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(Partial) Mock Exam Solutions

An A4 two side sheet of personal notes is allowed.
Points are only given as an indication of the length

and/or the difficulty of each exercise.

Last name:

First name: /73 points
Section:

Problem 1: (38 points)

Question 1.1: One the following ordinal equalities is true. Which one?2 pt

Ü

3 ¨ ω “ ω ¨ 3

Ò

ω ¨ 2` ω2 “ ω ¨ 3` 2` ω2

Ü

ω2 ` ω3 “ ω2 ` ω2

Ü

4 ¨ p3` ωq “ p3` ωq ¨ 4

Question 1.2: Let ‘ and b denote the cardinal operations. One of the2 pt
following cardinal equalities is provably false in ZFC. Which one?

Ü

ℵ0 b ℵ0 “ ℵ0
Ò

ℵω ‘ ℵ1 “ ℵω`1

Ü

ℵ2 b 2p2
ℵ0 q “ 2p2

ℵ0 q

Ü

8‘ ℵ1 “ ℵ1 b 8

Question 1.3: Assuming ZFC is consistent. Let cofpαq denote the cofinality2 pt
of α. One of the following ordinal equality is provably true in ZFC. Which one?

Ü

cofpωωq “ ωω

Ü

cofpω2q “ ω

Ü

cofpω1 ` ω
ωq “ ω1

Ò

cofpℵωq “ ω

Question 1.4: Working in ZFC and assuming ZFC is consistent, we consider4 pt
the structure pVω, Pq. Among the following axioms, check those that do hold
in this structure.
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Foundation axiom

Ò

Pairing axiom

Ü

Axiom of infinity

Ò

Power Set axiom

Question 1.5: Check the correct equalities among the following.3 pt

Ò

rkpω q “ ω

Ò

rkp ωω q “ ω ` 1

Ü

rkp ωω q “ ω

Ò

rkp t0, 2u q “ 3

Ü

rkp t0, 2u q “ 2

Ò

rkp tω1u q “ ω1 ` 1

Question 1.6: Assuming ZFC is consistent. Which of the following statements3 pt
is provable in ZFC?

Ò

there exists a surjection f : RÑ Ppℵ0q
Ü

there exists a injection f : ω2 Ñ R
Ò

there exists an injection f : ω1 Ñ PpRq
Ò

there exists a bijection f : RÑ Ppℵ0q
Ü

there exists a surjection f : ω2 Ñ R
Ò

there exists a surjection f : ω2 Ñ ω1

Question 1.7: Let L be the class of constructible sets. Assuming ZF is3 pt
consistent, which of the following statements is provable in ZF?

Ò

pPower Set AxiomqL

Ü

p“ there exists some well-ordering of R of order type ω2”q
L

Ò

pACqL

Ò

pAxiom of ExtensionalityqL

Ò

p2p2
ℵ0 q “ ℵ2qL

Ü

p“ R is a countable union of countable sets”qL

Question 1.8: Let M be a transitive class model of ZFC. Which of the3 pt
following formulas are absolute for M?

Ò

“α is an ordinal”
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“α is an infinite ordinal”

Ò

“α is a limit ordinal”

Ü

“α is some uncountable ordinal”

Ü

“α is some countable ordinal”

Ò

“f : xÑ y is some injection”

Question 1.9: Assuming ZFC is consistent. Among the following statements,4 pt
check those which are consistent with ZFC:

Ò

There exists some regular cardinal κ such that ℵ0 ď κ ă 2ℵ0 .

Ü

There exists no singular cardinal κ such that ℵ0 ă κ ă 2pℵℵ0q.

Ò

There exists some singular cardinal κ such that ℵ0 ă κ ă 2ℵ0 .

Ò

There exists some singular cardinal κ and some regular cardinal λ such

that ℵ0 ă κ ď λ ă 2ℵ0 .

Ò

There exists some singular regular κ and some singular cardinal λ such

that ℵ0 ă κ ď λ ă 2ℵ0 .

Ò

There exists exactly one singular cardinal κ such that ℵ0 ă κ ă 2ℵ0 .

Ò

There exists no regular cardinal κ such that ℵ0 ă κ ă 2ℵ0 .

Ò

There exist exactly two singular cardinals κ,λ such that ℵ0 ă κ ă λ ă 2ℵ0 .
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check those which hold in all models of ZF:

(We recall that A
1´ 1
ÝÝÝÑ

ÀB stands for “there exists an injection from A to B”.)

Ò

R
1´ 1
ÝÝÝÑ

À ωR.

Ò

ωR
1´ 1
ÝÝÝÑ

ÀR.

Ò

R
1´ 1
ÝÝÝÑ

À R2.

Ü R2
1´ 1
ÝÝÝÑ

ÀR.

Ò

R
1´ 1
ÝÝÝÑ

À ω2.

Ò

ω2
1´ 1
ÝÝÝÑ

ÀR.

Ò

R
1´ 1
ÝÝÝÑ

À 2 pω2q.

Ò

2 pω2q
1´ 1
ÝÝÝÑ

ÀR.

Ü

R
1´ 1
ÝÝÝÑ

À p
ω2q2.

Ò

p
ω2q2

1´ 1
ÝÝÝÑ

ÀR.

Question 1.11: Assuming ZF is consistent. Among the following statements,2 pt
check those which hold in all models of ZF`“ R is a countable union of countable sets”:

Ò

there is a partition R of R such that R
1´ 1
ÝÝÝÑ

ÀR

Ò

there is a partition R of R such that R
1´ 1
ÝÝÝÑ

�À R

Ò

there is a partition R of R such that R
1´ 1
ÝÝÝÑ

�À R

Ò

there is a partition R of R such that both R
1´ 1
ÝÝÝÑ

ÀR and R
1´ 1
ÝÝÝÑ

�À R hold.

