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“La logique est le dernier refuge des gens sans imagination.”

Oscar Wilde 1

1 Introduction

Le but de ce cours est d’introduire et de démontrer le théorème de com-
plétude de la logique de premier ordre qui peut s’énoncer ainsi :

Γ ⊢ φ si et seulement si Γ |= φ.

Il exprime l’équivalence entre le fait que la formule φ est prouvable par l’en-
semble d’hypothèses Γ et le fait que φ découle sémantiquement de Γ. Pour
faire cela, il faudra formaliser certaines notions et réaliser la différentiation
entre syntaxe et sémantique. D’un coté on a une notion de conséquence
“syntaxique” (la preuve) dont on verra qu’elle est elle-même un objet mathé-
matique particulier (en particulier un arbre fini) et de l’autre une notion de
conséquence sémantique, qui repose sur le fait de regarder les modèles dans
lesquels les hypothèses sont vérifiées et s’assurer que dans chacun d’eux la
conséquence (la formule) l’est également.

Ainsi l’énoncé
Γ ⊢ φ si et seulement si Γ |= φ.

pourra se comprendre comme

il existe une preuve de φ à partir des hypothèses Γ

si et seulement si

φ est vraie dans tous les modèles qui satisfont les hypothèses Γ.

Bien sûr, l’énoncé Γ ⊬ φ si et seulement si Γ ̸|= φ est équivalent au pré-
cédent. Il se lit

il n’existe pas de preuve de φ à partir des hypothèses Γ

si et seulement si

il existe un modèle qui satisfait les hypothèses Γ mais ne satisfait pas φ.

Un tel modèle s’appelle un contre-exemple. Grâce à ce théorème de com-
plétude, prouver que l’on ne peut pas prouver revient à produire un contre-
exemple.

1. “Consistency is the Last Refuge of the Unimaginative.” Oscar Wilde "The Relation
of Dress to Art" in Pall Mall Gazette (2/28/1885).
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2 Préambule

Dans ce cours, nous ne nous intéresserons pas à la théorie axiomatique
des ensembles (c’est le sujet d’un cours à part entière). Toutefois, nous pré-
sentons un premier aperçu de ce que l’on pourrait appeler la théorie naïve des
ensembles en explicitant qu’un ensemble est une collection d’objets dont on
peut montrer l’existence en utilisant les propriétés (axiomes) suivant(e)s 2.
Le but de cette présentation naïve est de s’accorder sur certaines notions
fondamentales qui vont revenir tout le semestre.

Axiome 1 (Existence). Il existe un ensemble.

Axiome 2 (Extensionnalité). Soit x et y deux ensembles, alors x = y ⇔
∀z(z ∈ x⇔ z ∈ y).

Axiome 3 (Schéma d’axiomes de compréhension). Si A est un ensemble et
P est une propriété exprimable dans le langage de la théorie des ensembles,
alors l’ensemble {x ∈ A | P (x)} existe.

A noter que l’on parle de schéma d’axiomes plutôt que d’axiome car en
fait il y en a une infinité : il y en a autant qu’il y a de propriété à considérer.
Pour que cette remarque fasse sens, il faudrait définir proprement ce qu’est
une propriété. Mais cela requiert la logique du premier ordre que l’on est
précisément en train d’introduire. Donc, chaque chose en son temps !
Paradoxe de Russell : Attention, toute collection d’objets n’est pas un
ensemble. Par exemple, la collection E de tous les ensembles n’est pas un
ensemble. Pour voir cela, procédons par l’absurde et supposons que cette
collection E soit effectivement un ensemble. Par l’axiome de compréhension,
on peut alors former l’ensemble des ensembles qui ne s’appartiennent pas,
c’est-à-dire l’ensemble A = {x ∈ E | x ̸∈ x}. Puisque A est un ensemble,
A ∈ E. On peut donc se demander si A ∈ A. Si A ∈ A, par définition de
A cela signifie que A ̸∈ A, une contradiction. Or si A ̸∈ A, cela signifie, à
nouveau par définition de A, que A ∈ A, encore une contradiction. D’où l’on
en déduit que la collection E de tous les ensembles n’est pas un ensemble.

Axiome 4 (Infini). N est un ensemble.

Axiome 5 (Paire). Si x et y sont des ensembles, alors il existe un ensemble
{x, y}.

Soient x et y des ensembles. On peut définir le couple (ou paire ordonnée)
(x, y) comme l’ensemble :

(x, y) =
{
{x}, {x, y}

}
.

2. Noter que la plupart de ces axiomes semblent totalement naturel à tout mathéma-
ticien.
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Il s’agit là d’une représentation comme une autre. Dans la notion de couple il
est primordial de distinguer le premier élément du second. On vérifie aisément
que pour tous ensembles x, y, on a (x, y) = (x′, y′) si et seulement si à la fois
x = x′ et y = y′.

Axiome 6 (Union, intersection). Soit {Ai}i∈I une famille d’ensembles indi-
cée par un ensemble d’indices I.

(1) Il existe l’union des éléments de cette famille, notée
⋃
i∈I Ai, est définie

par ⋃
i∈I

Ai = {x : ∃j ∈ I x ∈ Aj}.

(2) Il existe l’intersection des éléments de cette famille, notée
⋂
i∈I Ai, est

définie par ⋂
i∈I

Ai = {x : ∀j ∈ I x ∈ Aj}.

Axiome 7 (Ensemble des parties). Soit A un ensemble. Il existe P(A)
l’ensemble des parties de A, défini par :

P(A) = {B : ∀x (x ∈ B → x ∈ A)}

À l’aide des axiomes précédents, on peut montrer l’existence du

Definition 2.1 (Produit cartésien). Soient x et y deux ensembles. On définit
le produit cartésien de x avec y, noté x× y, qui est par définition l’ensemble

x× y = {(u, v) : u ∈ x, v ∈ y}.

Axiome 8 (Fondation). Il n’existe pas de suite infinie d’ensembles vérifiant

x0 ∋ x1 ∋ x2 ∋ x3 ∋ . . . ∋ xn ∋ xn+1 ∋ . . . . . .

En particulier, pour tout ensemble x on n’a jamais x ∈ x.

Axiome 9 (Remplacement). Pour tout ensembleA et toute propriété P (x, y)
– écrite dans le langage de la théorie des ensembles – qui vérifie que, pour tout
x ∈ A si P (x, y) et P (x, z) alors y = z 3, la collection {y | ∃x ∈ A P (x, y)}
est un ensemble.

Axiome 10 (Choix). Soit I un ensemble (d’indices) et pour chaque i ∈ I
un ensemble non vide Ai. Il existe une fonction (de choix) C : I → ⋃

i∈I Ai
telle que pour chaque i ∈ I, C(i) ∈ Ai.

3. La propriété P se comporte comme une fonction.
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Definition 2.2 (Fonction, application). Une fonction (partielle) f de do-
maine A et de codomaine B, notée f : A −→ B, est un sous-ensemble de
A×B vérifiant la propriété suivante :

∀x ∈ A ∀y ∈ B ∀y′ ∈ B
((

(x, y) ∈ f ∧ (x, y′) ∈ f
)
→ y = y′

)
.

Une application ou fonction (totale) est une fonction partielle vérifiant de
plus la condition qui la rend totale :

∀x ∈ A ∃y ∈ B (x, y) ∈ f.

Lorsqu’on parlera d’une fonction, on entendra toujours par là “fonction
totale”. Nous préciserons les rares cas où nous parlerons de fonctions par-
tielles.

Notation 2.3. On notera souvent f(x) = y pour (x, y) ∈ f .

Definition 2.4 (Injection, surjection, bijection). Une fonction f : A −→ B
est dite

(1) injective si ∀x, x′ ∈ A,
(
f(x) = f(x′)→ x = x′

)
;

(2) surjective si ∀y ∈ B,
(
∃x (x ∈ A ∧ f(x) = y)

)
;

(3) bijective si elle est injective et surjective.

Definition 2.5 (Infini, dénombrable, indénombrable). Soit A un ensemble.
Il est dit

(1) infini 4 s’il existe une injection i : N→ A ;
(2) dénombrable s’il existe une injection i : A→ N ;
(3) non dénombrable s’il est infini et non dénombrable.

Definition 2.6 (Equipotence). Deux ensembles A et B sont dits équipotents
s’il existe une bijection de A vers B.

Notation 2.7. On notera
• A ≈ B le fait que A et B sont équipotents ;
• A ≲ B le fait qu’il existe une injection de A dans B ;
• A � B pour A ≲ B et B ̸≲ A. (On pourra également utiliser A < B.)

Le Théorème 2.9 ci-dessous dit précisément que A ≈ B est vérifié exac-
tement lorsque à la fois A ≲ B et B ≲ A le sont.

Deux ensembles finis sont équipotents précisément lorsqu’ils ont le même
nombre d’éléments. A priori, il semble que pour les ensembles infinis ils soient
tous équipotents entre eux. Il n’en est rien !

4. On pourra préférer à cette définition celle qui dit qu’un ensemble est infini s’il existe
une injection de cet ensemble sur l’un de ses sous-ensembles propres. Cette définition est
meilleure en ce qu’elle ne procure pas un “bon ordre” des éléments de A.
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Theorème 2.8 (Cantor). Soit A un ensemble. Il n’existe pas de surjection
de A sur P(A).

Démonstration. On procède par l’absurde en supposant qu’il existe une sur-
jection f : A→P(A) et l’on construit :

B = {a ∈ A : a /∈ f(a)}

Puisque f est surjective il existe b ∈ A tel que f(b) = B. On obtient alors la
contradiction suivante : b ∈ B si et seulement si b /∈ B.

Theorème 2.9 (Cantor-Schröder-Bernstein). Soient A et B deux ensembles.
S’il existe deux injections i : A inj.−−→ B et j : B

inj.−−→ A, alors il existe une
bijection h : A

bij.−−→ B.

Démonstration. Remarquer tout d’abord que le théorème est trivial pour
A = B. Si A ̸= B, on procède en deux temps. On prouve tout d’abord un
cas particulier puis l’on prouve que le cas général se ramène très facilement
au cas particulier.

Cas particulier, B ⊊ A :
On suppose tout d’abord que B est inclus dans A. On construit ensuite

par récurrence :

• C0 = A∖B,

• Cn+1 = i[Cn],

• C =
⋃
n∈NCn.

On définit alors h : A −→ B comme étant l’identité sur A ∖ C et i sur C.
h est bien à valeurs dans B puisque :

• si un élément appartient à A ∖ C, il n’appartient pas à C0 donc il
appartient à B ;
• i est à valeurs dans B.

h est injective puisque l’identité sur A∖C est injective et i sur C est égale-
ment une fonction injective de C sur C. Par ailleurs h est également surjective
car pour tout y dans B :

• si y ̸∈ C, alors h(y) = y ;

• si y ∈ C, alors il existe un entier n tel que y ∈ Cn, de plus n est non
nul car y ∈ B et C0 = A∖ B. Par conséquent, il existe x ∈ Cn−1 tel
que i(x) = y.

Cas général :
On considère alors B′ = j[B] et par le cas précédent on obtient une

bijection h : A ←→ B′. Comme j : B ←→ B′ est bijective, il ressort que
j−1 ◦ h : A←→ B est également bijective.
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Definition 2.10 (Suite finie). Soit A un ensemble non vide, et n un entier.
On note par An l’ensemble des suites finies 5 s = (s(0), s(1), . . . , s(n− 1)) =
(s0, s1, . . . , sn−1) de longueur n sur A, on note long(s) = n. En particulier,
A0 = {ε}, où ε désigne la suite vide. Si s est de longueur n, alors pour tout
entier m inférieur à n on peut définir la restriction de s de longueur m,
désignée par s|m, comme étant la sous-suite (s0, . . . , sm−1) de s.

Si s et t sont deux suites finies sur A, on dit que s est un segment initial
(ou encore préfixe) de t, ou que t est une extension de s, noté s ⊑ t, s’il
existe un entier n ≤ long(t) tel que t|n = s.

On note A<ω (ou A∗ pour les informaticiens) l’ensemble
⋃
n∈NA

n de
toutes les suites finies sur A.

Soient s ∈ An et u ∈ Am, la concaténation de s et u est la suite

ŝ u = (s0, . . . , sn−1, u0, . . . , um−1)

de An+m. On note ŝ a au lieu de ŝ (a) si (a) ∈ A1.

Definition 2.11 (Arbre, arbre de hauteur finie). Un arbre sur un ensemble
A est un sous-ensemble T de A<ω clos par préfixes, c’est à dire tel que pour
tous t et s dans A<ω, si t appartient à T et que s est un segment initial de
t, alors s appartient aussi à T .

Les éléments d’un arbre sont appelés ses nœuds. Si s est un nœud de T ,
les fils du nœud s sont les nœuds de la forme ŝ a ∈ T pour un certain a ∈ A.

Les nœuds de T qui n’admettent pas d’extension propre dans T sont
appelés les feuilles de T .

Un arbre T ⊆ A<ω est dit de hauteur finie s’il existe un naturel n tel que
T ⊆ A≤n =

⋃
j≤nA

j . Le plus petit n tel que T ⊆ A≤n est appelé la hauteur
de T .

Si T est de hauteur finie, une branche de T est une suite finie de nœuds
(n0, n1, . . . , nk) telle que n0 est la suite vide, pour chaque i < k ni+1 est un
fils de ni, et nk est une feuille. La hauteur de T coïncide avec la longueur
maximum des branches de T .

Nous allons généralement considérer des arbres comme celui-ci :

T :

¬

Q ∨

P P

Cet arbre n’est pas à proprement parler un arbre sur un ensemble au sens
de la Définition 2.11. Nous les voyons comme des arbres sur lesquels on est
venu apposer des étiquettes :

5. Nous verrons plus tard une notion bien plus générale de suite, les suites transfinies
— voir Définition 7.29.
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Definition 2.12. Un arbre étiqueté est un couple (T, j) où T est un arbre
sur un certain ensemble A et j : T → E est une fonction de T vers un certain
ensemble d’étiquettes E.

Par abus de terminologie, nous appellerons souvent « arbre » ce qui serait
plus juste d’appeler un « arbre étiqueté ». De plus, en décrivant un arbre
étiqueté (T, j) on omettra toujours la description de l’arbre T et de l’ensemble
sur lequel celui-ci est construit. Pour comprendre que cela ne pose pas de
problèmes, reprenons l’exemple de l’arbre

T :

¬

Q ∨

P P

Formellement, nous pouvons le voir comme l’arbre étiqueté (S, j) où S
est l’arbre sur 2 = {0, 1} donné par S = {ε, (0), (1), (1, 0), (1, 1)} et que l’on
se représent comme suit

ε

(0) (1)

(1, 0) (1, 1)

et où l’étiquetage j à image dans l’ensemble d’étiquettes E = {¬, Q,∨, P}
est décrit par

j : S −→ E

ε 7−→ ¬
(0) 7−→ Q

(1) 7−→ ∨
(1, 0) 7−→ P

(1, 1) 7−→ P.

Toutefois, la description de S et de j ne sont pas nécessaires et seront en
général omises.
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3 Syntaxe

Dans cette partie, nous allons définir ce que sont le langage, les termes,
puis les formules ainsi que la substitution.

Definition 3.1 (Arité). L’arité d’une fonction f : A×A× . . .×A︸ ︷︷ ︸
n

−→ B

est l’entier n.

Exemple 3.2. • L’addition sur les entiers est une fonction d’arité 2.
• L’exponentielle sur les réels et une fonction d’arité 1.

3.1 Langage, termes et formules

Definition 3.3 (Langage). Un langage du calcul des prédicats du premier
ordre est composé :

(i) D’un ensemble de variables : V = {v0, v1, v2, . . .} 6 (en particulier, l’en-
semble des variables est dénombrable).

(ii) De connecteurs logiques : {¬,∧,∨,→,↔}.
(iii) De quantificateurs : {∀,∃}.
(iv) De parenthèses.
(v) D’un ensembles de symboles de constantes : {c0, c1, . . .}.
(vi) D’un ensemble de symboles de fonctions d’arité quelconque (mais fi-

nie) :
{
f
(n0)
0 , f

(n1)
1 , . . .

}
(ni représente l’arité de la ième fonction).

(vii) Un ensemble de symboles de relations d’arité quelconque (mais finie) :{
R

(m0)
0 , R

(m1)
1 , . . .

}
.

Remarque 3.4. On formule les remarques suivantes :
• Les points (i) à (iv) de la définition précédente sont le plus souvent

sous-entendus et non spécifiés.
• Les ensembles des points (v) à (vii) constitue la signature du lan-

gage. Celle-ci peut aussi bien être réduite au minimum qu’être non
dénombrable.
• Les symboles de constantes peuvent également être considérés comme

des symboles de fonctions d’arité 0.
• Lorsque la relation d’égalité fait partie du langage, on parle alors d’un

langage égalitaire ou d’un langage avec égalité.
Exemple 3.5. On pourra prendre comme langage de la théorie des groupes :

Lgrp =
{
f (2), s(1), c

}
.

Ces symboles correspondent respectivement, à l’opération interne (l’addition
de deux éléments), l’inverse (d’un élément) et l’élément neutre.

6. par la suite on se permettra d’utiliser x,y,z, ou toute autre lettre qui nous semblera
commode pour dénoter des variables.
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Definition 3.6 (Termes). Soit L un langage du premier ordre quelconque.
L’ensemble des termes de L , noté T (L ), est le plus petit ensemble véri-
fiant :

• les variables et les constantes de L sont dans T (L ) ;
• pour toute fonction n-aire f (n) de L et pour tous termes t1, . . . , tn,
f(t1, . . . , tn) est un terme.

Remarque 3.7. L’ensemble T (L ) est un ensemble de mots finis sur l’alpha-
bet L . Lorsque, dans la définition ci-dessus, on écrit f(t1, . . . , tn), on parle
de cette succession de symboles sans lui attribuer un sens.

Definition 3.8 (Hauteur d’un terme). La hauteur d’un terme est définie de
la manière suivante :

• les variables et les constantes sont de hauteur 0 ;
• si t1, . . . , tn sont des termes de hauteur h1, . . . , hn et f un symbole de

fonction n-aire, alors la hauteur du terme f(t1, . . . , tn) est 1+max{hi :
1 ≤ i ≤ n}.

Notation 3.9. Pour indiquer qu’un terme t est de hauteur h, on notera
souvent ht(t) = h.

Definition 3.10 (Formule atomique). Soit L un langage du premier ordre.
Une formule atomique est une suite (finie) de symboles de L composée :

• d’une relation d’arité quelconque n ;
• d’une parenthèse ouvrante ;
• de n termes séparés par des virgules ;
• d’une parenthèse fermante.

On note A (L ) l’ensemble des formules atomiques de L .

Exemple 3.11. Voici des exemples de formules atomiques, si L =
{
P (1), R(2), f (1), c(0)

}
:

P (c), P
(
f(x)

)
, R(c, f(c)), R(f(f(c)), x), P (f(f(f(y)))).

Definition 3.12 (Ensemble des formules). L’ensemble des formules d’un
langage du premier ordre L est le plus petit ensemble X ⊆ L ∗ vérifiant :

• Toutes les formules atomiques sont dans X.
• Si φ et ψ sont dans X, alors

¬φ, (φ ∧ ψ), (φ ∨ ψ), (φ→ ψ) et (φ↔ ψ)

sont dans X.
• Soit x une variable et φ ∈ X, alors ∀x φ et ∃x φ sont dans X.

L’ensemble des formules de L est noté F (L ).
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3.2 Arbre de décomposition d’une formule

Definition 3.13 (Arbre de décomposition). Soit φ une formule du premier
ordre. L’arbre de décomposition de φ, noté Tφ, est défini par induction :
∗ Si φ est une formule atomique :

φ

∗ Si φ est de la forme ¬ψ :
¬

Tψ

∗ Si φ est de la forme Qx ψ, où Q ∈ {∃, ∀} :

Qx

Tψ

∗ Si φ est de la forme φ0 ⋆ φ1, où ⋆ ∈ {∧,∨,→,↔} :

⋆

Tφ0 Tφ1

Definition 3.14 (Hauteur d’une formule). Il s’agit de la longueur de la (les)
plus longue(s) branche(s) de son arbre de décomposition.

Definition 3.15 (Sous-formule). Une sous-formule ψ d’une formule φ est
une sous-suite consécutive de symboles de φ qui est une formule.

Proposition 3.16. Il y a une correspondance bijective entre les sous-formules
d’une formule et les noeuds de son arbre de décomposition.

3.3 Variables libres et variables liées

Definition 3.17 (Occurrence liée). Dans une formule φ, une occurrence de
la variable x (dans une feuille de l’arbre de décomposition de φ) est liée
si en remontant de cette feuille vers la racine on rencontre un nœud de la
forme Qx avec Q ∈ {∀, ∃}. Une occurrence liée de la variable x est quantifiée
universellement dans φ si le premier nœud de la forme Qx, en remontant
de la feuille où se trouve l’occurence de x considérée, est ∀x, sinon elle est
quantifiée existentiellement.

Definition 3.18 (Occurrence libre). L’occurrence d’une variable x est dite
libre si elle n’est pas liée.
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Definition 3.19 (Variable libre, variable liée). Une variable est libre dans
une formule si elle possède au moins une occurrence libre. Dans le cas
contraire, elle est dite liée.

3.4 Formule close et clôture universelle

Definition 3.20 (Formule close). Une formule est dite close si elle ne pos-
sède aucune variable libre.

Definition 3.21 (Clôture universelle). Soit φ une formule dont les variables
libres sont parmi x1, . . . , xn. La clôture universelle de φ est :

∀x1 . . . ∀xnφ.

3.5 Substitution

Definition 3.22 (Substitution dans les termes). Soient x1, . . . , xk des va-
riables deux-à-deux distinctes et t, t1, . . . , tk des termes. Le résultat de la
substitution des termes t1, . . . , tk aux variables x1, . . . , xk dans le terme t est
noté t[t1/x1 ,...,tk/xk ]. Plus précisément :

(i) Si ht(t) = 0,

(a) si t = xi, i ∈ {1, . . . , k} alors t[t1/x1 ,...,tk/xk ] = ti ;

(b) si t ̸∈ {x1, . . . , xk} alors t[t1/x1 ,...,tk/xk ] = t.

(ii) Si ht(t) > 0, alors par définition il existe un entier n et des termes
u1, . . . , un tels que t = f(u1, . . . , un) et on définit

t[t1/x1 ,...,tk/xk ] = f

(
u1[t1/x1 ,...,tk/xk ], . . . , un[t1/x1 ,...,tk/xk ]

)
.

Definition 3.23 (Substitution dans les formules). Soient φ une formule,
x1, . . . , xk des variables deux-à-deux distinctes et t1, . . . , tk des termes. Le
résultat de la substitution des termes t1, . . . , tk aux occurrences libres des
variables x1, . . . , xk dans la formule φ est noté φ[

t1/x1 ,...,tk/xk
]. Plus préci-

sément :

(i) Si ht(φ) = 0, alors φ est une formule atomique et il existe un entier n
et des termes u1, . . . , un tels que φ = R(u1, . . . , un). On définit alors

φ[
t1/x1 ,...,tk/xk

] = R

(
u1[t1/x1 ,...,tk/xk ], . . . , un[t1/x1 ,...,tk/xk ]

)
.

(ii) Si ht(φ) > 0, alors

(a) si φ = ¬ψ, alors φ[
t1/x1 ,...,tk/xk

] = ¬ψ[
t1/x1 ,...,tk/xk

] ;
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(b) si φ = (ψ0 ⋆ ψ1) avec ⋆ ∈ {∧,∨,→,↔}, alors

φ[
t1/x1 ,...,tk/xk

] =
(
ψ0

[
t1/x1 ,...,tk/xk

] ⋆ ψ1
[
t1/x1 ,...,tk/xk

]) ;

(c) si φ = (Qx ψ) avec Q ∈ {∀, ∃}, alors plusieurs cas se présentent :
• si x ̸∈ {x1, . . . , xk} alors

φ[
t1/x1 ,...,tk/xk

] =
(
Qx ψ[

t1/x1 ,...,tk/xk
]) ;

• si x = xi pour 1 ≤ i ≤ n alors

φ[
t1/x1 ,...,tk/xk

] =
(
Qx ψ[

t1/x1 ,...,ti−1/xi−1 ,
ti+1/xi+1 ,...,

tk/xk
]) .

En général, φ
[t/x ]

dit la même chose au sujet de ce qui est représenté par
t que φ dit au sujet de ce qui est représenté par x. Toutefois, ce n’est pas
toujours le cas, comme il est possible de s’en rendre compte en considérant
par exemple ∃y x = 2·y pour φ, x pour x et y+1 pour t. La difficulté provient
du fait que l’occurrence de y dans y + 1 est devenue liée après substitution.
Nous souhaitons exclure ce genre de cas.

Definition 3.24. Nous disons qu’un terme t est substituable à la variable x
dans la formule φ, si pour toute variable y apparaissant dans t il n’y a pas de
sous-formule de φ de la forme Qyψ avec Q ∈ {∀, ∃} dans laquelle x possède
une occurrence libre.

