “ x Y txu i!
´

px P y ^ x # yq ^ @z P y pz P x _ z “ xq

¯

(11) d “ x⊋ y i!
´
d # x ^ @z P x p"z P y %Ñ z P dq

¯

(12) u “
"

x i!
`
@z P u Dy P x z P y ^ @y P x y # u

˘

(13) i “
%

x (assuming
%

⫅̸ “ ⫅̸) i!
´`

@z P i @y P x z P y ^ @y P x @z P yp@y1
P x z P y1

!Ñ z P iq
˘

^ px “ ⫅̸ !Ñ i “ ⫅̸q

¯
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(14) “x is transitive ” i! @y P x @z P y z P x

l 201

Definition 202. Let M # N be any non-empty class.

(1) A class-relation R # V ˆ . . . ˆ Vloooooomoooooon
n

is absolute for M,N if there exists some formula

ωpx1, . . . , xnq whose free variables are among x1, . . . , xn which is is absolute for M,N
and such that

@x1 . . .@xn
`
px1, . . . , xnq P R %Ñ ωpx1, . . . , xnq

˘
.

(2) A class-function F : V ˆ . . . ˆ Vloooooomoooooon
n

Ñ V is absolute for M,N if there exists some formula

ωpx1, . . . , xn, yq whose free variables are among x1, . . . , xn, y which is is absolute for M,N
and such that

@x1 . . .@xn@y
`
Fpx1, . . . , xnq “ y %Ñ ωpx1, . . . , xn, yq

˘
.

Formally, ω must also satisfy:

˝ @x1 . . .@xnD!y ωpx1, . . . , xn, yq

˝ @x1 P M . . .@xn P MD!y P M ωpx1, . . . , xn, yq

˝ @x1 P N . . .@xn P ND!y P N ωpx1, . . . , xn, yq

Lemma 203. Let M # N be non-empty classes, ωpx1, . . . , xnq any Lst-formula whose free
variables are among x1, . . . , xn, and F : V ˆ . . . ˆ Vloooooomoooooon

n

Ñ V, G1 : V ˆ . . . ˆ Vloooooomoooooon
k

Ñ V, . . . ,Gn :

V ˆ . . . ˆ Vloooooomoooooon
k

any class-functions.

(1) If “ω,G1, . . . ,Gn are absolute for M,N ”,

then “ω
´
G1pz1, . . . , zkq, . . . ,Gnpz1, . . . , zkq

¯
is absolute for M,N ”.

(2) If “F,G1, . . . ,Gn are absolute for M,N ”,

then “F
´
G1pz1, . . . , zkq, . . . ,Gnpz1, . . . , zkq

¯
is absolute for M,N ”.

Proof of Remark 203: Exercise.
l 203
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Proposition 204. The following relations and functions are absolute for transitive models of
ZF.

(1) “ c is a couple ”

(2) C “ A ˆ B

(3) “R is a (binary) relation ”

(4) d “ dom pRq (R a relation)

(5) r “ ran pRq (R a relation)

(6) “ f is a function ”

(7) y “ fpxq

(8) “ f is a 1-1 function ”

(9) “ϑ is an ordinal ”

(10) “ϑ is a limit ordinal ”

(11) “ϑ is a successor ordinal ”

(12) “ϑ is a finite ordinal ”

(13) x “ ϖ

(14) x “ 4

Proof of Proposition 206:

(1) “ c is a couple ” i! Dx P
"

c Dy P
"

c px, yq “ c.

More precisely, “ c is a couple ” i! ω
`
G1pcq, G2pcq, G3pcq

˘
where G1pcq “ G2pcq “

"
c

which is absolute, G3pcq “ c, and ω
`
x1, x2, x3

˘
is the following ”0´rud

0 -formula:

ω
`
x1, x2, x3

˘
:“ Dx P x1 Dy P x2

´
@z P c

`
z “ txu _ z “ tx, yu

˘
^

`
txu P c ^ tx, yu P c

˘¯

:“ Dx P x1 Dy P x2

¨

˚̊
˚̊
˚̊
˚̊
˚̊
˝

@z P c
`
px P z ^ @z1

P z z1
“ xq _

`
@z1

P z pz1
“ x _ z1

“ yq
˘

^

Ds P c px P s ^ @z P s z “ xq

^

Dp P c
`
@z P p pp “ x _ p “ yq ^ px P p ^ y P pq

˘

˛

‹‹‹‹‹‹‹‹‹‹‚

(2) C “ A ˆ B i!
`
@x P A@y P B px, yq P C ^ @z P C Dx P A Dy P B px, yq “ z

˘

(3) “R is a (binary) relation ” i! @x P R “ x is a couple ”

(4) d “ dom pRq i!