Question 1.12: Assuming ZF is consistent. LetM be any countable transitive2 pt
model of “ZFC”, pP,ď,1q any partial order over M , G any subgroup of the group
of automorphisms of P, and F a normal filter on G

For all subgroups H, K of G and all π P G which of the following assertion
holds?

Ò

G P F
Ü

if H P F and K Ď H, then K P F
Ü

if H P F and K P F , then HYK P F
Ò

if H P F , then π´1 ˝H ˝ π P F

Question 1.13: Assuming ZFA is consistent. Let M be any transitive model3 pt
of ZFA with A as set of atoms, G any subgroup of the group of permutations of
A, F any normal filter on G, HSF the class of all hereditarily symmetric sets,
and MHSF “ MXHSF the induced permutation model. Among the following
statements, check those which hold:
Ò

MHSF is transitive.

Ò

P8pHq Ď MHSF ;

Ò

A Ď MHSF .
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A P MHSF .

Ò

MHSF satisfies ZFA.

Ü

MHSF satisfies AC.

/38 points
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Question 2.1: Write a first order formula in the language of set theory which2 pt
formalizes the expression

A “
ď

pB X Cq.

Solution:

@x
´

x P AØ Dy
`

x P y ^ py P B ^ y P Cq
˘

¯

Question 2.2: In the language of set theory, write a first order formula with4 pt
one free variable which describes the class of transitive P-well-founded sets.

Solution:

φpxq :
´

@y @z
`

py P x^ z P yq Ñ z P x
˘

^ Dy
`

y P x ^ @z
`

z P y Ñ z R xq
˘

¯

/6 points
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We let P denote the following forcing notion:

tp : F Ñ ω | F is any finite subset of ωu

partially ordered by p ď q if and only if p extends q, i.e. domppq Ě dompqq and
the restriction of p to dompqq equals q.
We assume that M is a countable transitive model of “ZFC” that contains P.

Question 3.1: Among the following sets, check the ones which are P-conditions.4 pt

Ò

p0 “ 0
Ò

p1 “ tp0, 0qu
Ü

p2 “ tt0uu
Ü

p3 “ ω
Ü

p4 “ tp0, 0q, p0, 3qu

Ò

p5 “ tp0, 0q, p3, 1qu

Ü

p6 “ tp0, p0q, p3, p3qu

Ü

p6 “ tpp0,0q, pp3,3qu

Ü

p7 “ tp0, p3u

Question 3.2: Assume that σ and τ are P-names and p and q are P-conditions.3 pt
Among the following sets, check the ones which are P-names.

Ò

τ0 “ 0

Ò

τ1 “ tp0, 0qu

Ü

τ2 “ t0,τ1u

Ò

τ3 “ tpσ, pq, pτ, qqu

Ü

τ4 “ tpp,σq, pq,τqu

Ü

τ5 “ tpp, pq, pq, qqu

Question 3.3: Let G be P-generic over M with p “ tp0,0q,p1,2q,p5,7qu P G.4 pt

1. Does q0 “ tp0,0q,p5,7qu P G hold?

Ò

yes
Ü

no
Ü

it depends

2. Does q1 “ tp1,0qu P G hold?

Ü

yes
Ò

no
Ü

it depends

3. Does q2 “ tp2,1qu P G hold?

Ü

yes
Ü

no
Ò

it depends

4. Does q3 “ tp0,0q,p1,2q,p2,3q,p3,4q,p5,7qu P G hold?

Ü

yes
Ü

no
Ò

it depends

7



SO
LU

T
IO
N
SQuestion 3.4: We now consider the following P-conditions:6 pt

p0 “ tp0, 0qu, p1 “ tp0, 0q, p1, 1qu, and p2 “ tp0, 0q, p1, 2qu.

We consider the following P-names

τ0 “ tpH, p0qu, τ1 “ tpH, p1qu, τ2 “ tpτ0,p0q, pH, p1qu, τ3 “ tpτ2, p2qu.

Let G be any P-generic filter over M with p1 P G.
Compute pτ0qG, pτ1qG, pτ2qG, and pτ3qG.

Solution:

• pτ0qG “ tHu

• pτ1qG “ tHu

• pτ2qG “ tH,tHuu

• pτ3qG “ H

Does p1 , τ0 P τ1 hold?

Ü

yes
Ò

no
Ü

it depends

Does p1 , pτ1 P τ2 ^ τ3 P τ2q hold?

Ò

yes
Ü

no
Ü

it depends

Question 3.5: Let G be any P-generic filter over M and8 pt

σ “ tpň, pq | p P P^ n P ω ^ ppnq “ 1u.

Does pσqG belong to M?

Ü

yes
Ò

no
Ü

it depends

Question 3.6: Show that for all n P ω the set4 pt

Dn “ tp P P | Dk P ω pk ą n^ ppkq ą kqu

is dense in P and that Dn belongs to M .
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Solution:
Fix n P ω and let q P P, since Dompqq Ď ω is finite, there exists k ą n with
k R Dompqq. Therefore p “ qY tpk, k` 1qu satisfies p ď q and p P Dn. So Dn is
dense. Moreover since P belongs to M , M is transitive and a model of ZFC, by
comprehension Dn PM .

%$

/29 points
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