Remarquons que t est toujours substituable à x dans φ si t ne continent
pas de variables ou si φ ne contient pas de quantificateurs. Nous faisons la
convention suivante :

Convention 3.25. Chaque fois que nous écrivons φ[
t1/x1 ,...,tk/xk

] il est

sous-entendu que ti est substituable à xi dans φ pour tout i = 1, . . . , k. Si
tel n’est pas le cas, il est sous-entendu que nous avons préalablement sub-
stitué aux occurrences liées des variables apparaissant dans φ des variables
n’apparaissant pas dans t1, · · · , tk.
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4 Sémantique

Dans cette partie, nous allons donner un sens, interpréter la syntaxe.

4.1 Réalisation d’un langage

Definition 4.1 (L -réalisation). Soit L = {ci, f (nj)
j , R

(nk)
k } un langage du

premier ordre. Une L -réalisation (ou L -structure) est une suite

M =
〈
M, ci

M , (f
(nj)
j )M , (R

(nk)
k )M

〉
où l’on a :

(i) M = |M | est un ensemble non vide appelé domaine de base ;

(ii) ciM est un élément du domaine pour chaque symbole de constante ci
de L ;

(iii) (f
(nj)
j )M est une fonction (f

(nj)
j )M : Mnj −→ M , pour tout symbole

de fonction f (nj)
j de L ;

(iv) (R
(nk)
k )M est une relation (R

(nk)
k )M ⊆Mnk pour tout symbole de rela-

tion R(nk)
k dans L ;

Exemple 4.2. Soit L =
{
c, f (2), R(2)

}
. Voici deux L -réalisations :

(i) M =
〈
N, cM , fM , RM

〉
où cM = 0, fM = +N et RM = ≤N ;

(ii) N =
〈
Z, cN , fN , RN

〉
où cN = 3, fN est définie par fN (a, b) = 0

pour tout a, b ∈ Z et RN = ∅.
Remarque 4.3. On rappelle que les ensembles de constantes, fonctions et
relation peuvent être indénombrable, malgré la notation...

Definition 4.4 (Langage égalitaire). On dit qu’un langage du premier ordre
L est égalitaire lorsque le symbole d’égalité ≃ appartient à L et que l’on
convient que l’interprétation de ≃ dans toute L -réalisation M est la diago-
nale de |M |, c’est à dire,

≃M=
{
(m,m) : m ∈ |M |

}
.

4.2 Évaluation d’une formule dans une structure

Definition 4.5. Soit L un langage du premier ordre, M une L -structure,
a1, . . . , an ∈ |M | et t un terme de L dont les variables sont parmi x1, . . . , xn.
On définit tM ,a1/x1 ,...,an/xn ∈ |M |, l’évaluation de t dans la L -structure
M avec interprétation des variables x1, . . . , xn par a1, . . . , an respectivement,
par induction sur la hauteur de t :

∗ Si t = xi, tM− = ai.
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∗ Si t = c, tM− = cM .

∗ Si t = f (t1, . . . , tk), alors tM− = fM
(
t
M−
1 , . . . , t

M−
k

)
où M− est un raccourci pour M , a1 /x1 , . . . , an /xn .

Definition 4.6. Soit L un langage du premier ordre, M une L -structure,
φ une formule dont les variables libres sont parmi x1, . . . , xn et a1, . . . , an ∈
|M |. On note

M , a1 /x1 , . . . , an /xn |= φ

le fait que φ est satisfaite dans M lorsque les variables x1, . . . , xn sont res-
pectivement interprétées par a1, . . . , an, ce qui se définit par induction sur
la hauteur de φ, ht(φ) :
∗ Si φ = R

(
t1, . . . , tk

)
, alors M , a1 /x1 , . . . , an /xn |= φ si et seulement si(

t
M ,a1/x1 ,...,an/xn
1 , . . . , t

M ,a1/x1 ,...,an/xn
k

)
∈ RM .

∗ Si φ = ¬ψ, alors
M− |= φ ssi M− ̸|= ψ.

∗ Si φ = (φ0 ∨ φ1), alors

M− |= φ ssi
(
M− |= φ0 ou M− |= φ1

)
.

∗ Si φ = (φ0 ∧ φ1), alors

M− |= φ ssi
(
M− |= φ0 et M− |= φ1

)
.

∗ Si φ = (φ0 → φ1), alors

M− |= φ ssi
(
M− ̸|= φ0 ou M− |= φ1

)
.

∗ Si φ = (φ0 ↔ φ1), alors

M− |= φ ssi
((

M− |= φ0 et M− |= φ1

)
ou
(
M− ̸|= φ0 et M− ̸|= φ1

))
.

∗ Si φ = ∃x ψ, où x ̸∈ {x1, . . . , xn}, alors

M− |= φ ssi
(
il existe a ∈ |M | tel que M , a1 /x1 , . . . , an /xn , a /x |= ψ

)
.

∗ Si φ = ∀x ψ, où x ̸∈ {x1, . . . , xn}, alors

M− |= φ ssi
(
pour tout a ∈ |M | on a M , a1 /x1 , . . . , an /xn , a /x |= ψ

)
.

∗ Si φ = ∃xi ψ, où i ∈ {1, . . . , n}, alors

M− |= φ
ssi il existe a ∈ |M | tel que

M , a1 /x1 , . . . , ai−1
/
xi−1 , a /xi , ai+1

/
xi+1 , . . . , an /xn |= ψ.
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∗ Si φ = ∀xi ψ, où i ∈ {1, . . . , n}, alors

M− |= φ
ssi pour tout a ∈ |M | on a

M , a1 /x1 , . . . , ai−1
/
xi−1 , a /xi , ai+1

/
xi+1 , . . . , an /xn |= ψ.

Definition 4.7. Soit φ et ψ des formules closes.

(i) On dit que φ est universellement valide si pour toute L -structure M ,
on a M |= φ.

(ii) On dit que φ est contradictoire (ou inconsistante) si pour toute L -
structure M , on a M ̸|= φ.

(iii) On dit que φ est équivalente à ψ, ce que l’on note φ ≡ ψ, si pour toute
L -structure M on a M |= (φ↔ ψ).

Proposition 4.8. • Soient φ,φ′, ψ, ψ′ des formules closes telles que
φ ≡ φ′ et ψ ≡ ψ′. On a alors :

(i) ¬φ ≡ ¬φ′ ;

(ii) (φ ∨ ψ) ≡ (φ′ ∨ ψ′) ;

(iii) (φ ∧ ψ) ≡ (φ′ ∧ ψ′) ;

(iv) (φ→ ψ) ≡ (φ′ → ψ′) ;

(v) (φ↔ ψ) ≡ (φ′ ↔ ψ′).

• Soit φ une formule dont les variables libres sont incluses dans {x}.
On a alors :

(i) ¬∃x φ ≡ ∀x ¬φ ;

(ii) ¬∀x φ ≡ ∃x ¬φ.

• Soit φ une formule telle que y n’apparait pas dans φ. on a alors :

(i) ∃x φ ≡ ∃y φ[y/x ] ;

(ii) ∀x φ ≡ ∀y φ[y/x ].

Proposition 4.9 (Propriétés des connecteurs). Soient φ,ψ, θ des formules
closes.

• Idempotence de la conjonction et de la disjonction :
φ ≡ (φ ∧ φ) ≡ (φ ∨ φ).
• Commutativité de ∧,∨,↔ :

(i) (φ ∧ ψ) ≡ (ψ ∧ φ) ;
(ii) (φ ∨ ψ) ≡ (ψ ∨ φ) ;
(iii) (φ↔ ψ) ≡ (ψ ↔ φ).

• Associativité de ∧,∨,↔ :
Si ⋆ ∈ {∧,∨,↔}, ((φ ⋆ ψ) ⋆ θ) ≡ (φ ⋆ (ψ ⋆ θ)).
• Distributivité entre conjonction et disjonction :
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(i) (φ ∨ (ψ ∧ θ)) ≡ ((φ ∨ ψ) ∧ (φ ∨ θ)) ;
(ii) (φ ∧ (ψ ∨ θ)) ≡ ((φ ∧ ψ) ∨ (φ ∧ θ)) ;
• Lois de De Morgan :

(i) ¬(φ ∨ ψ) ≡ (¬φ ∧ ¬ψ) ;
(ii) ¬(φ ∧ ψ) ≡ (¬φ ∨ ¬ψ).
• Contraposée :
(φ→ ψ) ≡ (¬ψ → ¬φ).
• ¬¬φ ≡ φ.
• (φ→ ψ) ≡ (¬φ ∨ ψ).

Remarque 4.10. Les parenthèses ne doivent pas être omises ou déplacées dans
certains cas. En effet, si φ et ψ sont deux formules avec x n’apparaissant pas
dans ψ,

(∃x φ→ ψ) ̸≡ ∃x (φ→ ψ).

Comme le montre le cas particulier φ := ”x = c” et ψ := ”¬c = c”, puisque
dans toute structure avec au moins deux éléments : (∃x φ → ψ) est fausse
alors que ∃x (φ→ ψ) est vraie.

4.3 Théories et conséquence sémantique

Definition 4.11 (Théorie). Une théorie de L est un ensemble de formules
closes de L .

• On dit qu’une L -structure M est modèle d’une théorie T (noté
M |= T ) si chaque formule de T est satisfaite dans M .

• Une théorie est dite consistante (ou satisfaisable) si elle possède un
modèle. Elle est dite inconsistante si elle n’en possède aucun.

• Une théorie est dite finiment consistante si chacune de ses sous
parties finies possède un modèle.

• Une formule est dite universellement valide si sa clôture universelle
φ est satisfaite dans tous modèles. Autrement dit si {¬φ} est une
théorie inconsistante.

Definition 4.12. T et T ′ sont deux L -théories équivalentes si et seulement
si elles sont satisfaites dans les mêmes L -structures.

On notera T ≡ T ′ le fait qu’elles soient équivalentes.

Definition 4.13 (Conséquence sémantique). Une théorie T de L a pour
conséquence sémantique la formule close φ de L si toute L -structure satis-
faisant T satisfait également φ.
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Dans le cas où φ n’est pas close, on dira que T a pour conséquence
sémantique φ si T a pour conséquence sémantique la clôture universelle de
φ.

On notera T |= φ le fait que φ est conséquence sémantique de T et
T ̸|= φ sa négation.
Remarque 4.14.

• Si T est satisfaisable et T ′ ⊆ T , alors T ′ est également satisfaisable
car tout modèle de T est également un modèle de T ′.

• Si T est satisfaisable, alors toute théorie finie T ′ ⊆ T est satisfai-
sable.

• T |= φ ssi T ∪ {¬φ} est inconsistante.

• Si T ′ est inconsistante et T ′ ⊆ T , alors T est inconsistante.

• Si T ′ |= φ et T ′ ⊆ T , alors T |= φ.

• T ∪ {φ} |= ψ ssi T |= (φ→ ψ).

• T est inconsistante ssi pour toute formule φ, T |= φ.

• T est inconsistante ssi il existe une contradiction φ, telle que T |= φ.

• φ est universellement valide ssi ∅ |= φ.

• φ est universellement valide ssi pour toute théorie T , T |= φ.

• En remplaçant dans T chaque formule par une formule logiquement
équivalente, on obtient une théorie équivalente à T .

• {φ0, φ1, . . . , φk} est une théorie inconsistante ssi la formule(
¬φ0 ∨ ¬φ1 ∨ . . . ∨ ¬φk

)
est universellement valide.

• {φ0, φ1, . . . , φk} et {ψ0, ψ1, . . . , ψn} sont deux théories équivalentes
si et seulement si(

(φ0 ∧ φ1 ∧ . . . ∧ φk)↔ (ψ0 ∧ ψ1 ∧ . . . ∧ ψn)
)

est universellement valide
si et seulement si

(φ0 ∧ φ1 ∧ . . . ∧ φk) ≡ (ψ0 ∧ ψ1 ∧ . . . ∧ ψn)

4.4 Jeu d’évaluation d’une formule

Dans cette section, on va donner une définition alternative de l’évaluation
d’une formule, en utilisant la théorie des jeux. Pour commencer, quelques
mots sur la théorie des jeux.

4.4.1 Théorie des jeux

Nous allons considérer des jeux à deux joueurs à information parfaite un
jeu :
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• opposant deux joueurs ;
• dont le déroulement est séquentiel 7 ;
• dont tous les éléments sont connus par chacun des deux joueurs à tout

moment du déroulement (jeu à information complète) ;
• où le hasard n’intervient pas pendant le déroulement du jeu.

Exemples 4.15. (i) Le jeux d’échec est un jeu de ce type.

(ii) Le poker n’est pas de ce type, parce qu’il oppose plus que deux joueurs,
et que l’information n’est pas complète (ni la main des autres joueurs
ni le contenu de la pioche n’est connu).

(iii) Le dilemme du prisonnier 8 n’est pas de ce type parce que les joueurs
jouent simultanément.

Definition 4.16 (Jeu en temps fini). Un jeu est dit en temps fini s’il existe
un naturel n tel que toute partie se déroule en au plus n coups.

Exemple 4.17. Le jeu d’échec est un jeu en temps fini car une règle indique
que si 50 coups sont joués sans prise ni mouvement de pion, alors chacun des
joueurs peut demander que la partie soit déclarée nulle.

Formellement, nous faisons les définitions suivantes.

Definition 4.18 (Arbre de jeu). Un arbre de jeu est un arbre de hauteur
finie étiqueté par l’ensemble {1, 2}, où 1 et 2 sont des noms pour nos deux
joueurs. En symboles, c’est un couple (T, j) où T est un arbre de hauteur
finie sur un ensemble A et j : T → {1, 2} est une fonction qui associe les
nœuds de l’arbre à chacun de nos deux joueurs.

Le jeu à deux joueurs à information parfaite associé à un arbre de jeu
(T, j) peut alors être décrit comme suit 9. On pose un pion sur la racine de
T . Le déroulement du jeu est alors le suivant. On considère que le pion se
trouve sur un nœud N ∈ T :

• si N est une feuille et
◦ j(N) = 1, le joueur 1 remporte la partie ;
◦ j(N) = 2, le joueur 2 remporte la partie ;

• si N n’est pas une feuille et
◦ j(N) = 1, le joueur 1 déplace le pion sur l’un des fils du nœud N

de son choix ;

7. un seul joueur à la fois.
8. Voici une brève description du jeu. Deux prisonniers (complices d’un délit) sont

retenus dans des cellules séparées et ne peuvent communiquer. Si un des deux prisonniers
dénonce l’autre, il est remis en liberté alors que le second obtient la peine maximale (10
ans) ; si les deux se dénoncent entre eux, ils seront condamnés à une peine plus légère (5
ans) ; si les deux refusent de dénoncer, la peine sera minimale (6 mois). Le but de chaque
joueur est de minimiser sa propre peine.

9. Intuitivement, le déroulement d’une partie correspond à la production d’une branche
de l’arbre et j est la fonction qui indique le joueur dont c’est le tour.
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◦ j(N) = 2, le joueur 2 déplace le pion sur l’un des fils du nœud N
de son choix ;

Le jeu associé à un arbre de jeu de hauteur finie est un jeu en temps fini.

Definition 4.19 (Stratégie, stratégie gagnante). Une stratégie pour le joueur
1 dans le jeu associé à un arbre de jeu (T, j) est un sous-ensemble σ de T
(en fait, un arbre) tel que

(1) la racine de T appartient à σ ;
(2) pour tout nœud N dans σ qui n’est pas une feuille de T :

• si j(N) = 1, alors un fils de N et un seul appartient à σ ;
• si j(N) = 2, alors tous les fils de N appartiennent à σ.

On définit mutatis mutandis une stratégie pour le joueur 2. Une stratégie σ
pour le joueur 1 est gagnante si pour toute feuille F de σ, on a j(F ) = 1.
Une stratégie τ pour le joueur 2 est gagnante si pour toute feuille F de τ on
a j(F ) = 2.

Definition 4.20 (Arbre de jeu dual). Pour tout arbre de jeu T = (T, j), on
définit l’arbre de jeu dual T δ comme l’arbre (T, jδ) avec

jδ(N) = 1 si et seulement si j(N) = 2.

Le déroulement du jeu sur l’arbre dual à T est identique à celui sur T mais
le rôle des joueurs 1 et 2 sont inversés.

Theorème 4.21. Soit (T, j) un arbre de jeu. Il existe une stratégie gagnante
pour un des deux joueurs.

Démonstration. Commençons par une définition. Le sous-jeu (TN , jN ) de
(T, j) correspondant au nœud N = (a0, . . . , an) ∈ T est défini par

TN = {(s0, . . . , sm) ∈ A<ω | (a0, . . . an, s0, . . . , sm) ∈ T}, et
jN (s0, . . . , sm) = j(a0, . . . an, s0, . . . , sm) pour tout (s0, . . . , sm) ∈ TN .

En particulier (Tε, jε) = (T, j) pour ε la suite vide, la racine de T .
Nous montrons que pour chaque nœud N ∈ T de l’arbre de jeu, un (seul)

des deux joueurs possède une stratégie gagnante dans le sous-jeu (TN , jN )
correspondant. Notons h la hauteur de T et appelons hauteur d’un nøeud
N = (a0, . . . , an) ∈ T la longueur de la suite N , dans ce cas n + 1. Nous
définissons g : T → {1, 2} par induction inverse la hauteur des nœuds de T
de sorte que pour tout N ∈ T et i ∈ {1, 2}

g(N) = i ssi le joueur i possède
une stratégie gagnante dans (TN , jN ).

(1)

Comme h ∈ N est la hauteur de T , tous les nœuds de hauteur h sont des
feuilles de T . Le sous-jeu (TF , jF ) associé à une feuille consiste simplement à



26 4 SÉMANTIQUE

déclarer gagnant le joueur i pour lequel j(F ) = i. Il existe donc trivialement
une stratégie gagnante pour ce joueur-là et nous posons pour tout nœud N
de hauteur h, g(N) = j(N).

Dans le diagramme ci-dessous, nous avons représenté un arbre de jeu.
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Fig. 1: Un arbre de jeu.

Nous entourons un nœud N d’un rectangle lorsque le joueur 1 possède
une stratégie gagnante dans le sous-jeu correspondant (i.e. si g(N) = 1), nous
les entourons d’un cercle lorsque c’est le joueur 2 qui possède un stratégie
gagnante dans le sous-jeu associé (i.e. si g(N) = 2).
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Fig. 2: Pour tout nœud N de hauteur h, g(N) = j(N).

Supposons pour l’étape de récurrence que nous avons défini g sur tous
les nœuds de hauteur strictement supérieure à k pour k < h de sorte que
pour tout nœud N de hauteur strictement supérieur k (1) soit satisfaite.
Considérons un nœud N = (a0, . . . , ak−1) de hauteur k. Plusieurs cas se
présente à nous :

1) N est une feuille, auquel cas on pose g(N) = j(N) ;
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2) N n’est pas une feuille, j(N) = 1 et

a) il existe a ∈ A tel queN ′ = (a0, . . . , ak−1, a) ∈ T et g(N ′) = 1. Nous
posons alors g(N) = 1. En effet, 1 possède une stratégie gagnante
dans (TN , jN ). Celle-ci consiste à commencer par déplacer le pion
sur le nœud (a), puis à appliquer une stratégie gagnante qu’il
possède dans (TN ′ , jN ′).

b) pour tout a ∈ A, si N ′ = (a0, . . . , ak−1, a) ∈ T , alors g(N ′) = 2.
Nous posons alors g(N) = 2. En effet, 2 a une stratégie gagnante
dans (TN , jN ). Celle-ci consiste laisser le joueur 1 déplacer le pion
de la racine vers un nœud (a) tel que N ′ = (a0, . . . , ak−1, a) ∈ T
puis de suivre une stratégie gagnante qu’il possède dans (TN ′ , jN ′).

3) N n’est pas une feuille et j(N) = 2 : mutatis mutandis les deux cas
ci-dessus.
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Fig. 3: Lorsque g est définie sur les nœuds de hauteur > k, nous pouvons la définir sur
les nœuds de hauteur k.

Puisque l’arbre de jeu est de hauteur finie, notre définition de g par
récurrence aboutit en un nombre fini d’étapes à la définition de g en la
racine de T . L’image par g de la racine de T est le joueur qui possède une
stratégie gagnante dans T . Supposons sans perte de généralité que g(∅) = 1.
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Fig. 4: Une fois g totalement définie, l’image par g de la racine donne le vainqueur. Les
doubles flèches décrivent une stratégie gagnante pour le joueur 1.

En effet, nous pouvons définir par récurrence en nous basant sur g une
stratégie gagnante σ pour le joueur 1. Nous définissons une stratégie σ pour
le joueur 1 de sorte que g restreinte à σ est constante égale à 1. Tout d’abord
posons σ0 = {∅}. Supposons ensuite que nous ayons défini σk ⊆ A≤k pour
0 ≤ k < h de sorte que g restreinte à σk est constante égale à 1. Nous
définissons alors σk+1 comme suit :

• pour tout N ∈ σk, N ∈ σk+1 ;
• pour tout N = (a0, . . . , ak−1) ∈ σk qui n’est pas une feuille de T ,
◦ si j(N) = 1, alors nous avons par définition de g qu’il existe a ∈ A

tel que N ′ = (a0 . . . , an, a) ∈ T et g(N ′) = 1. Nous choisissons
alors un tel a et pour lequel nous posons N ′ = (a0 . . . , an, a) ∈
σk+1 ;
◦ si j(N) = 2, alors pour tout a ∈ A tel que N ′ = (a0, . . . , ak−1, a) ∈
T nous posons N ′ ∈ σk+1.

Nous posons finalement σ = σh. Il est clair que σ ainsi définie est une stra-
tégie pour le joueur 1. En outre, tout feuille de σ est une feuille de T . Par
ailleurs, g restreinte à σ et constante égale à 1 et par définition pour toute
feuille F de T , nous avons j(F ) = g(F ). Il s’ensuit que pour toute feuille F
de σ nous avons j(F ) = 1 et par conséquent σ est gagnante.

Remarque 4.22. Que signifie le théorème précédent au sujet du jeu d’échecs ?
Afin de satisfaire aux hypothèses du théorème, il nous faut déclarer un vain-
queur si la partie est nulle. Si nous déclarons les blancs vainqueurs lors d’un
nulle, le théorème nous assure alors qu’il existe une stratégie gagnante pour
l’un des deux joueurs. Soit cette stratégie assure la victoire aux noirs, soit
elle assure la victoire ou le nul aux blancs. De la même façon, nous pouvons
déclarer les noirs vainqueurs et le théorème nous assure alors l’existence
d’une stratégie gagnante pour l’un des deux joueurs dans cette variante du
jeu d’échecs. Il n’y a que trois possibilités. Premièrement, les blancs gagnent



4.4 Jeu d’évaluation d’une formule 29

dans les deux variantes et ils possèdent donc une façon de gagner en évi-
tant le nul. Deuxièmement, les noirs gagnent dans les deux variantes et ils
possèdent donc une façon de gagner en évitant le nul. Dernièrement, dans
chaque variante, la couleur qui possède la stratégie gagnante est celle qui
obtient la victoire lors d’une partie nulle. Dans ce dernier cas, il existerait
aux échecs une stratégie tant pour les blancs que pour les noirs leur assurant
la victoire ou le nul.

4.4.2 Évaluation d’une formule

Definition 4.23 (Jeu d’évaluation d’une formule φ). Soit un langage L , M
une L -structure et φ une formule close sur ce langage dont les connecteurs
sont dans {¬,∨,∧}. On définit le jeu d’évaluation de la formule φ dans M ,
noté EV (M , φ). C’est un jeu à deux joueurs, à qui on attribue les rôles
de Vérificateur et Falsificateur. Le premier joueur commence dans le rôle
du Vérificateur. Par récurrence, on définit l’ensemble des coups possibles à
partir des règles suivantes :

si φ est de la forme c’est le tour de le jeu continue avec
formule atomique personne ! fin du jeu
∃xψ le Vérificateur choisit un élément a ∈M ψ[a/x ]

∀xψ le Falsificateur choisit un élément a ∈M ψ[a/x ]

φ1 ∨ φ2 le Vérificateur choisit φ1 ou φ2 formule choisie
φ1 ∧ φ2 le Falsificateur choisit φ1 ou φ2 formule choisie
¬ψ on échange les rôles ψ

Le but du jeu est de finir sur une formule atomique R(t1, . . . , tn) avec M |=
R(t1, . . . , tn) en ayant le rôle du Vérificateur ou telle que M ̸|= R(t1, . . . , tn)
en ayant le rôle du Falsificateur.

Remarque 4.24. Le fait de considérer seulement des formules avec les connec-
teurs dans {¬,∨,∧} n’est pas restrictif, car on peut remplacer a → b par
¬a ∨ b, et a↔ b par (¬a ∨ b) ∧ (¬b ∨ a).

Definition 4.25 (Arbre de jeu d’évaluation). On se fixe un langage L ,
φ[x0, . . . , xn] une formule sur ce langage dont les connecteurs sont dans
{¬,∨,∧} et les variables libres sont parmi x0, . . . , xn, et Mx0→a0,...,xn→an

une L -structure avec les interprétations a0, . . . , an ∈ |M | des variables
x0, . . . , xn. On définit l’arbre de jeu TEV(φ[x0, . . . , xn],Mx0→a0,...,xn→an) (Tφ,M
pour alléger la notation) associé à la formule φ[x0, . . . , xn] dans la structure
Mx0→a0,...,xn→an , par induction sur la hauteur de φ comme suit.