´
@x P d Dy P

$ $
R px, yq P R ^ @y P

$ $
R

`
Dx P

$ $
R px, yq P R !Ñ x P d

˘¯
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(5) r “ ran pRq i!

´
@y P r Dx P

$ $
R px, yq P R ^ @y P

$ $
R

`
Dx P

$ $
R px, yq P R !Ñ y P r

˘¯

(6) “ f is a function ” i!

¨

˚̊
˚̋

“ f is a relation ”

^

@x P
" "

f @y P
" "

f @z P
" "

f
´`

px, yq P f ^ px, zq P f
˘

!Ñ y “ z
¯

˛

‹‹‹‚

(7) y “ fpxq i! “ f is a function ” ^ px, yq P f

(8) “ f is a 1-1 function ” i!

¨

˚̊
˚̋

“ f is a function ”

^

@x P dom pfq @x1
P dom pfq @y P ran pfq

´`
fpxq “ y ^ fpx1

q “ y
˘

!Ñ x “ x1
¯

˛

‹‹‹‚

(9) We make use of the following

Claim 205 (ZF). Let A be any set.

If A is both transitive and totally ordered by P, then A is an ordinal.

Proof of Claim 205: It is enough to prove that every non-empty B # A contains a P-least
element. By Foundation, we have Dy

`
y P B ^ "Dz

`
z P B ^ z P y

˘˘
which provides the

requested P-least element.

l 205

“ϑ is an ordinal ” i!

¨

˚̊
˚̊
˚̊
˚̊
˚̊
˝

“ϑ is transitive ”

^

@x P ϑ @y P ϑ @z P ϑ
`
px P y ^ y P zq !Ñ x P z

˘

^

@x P ϑ @y P ϑ px P y _ y P x _ x “ yq

˛

‹‹‹‹‹‹‹‹‹‹‚
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(10) “ϑ is a limit ordinal ” i!

¨

˚̊
˚̊
˚̊
˚̊
˚̊
˝

"ϑ “ ⫅̸

^

“ϑ is an ordinal ”

^

@x P ϑ Dy P ϑ x P y

˛

‹‹‹‹‹‹‹‹‹‹‚

(11) “ϑ is a successor ordinal ” i!

¨

˚̊
˚̋

"ϑ “ ⫅̸

^

"“ϑ is a limit ordinal ”

˛

‹‹‹‚

(12) “ϑ is a finite ordinal ” i!

¨

˚̊
˚̋

ϑ “ ⫅̸

_

@x P ϑ Y tϑu “x is a successor ordinal ”

˛

‹‹‹‚

(13) x “ ϖ i!
`
“ x is a limit ordinal ” ^ @y P x “ y is a successor ordinal ”

˘

(14) x “ 4 i! x “

"
⫅̸, t⫅̸u ,

#
⫅̸, t⫅̸u

(
,
!
⫅̸, t⫅̸u ,

#
⫅̸, t⫅̸u

()*
.

l 206

Proposition 206. Let M be any transitive model of ZF.

If A # M is finite, then A P M.

Proof of Proposition 206: If A “ ⫅̸, then the result comes from the fact ⫅̸ is absolute.
Otherwise, let A “ ta1, . . . , aku. For each 1 & i & k, taiu P M holds by Proposition 201 (6), and
Proposition 201 (8) yields ta1u Y ta2u Y . . . Y taku P M.

l 206

Proposition 207. The following relations and functions are absolute for transitive models of
“ ZF”.

(1) “ x is finite ”

(2) x “ An

(3) x “ A"ε

(4) “ (A well-orders A ”

(5) x “ type pA,(Aq
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Proof of Proposition 207:

(1) “ x is finite ” i! there exists some mapping f : x
1´1
!!Ñ ϖ such that ran pfq P ϖ.