• φ est une formule atomique :
◦ si Mx0→a0,...,xn→an |= φ, alors

Tφ,M = V
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◦ si Mx0→a0,...,xn→an ̸|= φ, alors

Tφ,M = F

• φ est de la forme φ1 ∨ φ2 : alors

Tφ,M =

V

Tφ1,M Tφ2,M

• φ est de la forme φ1 ∧ φ2 : alors

Tφ,M =

F

Tφ1,M Tφ2,M

• φ est de la forme ∃xψ : alors

Tφ,M =

V

· · · Tψ,Mx→m · · ·
pour tout m ∈ |M |.

• φ est de la forme ∀xψ : alors

Tφ,M =

F

· · · Tψ,Mx→m · · ·
pour tout m ∈ |M |.

• φ est de la forme ¬ψ : alors

Tφ,M = (Tψ,M )δ

où (Tψ,M )δ est l’arbre de jeux dual à Tψ,M (voir Définition 4.20).
Ici les joueurs 1 et 2 sont appelés V (pour Vérificateur) et F (pour Falsifi-
cateur).

Remarque 4.26. La hauteur de l’arbre TEV(φ,M ) et l’étiquetage des nœuds
qui ne sont pas des feuilles ne dépendent que de la formule φ. La largeur de
l’arbre TEV(φ,M ) ne dépend que de la cardinalité du domaine de la structure
M . L’étiquetage des feuilles de l’arbre TEV(φ,M ) dépend de l’interprétation
dans M des symboles (et de l’interprétation des variables libres).

Remarque 4.27. Le jeu d’évaluation EV (M , φ) de la Définition 4.23 corres-
pond exactement au jeu sur l’arbre de jeu TEV(φ,M ) (comme décrit dans la
Définition 4.18).
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Definition 4.28 (Évaluation d’une formule). Soit φ une formule et M une
L -structure comme précédemment. On dit que φ est satisfaite dans M et
on note M |= φ si et seulement si dans le jeu EV (M , φ), le joueur qui
commence dans le rôle du Vérificateur a une stratégie gagnante. De façon
équivalente, M |= φ si et seulement si le vérificateur, le joueur V, possède
une stratégie gagnante dans le jeu TEV(φ,M ). Dans le cas contraire, on note
M ̸|= φ.

Theorème 4.29. Les deux définitions d’évaluation d’une formule sont équi-
valentes.

Démonstration. La preuve est longue, ennuyeuse et très facile. Elle consiste
essentiellement à vérifier que les règles du jeu d’évaluation ont été bien choi-
sies.

On montre simultanément par induction sur la hauteur de la formule φ
à paramètres dans M les deux propositions suivantes :

• M |= φ

⇐⇒
le Vérificateur possède une stratégie gagnante dans EV (M , φ)

• M ̸|= φ

⇐⇒
le Falsificateur possède une stratégie gagnante dans EV (M , φ)

(1) Si φ est de hauteur 0, alors φ est une formule atomique à paramètres
dans M . Le jeu d’évaluation associé s’arrête aussitôt sans qu’aucun
joueur n’ait à effectuer de quelconque choix. Le Vérificateur gagnant
si et seulement si M |= φ, il ressort que le Vérificateur possède une
stratégie gagnante si et seulement si M |= φ, et le Falsificateur en
possède une si et seulement si M ̸|= φ.

(2) Si φ est de hauteur > 0, alors

(a) si φ = (φ0 ∨ φ1) :

(⇒)

• si M |= φ, alors

◦ soit M |= φ0 d’où il ressort, par hypothèse d’induc-
tion, que le Vérificateur possède une stratégie gagnante
σ0 dans EV (M , φ0). Dès lors la stratégie qui consiste
à choisir φ0 et ensuite appliquer σ0 est gagnante pour
lui dans EV (M , φ).
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◦ soit M |= φ1 d’où le Vérificateur possède également,
par hypothèse d’induction, une stratégie gagnante σ1
dans EV (M , φ1) qu’il lui suffit d’appliquer après avoir
choisi φ1 pour l’emporter dans le jeu EV (M , φ).

• si M ̸|= φ, alors

◦ M ̸|= φ0 et M ̸|= φ1 d’où il existe, par hypothèse d’in-
duction, une stratégie τ0 (resp. τ1) gagnante pour le
Falsificateur dans EV (M , φ0) (resp. EV (M , φ1)) ; ce
qui lui confère une stratégie gagnante dans EV (M , φ).

(⇐) • si le Vérificateur possède une stratégie gagnante dans
EV (M , φ), alors cette stratégie lui commande soit de
choisir φ0, soit de choisir φ1, et bien sûr ce joueur possède
toujours une stratégie gagnante à partir de son choix. Par
conséquent l’hypothèse d’induction implique, dans le pre-
mier cas que M |= φ0, et dans le second cas que M |= φ1.
Ce qui dans les deux cas donne M |= φ.

• si le Falsificateur possède une stratégie gagnante dans
EV (M , φ), alors cette stratégie est également gagnante
dans les deux jeux EV (M , φ0) et EV (M , φ1). Par hypo-
thèse d’induction il ressort que M ̸|= φ0 et M ̸|= φ1 et
donc M ̸|= φ.

(b) si φ = (φ0 ∧ φ1) :

(⇒)

• si M |= φ, alors

◦ M |= φ0 et M |= φ1 d’où il existe, par hypothèse d’in-
duction, une stratégie σ0 (resp. σ1) gagnante pour le
Vérificateur dans EV (M , φ0) (resp. EV (M , φ1)) ; ce
qui lui confère une stratégie gagnante dans EV (M , φ).

• si M ̸|= φ, alors

◦ soit M ̸|= φ0 auquel cas, par hypothèse d’induction,
le Falsificateur possède une stratégie gagnante τ0 dans
EV (M , φ0). Dès lors la stratégie qui consiste à choisir
φ0 et ensuite appliquer τ0 est gagnante pour lui dans
EV (M , φ).

◦ soit M ̸|= φ1 d’où le Falsificateur possède également,
par hypothèse d’induction, une stratégie gagnante τ1
dans EV (M , φ1) qu’il lui suffit d’appliquer après avoir
choisi φ1 pour l’emporter dans le jeu EV (M , φ).
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(⇐)

• si le Vérificateur possède une stratégie gagnante dans le
jeu EV (M , φ), alors cette stratégie est également gagnante
dans les deux jeux EV (M , φ0) et EV (M , φ1). Par hypo-
thèse d’induction il ressort que M |= φ0 et M |= φ1 et
donc M |= φ.

• si le Falsificateur possède une stratégie gagnante dans
EV (M , φ), alors cette stratégie lui commande soit de
choisir φ0, soit de choisir φ1, et ce joueur possède tou-
jours une stratégie gagnante à partir de son choix. Par
conséquent l’hypothèse d’induction implique, dans le pre-
mier cas que M ̸|= φ0, et dans le second cas que M ̸|= φ1.
Ce qui dans les deux cas donne M ̸|= φ.

(c) si φ = ¬ψ :

(⇒)

• si M |= φ, alors M ̸|= ψ d’où il existe, par hypothèse
d’induction, une stratégie gagnante pour le Falsificateur
dans EV (M , ψ), ce qui donne immédiatement une stra-
tégie gagnante pour le Vérificateur dans EV (M , φ).

• si M ̸|= φ, alors M |= ψ d’où il existe, par hypothèse
d’induction, une stratégie gagnante pour le Vérificateur
dans EV (M , ψ), d’où découle une stratégie gagnante pour
le Falsificateur EV (M , φ).

(⇐)

• si le Vérificateur possède une stratégie gagnante dans le
jeu EV (M , φ), alors le Falsificateur possède une stratégie
gagnante dans EV (M , ψ). L’hypothèse d’induction donne
M ̸|= ψ, d’où il apparait que M |= φ.

• si le Falsificateur possède une stratégie gagnante dans
EV (M , φ), alors le Vérificateur possède une stratégie ga-
gnante dans EV (M , ψ). L’hypothèse d’induction donne
M |= ψ, d’où il apparait que M ̸|= φ.

(d) si φ = ∃xψ :

(⇒)

• si M |= φ, alors il existe un élément a de M tel que
M , a/x |= ψ ce que l’on peut écrire M |= ψ[a/x] 10. L’hy-
pothèse d’induction, nous donne une stratégie gagnante

10. où a est un paramètre de M , autrement dit un nouveau symbole de fonction dont
l’interprétation est a.
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σa pour le Vérificateur dans EV (M , ψ[a/x]). Dès lors la
stratégie consistant à choisir a et appliquer σa ensuite est
gagnante pour le Vérificateur dans EV (M , φ).

• si M ̸|= φ, alors pour tous éléments a ∈M , M , a/x ̸|= ψ
(ou M ̸|= ψ[a/x]). L’hypothèse d’induction, nous procure
alors, pour chaque a ∈M une stratégie gagnante τa pour
le Falsificateur dans EV (M , ψ[a/x]). Dès lors la stratégie
consistant à appliquer τa lorsque le Vérificateur choisit a
est gagnante pour le Falsificateur dans EV (M , φ).

(⇐)

• si le Vérificateur possède une stratégie gagnante dans le
jeu EV (M , φ), alors cette stratégie choisit un élément a
de M tel que le Vérificateur ait toujours une stratégie
gagnante dans EV (M , ψ[a/x]). L’hypothèse d’induction
donne M |= ψ[a/x], d’où M |= φ.

• si le Falsificateur possède une stratégie gagnante dans
EV (M , φ), alors quelque soit le choix de a ∈ M que fait
le Vérificateur, le Falsificateur possède une stratégie τa
gagnante dans EV (M , ψ[a/x]). L’hypothèse d’induction
donne M ̸|= ψ[a/x] pour tout a de M , d’où M ̸|= φ.

(e) si φ = ∀xψ :

(⇒)

• si M |= φ, alors pour tous éléments a ∈M , M |= ψ[a/x].
L’hypothèse d’induction, nous procure alors, pour chaque
a ∈ M une stratégie gagnante σa pour le Vérificateur
dans EV (M , ψ[a/x]). Dès lors la stratégie consistant à
appliquer σa lorsque le Falsificateur choisit a est gagnante
pour le Vérificateur dans EV (M , φ).

• si M ̸|= φ, alors il existe un élément a de M tel que
M ̸|= ψ[a/x]. L’hypothèse d’induction, nous donne alors
une stratégie gagnante τa pour le Falsificateur dans le jeu
EV (M , ψ[a/x]). Dès lors la stratégie consistant à choisir
a et appliquer ensuite τa est gagnante pour le Falsificateur
dans EV (M , φ).

(⇐)

• si le Vérificateur possède une stratégie gagnante dans le
jeu EV (M , φ), alors quelque soit le choix de a ∈ M que
fait le Falsificateur, le Vérificateur possède une stratégie
σa gagnante dans EV (M , ψ[a/x]). L’hypothèse d’induc-
tion donne M |= ψ[a/x] pour tout a de M , d’où M |= φ.
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• si le Falsificateur possède une stratégie gagnante dans
EV (M , φ), alors cette stratégie choisit un élément a deM
tel que le Falsificateur ait toujours une stratégie gagnante
dans EV (M , ψ[a/x]). L’hypothèse d’induction donne alors
M ̸|= ψ[a/x], d’où M ̸|= φ.
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5 Un soupçon de théorie des modèles

5.1 Homomorphisme, plongement et isomorphisme

Lorsqu’on a différents modèles d’un même langage, il est souvent intéres-
sant de les comparer. Les notions d’homomorphisme et d’isomorphisme sont
une réponse à cette exigence comparative.

Definition 5.1. Soit L un langage du premier ordre et M , N deux L -
structures,

Un homomorphisme de M dans N est une fonction H de M dans N
qui vérifie :

(1) pour tout symbole de constante c de L ,

H (cM) = cN

(2) pour tout entier n et tout symbole de fonction f d’arité n du langage
L , et pour tous éléments a1, . . . , an de |M | :

H (fM(a1, . . . , an)) = fN (H (a1), . . . ,H (an))

(3) pour tout entier n et tout symbole de relation R d’arité n du langage
L , et pour tous éléments a1, . . . , an de |M | :

si (a1, . . . , an) ∈ RM alors (H (a1), . . . ,H (an)) ∈ RN
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Exemple 5.2. Deux structures M = ⟨M,EM , cM⟩ et N = ⟨N,EN , cN ⟩
où M et N désignent les nœuds des graphes respectifs et (x, y) ∈ EM

(respectivement (x, y) ∈ EN ) si et seulement si il existe une arête de x
vers y ; et cM = cN = a :

a bc

e

d

f

a b c

e

d f

M N

a b c

e

d f

a bc

e

d

f

Un homomorphisme de M vers N

Definition 5.3. Soit L un langage du premier ordre et M , N deux L -
structures. Un plongement de M dans N est un homomorphisme H de
M dans N qui vérifie les deux conditions supplémentaires suivantes :

(1) H est injectif,

(2) pour tout entier n et tout symbole de relation R d’arité n du langage
L , et pour tous éléments a1, . . . , an de |M | :

(a1, . . . , an) ∈ RM si et seulement si (H (a1), . . . ,H (an)) ∈ RN

A noter que l’homomorphisme de l’exemple 5.2 n’est pas un plongement
car le nœud c possède une arête vers f dans N mais pas dans M .

Le plongement d’un modèle dans un autre détermine une copie conforme
du premier modèle dans le second. En effet, l’injectivité du plongement im-
plique que l’image du premier modèle dans le second forme une sous-structure
du second modèle parfaitement semblable au premier modèle, au changement
de nom près.
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Exemple 5.4. Deux structures M = ⟨M,EM , cM⟩ et N = ⟨N,EN , cN ⟩ où
M et N désignent les nœuds des graphes respectifs et (x, y) ∈ EM (respec-
tivement (x, y) ∈ EN ) si et seulement si il existe une arête de x vers y ; et
cM = a et cN = c :

a b

d c

a b c

ed f

M N
a b c

ed f

a b

d c

Un plongement de M vers N

Pour être plus précis, dans l’image ci-dessus, l’image du domaine de M
par le plongement forme un sous-modèle de N qui est isomorphe à M .
Cela signifie que cette image est une copie conforme du modèle de départ,
une copie qui “vit” dans le modèle N et qui en forme donc une partie,
une restriction : la restriction de toutes les interprétations des symboles de
constante, de fonction, de relation, au domaine image du domaine de M .

Definition 5.5. Soit L un langage du premier ordre et M , N deux L -
structures,

Un isomomorphisme de M dans N est un plongement surjectif de M
dans N .

Les deux structures sont alors dites isomorphes.

Remarque 5.6.
• Un homomorphisme d’une L -structure M vers elle-même est appelé

endomorphisme.
• Un isomorphisme d’une L -structure M vers elle-même est appelé

automorphisme.

5.2 Sous-structure

Definition 5.7 (Sous-structure). Soit L un langage du premier ordre et
M , N deux L -structures, on dit que N est une sous-structure de M si et
seulement si les conditions suivantes sont réalisées :



5.3 Equivalence élémentaire 39

(1) |N | ⊆ |M |.

(2) pour tout symbole de constante c de L : cN = cM ,

(3) pour tout entier k ≥ 1 et tout symbole de fonction f d’arité k de L :
fN = fM ↾|N |k ,

(4) pour tout entier k ≥ 1 et tout symbole de relation R d’arité k de L :
RN = RM ∩ |N |k.

Exemple 5.8. • ⟨Z, 0,+⟩ est une sous-structure de ⟨Q, 0,+⟩,
• ⟨Q, 0, 1,+, ·⟩ est une sous-structure de ⟨R, 0, 1,+, ·⟩,
• ⟨2Z, 0,+⟩ est une sous-structure de ⟨Z, 0,+⟩. 11

• Deux structures M = ⟨M,EM , cM⟩ et N = ⟨N,EN , cN ⟩ où M et
N désignent les nœuds des graphes respectifs et (x, y) ∈ EM (respec-
tivement (x, y) ∈ EN ) si et seulement si il existe une arête de x vers
y ; et cM = cN = a :

a bcd

a b c

e

d f

M N

M est une sous-structure de N

5.3 Equivalence élémentaire

Definition 5.9 (Equivalence élémentaire). Soit L un langage, et soient M
et N deux L -structures. Les structures M et N sont dites élémentairement
équivalentes si et seulement si elles satisfont exactement les mêmes formules
closes, c’est-à-dire si et seulement si pour toute formule close φ de L , on a

M |= φ si et seulement si N |= φ.

Remarque 5.10.

(1) Pour une L -structure M , on définit la théorie de M comme l’ensemble
des formules closes de L qui sont satisfaites par M :

Th(M ) = {φ : formule close de L , et M |= φ}

(2) Deux L -structures M et N sont élémentairement équivalentes si et
seulement si leurs théorie sont égales, i.e. Th(M ) = Th(N ).

11. 2Z est l’ensemble des entiers relatifs pairs.
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(3) Deux L -structures M et N élémentairement équivalentes ne sont pas
nécessairement isomorphes. C’est le cas des deux ordres denses ⟨Q,≤⟩
et ⟨R,≤⟩.

Lemme 5.11.

Si deux L -structures M et N sont isomorphes alors elles sont également
élémentairement équivalentes.

Démonstration. Soit f un isomorphisme entre M et N . Soit φ une formule
close de L telle que M |= φ et σ une stratégie gagnante pour le Vérificateur
dans le jeu d’évaluation associé. La stratégie σ induit une stratégie σ′ pour le
Vérificateur dans le jeu EV (N , φ) par un va-et-vient qui consiste à choisir
f(a) dans le jeu EV (N , φ) lorsque le Vérificateur choisit a dans EV (M , φ)
et à choisir f−1(b) dans EV (M , φ) lorsque le Falsificateur choisit b dans
EV (N , φ).

La condition suivante de la définition d’un isomorphisme garantit la vic-
toire de σ′ : pour tout entier n et tout symbole de relation R d’arité n du
langage L , et pour tous éléments a1, . . . , an de |M | :

(a1, . . . , an) ∈ RM si et seulement si (f(a1), . . . , f(an)) ∈ RN .

Definition 5.12 (Théorie complète). Une théorie T de L est dite com-
plète si et seulement si les deux conditions suivantes sont vérifiées :

(1) T est consistante,

(2) tous les modèles de T sont élémentairement équivalents.

Exemple 5.13. Soit L le langage constitué de la seule égalité. La L -théorie
{∀x∀y x = y} est complète puisque tous ses modèles n’ayant qu’un seul
élément sont isomorphes. Par contre la L -théorie {∀x∀y∀z (x = y ∨ x =
z)} n’est pas complète puisque tous ses modèles n’ayant qu’un seul élément
satisfont la formule ∀x∀y x = y alors que ceux à deux éléments ne la satisfont
pas.

Lemme 5.14. Une théorie T de L est complète si et seulement si les
deux conditions suivantes sont vérifiées :

(1) T est consistante,

(2) pour toute formule close φ du langage L soit T |= φ, soit T |= ¬φ.

Démonstration. (⇒) Puisque tous les modèles de T satisfont les mêmes
formules, ils satisfont soit tous φ 12, soit tous ¬φ 13.

12. auquel cas T |= φ.
13. auquel cas T |= ¬φ.
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(⇐) Si tous les modèles de T ne sont pas élémentairement équivalents, alors
il existe une formule φ de L et deux modèles M et N de T avec M |= φ
et N ̸|= φ. Par conséquent, M ̸|= ¬φ et N ̸|= φ pour M et N des modèles
de T , contredisant la condition (2).

Remarque 5.15. Si T est une L -théorie complète, alors il existe une théorie
équivalente 14 T ′ telle que :

(1) T ⊆ T ′ et T ≡ T ′,
(2) pour toute formule close φ du langage L soit φ ∈ T ′, soit ¬φ ∈ T ′

En l’occurrence il n’est plus possible d’ajouter une seule formule à T ′ sans
la rendre inconsistante. Elle est donc complète au sens où "plus personne ne
peut rentrer".

Démonstration. On construit T ′ en ajoutant à T chaque formule close φ
de L vérifiant T |= φ.

T ′ = {φ : φ formule close de L et T |= φ}.

5.4 Sous-structure élémentaire

Definition 5.16 (Sous-structure élementaire). Soit L un langage du pre-
mier ordre et M , une L -structure et N une sous-structure de M , on dit
que N est une sous-structure élémentaire de M (ou de manière équivalente
M est une extension élémentaire de N ) si et seulement si

pour toute formule φ[x1, . . . , xn] de L et tous éléments a1, . . . , an de |N |
on a :

M |= φ[a1, . . . , an] si et seulement si N |= φ[a1, . . . , an]

On note N ≺M le fait que N soit sous-structure élémentaire de M .

Exemple 5.17. • ⟨Z, 0,+⟩ est une sous-structure de ⟨Q, 0,+⟩ mais elle
n’est pas sous-structure élémentaire car la formule ∀x∃y y + y = x
est satisfaite dans ⟨Q, 0,+⟩ mais non dans ⟨Z, 0,+⟩.
• ⟨Q, 0, 1,+, ·⟩ est une sous-structure de ⟨R, 0, 1,+, ·⟩mais pas une sous-

structure élémentaire car la formule ∃x x · x = 2, à paramètre dans
Q, est satisfaite dans ⟨R, 0, 1,+, ·⟩ mais pas dans ⟨Q, 0, 1,+, ·⟩.
• ⟨2Z, 0,+⟩ est une sous-structure de ⟨Z, 0,+⟩.Mais ce n’est pas une

sous-structure élémentaire car la formule ∃x x + x = 2, à paramètre
dans 2Z, est satisfaite dans ⟨Z, 0,+⟩ mais pas dans ⟨2Z, 0,+⟩.

14. et donc elle-même complète aussi.
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• Deux structures M = ⟨M,EM , cM⟩ et N = ⟨N,EN , cN ⟩ où M et
N désignent les nœuds des graphes respectifs et (x, y) ∈ EM (respec-
tivement (x, y) ∈ EN ) si et seulement si il existe une arête de x vers
y ; et cM = cN = a :

a bcd

a b c

e

d f

M N

M est une sous-structure de N mais pas une sous-structure élémen-
taire car la formule ∀x(bEx → xEd) est satisfaite dans M mais pas
dans N 15.

Remarque 5.18. L’utilisation du Théorème de Compacité sera un moyen
certes brutal mais extrêmement efficace pour obtenir des extensions élémen-
taires.

Definition 5.19 (Test de Tarski-Vaught). Soit L un langage du premier
ordre, M une L -structure et N une sous-structure de M . Supposons que
pour toute formule φ[x0, x1, . . . , xn] de L et tous éléments a1, . . . , an de
|N | :

si M |= ∃x0φ[a1, . . . , an], alors il existe a0 ∈ |N | tel que N |= φ[a0, a1, . . . , an].

Alors N ≺M .

Démonstration. On considère φ quelconque (dont les connecteurs sont parmi
{¬,∧} et les seuls quantificateurs sont existentiels). On montre que pour
tous éléments a1, . . . , an de |N | N |= φ[a1, . . . , an] si est seulement si M |=
φ[a1, . . . , an]. On procède par induction sur la hauteur de φ.

(1) si φ est une formule atomique, le résultat est immédiat.

(2) si φ est une conjonction, le résultat découle immédiatement de l’hypo-
thèse d’induction.

(3) si φ est une négation, le résultat découle également directement de
l’hypothèse d’induction.

(4) si φ est une formule existentielle, le sens (⇒) est immédiat, et le sens
(⇐) découle de l’hypothèse du test de Tarski-Vaught.

15. car N |= (bEe ∧ ¬eEd)).
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6 Théorème de compacité

Nous allons maintenant introduire le théorème de compacité. Pour faire
ceci, nous avons besoin de quelques outils que l’on va présenter maintenant.

6.1 Filtre, base de filtre et ultrafiltre

Definition 6.1 (Filtre). Soit E un ensemble non vide. Un sous-ensemble
F ⊆P(E) est appelé filtre sur E s’il vérifie les points suivants :

(i) ∅ ̸∈ F ;

(ii) si A,B ∈ F , alors A ∩B ∈ F ;

(iii) si A ∈ F et A ⊆ B, alors B ∈ F .

Definition 6.2 (Ensemble cofini). Soit E un ensemble et A ⊆ E. Alors, A
est dit cofini si E \A est fini.

Exemples 6.3. (i) Soit ∅ ≠ A ⊆ E. Alors F = {B ⊆ E : A ⊆ B} est un
filtre.

(ii) Prenons E = N et F = {A ⊆ N : A est cofini}. Alors F est un filtre. Il
est appelé filtre de Fréchet.

Definition 6.4 (Base de filtre). Soit E un ensemble non vide et B ⊆P(E).
On dit que la collection B est une base de filtre si elle satisfait les deux
conditions suivantes :

(i) ∅ ̸∈ B ;

(ii) si A,B ∈ B, alors A ∩B ∈ B.

Le filtre engendré par B est

F = {B ⊆ E : ∃A ∈ B tel que A ⊆ B}.

Il s’agit d’un filtre car :

(i) ∅ ̸∈ F .

(ii) Si B,B′ ∈ F , alors il existe A,A′ ∈ B tels que A ⊆ B et A′ ⊆ B′.
Puisque A ∩A′ ⊆ B ∩B′ et que A ∩A′ ∈ B, on a B ∩B′ ∈ F .

(iii) Si B ∈ F et B ⊆ B′, alors il existe A ∈ B tel que A ⊆ B ⊆ B′, ce qui
implique B′ ∈ F .

Exemple 6.5. Soit I un ensemble non vide et E l’ensemble des parties finies
de I. Pour a ∈ E, on définit

Ea = {b ∈ E : a ⊆ b}.