Notice that the following formula ωpx, fq is absolute for transitive models of ZF:

ωpx, fq :“
`
“ f is a 1-1 function ” ^ dom pfq “ x ^ ran pfq P ϖ

˘

So, given M any transitive model of ZF, we only need to show

´`
Df ωpx, fq

˘M
%Ñ

`
Df ωpx, fq

˘V¯

i.e., ´`
Df ωpx, fq

˘M
%Ñ Df ωpx, fq

¯
.

The direction (!Ñ) is obvious. For the other direction (%!), notice that if f exists in V,
then f is a finite set of couples of elements of M. By absoluteness, M is closed under the
operation

couple : M , M ’Ñ M
x , y Ñ px, yq

and by Proposition 206, M contains all its finite subsets, hence it contains f .

(2) The proof is by induction on n. For n “ 0, we have x “ A0 i! x “ t⫅̸u which is absolute.
For n :“ n ` 1,

x “ An`1
$ñ x “

#
s Y tpn, aqu | s P An

^ a P A
(

“
#
s Y tpn, aqu | ps, aq P An

ˆ A
(
.

By Proposition 206 (2), An
ˆA is absolute for transitive models of ZF. The class-function

F : An
ˆ A Ñ V

ps, aq ’Ñ s Y tpn, aqu

is absolute as well; hence x “ An`1 is absolute.

(3) Define the functionnal FpAq by FpAq “
#
f | f is a function ^ dom pfq P ϖ ^ ran pfq #

A
(
. Since the notions involved are absolute for transitive models of ZF, it turns out that

given any A P M, we have
`
FpAq

˘M
“ FpAq.

(4) We need to prove
`
“ (A well-orders A ”

˘M
%Ñ “ (A well-orders A ”.

(%!) Notice that “ (A totally orders A ” is absolute since it corresponds to the following
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”0´rud
0 -formula:

¨

˚̊
˚̊
˝

@x P A @y P A
´

px, yq P(A _ py, xq P(A _ x “ y
¯

&

@x P A @y P A @z P A
´`

px, yq P(A _ py, zq P(A

˘
!Ñ px, zq P(A

¯

˛

‹‹‹‹‚

For well-ordering, we must check that

¨

˚̊
˚̊
˝

@X
´`

X # A ^ X ‰ ⫅̸
˘

!Ñ Dy P X @z P X pz, yq R(A

¯

!!!!Ñ

@X
´`

X # A ^ X ‰ ⫅̸
˘

!Ñ Dy P X @z P X pz, yq R(A

¯M

˛

‹‹‹‹‚

i.e.,

@X ωpX,A,(Aq !Ñ

´
@X ωpX,A,(Aq

¯M

where ωpX,A,(Aq :“
´`

X # A ^ X ‰ ⫅̸
˘

!Ñ Dy P X @z P X pz, yq R(A

¯
.

Notice that ωpX,A,(Aq is absolute form M. Also, that a universal quantification
over an absolute formula relativizes down from V to M. i.e., in this particular case,
given any non-empty

`
X # A

˘M
, first we notice that

`
X # A

˘M
holds i! XXM # A

and since M is transitive, we have X X M “ X, hence X X M # A i! X # A. But
since in V (A well-orders A, there exists some minimal element y P X, which also
exists in M and is (A-minimal.

(!Ñ) Notice that M |ù Dϑ Df ωpϑ, f, A,(Aq where the formula ωpϑ, f, A,(Aq is

`
“ϑ is an ordinal ” ^ “ f is an isomorphism between ϑ and pA,(Aq ”

˘
,

and that ωpϑ, f, A,(Aq is absolute for transitive models of ZF. Also, that an exis-
tential quantification over an absolute formula relativizes up from M to V. i.e., in
this particular case, since

`
“ (A well-orders A ”

˘M
holds, there exists in M both an

ordinal ϑ and an isomorphism f , which remain an ordinal and an isomorphism in V
(by absoluteness of ωpϑ, f, A,(Aq), showing not only that

`
“ (A well-orders A ”

˘V

but also that the order type of pA,(Aq is unchanged when one goes from M to V.

(5) See the last argument in case (4) right above.

l 207
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