Alors B = {Ea : a ∈ E} est une base de filtre sur E. Pour cela, vérifions les
deux conditions :
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(i) ∅ ̸∈ B.
(ii) Soient Ea, Eb ∈ B, alors

Ea ∩ Eb = {c ∈ E : a ⊆ c} ∩ {c ∈ E : b ⊆ c}
= {c ∈ E : (a ∪ b) ⊆ c}
= Ea∪b ∈ B.

Definition 6.6 (Ultrafiltre). Soit E un ensemble non vide. Un sous-ensemble
U ⊆P(E) est appelé ultrafiltre sur E si

(i) U est un filtre sur E ;
(ii) pour tout F ⊆ E, on a F ∈ U ou E\F ∈ U (c’est-à-dire, U est maximal,

voir la preuve de la remarque 6.10).

Pour pouvoir étendre un filtre en un ultrafiltre, nous allons avoir besoin
de nous munir de l’axiome du choix.

Axiome 11 (Axiome du choix). Soit (Ai)i∈I , une collection d’ensembles telle
que Ai ̸= ∅ pour tout i ∈ I. Alors, il existe une fonction f : I −→ ⋃

i∈I Ai
telle que f(i) ∈ Ai pour tout i ∈ I.

L’axiome du choix est lui-même équivalent au lemme de Zorn, que l’on
énonce maintenant.

Definition 6.7 (Ensemble inductif). Un ensemble partiellement ordonné
(X,≤) est dit inductif si toute partie C ⊆ X totalement ordonnée 16 (que
l’on nomme chaîne) de X admet au moins un majorant 17.

Theorème 6.8 (Lemme de Zorn). Tout ensemble ordonné inductif (X,≤)
admet (au moins) un élément maximal 18.

Lemme 6.9. L’Axiome du Choix est équivalent au Lemme de Zorn.

Axiome 12 (Axiome de l’ultrafiltre). Tout filtre peut être étendu en un
ultrafiltre.

Remarque 6.10. L’axiome du choix implique l’axiome de l’ultrafiltre (mais
la réciproque est fausse).

Démonstration. Soit F un filtre sur un ensemble E non vide. Considérons
l’ensemble des filtres F ′ sur E qui étendent F :

X = {F ′ ⊆ E | F ′ est un filtre et F ⊆ F ′}.
16. Cela signifie que (C,≤) est un ordre total.
17. C’est-à-dire un élément m ∈ X satisfaisant la relation c ≤ m pour tout élément c

de la chaîne.
18. Cela signifie qu’il existe m ∈ X qui est supérieur ou égal à tous les éléments avec

lesquels il est comparable. i.e., tel que pour tout élément a ∈ X, si m ≤ a alors a = m.
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Muni de l’inclusion, (X ,⊆), cet ensemble devient un ordre partiel induc-
tif. En effet, soit (Fi)i∈I une chaîne de ce poset. Montrons tout d’abord que⋃
i∈I Fi est bien un filtre sur E :

(i) Puisque ∅ ̸∈ Fi est vérifié par chaque i ∈ I, nous avons ∅ ̸∈ ⋃i∈I Fi.
(ii) Soient A,A′ ∈ ⋃i∈I Fi. Alors il existe jA, jA′ ∈ I tels que A ∈ FjA , A′ ∈
Fj′A . Or, (Fi)i∈I est une chaîne et donc on peut supposer sans perte
de généralité que l’on a FjA ⊆ Fj′A . Par conséquent, A ∩ A′ ∈ Fj′A ⊆⋃
i∈I Fi.

(iii) Soient A ∈ ⋃i∈I Fi et A ⊆ B ⊆ E. Alors il existe j ∈ I tel que A ∈ Fj .
Ceci implique que B ∈ Fj ⊆

⋃
i∈I Fi.

Ensuite, il est clair que
• ⋃i∈I Fi étend F , puisque F ⊆ Fi est vérifié pour chaque 19 indice i

et donc F ⊆ ⋃i∈I Fi.
• ⋃i∈I Fi est un majorant de la chaîne puisque Fj ⊆

⋃
i∈I Fi est vérifié

pour tou j ∈ I.
Par le lemme de Zorn (qui est équivalent à l’axiome du choix), nous

obtenons l’existence d’un élément maximal de (X ,⊆), notons le U . C’est
donc un filtre sur E qui étend F . Montrons que c’est un ultrafiltre. Pour
cela, procédons par l’absurde et supposons qu’il existe S ⊆ E tel qu’on ait à
la fois S /∈ U et S∁ /∈ U (où S∁ désigne E ∖ S).

Tout d’abord, remarquons que pour chaque A ∈ U , nous avons A∩S ̸= ∅.
En effet, s’il existait un ensemble A ∈ U vérifiant A ∩ S = ∅, nous aurions
A ⊆ S∁ et donc — puisque U est un filtre — S∁ ∈ U , ce qui contredit notre
hypothèse.

Ensuite, remarquons que l’ensemble V = {B ⊆ E | ∃A ∈ U A∩ S ⊆ B}
est un filtre :

(1) ∅ /∈ V puisque pour tout A ∈ U , A ∩ S ⊆ ∅ n’est jamais vérifié.

(2) Si B,B′ ∈ V , alors il existe A,A′ ∈ U tels que A∩S ⊆ B et A′∩S ⊆ B′.
On obtient A∩A′∩S ⊆ B ∩B′ ce qui montre que B ∩B′ ∈ V puisque
A ∩A′ ∈ U .

(3) Si B ∈ V et B ⊆ C, alors il existe A ∈ U tel que A ∩ S ⊆ B et donc
A ∩ S ⊆ C, ce qui montre que C ∈ V .

Montrons maintenant que V ∈ X : pour tout ensemble A ∈ U nous
avons A ∩ S ⊆ A, d’où A ∈ V ; par conséquent, nous avons F ⊆ U ⊆ V .

Par ailleurs, pour tout ensembleA ∈ U nous avons A∩S ⊆ S, d’où S ∈ V .
Or, puisque par hypothèse, S /∈ U , nous obtenons U ⊊ V ; autrement dit, V
est un majorant strict de U , ce qui contredit la maximalité de U .

19. On peut noter qu’il est suffisant que F ⊆ Fi soit vérifié par au moins un indice i.
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6.2 Ultraproduit

Definition 6.11 (Ultraproduit). Soient L un langage du premier ordre, I
un ensemble non vide, (Mi)i∈I une famille de L -structures et un ultrafiltre
U sur I.
L’ultraproduit M de la famille (Mi)i∈I par l’ultrafiltre U est la L -structure
notée :

M =

∏
i∈I Mi

/
U .

On définit d’abord une relation d’équivalence ∼ sur
∏
i∈I |Mi| de la façon

suivante :
(ai)i∈I ∼ (bi)i∈I ⇔ {i ∈ I : ai = bi} ∈ U .

On vérifie que c’est bien une relation d’équivalence :
Réflexivité Pour tout (ai)i∈I ∈

∏
i∈I |Mi|, on a que {i ∈ I : ai = ai} =

I. Or, ∅ ̸∈ U car U est un filtre. Par conséquent, puisque U est un
ultrafiltre, I ∈ U et donc (ai)i∈I ∼ (ai)i∈I .

Symétrie
(ai)i∈I ∼ (bi)i∈I ⇔ {i ∈ I : ai = bi} ∈ U

⇔ {i ∈ I : bi = ai} ∈ U
⇔ (bi)i∈I ∼ (ai)i∈I .

Transitivité Si (ai)i∈I ∼ (bi)i∈I et (bi)i∈I ∼ (ci)i∈I , alors

{i ∈ I : ai = ci} ⊇ {i ∈ I : ai = bi}︸ ︷︷ ︸
∈U

∩{i ∈ I : bi = ci}︸ ︷︷ ︸
∈U︸ ︷︷ ︸

∈U

.

Or, par hypothèse, {i ∈ I : ai = bi} ∈ U et {i ∈ I : bi = ci} ∈ U .
Puisque U est un filtre, {i ∈ I : ai = bi} ∩ {i ∈ I : bi = ci} ∈ U et donc
{i ∈ I : ai = ci} ∈ U ; autrement dit (ai)i∈I ∼ (ci)i∈I .

Maintenant, on pose :

(i) |M | =
∏
i∈I |Mi|/

∼ ;

(ii) pour tout symbole de constante c de L ,

cM =
[(
cMi

)
i∈I

]
∼
;

(iii) pour tout symbole de fonction f de L ,

fM
([(

a1i
)
i∈I

]
∼
, . . . ,

[(
aNi
)
i∈I

]
∼

)
=
[(
fMi

(
a1i , . . . , a

N
i

))
i∈I

]
∼
;

(iv) pour tout symbole de relation R de L ,([(
a1i
)
i∈I

]
∼
, . . . ,

[(
aNi
)
i∈I

]
∼

)
∈ RM ⇔

{
i ∈ I :

(
a1i , . . . a

N
i

)
∈ RMi

}
∈ U .
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On vérifie que tout ceci est bien défini. C’est-à-dire que si(
a1i
)
i∈I ∼

(
b1i
)
i∈I , . . . ,

(
aNi
)
i∈I ∼

(
bNi
)
i∈I ,

alors (
fMi

(
a1i , . . . , a

N
i

))
i∈I
∼
(
fMi

(
b1i , . . . , b

N
i

))
i∈I

et{
i ∈ I :

(
a1i , . . . , a

N
i

)
∈ RMi

}
∈ U ⇔

{
i ∈ I :

(
b1i , . . . , b

N
i

)
∈ RMi

}
∈ U .

• On vérifie d’abord la première partie :{
i ∈ I : fMi

(
a1i , . . . , a

N
i

)
= fMi

(
b1i , . . . , b

N
i

)}
⊇

N⋂
j=1

{
i ∈ I : aji = bji

}
.

Or, le deuxième membre est par hypothèse une intersection finie d’élé-
ments de U et donc, par définition d’un filtre, c’est un élément de U .
Ainsi, le premier membre étend un élément de U et c’est par consé-
quent aussi un élément de U . On a ainsi vérifié que(

fMi
(
a1i , . . . , a

N
i

))
i∈I
∼
(
fMi

(
b1i , . . . , b

N
i

))
i∈I

.

• On s’occupe maintenant de la deuxième partie.
PosonsA =

{
i ∈ I :

(
a1i , . . . a

N
i

)
∈ RMi

}
etB =

⋂N
j=1

{
i ∈ I : aji = bji

}
et supposons que{

i ∈ I :
(
a1i , . . . , a

N
i

)
∈ RMi

}
∈ U .

Alors {
i ∈ I :

(
b1i , . . . b

N
i

)
∈ RMi

}
⊇ A ∩B.

Or par hypothèse, A et B sont dans U et de ce fait A∩B ∈ U . Ainsi, le
premier membre étend un élément de U et c’est donc aussi un élément
de U , par définition d’un filtre. Il suffit maintenant de constater que
la situation est symétrique pour trouver l’implication inverse.

6.3 Théorème de Łoś

Theorème 6.12 (Théorème de Łoś). Soit L un langage du premier ordre et
I un ensemble non vide. Soient encore (Mi)i∈I une famille de L -structures,
un ultrafiltre U sur I et φ une formule dont les variables libres sont parmi
x1, . . . , xn et [α1]∼, . . . , [α

n]∼ ∈ |M |.
Alors, si αji est la i-ème projection de αj,

M =

∏
i∈I Mi

/
U |= φ[

[α1]∼/x1,...,[αn]∼/xn

] ⇔
i ∈ I : Mi |= φ[

α1
i /x1,...,α

n
i /xn

] ∈ U .
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Démonstration. Sans perte de généralité, on peut supposer que seuls ¬,∧ et
∃ apparaissent dans φ. La démonstration se fait par récurrence sur la hauteur
de φ.

• Si ht(φ) = 0, alors il existe un entier naturel n et des termes t1, . . . , tn
tels que φ = R(t1, . . . , tn). On obtient

M |= φ[
[α1]∼/x1,...,[αn]∼/xn

]
⇔

tM1 [
[α1]∼/x1,...,[αn]∼/xn

], . . . , tMn [
[α1]∼/x1,...,[αn]∼/xn

] ∈ RM

⇔

i ∈ I :

tMi
1
[
α1
i /x1,...,α

n
i /xn

], . . . , tMi
n
[
α1
i /x1,...,α

n
i /xn

] ∈ RMi

 ∈ U
⇔

i ∈ I : Mi |= φ[
α1
i /x1,...,α

n
i /xn

] ∈ U ,

où l’on a utilisé la simple définition de l’évaluation d’une formule dans
un modèle pour la première double implication et également pour la
troisième. La seconde double implication est la seule pour laquelle on
utilise la définition même de la satisfaction des formules atomiques
dans l’ultraproduit.

• Si ht(φ) > 0 :

(i) Si φ = ¬Ψ, alors

M |= φ[
[α1]∼/x1,...,[αn]∼/xn

] ⇔M ̸|= Ψ[
[α1]∼/x1,...,[αn]∼/xn

]
⇔

i ∈ I : Mi |= Ψ[
α1
i /x1,...,α

n
i /xn

] ̸∈ U
⇔

i ∈ I : Mi ̸|= Ψ[
α1
i /x1,...,α

n
i /xn

] ∈ U
⇔

i ∈ I : Mi |= ¬Ψ[
α1
i /x1,...,α

n
i /xn

] ∈ U .
On remarque que pour la direction (⇒) de la double implication
(⇔) on utilise fortement le fait que U est un ultrafiltre (si l’on
travaillait avec un filtr,. cela ne suffirait pas).
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(ii) Si φ = (φ0 ∧ φ1), alors

M |= φ[
[α1]∼/x1,...,[αn]∼/xn

]
⇔ M |= (φ0 ∧ φ1)[

[α1]∼/x1,...,[αn]∼/xn

]
⇔ M |= φ0

[
[α1]∼/x1,...,[αn]∼/xn

] et M |= φ1
[
[α1]∼/x1,...,[αn]∼/xn

]
⇔

i ∈ I : Mi |= φ0
[
α1
i /x1,...,α

n
i /xn

] ∈ U et

i ∈ I : Mi |= φ01[
α1
i /x1,...,α

n
i /xn

] ∈ U
⇔

i ∈ I : Mi |= (φ0 ∧ φ1)[
α1
i /x1,...,α

n
i /xn

] ∈ U .
Montrons les deux cotés de la double implication (⇔).

◦ Pour le sens (⇒) :i ∈ I : Mi |= φ0
[
α1
i /x1,...,α

n
i /xn

] ∈ U et

i ∈ I : Mi |= φ1
[
α1
i /x1,...,α

n
i /xn

] ∈ U
⇒

i ∈ I : Mi |= φ0
[
α1
i /x1,...,α

n
i /xn

]⋂
i ∈ I : Mi |= φ0

[
α1
i /x1,...,α

n
i /xn

] ∈ U
⇒

i ∈ I : Mi |= (φ0 ∧ φ1)[
α1
i /x1,...,α

n
i /xn

] ∈ U .
◦ Pour le sens (⇐) :i ∈ I : Mi |= (φ0 ∧ φ1)[

α1
i /x1,...,α

n
i /xn

] ∈ U

⇒



i ∈ I : Mi |= (φ0 ∧ φ1)[
α1
i /x1,...,α

n
i /xn

] ⊆
i ∈ I : Mi |= φ0

[
α1
i /x1,...,α

n
i /xn

] ∈ U
eti ∈ I : Mi |= (φ0 ∧ φ1)[

α1
i /x1,...,α

n
i /xn

] ⊆
i ∈ I : Mi |= φ1

[
α1
i /x1,...,α

n
i /xn

] ∈ U .
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(iii) Si φ = ∃x ψ, alors

M |= φ[
[α1]∼/x1,...,[αn]∼/xn

]
⇔ M |= ∃x ψ[

[α1]∼/x1,...,[αn]∼/xn

]
⇔ il existe

[
(ai)i∈I

]
∼ M |= ψ[

[(ai)i∈I ]∼/x,[α
1]∼/x1,...,[αn]∼/xn

]
⇔ il existe

[
(ai)i∈I

]
∼

i ∈ I : Mi |= ψ[
ai/x,α1

i /x1,...,α
n
i /xn

] ∈ U
⇔

i ∈ I : Mi |= ∃x ψ[
α1
i /x1,...,α

n
i /xn

] ∈ U
⇔

i ∈ I : Mi |= φ[
α1
i /x1,...,α

n
i /xn

] ∈ U .
Pour établir la double implication (⇔) :
◦ Pour le sens (⇒) :i ∈ I : Mi |= ψ[

ai/x,α1
i /x1,...,α

n
i /xn

] ∈ U
⇒

i ∈ I : Mi |= ψ[
ai/x,α1

i /x1,...,α
n
i /xn

] ⊆
i ∈ I : Mi |= ∃x ψ[

α1
i /x1,...,α

n
i /xn

] ∈ U .
◦ Pour le sens (⇐) :

Puisqu’on a

i ∈ I : Mi |= ∃x ψ[
α1
i /x1,...,α

n
i /xn

] ∈ U , com-

mençons par appeler J cet ensemble :

J =

i ∈ I : Mi |= ∃x ψ[
α1
i /x1,...,α

n
i /xn

]
Ensuite, pour chaque i ∈ I on considère l’ensemble Ei suivant
(dont on remarquera qu’il est non-vide) :

(a) si i ∈ J , alorsEi =

a ∈ |M i| |Mi |= ψ[
a/x,α1

i /x1,...,α
n
i /xn

]
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(b) si i /∈ J , alors Ei = |M i|.

Par application de l’Axiome du Choix, il existe une fonction de
choix qui prélève un élément dans chaque ensemble Ei, de sorte
que l’on obtient une famille (ai)i∈I qui vérifiei ∈ I : Mi |= ψ[

ai/x,α1
i /x1,...,α

n
i /xn

] ∈ U
et par conséquent on a montré :

il existe
[
(ai)i∈I

]
∼

i ∈ I : Mi |= ψ[
ai/x,α1

i /x1,...,α
n
i /xn

] ∈ U .

6.4 Théorème de compacité

Theorème 6.13 (Théorème de compacité). Soit L un langage du premier
ordre et T une L -théorie.

T est satisfaisable si et seulement si T est finiment satisfaisable.

Démonstration. ⇒ : Évident.

⇐ : On remarque tout d’abord que si la théorie T est finie, le résultat est
évident. Un suppose donc que la théorie T est infinie.
Soit I l’ensemble des parties finies de la théorie T :

I = Pfini(T ).

Pour chaque indice i ∈ I on considère l’ensemble Γi ⊆ I des sous-
théories finies de T qui étendent i :

Γi = {∆ ∈ I | i ⊆ ∆}.

On remarque aisément que quel que soit i, l’ensemble Γi n’est pas
vide (il est même infini puisqu’on a supposé la théorie T infinie). On
considère ensuite la famille

B = {Γi | i ∈ I} .

et on vérifie que c’est une base de filtre :

(1) ∅ /∈ B est vérifié puisque B ne contient que des ensembles infinis
donc non-vides.
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(2) Pour i, j ∈ I des valeurs quelconques, on a

Γi ∩ Γj = {∆ ∈ I | i ⊆ ∆} ∩ {∆ ∈ I | j ⊆ ∆}
= {∆ ∈ I | i ∪ j ⊆ ∆}
= Γi∪j .

Puisque i et j sont des parties finies de T , il en est de même de
i ∪ j. Par conséquent Γi ∩ Γj = Γi∪j ∈ B.

On considère alors le filtre F engendré par cette base :

F = {J ⊆ I | il existe Γi ∈ B tel que Γi ⊆ J} ,

ainsi que n’importe quel ultrafiltre U ⊇ F .

Puisque T est finiment satisfaisable, pour chaque partie finie i ⊆ T ,
il existe au moins une L -structure N qui vérifie N |= i. Grace à
l’Axiome du Choix, on peut choisir pour chaque indice i, un modèle
M i et obtenir ainsi une famille (Mi)i∈I telle que M i |= i est vérifié
pour chaque indice i ∈ I.
On peut finalement former l’ultraproduit

M =

∏
i∈I Mi

/
U

et vérifier que M |= T . Pour cela, soit φ une formule quelconque de T ,
il nous faut montrer que M |= φ. Remarquons tout d’abord que si i
(qui est un ensemble fini de formules de T ) vérifie φ ∈ i, alors puisque
M i |= i, on a en particulier M i |= φ. Ainsi, pour chaque i ∈ Γ{φ} on
a M i |= φ et donc

Γ{φ}︸︷︷︸
∈B

= {i ∈ I : {φ} ⊆ i} ⊆ {i ∈ I |M i |= φ}︸ ︷︷ ︸
∈U

Par le Théorème de Łoś, on obtient∏
i∈I Mi

/
U |= φ.

Puisque φ était une formule quelconque de T , on a montré∏
i∈I Mi

/
U |= T.

Voici maintenant une des nombreuses applications de ce théorème.
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6.5 Modèles non-standard de l’arithmétique

Soit L = {0, S,+, ·} le langage égalitaire où 0 est un symbole de
constante, S est un symbole de fonction unaire et +, · sont des symboles
de fonction binaires. La théorie de Peano TP est l’ensemble infini des for-
mules closes suivantes :

axiome 1. ∀x Sx ̸= 0

axiome 2. ∀x ∃y (x ̸= 0→ Sy = x)

axiome 3. ∀x ∀y (Sx = Sy → x = y)

axiome 4. ∀x x+0 = x

axiome 5. ∀x ∀y
(
x+Sy = S(x+y)

)
axiome 6. ∀x x·0 = 0

axiome 7. ∀x ∀y
(
x·Sy = (x·y)+x

)
schema d’axiome (induction). Pour chaque L -formule φ dont les va-

riable libres sont parmi {x0, . . . , xn}, l’axiome suivant :

∀x1 . . . ∀xn
((

φ[0/x0] ∧ ∀x0
(
φ→ φ[Sx0/x0]

))
→ ∀x0 φ

)
On suppose ici que la théorie de Peano TP admet un modèle (que l’on

nomme modèle standard) N = ⟨N, 0N , SN ,+N , ·N ⟩ et défini par :

(1) 0N := 0 ;

(2) SN : N→ N est la fonction usuelle successeur ;

(3) +N : N× N→ N est la fonction usuelle addition ;

(4) ·N : N× N→ N est la fonction usuelle multiplication ;

On ajoute au langage L un nouveau symbole de constante c de sorte
qu’on considère maintenant le langage égalitaire L ′ = {c, 0, S,+, ·}. Pour
chaque entier n on définit la L ′-formule φn par

• φ0 := ¬c = 0 • φn+1 := ¬c = S . . . S︸ ︷︷ ︸
n+1 fois

0.

On considère ensuite l’ensemble de L ′-formules closes Γ = {φn | n ∈ N}
et enfin la L ′-théorie T = TP ∪ Γ.

La théorie T est finiment satisfaisable. En effet, soit ∆ un sous-ensemble
fini quelconque de T . Puisque ∆ est fini, Γ∖∆ est infini. Considérons k le plus
petit entier tel que φk /∈ ∆ et formons le L ′-modèle D = ⟨D, cD, 0D, SD,+D, ·D⟩
suivant :

(1) D = N ;

(2) cD := k ;
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(3) 0D := 0 ;
(4) SD : N→ N est la fonction usuelle successeur ;
(5) +D : N× N→ N est la fonction usuelle addition ;
(6) ·D : N× N→ N est la fonction usuelle multiplication ;

On voit alors facilement que
(1) D satisfait chaque formule de ∆ ∩ TP car D satisfait chacune des for-

mules de TP ;
(2) D satisfait chaque formule de ∆ ∩ Γ (par construction, puisque ces

formules disent simplement que cD est différent d’un nombre fini de
valeurs qui sont toutes différentes de la valeur (k) que prend cD dans
ce modèle).

D’où D satisfait chaque formule de ∆. Par application du théorème de
compacité, on obtient que T est satisfaisable. Il existe donc un L ′-modèle
M = ⟨M, cM , 0M , SM ,+M , ·M⟩ tel que M |= T . Si l’on appelle entiers
standards de ce modèle, les seuls éléments du domaine de base M qui sont

• soit 0M ,
• soit SM . . . SM︸ ︷︷ ︸

n+1 fois

0M pour un entier n ∈ N ;

alors ce modèle M possède un élément qui n’est pas un entier standard (cM).
On appelle un tel élément un entier non standard. Un modèle qui contient
un tel entier est dénommé modèle non standard 20.

6.6 Théorème de compacité et ensembles définissables

Definition 6.14. Soit L un langage du premier ordre etM une L-structure.
Une partie D ⊆ Mn est dite définissable dans M s’il existe une formule
φ[x1, . . . , xn︸ ︷︷ ︸

x

, y1, . . . , yj︸ ︷︷ ︸
y

] et des paramètres b1, . . . , bj︸ ︷︷ ︸
b

dans M tels que :

D =
{
a ∈Mn :M |= φ[a, b]

}
20. On peut par ailleurs montrer que la restriction d’un tel modèle non standard M

aux seuls entiers standards est une sous-structure de M isomorphe au modèle standard.
Plus précisément, la fonction

I : N →
{
SM . . . SM︸ ︷︷ ︸

n

0M | n ∈ N
}

k → SM . . . SM︸ ︷︷ ︸
k

0M

est un isomorphisme entre le modèle standard N =
〈
N, 0N , SN ,+N , ·N

〉
et la L -

structure obtenue en oubliant la constante c et en prenant la restriction de M aux
seuls entiers standards. Autrement dit, si l’on pose E =

{
SM . . . SM︸ ︷︷ ︸

n

0M | n ∈ N
}

,

alors I est un L -isomorphisme entre les structures N =
〈
N, 0N , SN ,+N , ·N

〉
et

E =
〈
E, 0M , SM ↾ E,+M ↾ E × E, ·M ↾ E × E

〉
.
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On note Def(M) la famille des ensembles définissables deM.

Exemple 6.15. Soit
〈
G, e, ·,−1

〉
un groupe. Le centre C de G est défini par

la formule ∀y x · y = y · x.

Definition 6.16. Soit M une L-structure, et A ⊆ M . On peut considérer
l’expansionMA deM par des constantes dans A, c’est à dire la LA structure〈
M,LM, aMA : a ∈ A

〉
, où LA = L ∪ {a : a ∈ A}, et aMA = a. On note

Th(M , A) = Th(MA)

Remarque 6.17. Soit N une sous-structure de M . Alors on a :

N ≺M ⇔ Th(M ,M) = Th(N ,M)⇔ N |= Th(M ,M)

Corollaire 6.18. Soit M une L-structure et une famille de formules (φi[x,mi])i∈I .
Si pour toute partie finie I0 de I il existe a ∈ Mn tel que pour tout i ∈ I0,
M |= φi[a,mi], alors il existe une extension élémentaire N de M et a ∈ Nn

tel que pour tout i ∈ I, N |= φi[a,mi]

Démonstration. Soit L′ = L ∪ {c1, . . . , cn} le langage L auquel on a ajouté
de nouvelles constantes. On considère sur le langage L′M la théorie :

Σ = Th(M ,M) ∪ {φi[c,mi] : i ∈ I} .

Par hypothèse, cette théorie est finiment satisfaisable. D’après le théorème de
compacité, elle est satisfaisable et admet donc un modèle N . L’interprétation
des constantes

{
mN : m ∈M

}
⊆ N forme une sous-structure élémentaire

MN de N ′, la structure sur N réduite au langage L. Cette sous-structure
est par ailleurs isomorphe à M , car N |= Th(M ,M). Par isomorphisme,
on identifie M à MN , et l’interprétation a ∈ Nn des constantes c dans N
implique que tout i ∈ I, N ′ |= φi[a,mi].

6.7 Le corps ordonné des réels

Soit L le langage des corps ordonnés, c’est à dire :

L = {0, 1,+(2),−(2), ·(2);≤(2)}

et R la L-structure de domaine R, les réels. On rappelle que le corps des
réels est

• ordonné, i.e. :
◦ la relation ≤ est un ordre total sur R ;
◦ pour tous x, y et z dans R, si x ≤ y alors x+ z ≤ y + z ;
◦ pour tous x, y et z dans R, si 0 ≤ z et x ≤ y alors x · z ≤ y · z.

• archimédien, c’est à dire que pour tout x dans R il existe un entier
naturel n (vu comme le terme 1 + 1 + . . .+ 1︸ ︷︷ ︸

n fois

) tel que x ≤ n.
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• tel que tout sous-ensemble non vide majoré admet une borne supé-
rieure.

Soit L′ = LR ∪ c, et soit la théorie

Σ = Th(R,R) ∪ {n ≤ c : n ∈ N}

sur L′, où n = 1 + 1 + . . .+ 1︸ ︷︷ ︸
n fois

. Cette théorie est finiment satisfaisable, et

d’après le théorème de compacité il existe donc une L′-structure K′ satisfai-
sant Σ. Dans cette structure, il existe un élément cK′ plus grand que tous
les entiers. Si on restreint K′ à L, on obtient une L-structure K telle que
R ≺ K 21 avec K non-archimédien.

Par ailleurs R, vu comme sous-ensemble de K, est majoré dans K mais
n’a pas de borne supérieure ! En effet, pour tout majorant b de R, b/2 est un
majorant de R strictement plus petit que b. Or dans K, tout sous-ensemble
définissable non vide et qui a un majorant admet une borne supérieure. Pour
le voir, prenons D =

{
a ∈ K : K |= φ[a, b]

}
non vide et majoré. On a donc :

K |=
(
∃v φ[v, b] ∧ ∃y∀z(φ[z, b]→ z ≤ y)

)
.

Mais si ψ[y, w] = ∀z(φ[z, w]→ z ≤ y), alors

R |= ∀w ((∃z φ[z, w] ∧ ∃y ψ[y, w])→ (∃v (ψ[v, w] ∧ ∀x (ψ[x,w]→ v ≤ x)))) .

PuisqueR ≺ K, cette formule est aussi vraie dans K et doit être en particulier
vraie pour w = b, donc D doit admettre un plus petit majorant. Ainsi, R
n’est pas définissable dans K.

21. si par isomorphisme on identifie R avec la sous-structure de K′ de domaine {rK
′
:

r ∈ R}.
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7 Nombres ordinaux et cardinaux

7.1 Bons ordres

Definition 7.1 (Ordre strict). Soit E un ensemble quelconque. ⟨E,<⟩ est
un ordre strict sur E si <⊆ E × E est une relation binaire vérifiant :

(1) ∀x, y, z ∈ E (x < y ∧ y < z)→ (x < z) ;

(2) ∀x ∈ E ¬(x < x).

Remarque : on utilise la notation usuelle “x < y” au lieu de la disgracieuse
“(x, y) ∈<”.

Definition 7.2 (Ordre total). Un ordre strict < sur E est dit un ordre total
sur E si pour tout x, y ∈ E,

si x ̸= y, alors x < y ou y < x.

Remarque 7.3. Si ⟨A,<⟩ est un ordre total et B ⊆ A, alors ⟨B,<B⟩ — où
<B=< ↾ B ×B — est également un ordre total.

Les deux définitions suivantes sont des rappels de la section 5 :Un soupçon
de théorie des modèles.

Definition 7.4 (Homomorphisme). Un homomorphisme f entre deux ordres
⟨E,<E⟩ et ⟨F,<F ⟩ est une fonction f : E → F telle que pour tout x, y ∈ E,

si x <E y, alors f(x) <F f(y).

Definition 7.5 (Isomorphisme). Un isomorphisme f entre deux ordres ⟨E,<E⟩
et ⟨F,<F ⟩ est une bijection f : E

bij.−−→ F telle que pour tout x, y ∈ E,

x <E y si et seulement si f(x) <F f(y).

Proposition 7.6. Si f : E
hom.−−−→ F est un homomorphisme bijectif entre

deux ordres totaux ⟨E,<E⟩ et ⟨F,<F ⟩, alors c’est un isomorphisme.

Démonstration. Il suffit de considérer que pour tout f(x), f(y) ∈ F , si
f(x) <F f(y), alors x <E y. Puisque ⟨E,<E⟩ est un ordre total, une seule
des trois possibilités suivantes est réalisée : x = y, y <E x ou x <E y.
Montrons que les deux premières ne le sont pas.

(1) x = y, est contredit par le fait que f(x) ̸= f(y) ;

(2) y <E x entrainerait f(y) <F f(x) (car f est un homomorphisme). On
aurait donc f(y) <F f(x) et f(x) <F f(y) et donc par associativité de
>F , f(y) <F f(y), ce qui contredit l’irréflexivité de <F .
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Definition 7.7 (Bon ordre). Soit E un ensemble et < une relation d’ordre
stricte sur E. ⟨E,<⟩ est un bon ordre si

(1) ⟨E,<⟩ est un ordre total et
(2) toute partie non vide F ⊆ E possède un plus petit élément selon <.

i.e., pour tout ∅ ≠ F ⊆ E,

il existe a ∈ F tel que pour tout b ∈ F ∖ {a} on ait a < b.

On dit alors que E est bien ordonné par <.

Exemples 7.8. (1) Tout ensemble fini totalement ordonné est un bon ordre.
(2) ⟨N, <⟩ est un bon ordre.
(3) ⟨Z, <⟩ n’est pas un bon ordre.
(4) ⟨Q+, <⟩ n’est pas un bon ordre.

Notation 7.9 (Ensemble des prédécesseurs). Soit E un ensemble bien or-
donné par <. Pour x ∈ E, l’ensemble des prédécesseurs (pour l’ordre <) de
x est noté ⌈x⌉<E = {y ∈ E : y < x}.
Remarque 7.10. Si ⟨A,<⟩ est un bon ordre et B ⊆ A, alors ⟨B,<B⟩ — où
<B=< ↾ B ×B — est également un bon ordre.

Lemme 7.11. Si A est un ensemble non vide et ⟨A,<R⟩ est un bon ordre,
alors pour tout x ∈ A,

⟨A,<R⟩ ≁=
〈
⌈x⌉<R

A , <R
〉
.

Démonstration. Par l’absurde, soient x ∈ A et f : A
iso.−−→ ⌈x⌉<R

A un isomor-
phisme.

A

•x

A

•x
⌈x⌉<A

f

Considérons l’ensemble

B = {y ∈ A : f(y) ̸= y}.

Cet ensemble est non vide car x ∈ B. Puisque ⟨A,<R⟩ est un bon ordre, il
existe un élément a ∈ B qui est <R-minimal dans B.

Par définition de B, on a que a <R f(a) ou bien f(a) <R a.
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(1) Si a <R f(a), alors a ∈ ⌈x⌉<R
A . Par conséquent, f−1(a) <R a et donc

f−1(a) ∈ B, ce qui contredit la minimalité de a.

• •a a•
f

f(a)

f−1(a)

•

•

(2) Si f(a) <R a, alors f(f(a)) <R f(a), par conséquent f(a) ∈ B, ce qui
contredit la minimalité de a.

•a•
f

f(a)

f
(
f(a)

)f(a) •

•

•

Lemme 7.12. Si ⟨A,<R⟩ ∼= ⟨B,<S⟩, alors l’isomorphisme est unique.

Démonstration. Soient f : A
isom.−−−→ B et g : A

isom.−−−→ B deux isomorphismes
de ⟨A,<R⟩ vers ⟨B,<S⟩ et supposons par l’absurde qu’ils sont différents.
Alors l’ensemble suivant est non vide :

C = {a ∈ A : f(a) ̸= g(a)}.

Puisque ⟨A,<R⟩ est un bon ordre, il existe un élément a ∈ C qui est <R-
minimal dans C. Par définition de C, on a que f(a) <S g(a) ou bien g(a) <S
f(a). Par symétrie, il suffit de traiter l’un des deux cas. Supposons donc
g(a) <S f(a) et posons b = f−1 ◦g(a). On obtient que b <R a et donc b ̸∈ C.
Ainsi, f(b) = g(b) ce qui donne g(a) = g(b). C’est une contradiction avec
l’injectivité de g, car a ̸= b (pusique a ∈ C).
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•
•

a
g(a)

•

•
f

g

g

f(a)

f−1
(
g(a)

)

•

•

Theorème 7.13. Soient ⟨A,<R⟩ et ⟨B,<S⟩ deux bons ordres. Il y a trois
possibilités (mutuellement exclusives) :

(1) ⟨A,<R⟩ ∼= ⟨B,<S⟩ ;
(2) ∃y ∈ B ⟨A,<R⟩ ∼=

〈
⌈y⌉<S

B , <S
〉
;

(3) ∃x ∈ A
〈
⌈x⌉<R

A , <R
〉 ∼= ⟨B,<S⟩.

(1)

A B

B

∼=

(2)

B

A

•x ⌈
x⌉<A
A

∼=

(3)

A

B

•y⌈y⌉<B
B

∼=

Démonstration. Soit l’ensemble Gf défini de la manière suivante :

Gf =
{
(v, w) ∈ A×B :

〈
⌈v⌉<R

A , <R
〉 ∼= 〈⌈w⌉<S

B , <S
〉}
.

Assertion.

Gf est le graphe d’une fonction f .

Preuve de l’assertion : Supposons que cela ne soit pas le cas. Alors il existe
deux éléments distincts w,w′ ∈ B et v ∈ A tels que (v, w), (v, w′) ∈ Gf . Sans



7.1 Bons ordres 61

perte de généralité, supposons que w <S w
′. Les deux couples appartenant

à Gf , on a 〈
⌈v⌉<R

A , <R
〉 ∼= 〈

⌈w′⌉<S
B , <S

〉
∼=

〈
⌈w⌉<S

B , <S
〉
.

Or, puisque w <S w
′, on obtient que ⌈w⌉<S

B = ⌈w⌉<S

⌈w′⌉<S
B

et par conséquent
on a 〈

⌈w⌉<S

⌈w′⌉<S
B

, <S

〉
∼=
〈
⌈w′⌉<S

B , <S

〉
,

ce qui est en contradiction avec le lemme 7.11. Donc, Gf est le graphe d’une
fonction. Un argument similaire permet de montrer que la fonction f repré-
sentée par Gf est injective.

(1) On va maintenant prouver que f est un isomorphisme d’un segment
initial de A vers un segment initial de B.
Commençons par montrer que c’est un homomorphisme.
Pour cela, soit dom(f) le domaine de f . Considérons a, a′ ∈ A∩dom(f)
tels que a <R a′, et supposons par l’absurde que f(a′) <S f(a). On a
alors que :
•
〈
⌈a⌉<R

A , <R
〉 ∼= 〈⌈f(a)⌉<S

B , <S

〉
;

•
〈
⌈a′⌉<R

A , <R

〉
∼=
〈
⌈f(a′)⌉<S

B , <S

〉
.

Soit h, h′ les isomorphismes correspondants. On obtient que la compo-
sition

h−1 ◦ h′ : ⌈a′⌉<R
A −→ ⌈h−1◦f(a′)⌉<R

A

est un isomorphisme. Or h−1 ◦ f(a′) <R a, ce qui est en contradiction
avec le lemme 7.11.
Prouvons que le domaine et le codomaine de f sont des segments ini-
tiaux.
Soit (v′, w′) ∈ Gf et v ∈ A tels que v <R v′ et montrons qu’il existe
w ∈ B tel que (v, w) ∈ Gf . Par l’absurde, supposons le contraire et
posons

E = {a ∈ A : ∀b ∈ B (a, b) ̸∈ Gf},
qui est alors non vide. Puisque ⟨A,<R⟩ est un bon ordre, il existe
ṽ un élément <R-minimal de E. Posons alors F = B \ f [⌈ṽ⌉<R

A ] et
on choisit w̃ un élément <S-minimal de F . On va montrer qu’en fait〈
⌈ṽ⌉<R

A , <R
〉 ∼= 〈

⌈w̃⌉<S
B , <S

〉
, ce qui nous donne que (ṽ, w̃) ∈ Gf , une

contradiction.
L’isomorphisme est donné par la fonction g de graphe

Gg = Gf ∩ ⌈ṽ⌉<R
A × ⌈w̃⌉<S

B .
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En effet, par minimalité de ṽ, le domaine de g est dom(g) = ⌈ṽ⌉<R
A .

Par ailleurs, par minimalité de w̃, on a que

⌈w̃⌉<S
B ⊆ f [⌈ṽ⌉<R

A ] = g[⌈ṽ⌉<R
A ].

Ainsi, la fonction g de graphe Gg est une application bijective de ⌈ṽ⌉<R
A

vers ⌈w̃⌉<S
B . Par la proposition 7.6, il reste a vérifier que g est bien un

homomorphisme, ce qui est trivialement le cas puisque f en est un.
Ainsi, pour tout couple (v′, w′) ∈ Gf et v ∈ A tels que v <R v′, il existe
w ∈ B tel que (v, w) ∈ Gf . Ainsi, si v ∈ dom(f) alors ⌈v⌉<R

A ⊆ dom(f).
On a donc prouvé que le domaine de f est un segment initial.
Par symétrie de la définition de Gf , on obtient de la même manière
que le codomaine codom(f) de f est un segment initial.

(2) Il suffit maintenant de montrer que le domaine et le codomaine de f ne
peuvent être en même temps des segments initiaux propres. Par l’ab-
surde, supposons le contraire. Alors dom(f) = ⌈v⌉<R

A et codom(f) =
⌈w⌉<S

B pour un certain v ∈ A et un certain w ∈ B. Par conséquent, f
est un isomorphisme de ⌈v⌉<R

A vers ⌈w⌉<S
B , et donc (v, w) ∈ Gf , une

contradiction. Ainsi, trois cas sont possibles :

1. Ni le domaine ni le codomaine de f ne sont des segment initiaux
propres. Alors f est un isomorphisme de ⟨A,<R⟩ vers ⟨B,<S⟩, ce
qui implique que

⟨A,<R⟩
f∼= ⟨B,<S⟩ .

2. Seul le codomaine de f est un segment initial propre. Par consé-
quent, il existe y ∈ B tel que codom(f) = ⌈y⌉<S

B , ce qui donne

∃y ∈ B ⟨A,<R⟩
f∼=
〈
⌈y⌉<S

B , <S
〉
.

3. Seul le domaine de f est un segment initial propre. Par conséquent,
il existe x ∈ A tel que dom(f) = ⌈x⌉<R

A , ce qui donne

∃x ∈ A
〈
⌈x⌉<R

A , <R
〉 f∼= ⟨B,<S⟩ .

7.2 Ordinaux

Definition 7.14 (Ensemble transitif). Un ensemble E est dit transitif si
pour tout x ∈ E, on a x ⊆ E.

Autrement dit, E est transitif si pour tous x, y : x ∈ y ∈ E ⇒ x ∈ E.



7.2 Ordinaux 63

Definition 7.15 (Ordinal). Un ensemble α est appelé ordinal ou nombre
ordinal s’il est transitif et si la relation d’appartenance forme un bon ordre
sur α.
Formellement, la relation d’appartenance est <∈= {(a, b) ∈ α× α : a ∈ b}.

Exemples 7.16. (1) Les ensembles ∅, {∅}, {∅, {∅}}, ... sont des ordinaux.
On les note :
• 0 = ∅
• 1 = {0} = {∅}
• 2 = {0, 1} = {∅, {∅}}
• 3 = {0, 1, 2} = {∅, {∅}, {∅, {∅}}}
• ...

Par contre, l’ensemble {0, 2} = {∅, {∅, {∅}}} n’est pas un nombre or-
dinal, car il n’est pas transitif puisque {∅} ∈ {∅, {∅}} ∈ {∅, {∅, {∅}}}
mais {∅} /∈ {∅, {∅, {∅}}}.

(2) Si x = {x}, alors x n’est pas un ordinal.

Notation 7.17. Dans la suite, pour α un ordinal, nous notons simplement :

(1) α à la place de ⟨α,<∈⟩ et nous appelons son ordre ∈ ;

(2) Predα(β) à la place de ⌈β⌉<∈
α , et ce pour tout β ∈ α.

Theorème 7.18. Soient x et y des ordinaux. On a les propriétés suivantes :

(1) si z ∈ x, alors z est un ordinal et z = Predx(z) ;

(2) si x ∼= y, alors x = y ;

(3) il y a trois possibilités (mutuellement exclusives) :

1. x = y ;

2. x ∈ y ;

3. y ∈ x ;

(4) si z ∈ x et x ∈ y, alors z ∈ y ;

(5) si C est un ensemble non vide d’ordinaux, alors

∃x ∀y ∈ C (x ∈ y ∨ x = y).

Démonstration. (1) Puisque x est un ordinal, z ⊆ x et donc ⟨z,∈⟩ est un
bon ordre. Par ailleurs, par transitivité de x, pour tout z̃ ∈ z, z̃ ∈ x.
De plus, trivialement, pour tous z̃ ∈ x tels que z̃ ∈ z, alors z̃ ∈ z et on
obtient que z = Predx(z). Enfin, pour tout z̃ ∈ z ∈ x, alors z̃ ∈ x et
donc z̃ ⊆ x. Or, ∈ est un bon ordre sur x, il est en particulier transitif.
Par conséquent, si z′ ∈ z̃ ∈ z, alors z′ ∈ z. Ainsi, z est un ordinal.

(2) Soit f l’isomorphisme entre x et y et posons

E = {x′ ∈ x : x′ ̸= f(x′)}.
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Si cet ensemble est vide, alors ∀x′ ∈ x x′ = f(x′) ∈ y, et puisque f est
surjective, ∀y′ ∈ y ∃x′ ∈ x (y = f(x′) = x′ ∈ x). Ainsi, par l’axiome
d’extensionalité x = y.
Par l’absurde, supposons donc que l’ensemble est non-vide. Alors il
existe m un élément minimal de E. Par minimalité, pour tout x′ ∈ m,
x′ = f(x′). Puisque f est un homomorphisme, ∀x′ ∈ m (x′ = f(x′) ∈
f(m)) et donc m ⊆ f(m).
Soit y′ ∈ f(m). Alors, f−1(y′) ∈ m. Par minimalité de m,

y′ = f ◦ f−1(y′) = f−1(y′) ∈ m.

Par conséquent, f(m) ⊆ m.
Par l’axiome d’extensionalité, f(m) = m, une contradiction.

(3) Par le théorème 7.13, il y a trois possibilités (mutuellement exclusives) :
1. x ∼= y ce qui implique par le point (2) que x = y ;
2. x ∼= Predy(z) pour un certain z ∈ y, ce qui implique par les points

(1) et (2) que x = z ∈ y.
3. Predx(z) ∼= y pour un certain z ∈ x, ce qui implique par les points

(1) et (2) que y = z ∈ x.
(4) Par définition.
(5) Soit x ∈ C.

• Si x ∩ C = ∅, alors x est l’élément recherché. En effet, d’après le
point (3), il suffit de vérifier que ∀y ∈ C (¬y ∈ x), ce qui est le cas.
• Si x ∩ C ̸= ∅, alors par le point (1), c’est un ensemble non vide

bien ordonné par ∈. Le plus petit élément z de x ∩C est l’élément
recherché. En effet, d’après le point (3), il suffit de vérifier que
∀y ∈ C (¬y ∈ z). Supposons par l’absurde qu’il existe y ∈ C tel
que y ∈ z. Alors, par transitivité de x, y ∈ x ∩ C, ce qui contredit
la minimalité de z.

Theorème 7.19. La classe On de tous les ordinaux n’est pas un ensemble.
Autrement dit,

¬∃z ∀x (x est un ordinal 22 → x ∈ z).

Démonstration. Par l’absurde, supposons le contraire. Alors il existe un en-
semble On = {x : x est un ordinal}. Ainsi, par le théorème 7.18, On est un
ordinal. En effet, 7.18 (1) implique que On est transitif et 7.18 (5) implique
que On est bien ordonné par ∈.
Par conséquent, On ∈ On, une contradiction avec l’irréflexivité de ∈.

22. On note x est un ordinal comme abréviation de la formule axiomatisant les ordi-
naux.
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Lemme 7.20. Si A est un ensemble d’ordinaux transitif, alors A est un
ordinal.

Démonstration. L’ensemble A est transitif, et par le théorème 7.18 (3) un
ordre total, puis par le théorème 7.18 (5), bien ordonné par ∈.

Theorème 7.21. Si ⟨A,<R⟩ est un bon ordre, alors il existe un unique
ordinal α tel que ⟨A,<R⟩ ∼= α.

Démonstration. Unicité : Soient α, α′ deux ordinaux tels que ⟨A,<R⟩ ∼= α
et ⟨A,<R⟩ ∼= α′. Par transitivité de ∼=, on obtient que α ∼= α′ et par le
théorème 7.18 (2), α = α′.

Existence : D’après le Théorème 7.13, deux bons ordres sont toujours com-
parables soit parce qu’ils sont isomorphes, soit parce que l’un est iso-
morphe aux prédécesseurs de l’un des éléments de l’autre.

(1) Soit il existe un ordinal α tel que ⟨A,<R⟩ ∼= ⟨α,∈↾α⟩ et le tour
est joué.

(2) Soit il existe un ordinal β tel que ∃α ∈ β ⟨A,<R⟩ ∼=
〈
⌈α⌉∈↾β

β ,∈↾β
〉
.

Dans ce cas, d’après le Théorème 7.18, α est un ordinal et l’ordre
sur α induit par l’ordre sur β n’est autre que la relation d’appar-
tenance restreinte à α, ce qui nous ramène au cas (1).

(3) Supposons maintenant que le cas (1) (et par conséquent égale-
ment le cas (2)) ne soit jamais vérifié. On se retrouverait donc
dans le cas où quel que soit l’ordinal β considéré, il existerait
x ∈ A

〈
⌈x⌉<R

A , <R
〉 ∼= ⟨β,∈↾β⟩. Par le Lemme 7.11, on a que si

x ∈ A vérifie
〈
⌈x⌉<R

A , <R
〉 ∼= ⟨β,∈↾β⟩, alors il n’existe pas d’autre

élément y ∈ A, x ̸= y tel que
〈
⌈y⌉<R

A , <R
〉 ∼= ⟨β,∈↾β⟩. On peut

alors définir une fonctionnelle f : A
surj.−−−→ On par

• f(x) = l’unique ordinal β tel que
〈
⌈x⌉<R

A , <R
〉 ∼= ⟨β,∈↾β⟩, s’il

existe un tel ordinal, et
• f(x) = 0 sinon.

(a)

A α

B

∼=

(b)

A

β

•α⌈α⌉↾ββ

∼=

(c)

β

A

•x ⌈
x⌉<A
A

∼=
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Par une instance de l’axiome de remplacement, l’image du do-
maine (l’ensemble A) est un ensemble. Or cette image n’est autre
que la classe de tous les ordinaux, qui n’est pas un ensemble par
le Théorème 7.19

Notation 7.22.

(1) On note type ⟨A,<R⟩ l’unique ordinal α tel que ⟨A,<R⟩ ∼= α.

(2) Soient α, β deux ordinaux. Alors on note α ≤ β pour (α ∈ β ∨ α = β)
et α < β pour α ∈ β.

Definition 7.23 (Suprémum, Infimum). Soit X un ensemble d’ordinaux.
Alors le suprémum de X, noté supX, est :

supX =
⋃
X := {γ : ∃x ∈ X (γ ∈ x)}. 23

Si X ̸= ∅, l’infimum de X, noté infX, est :

infX =
⋂
X := {γ : ∀x ∈ X (γ ∈ x)}.

Lemme 7.24. On a les propriétés suivantes :

(1) ∀α ∀β (α, β des ordinaux→ (α ≤ β ⇔ α ⊆ β)) ;
(2) si X est un ensemble d’ordinaux, alors supX est le plus petit ordinal

qui majore X.

(3) si X est un ensemble non vide d’ordinaux, alors infX est le plus petit
élément de X.

Démonstration. Évident.

Definition 7.25 (Successeur d’un ordinal). Pour un ordinal α, on définit
son successeur s(α) = α ∪ {α}.

On écrira 1 pour s(0), 2 pour s(1), 3 pour s(2), etc. et on dénotera par
ω l’ensemble de ces entiers. Cet ensemble est un ordinal.

Lemme 7.26. Pour tout ordinal α, on a que :

(1) s(α) est un ordinal ;

(2) α < s(α) ;

23. On remarquera que sup 0 = sup ∅ =
⋃

∅ = ∅. Pour α un ordinal quelconque :
sup (α+ 1) = sup (α ∪ {α}) =

⋃
(α ∪ {α}) = α. Pour λ un ordinal limite quelconque :

supλ = sup {ξ : ξ ∈ λ} = λ. Pour C un ensemble d’ordinaux possédant un maximum α,
supC = α. Si par contre C un ensemble d’ordinaux qui ne posséde pas de maximum, alors
supC est un ordinal limite : le plus petit majorant des ordinaux de C.
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(3) ∀β (β < s(α)→ β ≤ α).
Démonstration. Immédiat.

Definition 7.27 (Ordinal successeur, ordinal limite). Un ordinal α est dit
successeur s’il existe un ordinal β tel que s(β) = α. Sinon, s’il est différent
de 0, on le dit limite.

Exemple 7.28. Les ordinaux 1, 2, 3, 4, etc. sont des ordinaux successeurs. Par
contre ω est un ordinal limite 24.

Definition 7.29 (Suite). Soit A un ensemble. Une suite d’éléments de A
est une fonction d’un ordinal α dans A. α est alors dénommé la longueur de
cette suite.

La définition de la suite que nous avons donné dans la Définition 2.10
correspond à cette définition générale restreinte aux seuls ordinaux α ≤ ω.

On peut étendre le principe du raisonnement par récurrence des entiers
aux ordinaux.

Le raisonnement par récurrence consiste à montrer que des éléments d’un
ensemble A satisfont une propriété P par le procédé suivant :

(1) Les éléments de A sont distribués le long des entiers par le truchement
d’une fonction (appelée hauteur) de A dans N.

(2) On montre que les éléments de hauteur 0 satisfont la propriété P ,
(3) on montre ensuite, (pour n quelconque) que ceux de hauteur n+1 sa-

tisfont la propriété P en supposant que ceux de hauteur n la satisfont
également.

Le raisonnement par récurrence transfinie procède de même mais au lieu
de distribuer les éléments d’un ensemble A sur les entiers, on les distribue sur
les ordinaux. Il faut donc, pour grimper le long des ordinaux, non seulement
partir du niveau 0 et être capable d’effectuer les étapes successeurs (grimper
d’un barreau n au barreau n + 1) mais encore pouvoir passer les étapes
limites.

Le raisonnement par récurrence transfinie consiste à montrer que des
éléments d’un ensemble A satisfont une propriété P par le procédé suivant :

(1) Les éléments de A sont distribués le long des ordinaux par une fonction
appelée hauteur.

(2) On montre que les éléments de hauteur 0 satisfont la propriété P ,
(3) On montre ensuite, (pour α quelconque) que ceux de hauteur α +

1 satisfont la propriété P en supposant que ceux de hauteur α la
satisfont également.

24. c’est d’ailleurs le plus petit ordinal limite
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(4) On montre finalement, (pour λ limite quelconque) que ceux de hauteur
λ satisfont la propriété P en supposant que tous ceux de hauteur α
pour α < λ la satisfont également.

De même que l’on définit des objets mathématiques par induction le long
des entiers, on peut également définir de tels objets par induction le long des
ordinaux transfinis.

Application 7.30 (Arithmétique ordinale). On définit l’addition d’ordinaux
par récurrence transfinie.
Soit α, β deux ordinaux. Par récurrence sur β, on définit α+ β :

Étape 0 : α+ 0 = α ;

Étape successeur : α+ s(β) = s(α+ β) ;

Étape limite : α+ β = sup {α+ γ : γ < β}.
On vérifie aisément que l’addition ordinale est associative. Par contre elle
n’est pas commutative comme le montre les exemples suivants.

Exemples 7.31. (1) ω + 1 = s(ω + 0) = s(ω) = ω ∪ {ω} ;

(2) 1 + ω = sup{1 + n : n < ω} = ω.

(3) 1 + ω + 2 + ω + 3 + ω = ω + ω + ω.

Par récurrence sur β, on définit α · β :

Étape 0 : α · 0 = 0 ;

Étape successeur : α · s(β) = α · β + α ;

Étape limite : α · β = sup {α · γ : γ < β}.
On remarque que la multiplication ordinale est associative mais n’est pas
commutative.

Exemples 7.32. (1) ω · 2 = (ω · 1) + ω = ((ω · 0) + ω) + ω = ω + ω ;

(2) 2 · ω = sup{2 · n : n < ω} = ω.

Par récurrence sur β, on définit αβ :

Étape 0 : α0 = 1 ;

Étape successeur : αs(β) = αβ · α ;

Étape limite : αβ = sup {αγ : γ < β}.
On remarque que l’exponentiation ordinale n’est ni associative ni commuta-
tive.

Exemples 7.33. (1) 2(1
2) = 21 = 2 et (21)2 = 22 = 4 ;

(2) ω2 = (ω1) · ω = ((ω0) · ω) · ω = (1 · ω) · ω = ω · ω ;

(3) 2ω = sup{2n : n < ω} = ω.
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7.3 Axiome du Choix, Lemme de Zorn et Théorème de Zer-
melo

« The Axiom of Choice is obviously true, the well-ordering principle
obviously false, and who can tell about Zorn’s lemma ? »

Jerry L. Bona

Où l’on montre, dans ZF, que ces trois énoncés (AC, TZ, LZ) sont tous
équivalents.

Axiome 13 (Axiome du choix). Soit (Ai)i∈I , une collection d’ensembles
indexée par un ensemble I telle que Ai ̸= ∅ pour tout i ∈ I. Alors, il existe
une fonction f : I −→ ⋃

i∈I Ai telle que f(i) ∈ Ai pour tout i ∈ I.
L’axiome du choix est lui-même équivalent au lemme de Zorn, que l’on

énonce maintenant.

Definition 7.34 (Ensemble inductif). Un ensemble partiellement ordonné
(X,≤) est dit inductif si toute partie totalement ordonnée (que l’on nomme
chaine) de X admet au moins un majorant.

Definition 7.35 (Lemme de Zorn). Tout ensemble ordonné inductif admet
(au moins) un élément maximal.

Definition 7.36 (Théorème de Zermelo). Tout ensemble peut être bien
ordonné.

Theorème 7.37. Les trois assertions suivantes sont équivalentes :
(1) (AC) Axiome du Choix
(2) (LZ) Lemme de Zorn
(3) (TZ) Théorème de Zermelo

Démonstration. (AC ⇒ LZ) Soit (X,≤) un ensemble non vide partielle-
ment ordonné inductif. Supposons en vue d’une contradiction que (X,≤)
n’admet pas d’élément maximal. Notons C l’ensemble des chaînes de
(X,≤). Pour toute chaîne C ∈ C notons

Maj (C) = {m ∈ X | pour tout c ∈ C (c ≤ m et c ̸= m)}
l’ensemble des majorants stricts de C. Pour tout C ∈ C, Maj (C) est
non vide car sinon un majorant de C est un élément maximal de X,
contredisant notre hypothèse. Par l’axiome du choix, il existe une fonc-
tion de choix pour la collection {Maj (C) | C ∈ C}. Désignons par
C 7→ mC une telle fonction. Par le théorème de récurrence transfinie
on définit la fonctionelle (aξ)ξ∈On :
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• a0 est un élément quelconque de X ;
• aα+1 = m(aξ)ξ≤α

;
• pour λ limite, aλ = m(aξ)ξ<λ

.
Les aα sont bien définis car pour tout β {aα | α < β} est une chaîne de
X. 25 La fonctionnelle α 7→ aα ainsi définie est injective comme on le
voit par induction. On peut donc définir une fonctionnelle de domaine
X qui envoie x sur α si x = aα, et x sur ∅ si pour tout ordinal α
x ̸= aα. Par remplacement, l’image de cette fonctionnelle sur X, à
savoir la classe On, serait un ensemble, contredisant le fait vu en cours
selon lequel c’est une classe propre.

(LZ ⇒ TZ) Soit E un ensemble non vide. Pour montrer l’existence d’un
bon ordre sur E on procède comme suit. On considère X l’ensemble
des bons ordres sur des parties de E, i.e.

X = {(P,R) | P ⊆ E et R est un bon ordre sur P}

Observer que X n’est pas vide car pour e ∈ E, ({e}, ∅) est un bon
ordre. On définit sur X la relation ⊑ de segment initial définie par

(P,R) ⊑ (P ′, R′) ssi


P ⊆ P ′ et
pour tous a, b ∈ P (aRb⇔ aR′b) et
pour tout a ∈ P et tout b ∈ P ′ ∖ P aR′b.

On vérifie que (X,⊑) est un ensemble inductif. Pour toute chaîne
(Pi, Ri)i∈I , l’ensemble P =

⋃
i∈I Pi est bien ordonné par la relation

R =
⋃
i∈I Ri, et on vérifie que (P,R) est un majorant de la chaîne

(Pi, Ri)i∈I .
Par le Lemme de Zorn il existe un élément maximal (M,R) de (X,⊑).
Nous montrons que M = E et donc que R est un bon ordre sur E.
Supposons qu’au contraire il existe e ∈ E \M , alors (M ∪ {e}, R ∪
{(m, e) | m ∈ M} est un bon ordre qui étend strictement (M,R),
contredisant la maximalité de (M,R).

(TZ ⇒ AC) Soit (Ai)i∈I une famille d’ensembles non vides. Par le théo-
rème de Zermelo, il existe un bon ordre ≤A sur l’ensemble A =

⋃
i∈I Ai.

Nous pouvons alors définir une fonction de choix f : I → A en posant
f(i) égale à l’élément ≤A-minimal de Ai.

Proposition 7.38. L’axiome du choix est équivalent à l’énoncé suivant :
soient X, Y deux ensembles, et f : X → Y une surjection. Alors il existe
g : Y → X telle que pour tout y ∈ Y , f(g(y)) = y

25. Formellement, il faudrait définir mE pour tout sous-ensemble non vide de X (par
a0 par exemple), puis définir la suite des aα, enfin vérifier par induction transfinie que
{aα | α < β} est une chaîne pour tout β pour être assuré que pour tout β, aβ est bien le
majorant strict de {aα | α < β} donné par la fonction de choix.
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Démonstration. Supposons tout d’abord AC, et soientX, Y deux ensembles,
et f : X → Y une surjection. Pour tout y ∈ Y , on a f−1(y) ̸= ∅. Il existe
donc une fonction de choix

g : Y →
⋃
y∈Y

f−1(y) = X

telle que pour tout y ∈ Y , f(g(y)) = y.
Dans l’autre sens, soit (Xi)i∈I une famille d’ensembles telle que pour tout

i ∈ I, Xi ̸= ∅. On considère la fonction

f :
⋃
i∈I

(Xi × {i})→ I

telle que pour tout i ∈ I et x ∈ Xi, f(x; i) = i. Cette fonction est surjective
puisque tous les Xi sont non vides. Par hypothèse, il existe donc une fonction

g : I →
⋃
i∈I

(Xi × {i})

telle que pour tout i ∈ I, g(i) = (x; i), avec x ∈ Xi. La fonction

π1 ◦ g : I →
⋃
i∈I

Xi

est donc une fonction de choix.

Definition 7.39 (ACω). L’axiome du choix dénombrable et la restriction
de l’axiome du choix aux familles dénombrables. Soit (Xn)n∈ω une famille
d’ensembles non vides. Alors il existe une fonction

f : ω →
⋃
n∈ω

Xn

telle que pour tout n ∈ ω, f(n) ∈ Xn.

L’axiome du choix dénombrable est strictement plus faible que l’axiome
du choix, dans ZF on peut prouver l’implication (AC) ⇒ (ACω), mais pas
l’inverse. Même si (ACω) ne permet pas de développer toute l’analyse, il suffit
par exemple pour établir l’équivalence entre les définitions de continuité.

Proposition 7.40. Les deux implications suivantes sont vraies :

(1) (ACω) implique que toute réunion dénombrable d’ensembles dénom-
brables est dénombrable.

(2) Si toute réunion dénombrable d’ensembles dénombrables est dénom-
brable, alors tout produit dénombrable de parties dénombrables est non
vide.
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Démonstration.

(1) Sans perte de généralité, on considère une famille (An)n∈ω d’ensembles
dénombrables et deux à deux disjoints. Pour tout n ∈ ω, on définit
l’ensemble

On = {f : An → ω : f est injective} .
Puisque chaque An est dénombrable, On ̸= ∅ pour tout n ∈ ω. D’après
(ACω), il existe donc une fonction de choix

g : ω →
⋃
n∈ω

On

telle que pour tout n ∈ ω, g(n) est une injection de An dans ω. On
peut alors définir

F :
⋃
n∈ω

An → ω × ω

a 7→ (n; g(n)(x)) , si a ∈ An

La fonction F est injective, et puisque ω×ω est dénombrable,
⋃
n∈ω An

est dénombrable.

(2) Soit une famille (An)n∈ω d’ensembles dénombrables. Par hypothèse,⋃
n∈ω An est dénombrable, il existe donc une injection

f :
⋃
n∈ω

An → ω.

On définit alors pour tout n ∈ ω

gn = f−1 (min (f(An)))

Pour tout n ∈ ω, on a gn ∈ An, et donc (gn)n∈ω ∈
∏
n∈ω An.

Il est intéressant de noter que la deuxième implication est indépendante
de ZF.

Definition 7.41. Un ensemble est infini s’il n’est équipotent à aucun ordinal
fini. Un ensembleX est Dedekind-infini s’il existe une injection non surjective
f : X → X.

Proposition 7.42. Un ensemble X est Dedekind infini si et seulement si il
existe Y ⊆ X tel que Y ≈ ω.

Démonstration.
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⇒ Soit f : X → X injective non surjective, et soit a ∈ X\f(X). On définit
par induction la suite (an)n∈ω de la manière suivante :{

a0 = a

an+1 = f(an)

Cette suite forme une fonction

i : ω → X

n 7→ an

injective, car pour tous entiers naturels n et m distincts, an ̸= am.
Ainsi ω ≈ i(ω) ⊆ X.

⇐ Soit Y ⊆ X tel que Y ≈ ω, et soit une bijection g : Y → ω. On définit

f : X → X

x 7→
{
x si x ∈ X\Y
g−1(g(x) + 1) si x ∈ Y

Cette fonction est injective mais n’est pas surjective car g−1(0) n’est
jamais atteint.

Cela prouve que dans ZF, tout ensemble Dedekind-infini est infini. L’im-
plication inverse nécessite l’axiome du choix dénombrable.

Proposition 7.43. (ACω) implique que tout ensemble infini est Dedekind-
infini.

Démonstration. Soit X infini. Pour tout n ∈ ω, soit

An = {B ⊂ X : B ≈ 2n} .
Comme X est infini, pour tout n ∈ ω on a An ̸= ∅. En utilisant l’axiome
du choix dénombrable, on obtient une famille d’ensembles (Bn)n∈ω telle que
pour tout n ∈ ω, Bn ∈ An. On définit alors par induction la famille (Cn)n∈ω :{

C0 = B0

Cn = Bn\
⋃
i<nCi

On obtient ainsi une famille telle que, pour tout n ∈ ω, Cn ̸= ∅, et telle que
pour tous n,m ∈ ω, n ̸= m⇒ Cn∩Cm = ∅. En utilisant à nouveau l’axiome
du choix dénombrable, on obtient une fonction

c : ω → X

telle que pour tout n ∈ ω, c(n) ∈ Cn. Comme les Cn sont disjoints, cette
fonction est injective, et on a donc ω ≈ c(ω) ⊂ X. Ainsi, X est Dedekind-
infini.
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Definition 7.44 (DC). L’axiome des choix dépendants est l’énoncé suivant.
Soit X un ensemble et R une relation binaire sur X telle que pour tout
a ∈ X, il existe b ∈ X satisfaisant aRb. Alors il existe une suite (xn)n∈ω
d’éléments de X tels que xnRxn+1 pour tout n ∈ ω.

L’axiome des choix dépendants est strictement plus faible que l’axiome du
choix, et strictement plus fort que l’axiome du choix dénombrable, c’est à dire
que dans ZF on peut prouver les implications (AC)⇒ (DC)⇒ (ACω), mais
pas les implications inverses. L’axiome des choix dépendants et suffisant pour
développer une majeure partie de l’analyse, en particulier on peut prouver
qu’il est équivalent au fait que tout espace complètement métrisable est de
Baire. Par ailleurs 26 il existe un modèle de ZF+(DC) dans lequel il n’existe
pas d’ensembles non Lebesgue mesurables.

7.4 Cardinaux

Definition 7.45 (Cardinal d’un ensemble). Si A peut être bien ordonné,
le cardinal de A, noté Card (A), est le plus petit ordinal α tel qu’il existe
α

bij.−−→ A.

Remarque 7.46.
(1) Avec l’Axiome du Choix, tout ensemble peut être bien ordonné par le

théorème de Zermelo (équivalent à l’axiome du choix). Par conséquent
il existe <R un bon ordre sur A. Par ailleurs un bon ordre est iso-
morphe à un ordinal unique. Donc il existe α tel que ⟨A,<R⟩ ∼= α. Cet
isomorphisme est entre autre une bijection entre A et α. Par conséquent
l’ensemble des ordinaux qui sont en bijection avec A est non vide. Dés
lors, Card (A) est bien défini comme le plus petit d’entre eux.

(2) Pour tout ordinal α, Card (α) ≤ α.

△! On présupposera l’Axiome du Choix pour le reste de
cette section.

Definition 7.47 (Nombre cardinal). Un ordinal α est un (nombre) cardinal
si α = Card (α).

Remarque 7.48.
(1) Un nombre cardinal infini est un cardinal qui n’est pas fini c’est-à-dire

qui est en bijection avec un de ses sous-ensembles propres.
(2) Chaque cardinal infini est un ordinal limite 27.

26. Si ZF est consistant !
27. Car 1 + ω = ω.
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Exemples 7.49.

(1) Chaque entier est un cardinal.

(2) ω est un cardinal.

(3) ω + 1 n’est pas un cardinal : Card (ω + 1) = ω.

(4) ω · ω n’est pas un cardinal.

(5) ωω n’est pas un cardinal.

On peut se demander quelle est la relation entre la cardinalité de P(N)
et celle de N. On sait déjà que Card (P(N)) > Card (N) puis qu’on sait que
pour tout ensemble A il n’y a pas de bijection entre A est l’ensemble de
ses parties P(A) (voir Théorème 2.8 (Cantor)). Par conséquent, pour tout
nombre cardinal κ, on a Card (P(κ)) > κ et donc l’ensemble suivant est non
vide.

{λ ≤ Card (P(κ)) | κ < λ et λ est un nombre cardinal}
Il possède donc un plus petit élément que l’on note κ+ : c’est le plus petit
nombre cardinal strictement plus grand que κ.

Cela motive la définition suivante :

Definition 7.50 ([AC] Suite ordinale aleph). On définit par récurrence
transfinie la suite ordinale ℵ (aleph) par :

Étape 0 : ℵ0 = ω ;

Étape successeur : ℵβ+1 est le plus petit cardinal plus grand que ℵβ ;

Étape limite : ℵβ = sup {ℵγ : γ < β}.

Il est facile de montrer que chaque ℵα est un cardinal infini et que la
famille (ℵα)α∈On contient exactement tous les cardinaux infinis.

Proposition 7.51.

(1) Pour chaque ordinal α, ℵα est un nombre cardinal infini.

(2) Chaque cardinal infini est de la forme ℵα pour un ordinal α.

Démonstration.

(1) C’est immédiat pour α = 0 et pour α successeur. Pour α un ordinal
limite, on a ℵα = sup {ℵγ : γ < α}. En supposant Card (ℵα) < ℵα, il
existerait γ < α tel que Card (ℵα) ≤ ℵγ < ℵα et donc également

Card (ℵα) ≤ ℵγ < ℵγ+1 < ℵα

ainsi que les injections suivantes :

ℵα inj.−−→ Card (ℵα) inj.−−→ ℵγ inj.−−→ ℵγ+1
inj.−−→ ℵα.
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(Par composition d’injections) on aurait donc une injection entre n’im-
porte lesquels de ces ensembles. En particulier il y aurait une injec-
tion ℵγ+1

inj.−−→ ℵγ et l’injection triviale id : ℵγ inj.−−→ ℵγ+1. Par le
Théorème de Cantor-Schröder-Bernstein (2.9) il existerait une bijec-
tion ℵγ bij.−−→ ℵγ+1, ce qui contredirait la définition de ℵγ+1.

(2) Soit κ un cardinal infini. Considérons α le plus petit ordinal tel que
κ ≤ ℵα. On remarque aisément qu’un tel ordinal α existe car pour tout
nombre ordinal β on a β ≤ ℵβ et par conséquent κ ≤ ℵκ est vérifié.
On montre ensuite que l’on ne peut pas avoir κ < ℵα et donc κ = ℵα.
Pour cela supposons que κ < ℵα. On a alors
(a) α = 0 est impossible puisque κ est infini.
(b) α = β + 1 est impossible puisqu’alors on aurait

ℵβ < κ < ℵβ+1 = ℵβ+.

(c) α ordinal limite est impossible puisqu’alors il existerait γ < α tel
que κ ≤ ℵγ contredisant la minimalité de α.

Remarque 7.52.
(1) On écrit très souvent ωα pour ℵα, avec la convention que ω0 = ω. Plus

précisément lorsqu’il est important de distinguer l’ordinal du cardinal
on utilise ωα pour parler de l’ordinal et ℵα pour parler du cardinal.

(2) L’Hypothèse du Continu est l’affirmation :

Card
(
P(N)

)
= ℵ1. (CH)

L’Hypothèse Généralisée du Continu est : l’affirmation :

∀α ∈ On Card
(
P(ℵα)

)
= ℵα+1. (GCH)

En fait (pour autant que ZFC soit consistante) ni l’Hypothèse du
Continu ni l’Hypothèse Généralisée du Continu ne sont prouvables ou
réfutables par ZFC.

Kurt Gödel a montré 28 que l’ajout de l’Hypothèse Généralisée du
Continu à la théorie des ensembles ne changeait nullement la consis-
tance de cette dernière.
Paul Cohen a montré 29 que l’hypothèse du continu n’était pas prou-
vable à partir de ZFC 30. Elle est donc indépendante de la théorie des
ensembles.

28. Gödel, K. (1940). The Consistency of the Continuum-Hypothesis. Princeton Uni-
versity Press.

29. Cohen, Paul J. (December 15, 1963). "The Independence of the Continuum Hypo-
thesis". Proceedings of the National Academy of Sciences of the United States of America
50 (6) : 1143-1148.

30. sauf si cette dernière est inconsistante !
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Plus précisément on sait maintenant que les théories suivantes sont
équiconsistantes 31 :

(a) ZF

(b) ZF+CH

(c) ZF+ ¬CH

(d) ZF+GCH

(e) ZF+ ¬GCH

(f) ZF+ AC

(g) ZF+ ¬AC

(h) ZF+ AC +CH

(i) ZF+ AC +GCH

Definition 7.53 ([AC] Arithmétique cardinale). Pour λ, κ deux cardinaux,
on définit les opérations cardinales suivantes :

Addition : λ+ κ = card({0} × λ ∪ {1} × κ)
Multiplication : λ · κ = card(λ× κ)
Exponentiation : λκ = card(κλ) ; où κλ désigne l’ensemble des fonctions

(totales) de κ dans λ.

Remarque 7.54.

(1) Lorsque λ et κ sont des cardinaux finis, les opérations définies ne sont
pas différentes de l’addition, de la multiplication et de l’exponentiation
sur les entiers.

(2) 2ℵ0 désigne la cardinalité de l’ensemble des fonctions des entiers dans
{0, 1} ; autrement dit la cardinalité de l’ensemble des parties d’entiers.
Et plus généralement 2ℵα désigne la cardinalité de l’ensemble des par-
ties de ℵα.
Ainsi l’Hypothèse du Continu devient :

2ℵ0 = ℵ1. (CH)

L’Hypothèse Généralisée du Continu devient : l’affirmation :

∀α ∈ On 2ℵα = ℵα+1. (GCH)

Les opérations arithmétiques sur les cardinaux se révèlent extrêmement
simples puisqu’on a :

Lemme 7.55 (AC). Soient λ, κ deux cardinaux non nuls et dont l’un au
moins est infini.

λ+ κ = λ · κ = max(λ, κ)

Démonstration. Posons κ = max(λ, κ). Il suffit de monter que pour tout
cardinal infini κ, l’ensemble κ× κ s’injecte dans κ puisqu’alors

κ ↪→ {0} × λ ∪ {1} × κ ↪→ λ× κ ↪→ κ× κ ↪→ κ

31. c’est-à-dire qu’elles sont toutes consistantes ou bien toutes inconsistantes.
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L’hypothèse est évidente pour κ = ℵ0. Supposons κ > ℵ0 et procédons
par récurrence : on suppose l’hypothèse vraie pour des cardinaux plus petits
que κ. On définit le bon ordre strict suivant sur κ× κ :

(α, β) ◁ (α′, β′)

⇐⇒



max(α, β) < max(α′, β′)

ou
max(α, β) = max(α′, β′)

et

(α, β) <lexicog. (α
′, β′)

On considère alors l’ordinal θ qui représente le type d’ordre du bon ordre
(κ × κ, ◁), c’est-à-dire l’unique ordinal auquel ce bon ordre est isomorphe.
Il nous suffit dès lors de montrer que le cardinal de θ est κ pour obtenir
κ× κ ↪→ θ ↪→ κ.

Soit f l’unique isomorphisme entre (κ×κ, ◁) et θ. Considérons un couple
quelconque (α, β) ∈ κ× κ tel que α, β ne soient pas tous les deux finis, ainsi
que son image f(α, β) = γ ∈ θ. On a que

Card (γ) ≤ Card
((

max(α, β) + 1
)
×
(
max(α, β) + 1

))
.

Or si l’on pose λ = Card
(
max(α, β) + 1

)
, puisque λ < κ est vérifié, en

appliquant l’hypothèse d’induction on obtient :

Card (γ) ≤ Card
((

max(α, β) + 1
)
×
(
max(α, β) + 1

))
≤ Card (λ× λ)
≤ λ
< κ.

On en déduit que pour tout ordinal γ < θ, Card (γ) < κ d’où θ ≤ κ. Par
ailleurs κ ↪→ κ× κ ↪→ θ, d’où κ ≤ θ. Ce qui donne au final θ = κ,
montrant que κ× κ s’injecte dans κ.

Proposition 7.56 (Propriétés des nombres cardinaux infinis). Soit A un
ensemble de cardinalité infinie κ. Alors,

(1) A×A est de cardinalité κ ;

(2) A<ω (l’ensemble des suites finies sur A) est de cardinalité κ.
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Démonstration. On montre aisément par récurrence sur n ∈ N∗ que

Card

A×A× . . .×A︸ ︷︷ ︸
n

 = κ

en utilisant le fait que :

Card (A×A) = Card (Card (A)× Card (A)) = Card (A)·Card (A) = κ·κ = κ.

On montre ensuite que

κ ≤ Card
(
A<ω

)
= Card

⋃
n∈N

A×A× . . .×A︸ ︷︷ ︸
n

 ≤ Card (A)·ℵ0 ≤ κ·ℵ0 ≤ κ.

Definition 7.57. Un cardinal infini κ est dit régulier si pour toute partie
X ⊊ κ telle que Card (X) < κ, on a sup(X) < κ. Un cardinal qui n’est pas
régulier est dit singulier.

Il est clair que ℵ0 est régulier. Par contre, ℵω est singulier, car l’ensemble
{ℵn : n ∈ ω} ⊆ ℵω est de cardinalité ℵ0 < ℵω et vérifie sup {ℵn : n ∈ ω} =
ℵω. De même

Definition 7.58. Soient α et β deux ordinaux non nuls.

(1) On dit que α est cofinal à β s’il existe une fonction f : β
cof.−−→ α qui

soit cofinale, i.e., vérifiant que pour tout γ ∈ α, il existe δ ∈ β tel que
f(δ) ≥ γ.

(2) La cofinalité d’un ordinal α non nul est le plus petit ordinal β — noté
β = cof(α) — tel que α soit cofinal à β.

Proposition 7.59. Soit α un nombre ordinal non nul.
(1) Si α est un ordinal successeur, alors cof(α) = 1.
(2) Si α est un ordinal limite, alors cof(α) est un nombre cardinal.

Démonstration. (1) Si α = β + 1, alors la fonction

f : {0} cof.−−→ β ∪ {β}
0 7→ β

telle que f(0) = β est cofinale dans α.

(2) Soit β un ordinal tel qu’il existe une fonction cofinale f : β
cof.−−→ α, et

soit une bijection h : Card (β)
bij.−−→ β. On a à la fois Card (β) ≤ β et

f ◦ h : Card (β)
cof.−−→ α est cofinale.

Exemples 7.60.



80 7 NOMBRES ORDINAUX ET CARDINAUX

(1) cof(ω) = ω

(2) cof(ω + ω) = ω

(3) cof(ω2) = ω

(4) cof(ωω) = ω

(5) cof

(
ωω

ωωωωω )
= ω

(6) cof(ℵ1) = ℵ1

(7) cof(ℵ2) = ℵ2
(8) cof(ℵ38) = ℵ38
(9) cof(ℵω) = ω

(10) cof(ℵω+1) = ℵω+1

(11) cof(ℵω+ω) = ω

(12) cof(ℵℵω) = ω

Proposition 7.61. Soit α, β deux ordinaux limites. S’il existe une fonction
cofinale f ′ : β

cof.−−→ α, alors il existe une fonction cofinale strictement
croissante f : β

cof.−−→ α.

Démonstration. On construit f par récurrence transfinie en posant :
(1) f(0) = f ′(0) ;
(2) f(ξ + 1) = sup {f ′(ξ + 1), f(ξ) + 1} ;
(3) f(λ) = sup

(
{f ′(λ)} ∪ {f(ξ) | ξ < λ}

)
.

Proposition 7.62. Soit α un ordinal limite. Alors cof(cof(α)) = cof(α).

Démonstration. Découle directement du fait que la composition de deux
fonctions cofinales strictement croissantes est elle même une fonction co-
finale.

Proposition 7.63. Soit λ un cardinal infini. Alors λ est régulier si et seule-
ment si cof(λ) = λ.

Démonstration.

(⇒) Supposons tout d’abord que cof(λ) = κ < λ. Il existe donc une fonc-
tion cofinale f : κ

cof.−−→ λ. Mais par définition, cela implique que
sup ({f(α) : α ∈ κ}) = λ. Le cardinal λ n’est donc pas régulier, car
Card ({f(α) : α ∈ κ}) = κ < λ.

(⇐) Supposons que λ n’est pas régulier. Il existe alors un sous-ensemble
X ⊊ λ tel que Card (X) = κ < λ et sup(X) = λ. Comme X est un
ensemble d’ordinaux, il est bien ordonné et est donc isomorphe à un
unique ordinal ξ < λ. Soit l’ (unique) isomorphisme f : ξ

isom.−−−→ X, on
a alors f : ξ

cof.−−→ λ, car sup(X) = λ. On a donc cof(λ) = cof(ξ) < λ.

Proposition 7.64. Tout cardinal successeur infini (de la forme κ+) est
régulier.
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Autrement dit, pour tout ordinal α, le nombre cardinal ℵα+1 est régulier.

Démonstration. Soit κ+ un cardinal successeur, et supposons par l’absurde
qu’il existe une fonction cofinale f : λ

cof.−−→ κ+ pour un certain nombre
cardinal λ ≤ κ. Pour chaque α ∈ λ, on a Card

(
f(α)

)
≤ κ et on choisit alors

une surjection gα : κ
surj.−−−→ f(α) et on définit

g : λ× κ→ κ+

(α, β) 7→ gα(β).

Comme f est cofinale, g est une surjection. On a donc

κ = Card (λ× κ) ≥ κ+,

une contradiction.

Definition 7.65. Un nombre cardinal κ est dit faiblement inaccessible s’il
vérifie les deux conditions suivantes :

(1) κ est un cardinal limite 32 et

(2) κ est régulier.

L’existence de cardinaux faiblement inaccessibles est indépendante de
ZFC. Si l’on ajoute (comme axiome) à ZFC la formule close ∃In. qui dit « il
existe un cardinal faiblement inaccessible »alors la théorie obtenue (ZFC+∃
In.) prouve la consistance de ZFC. Une conséquence du second théorème
d’incomplétude de Gödel est que ZFC ne prouve pas sa propre consistance
(à moins d’être inconsistante car nous verrons que toute théorie inconsis-
tante prouve absolument n’importe quoi). Une formule close qui ajoutée à
ZFC permet de prouver la consistance de ZFC est appelée une hypothèse de
grand cardinal. Ainsi l’existence d’un cardinal faiblement inaccessible est une
hypothèse de grand cardinal.

Lemme 7.66 (Lemme de König). Pour tout cardinal infini κ, on a

κ < κcof(κ).

Démonstration. On montre qu’il n’existe pas de bijection g : κ
bij.−−→ κcof(κ)

pour la raison qu’il n’existe pas de surjection g : κ
surj.−−−→ cof(κ)κ.

Pour cela, il suffit à partir de n’importe quelle fonction g : κ → cof(κ)κ

et d’une fonction cofinale f : cof(κ)
cof.−−→ κ, de construire (par un argument

diagonal) une fonction h : cof(κ) → κ qui n’appartienne pas à l’image de

32. Cela signifie que κ = ℵλ pour un ordinal limite λ. On rappelle que 0 n’est pas un
ordinal limite !
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la fonction g (montrant ainsi que g n’est pas surjective). On définit ainsi la
fonction h : cof(κ)→ κ en posant pour tout α < cof(κ) :

h(α) = le plus petit ordinal dans
{
β ∈ κ | ∀ξ ≤ f(α) g(ξ)(α) ̸= β

}
Montrons que h est bien définie et pour cela montrons que l’ensemble{

β ∈ κ | ∀ξ ≤ f(α) g(ξ)(α) ̸= β
}

est non vide. Pour cela il suffit de remarquer que pour α < cof(κ) on a
f(α) ∈ κ (autrement dit f(α) < κ) et donc Card

(
f(α)

)
< κ. Par conséquent

Card
({
g(ξ)(α) | ξ ≤ f(α)

})
< κ

et donc l’ensemble suivant est non vide

κ∖
{
g(ξ)(α) | ξ ≤ f(α)

}︸ ︷︷ ︸
cardinalité <κ︸ ︷︷ ︸

cardinalité =κ

= {β ∈ κ | ∀ξ ≤ f(α) g(ξ)(α) ̸= β}

Supposons maintenant que h appartienne à l’image de g et donc qu’il
existe un ordinal γ < κ tel que g(γ) = h. Puisque f : cof(κ)

cof.−−→ κ est une
fonction cofinale, il existe un ordinal θ < cof(κ) tel que f(θ) > γ. On obtient
alors

h(θ) = le plus petit ordinal dans
{
β ∈ κ | ∀ξ ≤ f(θ) g(ξ)(θ) ̸= β

}
.

Or γ < f(θ) et g(γ) = h entraine que

h(θ) = g(γ)(θ) ∈
{
g(ξ)(θ) | ξ ≤ f(θ)

}
et par conséquent

h(θ) /∈ κ∖
{
g(ξ)(θ) | ξ ≤ f(θ)

}
= {β ∈ κ | ∀ξ ≤ f(θ) g(ξ)(θ) ̸= β} ,

une contradiction.

Une conséquence très importante du Lemme de König c’est que la puis-
sance du continu (la cardinalité de 2ℵ0) ne peut pas être un ordinal de la
forme ℵα pour un α limite de cofinalité ω. En effet, on ne peut pas avoir
cof
(
2ℵ0
)
= ℵ0 comme le montre le résultat suivant :

Corollaire 7.67. Pour tout cardinal infini κ, on a

cof(2κ) > κ.
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Démonstration. D’après ce qui précède et en utilisant le fait que (κµ)λ = κµ·λ

(cf. Série 9), on obtient :

2κ < (2κ)cof(2
κ) = 2κ·cof(2

κ) = 2max {κ, cof(2κ)}.

Il y a alors deux possibilités pour max {κ, cof(2κ)} :
• Si l’on suppose κ = max {κ, cof(2κ)}, on obtient alors la contradic-

tion qui suit montrant que ce cas n’est pas possible :

2κ < (2κ)cof(2
κ) = 2max {κ, cof(2κ)} = 2κ.

• On a donc max {κ, cof(2κ)} = cof(2κ) et également cof(2κ) ̸= κ, ce
qui donne cof(2κ) > κ.

On a ainsi que pour tout α ordinal limite de cofinalité dénombrable,

2ℵ0 ̸= ℵα.

C’est l’unique restriction à (CH) prouvable dans ZFC. Cette restriction in-
terdit par exemple d’avoir 2ℵ0 = ℵω ou bien 2ℵ0 = ℵω+ω ou bien 2ℵ0 = ℵωω

ou bien 2ℵ0 = ℵω1+ω ou encore 2ℵ0 = ℵℵℵℵℵℵℵℵℵℵℵℵℵω

.

△! Dans tous ce chapitre on a travaillé avec l’Axiome du
Choix. Un certain nombre des résultats que l’on a énon-
cés ne sont plus vrais lorsqu’on travaille sans AC.
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8 Théorèmes de Löwenheim-Skolem

« Les escaliers encombrés ne suffisent plus ; l’ascenseur à la descente
comme à la montée est toujours plein. »

Henri Michaux (La nuit remue, 1935)

Il y a deux manières de prendre l’ascenseur : l’une pour monter (↑),
l’autre pour descendre (↓). Où l’on verra que si on ne peut pas descendre
trop bas, on peut par contre parfois monter trop haut. Néanmoins, dans les
cas où on sera monté trop haut, on pourra toujours, grace au Théorème de
compacité, redescendre à l’étage désiré ...

8.1 Énoncés des théorèmes

Theorème 8.1 (Löwenheim-Skolem descendant (LS↓)). Soient L un lan-
gage égalitaire et T une théorie sur ce langage. Si L est infini, on pose
κ = Card (L ), sinon on pose κ = ω (où ω est la cardinalité de N). S’il
existe un modèle de T de cardinalité λ > κ, alors il existe un modèle de T
de cardinalité κ.

Theorème 8.2 (Löwenheim-Skolem montant (LS↑)). Soient L un langage
égalitaire et T une théorie sur ce langage. Si L est infini, on pose κ =
Card (L ), sinon on pose κ = ω(où ω est la cardinalité de N). S’il existe un
modèle de T de cardinalité κ, alors pour tout λ > κ il existe un modèle de T
de cardinalité λ.

Remarque 8.3. On note respectivement, (LS↓) et (LS↑) pour référer aux
théorèmes de Löwenheim-Skolem descendant et de Löwenheim-Skolem mon-
tant respectivement.

Avant de prouver les théorèmes, on introduit quelques outils dont on a
besoin.

Definition 8.4 (Forme prénexe polie). Une formule φ est sous forme prénexe
polie si elle s’écrit φ = Q1x1 . . . QkxkΨ avec pour tout 1 ≤ i < j ≤ k,
Qi, Qj ∈ {∀,∃}, xi ̸= xj et si de plus Ψ est sans quantificateur.

Proposition 8.5. Pour toute formule φ, il existe une formule Ψ sous forme
prénexe polie universellement équivalente à φ, i.e. telle que φ ↔ Ψ est uni-
versellement valide.

Démonstration. Exercice.
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Un premier résultat facile sur la manière dont on obtient le plus petit
ensemble clos par un ensemble de fonctions.

Lemme 8.6. Si A et M sont des ensembles tels que A ⊆ M , et (fi)i∈I est
une famille de fonctions telles que fi : Mni −→ M où ni ∈ N ; alors le
plus petit ensemble N qui vérifie A ⊆ N ⊆ M et soit clos par chacune des
fonctions fi (i ∈ I) est obtenu par récurrence par :

(1) A0 = A

(2) Ak+1 = Ak ∪
⋃
i∈I

{
fi(a1, . . . , ani) | (a1, . . . , ani) ∈ Ani

k

}
(3) N =

⋃
k∈N

Ak.

De plus, si |A| = κ ≥ ℵ0 et |I| ≤ κ, alors |N | = κ.

Démonstration. Exercise.

8.2 Preuves des théorèmes

Preuve de Lowenheim-Skolem descendant (LS↓) :

Si T = ∅, le résultat est immédiat. Supposons donc T ̸= ∅ et également
que chaque formule de T est sous forme prénexe polie.

Soit M un modèle de T de cardinalité λ > κ. Pour chaque formule (close)
φ ∈ T on choisit σφ (AC) une stratégie gagnante pour le Vérificateur dans
EV (M , φ). Chacune de ces stratégies induit un nombre fini de fonctions
(g
σφ
i )i<nφ∃

– où nφ∃ désigne le nombre de quantificateurs existentiels dans φ
– tel qu’indiqué dans l’exemple qui suit 33 :

φ := ∀x1 ∃x2 ∀x3 ∃x4 ∃x5 ∀x6 ∃x7 ψ

(1)
g
σφ
0 : M −→ M

x1 7−→ x2

où g
σφ
0 est définie, pour chaque a ∈ M par gσφ0 (a) := l’unique b ∈ M

que la stratégie σφ choisit pour x2 lorsque le Falsificateur choisit a pour
x1.

(2)
g
σφ
1 : M2 −→ M

(x1, x3) 7−→ x4

où g
σφ
1 est définie, pour chaque a, b ∈ M par gσφ1 (a, b) := l’unique

c ∈M que la stratégie σφ choisit pour x4 lorsque le Falsificateur choisit
a pour x1 et b pour x3.

33. où ψ est une formule sans quantificateur.
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(3)
g
σφ
2 : M2 −→ M

(x1, x3) 7−→ x5

où g
σφ
2 est définie, pour chaque a, b ∈ M par gσφ2 (a, b) := l’unique

c ∈M que la stratégie σφ choisit pour x5 lorsque le Falsificateur choisit
a pour x1 et b pour x3.

(4)
g
σφ
3 : M3 −→ M

(x1, x3, x6) 7−→ x7

où g
σφ
3 est définie, pour chaque a, b, c ∈ M par gσφ3 (a, b, c) := l’unique

d ∈M que la stratégie σφ choisit pour x7 lorsque le Falsificateur choisit
a pour x1, b pour x3 et c pour x6.

On considère alors n’importe quel sous-ensemble A ⊆M tel que
(1) pour tout symbole de constante c du langage L , cM ∈ A ;
(2) |A| = κ.

On considère alors N le plus petit ensemble tel que A ⊆ N ⊆ M et N est
clos pour l’ensemble des fonctions suivantes :

F = {gσφi | φ ∈ T et i < nφ∃} ∪ {fM | f symbole de fonction de L }.

On définit alors le modèle N comme étant la restriction de M au do-
maine N :

(1) |N | = N ;
(2) pour tout symbole de constante c de L , cN = cM ;
(3) pour tout symbole de fonction f de L d’arité nf , fN = fM ↾ Nnf ;
(4) pour tout symbole de relation R de L d’arité nR, RN = RM ∩NnR .

Il ressort que
• |N | = κ par application du Lemme 8.6 en remarquant que l’on a
|F | ≤ κ ;
• pour chaque φ ∈ T , la stratégie σφ est gagnante pour le Vérificateur

dans EV (N , φ).
En conséquence N est un modèle de cardinalité κ satisfaisant T .

Preuve de Lowenheim-Skolem montant (LS↑) :
On enrichit le langage L avec un ensemble C de cardinalité λ composé

de nouveaux symboles de constantes. On définit pour cela L ′ = L ∪C, qui
est de cardinalité λ, puisque |L | ≤ κ < λ. On considère de plus l’ensemble
de formules sur L ′ suivant :

Γ = {¬c = c′ | c ̸= c′ et c, c′ ∈ C}
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puis la théorie T ′ = T ∪ Γ. On utilise maintenant le théorème de compacité
pour construire un modèle de T ′. Soit ∆ ⊆ T ′, ∆ fini. Par hypothèse, il
existe un modèle M de T de cardinalité infinie κ. Or, ∆ ∩ Γ est fini, on
peut donc étendre le modèle M en un modèle M ′ de ∆, en interprétant les
symboles de constantes apparaissant dans ∆ ∩ Γ de façon appropriée. Par
conséquent, T ′ est finiment satisfaisable, et par le théorème de compacité
T ′ est satisfaisable. Or, un modèle de T ′ est en particulier un modèle de T
de cardinalité supérieure ou égale à λ. On applique maintenant (LS↓) à ce
modèle pour obtenir un modèle de T de cardinalité égale à λ.
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9 Théorie de la démonstration

Nous allons étudier trois approches qui sont équivalentes :
(1) les systèmes axiomatiques (réalisés par différents mathématiciens, dont

Hilbert) ;
(2) la déduction naturelle (Gentzen 1930) ;
(3) le calcul des séquents (Gentzen 1936).

Le but est d’obtenir le théorème de complétude, c’est-à-dire Γ |= φ si et
seulement si Γ ⊢ φ. On rappelle tout de même la définition de conséquence
sémantique vue aux exercices :

Definition 9.1 (Conséquence sémantique). On dit que φ est conséquence
sémantique de la théorie Γ, ce que l’on note Γ |= φ, si et seulement si tout
modèle de Γ satisfait φ.

9.1 Systèmes axiomatiques

On se restreint aux formules avec uniquement les symboles →, ¬ comme
connecteurs et ∀ comme quantificateur. Voici l’un des systèmes d’axiomes
possibles :

Axiomes 1. Pour toutes formules φ,ψ, θ et pour tout terme t,
(Ax 1) (φ→ (ψ → φ)) ;
(Ax 2)

(
(φ→ (ψ → θ))→ ((φ→ ψ)→ (φ→ θ))

)
;

(Ax 3)
(
(¬ψ → ¬φ)→ (φ→ ψ)

)
;

(Ax 4)
(
∀xφ→ φ[t/x ]

)
;

(Ax 5)
(
∀x(φ→ ψ)→ (∀xφ→ ∀xψ)

)
;

(Ax 6) (φ→ ∀xφ) si x n’a pas d’occurrences libres dans φ.

Règle 9.2 (Modus ponens). Pour toutes formules φ et ψ, à partir de φ et
de φ→ ψ on déduit ψ.

Definition 9.3 (Démonstration). Une démonstration d’une formule φ à
partir d’un ensemble de formules Γ est une suite finie de formules ⟨φ0, . . . , φn⟩
telle que φn = φ et que chaque formule φi vérifie l’une des trois conditions
suivantes :

(i) la formule φi est un axiome ;
(ii) la formule φi est une hypothèse (c’est-à-dire φi ∈ Γ) ;
(iii) la formule φi est obtenue par modus ponens à partir de φj et φk avec

j, k < i.

L’avantage de cette approche est que le nombre d’axiomes et de règles est
relativement petit. Par contre, son gros défaut est que l’écriture d’une preuve
est vraiment difficile et non intuitive, comme le montre l’exemple suivant :
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Exemple 9.4. On va construire une preuve (assez courte !) de φ → φ avec
Γ = ∅.
(φ→ ((φ→ φ)→ φ))→ ((φ→ (φ→ φ)→ (φ→ φ)) (Ax 2)
φ→ ((φ→ φ)→ φ) (Ax 1)
(φ→ (φ→ φ))→ (φ→ φ) modus ponens (1,2)
φ→ (φ→ φ) (Ax 1)
φ→ φ modus ponens (3,4)

9.2 Déduction naturelle

On introduit maintenant une autre théorie de la démonstration qui est
beaucoup plus naturelle. Le lecteur qui désirerait en savoir plus pourra se
référer à [13, 22, 23, 51, 67, 67].

Definition 9.5 (Séquent). Un séquent est un couple (Γ, φ) où Γ est un
ensemble fini de formules et φ est une formule. On le note

Γ ⊢ φ.
L’ensemble Γ représente l’ensemble des hypothèses et φ représente la

conclusion.

Notation 9.6. On se place dans le cadre de la définition précédente. On
introduit des notations alternatives à Γ ⊢ φ suivant l’écriture de Γ.

(i) Le symbole ⊢ se lit « démontre » ou « prouve ».
(ii) Cas où Γ = ∅ : on notera

« ⊢ φ » au lieu de « ∅ ⊢ φ ».
(iii) Cas où Γ = {φ0, . . . , φk} : on notera

« φ0, . . . , φk ⊢ φ » au lieu de « {φ0, . . . , φk} ⊢ φ ».
(iv) Cas où Γ =

⋃k
i=0 Γi : on notera

« Γ0, . . . ,Γk ⊢ φ » au lieu de « Γ0 ∪ Γ1 ∪ . . . ∪ Γk ⊢ φ ».
(v) Cas où Γ = ∆ ∪ {ψ} : on notera

« ∆, ψ ⊢ φ » au lieu de « ∆ ∪ {ψ} ⊢ φ ».
(vi) Le symbole ⊥ soit tient lieu d’une formule qui soit une contradiction 34,

soit on le considère comme un symbole de relation 0-aire dont l’inter-
prétation 35 dans tout modèle est l’ensemble vide (d’où le fait que la
relation M |= ⊥ ne soit jamais vérifée).

34. Comme par exemple la formule (φ ∧ ¬φ).
35. L’interprétation d’un symbole de relation 0-aire R dans un modèle M quelconque est

un sous ensemble de M0. Or, M0 est l’ensemble des fonctions de 0 (c’est-à-dire l’ensemble
vide) dans M , cet ensemble ne contient donc qu’une unique fonction : la fonction vide
dont le graphe est ∅. Puisque M0 = {∅}, il y a exactement deux interprétations possibles
pour une relation 0-aire R dans M : puisque par définition, on doit avoir RM ⊆M0, cela
ne peut être que soit RM = ∅, soit RM = {∅}. Autrement dit, soit RM = 0, soit RM = 1.
Ainsi, on convient de noter ⊥ le symbole de relation 0-aire qui s’interprète par 0 et ⊤ le
symbole de relation 0-aire qui s’interprète par 1.
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Nous détaillons maintenant les règles et axiomes de cette théorie.

9.2.1 Anatomie d’une règle

(1) Chaque règle est composée :
• D’un ensemble de prémisses (il peut y en avoir 0,1,2, ou 3). Chacune

de ces prémisses étant un séquent.
• D’un séquent conclusion de la règle.
• D’une barre horizontale séparant les prémisses (en haut) de la

conclusion (en bas). Et sur la droite de la barre, le nom de la règle
est indiqué en abrégé.

(2) Une règle se lit de haut en bas : si on a prouvé les prémisses alors on a
également prouvé la conclusion. Mais elle a également une signification
si on la lit de bas en haut : afin de prouver la conclusion, il me suffit
de chercher à prouver les prémisses.

(3) A chaque connecteur logique correspondent deux types de règles.

(a) Les règles d’introduction qui permettent de prouver une formule
dont ce connecteur est l’opérateur principal.

(b) Les règles d’élimination qui permettent d’utiliser dans les pré-
misses une formule ayant ce connecteur comme opérateur princi-
pal.

(4) On ne considère que les seuls connecteurs ¬,∧,∨,→, étant entendu
que les formules du genre ϕ⇔ ψ correspondent à (ϕ→ ψ) ∧ (ψ → ϕ).

9.2.2 Les règles de la logique minimale

En dehors des axiomes représentés par le séquent ϕ ⊢ ϕ, le système a deux
sortes de règles : des règles logiques (subdivisées en règles d’introduction et en
règles d’élimination des différents connecteurs) et des règles structurelles qui
permettent de manipuler les hypothèses, d’en décrire précisément la gestion
(l’affaiblissement permettant d’ajouter de nouvelles hypothèses et la contrac-
tion permet de confondre deux occurrences d’une même hypothèse). Vous
pouvez retrouver toutes ces règles dans l’annexe B, dans les blocs axiomes,
règles logiques et règles structurelles.
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Déduction Naturelle Minimale

Axiome
ax

φ ⊢ φ

Règles logiques

Γ ⊢ φ Γ′ ⊢ ψ
∧i

Γ,Γ′ ⊢ φ ∧ ψ
Γ ⊢ φ ∧ ψ

∧eg

Γ ⊢ φ
Γ ⊢ φ ∧ ψ

∧ed
Γ ⊢ ψ

Γ ⊢ φ
∨ig

Γ ⊢ φ ∨ ψ
Γ ⊢ ψ

∨id
Γ ⊢ φ ∨ ψ

Γ ⊢ ψ ∨ φ Γ′, ψ ⊢ θ Γ′′, φ ⊢ θ
∨e

Γ,Γ′,Γ′′ ⊢ θ
Γ, φ ⊢ ψ

→ i
Γ ⊢ φ→ ψ

Γ ⊢ φ→ ψ Γ′ ⊢ φ
→ e

Γ,Γ′ ⊢ ψ
Γ, φ ⊢⊥

¬i
Γ ⊢ ¬φ

Γ ⊢ ¬φ Γ′ ⊢ φ
¬e

Γ,Γ′ ⊢⊥

Γ ⊢ φ[y/x]
1

∀i
Γ ⊢ ∀x φ

Γ ⊢ ∀x φ
∀e

Γ ⊢ φ[t/x]
2

Γ ⊢ φ[t/x]
2

∃i
Γ ⊢ ∃x φ

Γ ⊢ ∃x φ Γ′, φ[y/x] ⊢ ψ 3

∃e
Γ,Γ′ ⊢ ψ

= i

⊢ t = t 2
Γ ⊢ φ[t/x] Γ′ ⊢ t = u

= e

Γ,Γ′ ⊢ φ[u/x]

Règles structurelles
Γ ⊢ ψ

aff
Γ, φ ⊢ ψ

Γ, φ, φ ⊢ ψ
ctr

Γ, φ ⊢ ψ

1. y n’a pas d’occurrence libre dans Γ, φ
2. t : un terme
3. y n’a pas d’occurrence libre dans Γ′, φ, ψ



92 9 THÉORIE DE LA DÉMONSTRATION

Axiome
ax

ϕ ⊢ ϕ
Un séquent, dans lequel la conclusion est aussi l’hypothèse, est prou-
vable.

Introduction de la conjonction

Γ ⊢ ϕ Γ′ ⊢ ψ
∧i

Γ,Γ′ ⊢ ϕ ∧ ψ
Si l’on a montré ϕ et par ailleurs ψ, alors on a montré ϕ ∧ ψ.

Élimination de la conjonction
Γ ⊢ ϕ ∧ ψ

∧eg

Γ ⊢ ϕ
Γ ⊢ ϕ ∧ ψ

∧ed

Γ ⊢ ψ
De ϕ ∧ ψ, on peut déduire, d’une part, ϕ et, d’autre part, ψ.

Introduction de l’implication
Γ, ϕ ⊢ ψ

→ i

Γ ⊢ ϕ→ ψ

Pour prouver ϕ → ψ, il suffit de prendre ϕ comme hypothèse et de
prouver ψ.

Élimination de l’implication (modus ponens)

Γ ⊢ ϕ→ ψ Γ′ ⊢ ϕ
→ e

Γ,Γ′ ⊢ ψ
Si l’on a prouvé ϕ, et, par ailleurs, ϕ → ψ, alors on a prouvé ψ. Ou
encore, pour démontrer ψ, il suffit de montrer à la fois ϕ→ ψ et ϕ.

Introduction de la négation
Γ, ϕ ⊢⊥

¬i

Γ ⊢ ¬ϕ
Pour montrer ¬ϕ, il suffit de montrer une contradiction en supposant
ϕ.

Élimination de la négation

Γ ⊢ ¬ϕ Γ′ ⊢ ϕ
¬e

Γ,Γ′ ⊢⊥
Si on a montré à la fois ϕ et ¬ϕ, alors on a montré une contradiction.
On verra plus loin que ¬ϕ est équivalent (au sens syntaxique comme
au sens sémantique) à ϕ→⊥, on aurait donc pu se passer de ces deux
règles concernant la négation.

Introduction de la disjonction
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Γ ⊢ ϕ
∨ig

Γ ⊢ ϕ ∨ ψ
Γ ⊢ ψ

∨id

Γ ⊢ ϕ ∨ ψ
Cette règle peut paraitre très étrange car la conclusion est clairement
plus faible que la prémisse. Pourtant il est de nombreux raisonnements
dans lesquels on a besoin d’affaiblir la conclusion, ne serait-ce que pour
la faire coïncider avec la prémisse d’une autre règle. Par exemple, il est
courant d’avoir une propriété du type « si un nombre est supérieur ou
égal à 0 alors . . . » et de vouloir l’appliquer à un nombre dont vous
avez montré qu’il est strictement positif. Vous êtes alors bien obligés
de passer du fait que ce nombre est strictement positif au fait qu’il est
positif ou nul pour montrer qu’il vérifie la propriété désirée.

Élimination de la disjonction

Γ ⊢ ψ ∨ ϕ Γ′, ψ ⊢ θ Γ′′, ϕ ⊢ θ
∨e

Γ,Γ′,Γ′′ ⊢ θ
Si on a montré ϕ ∨ ψ, alors pour montrer θ, il suffit de montrer θ en
supposant ϕ et encore de le montrer en supposant ψ.

Introduction du quantificateur universel

Γ ⊢ ϕ[y/x] 36
∀i

Γ ⊢ ∀x ϕ
C’est une manière de dire que l’on s’intéresse aux occurrences libres
de la variable x dans ϕ et que l’on ne souhaite faire aucune hypothèse
particulière sur cette variable x. Elle peut apparaitre dans Γ, mais si
elle y apparait, alors c’est qu’elle y est liée. Tout se passe donc comme
si cette variable n’apparaissait pas dans les hypothèses, puisqu’une
variable liée peut tout à fait être renommée sans changer en rien la
signification de la formule considérée.
Cette règle dit par conséquent que si l’on a prouvé ϕ sans hypothèse
particulière sur x, alors on a prouvé ϕ pour tout x, donc on a prouvé
∀x ϕ.

Élimination du quantificateur universel
Γ ⊢ ∀x ϕ

∀e
Γ ⊢ ϕ[t/x] 37

Si l’on a montré ∀x ϕ, alors on a montré que ϕ valait lorsqu’on substi-
tuait n’importe quel terme aux occurrences libres de x. Intuitivement,
les termes désignent les objets au sujet desquels parlent les formules. Si

36. y n’a pas d’occurrence libre dans Γ, ϕ
37. t : un terme
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l’on a montré ∀x ϕ, on a montré que la formule ϕ, en tant qu’elle parle
de l’objet x, valait pour toute valeur que pouvait prendre cet objet x,
donc en particulier, lorsque x prend la valeur t.

Introduction du quantificateur existentiel

Γ ⊢ ϕ[t/x] 38
∃i

Γ ⊢ ∃x ϕ
Si l’on a montré que ϕ vaut pour un certain terme t (ce que l’on écrit
ϕ[t/x]) alors on a montré qu’il existe un objet qui satisfait ϕ[x/x], par
conséquent ∃x ϕ.

Élimination du quantificateur existentiel

Γ ⊢ ∃x ϕ Γ′, ϕ[y/x] ⊢ ψ 39
∃e

Γ,Γ′ ⊢ ψ

Lorsqu’on a pu prouver ∃x ϕ, on peut utiliser cette conclusion comme
hypothèse en donnant un nom à cet x qui satisfait ϕ. Mais donner un
nom à cet objet x signifie qu’il n’a aucune raison d’apparaître dans la
démonstration par ailleurs. Cet objet x n’a aucune raison d’être l’un des
autres objets apparaissant dans la démonstration, raison pour laquelle
la condition x n’a pas d’occurrence libre dans Γ′, ψ est réclamée.

Introduction de l’égalité
= i

⊢ t = t 40

t = t est démontrable sans hypothèse. Cette règle signifie que la relation
d’égalité est réflexive.

Élimination de l’égalité

Γ ⊢ ϕ[t/x] Γ′ ⊢ t = u
= e

Γ,Γ′ ⊢ ϕ[u/x]

Lorsque, d’une part, on a prouvé ϕ(t), et d’autre part t = u, alors on
a prouvé ϕ(u).

Affaiblissement
Γ ⊢ ψ

aff

Γ, ϕ ⊢ ψ
38. t : un terme
39. y n’a pas d’occurrence libre dans Γ′, ϕ, ψ
40. t : un terme
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Si je peux prouver ψ avec les hypothèses Γ, alors je peux encore prou-
ver ψ si j’ajoute d’autres hypothèses à Γ. Autrement dit, il y a des
hypothèses qui peuvent ne pas servir dans une démonstration.

Contraction
Γ, ϕ, ϕ ⊢ ψ

ctr
Γ, ϕ ⊢ ψ

Cette règle est une conséquence immédiate de la définition du séquent
puisque lorsqu’on écrit Γ, ϕ, ϕ ⊢ ψ, on écrit en vérité Γ∪{ϕ, ϕ} ⊢ ψ. Or,
{ϕ, ϕ}, par définition, n’est autre que l’ensemble qui contient un seul
élément : ϕ. On a donc l’égalité suivante : {ϕ, ϕ} = {ϕ}. Par conséquent
Γ ∪ {ϕ, ϕ} et Γ ∪ {ϕ} sont le même ensemble, d’où Γ ∪ {ϕ, ϕ} ⊢ ψ et
Γ∪{ϕ} ⊢ ψ sont la même chose. Pour utiliser les conventions d’écriture
que nous avons : Γ, ϕ, ϕ ⊢ ψ et Γ∪ϕ ⊢ ψ sont en fait le même séquent.

9.2.3 Les règles de la logique intuitionniste

La logique intuitionniste est un enrichissement de la logique minimale
avec la règle supplémentaire :

Absurdité intuitionniste
Γ ⊢⊥

⊥ e

Γ ⊢ ϕ
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Déduction Naturelle Intuitionniste

Axiome
ax

φ ⊢ φ

Règles logiques

Γ ⊢ φ Γ′ ⊢ ψ
∧i

Γ,Γ′ ⊢ φ ∧ ψ
Γ ⊢ φ ∧ ψ

∧eg

Γ ⊢ φ
Γ ⊢ φ ∧ ψ

∧ed
Γ ⊢ ψ

Γ ⊢ φ
∨ig

Γ ⊢ φ ∨ ψ
Γ ⊢ ψ

∨id
Γ ⊢ φ ∨ ψ

Γ ⊢ ψ ∨ φ Γ′, ψ ⊢ θ Γ′′, φ ⊢ θ
∨e

Γ,Γ′,Γ′′ ⊢ θ
Γ, φ ⊢ ψ

→ i
Γ ⊢ φ→ ψ

Γ ⊢ φ→ ψ Γ′ ⊢ φ
→ e

Γ,Γ′ ⊢ ψ
Γ, φ ⊢⊥

¬i
Γ ⊢ ¬φ

Γ ⊢ ¬φ Γ′ ⊢ φ
¬e

Γ,Γ′ ⊢⊥

Γ ⊢ φ[y/x]
1

∀i
Γ ⊢ ∀x φ

Γ ⊢ ∀x φ
∀e

Γ ⊢ φ[t/x]
2

Γ ⊢ φ[t/x]
2

∃i
Γ ⊢ ∃x φ

Γ ⊢ ∃x φ Γ′, φ[y/x] ⊢ ψ 3

∃e
Γ,Γ′ ⊢ ψ

= i

⊢ t = t 2
Γ ⊢ φ[t/x] Γ′ ⊢ t = u

= e

Γ,Γ′ ⊢ φ[u/x]

Règles structurelles
Γ ⊢ ψ

aff
Γ, φ ⊢ ψ

Γ, φ, φ ⊢ ψ
ctr

Γ, φ ⊢ ψ

Règle de l’absurdité intuitionniste

Γ ⊢⊥
⊥ e

Γ ⊢ φ

1. y n’a pas d’occurrence libre dans Γ, φ
2. t : un terme
3. y n’a pas d’occurrence libre dans Γ′, φ, ψ
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9.2.4 Les règles de la logique classique

La logique classique est aussi un enrichissement de la logique minimale
avec en plus la règle suivante :

Absurdité classique
Γ,¬ϕ ⊢⊥

⊥ c

Γ ⊢ ϕ
Remarque 9.7. Chacune de ces règles, à l’exception de l’Axiome et de la règle
=i, fait intervenir un séquent conclusion et 1, 2 ou 3 prémisses. Ainsi chaque
règle peut être regardée comme définissant une structure arborescente simple.
Par exemple, la règle de l’élimination de l’implication peut être regardée
comme un arbre de hauteur 1, avec une racine (Γ,Γ′ ⊢ ψ) et deux feuilles
(Γ ⊢ ϕ→ ψ et Γ′ ⊢ ϕ).

Γ ⊢ ϕ→ ψ Γ′ ⊢ ϕ
→ e

Γ,Γ′ ⊢ ψ

De même la règle de l’élimination de la disjonction :

Γ ⊢ ψ ∨ ϕ Γ′, ψ ⊢ θ Γ′′, ϕ ⊢ θ
∨e

Γ,Γ′,Γ′′ ⊢ θ

donne lieu, cette fois-ci, à un arbre avec une racine et trois feuilles.
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Déduction Naturelle Classique

Axiome
ax

φ ⊢ φ

Règles logiques

Γ ⊢ φ Γ′ ⊢ ψ
∧i

Γ,Γ′ ⊢ φ ∧ ψ
Γ ⊢ φ ∧ ψ

∧eg

Γ ⊢ φ
Γ ⊢ φ ∧ ψ

∧ed
Γ ⊢ ψ

Γ ⊢ φ
∨ig

Γ ⊢ φ ∨ ψ
Γ ⊢ ψ

∨id
Γ ⊢ φ ∨ ψ

Γ ⊢ ψ ∨ φ Γ′, ψ ⊢ θ Γ′′, φ ⊢ θ
∨e

Γ,Γ′,Γ′′ ⊢ θ
Γ, φ ⊢ ψ

→ i
Γ ⊢ φ→ ψ

Γ ⊢ φ→ ψ Γ′ ⊢ φ
→ e

Γ,Γ′ ⊢ ψ
Γ, φ ⊢⊥

¬i
Γ ⊢ ¬φ

Γ ⊢ ¬φ Γ′ ⊢ φ
¬e

Γ,Γ′ ⊢⊥

Γ ⊢ φ[y/x]
1

∀i
Γ ⊢ ∀x φ

Γ ⊢ ∀x φ
∀e

Γ ⊢ φ[t/x]
2

Γ ⊢ φ[t/x]
2

∃i
Γ ⊢ ∃x φ

Γ ⊢ ∃x φ Γ′, φ[y/x] ⊢ ψ 3

∃e
Γ,Γ′ ⊢ ψ

= i

⊢ t = t 2
Γ ⊢ φ[t/x] Γ′ ⊢ t = u

= e

Γ,Γ′ ⊢ φ[u/x]

Règles structurelles
Γ ⊢ ψ

aff
Γ, φ ⊢ ψ

Γ, φ, φ ⊢ ψ
ctr

Γ, φ ⊢ ψ

Règles de l’absurdité classique

Γ,¬φ ⊢⊥
⊥ c

Γ ⊢ φ

1. y n’a pas d’occurrence libre dans Γ, φ
2. t : un terme
3. y n’a pas d’occurrence libre dans Γ′, φ, ψ
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9.2.5 Déduction

Dans le système de la déduction naturelle, une « déduction » — encore
appelée « preuve » — est un arbre fini représenté avec la racine en bas et
les feuilles en haut et dont les noeuds sont des séquents, et chaque relation
entre un noeud quelconque et ses descendants immédiats est une instance de
l’une des règles de la déduction naturelle.

Definition 9.8 (Déduction). Dans une logique (minimale, intuitionniste ou
classique) et dans le système de la déduction naturelle, une déduction est un
arbre fini dont les noeuds sont des séquents (Si)i≤k, et vérifiant les propriétés
suivantes. Pour chaque noeud Si de la déduction,

(i) Si est une feuille si et seulement si Si est un axiome ou la règle =i ;

(ii) si Si n’est pas une feuille, alors le sous-arbre de hauteur un, dont Si
est la racine et les fils/filles de Si sont les feuilles, est une instance de
l’une des règles de la logique correspondante (voir respectivement 9.2.2,
9.2.3, 9.2.4, ou pour une version plus condensée, ce qui est présenté dans
l’annexe B).

Une formule ϕ est déductible des hypothèses Γ — on dit aussi prouvable
à partir des hypothèses Γ — dans une logique (minimale, intuitionniste ou
classique) s’il existe une déduction dont la racine soit un séquent de la forme
∆ ⊢ ϕ, où ∆ ⊆ Γ.

Remarque 9.9. Puisque une déduction est un objet fini, ne faisant intervenir
dans tout séquent qu’un ensemble fini de formules, une formule quelconque
est prouvable à partir d’un nombre infini d’hypothèses si et seulement si il
est possible d’extraire un nombre fini d’hypothèses à partir desquels cette
formule est prouvable. En particulier, si l’on travaille avec un théorie infinie
(comme l’axiomatique de Péano pour l’arithmétique ou bien la théorie des
ensembles) alors pour tout théorème de cette théorie, il existe un nombre
fini d’axiomes à partir desquels ce thèorème est obtenu.

Notation 9.10. On notera :

(i) Γ ⊢m ϕ, le fait que cette déduction s’effectue dans le cadre de la logique
minimale ;

(ii) Γ ⊢i ϕ lorsque cette déduction s’effectue dans le cadre de la logique
intuitionniste ;

(iii) Γ ⊢c ϕ lorsque cette déduction est du ressort de la logique classique.

Exemples 9.11. (i) On montre ⊢m ϕ → (ψ → ϕ) en donnant une preuve
du séquent ⊢ ϕ → (ψ → ϕ) qui ne fasse intervenir que les règles de la
logique minimale :
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ax
ϕ ⊢ ϕ

aff

ϕ, ψ ⊢ ϕ
→ i

ϕ ⊢ ψ → ϕ
→ i⊢ ϕ→ (ψ → ϕ)

(ii) Une preuve de ⊢m ¬∃x ϕ → ∀x ¬ϕ est une preuve du séquent ⊢
¬∃x ϕ→ ∀x ¬ϕ en logique minimale :

ax
¬∃x ϕ ⊢ ¬∃x ϕ

ax
ϕ[y/x] ⊢ ϕ[y/x]

∃i
ϕ[y/x] ⊢ ∃x ϕ

¬e

¬∃x ϕ, ϕ[y/x] ⊢⊥
¬i¬∃x ϕ ⊢ ¬ϕ[y/x]

∀i¬∃x ϕ ⊢ ∀x ¬ϕ
→ i⊢ ¬∃x ϕ→ ∀x ¬ϕ

(iii) On peut aussi prouver ⊢m ∀x ¬ϕ→ ¬∃x ϕ :

ax
∃x ϕ ⊢ ∃x ϕ

ax
∀x ¬ϕ ⊢ ∀x ¬ϕ

∀e∀x ¬ϕ ⊢ ¬ϕ[y/x]
ax

ϕ[y/x] ⊢ ϕ[y/x]
¬e

∀x ¬ϕ, ϕ[y/x] ⊢ ⊥
∃e∀x ¬ϕ, ∃x ϕ ⊢ ⊥

¬i∀x ¬ϕ ⊢ ¬∃x ϕ
→ i⊢ ∀x ¬ϕ→ ¬∃x ϕ

Remarque 9.12. Les conditions du type « y n’a pas d’occurrence libre dans
Γ, ϕ » que ce soit pour la règle de l’élimination du quantificateur existentiel
ou pour celle de l’introduction du quantificateur universel sont absolument
primordiales. Sans le respect de celle-ci, on pourrait très bien construire la
démonstration fausse suivante de la formule ∃x ϕ→ ∀x ϕ :

ax
∃x ϕ ⊢ ∃x ϕ

ax
ϕ[y/x] ⊢ ϕ[y/x]

∃e erroné∃x ϕ ⊢ ϕ[y/x]
∀i∃x ϕ ⊢ ∀x ϕ

→ i⊢ ∃x ϕ→ ∀x ϕ.

9.2.6 Comparaison entre les différentes logiques

Nous comparons maintenant les différentes logiques. Pour prouver qu’une
formule n’est pas prouvable dans une certaine logique, nous avons besoin des
théorèmes de complétude. Nous énonçons donc pour l’instant les résultats
de ce type sans les démontrer. Les preuves sont faites dans la partie 13.0.1.
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Logique intuitionniste La règle de l’absurdité intuitionniste n’est pas
démontrable dans le cadre de la logique minimale. Elle enrichit donc stricte-
ment cette dernière. Cela signifie il existe des déductions possibles en logique
intuitionniste, qui ne le sont pas en logique minimal. Par conséquent, il existe
des formules qui sont des théorèmes de la logique intuitionniste mais qui ne
sont pas déductibles dans le cadre restreint de la logique minimale.

Par exemple, la formule ¬¬(¬¬ϕ→ ϕ) n’est pas démontrable en logique
minimale mais elle l’est en logique intuitionniste :

ax
¬¬ϕ ⊢ ¬¬ϕ

ax
ϕ ⊢ ϕ

aff

ϕ,¬¬ϕ ⊢ ϕ
→ i

ϕ ⊢ ¬¬ϕ→ ϕ
ax

¬(¬¬ϕ→ ϕ) ⊢ ¬(¬¬ϕ→ ϕ)
¬e

¬(¬¬ϕ→ ϕ), ϕ ⊢⊥
¬i¬(¬¬ϕ→ ϕ) ⊢ ¬ϕ
¬e

¬¬ϕ,¬(¬¬ϕ→ ϕ) ⊢⊥
⊥ e¬¬ϕ,¬(¬¬ϕ→ ϕ) ⊢ ϕ

→ i¬(¬¬ϕ→ ϕ) ⊢ ¬¬ϕ→ ϕ
ax

¬(¬¬ϕ→ ϕ) ⊢ ¬(¬¬ϕ→ ϕ)
¬e+ctr

¬(¬¬ϕ→ ϕ) ⊢⊥
¬i⊢ ¬¬(¬¬ϕ→ ϕ)

Remarque 9.13. La logique intuitionniste remonte aux constructivistes (dont
Brouwer). En effet, en logique intuitionniste,

• si Γ ⊢i Φ ∨Ψ, alors une preuve de ceci fait apparaitre une preuve de
Γ ⊢i Φ ou de Γ ⊢i Ψ ;
• si Γ ⊢i ∃Φ, alors une preuve de ceci fait apparaitre une preuve de
Γ ⊢i Φ[t/x ] pour un certain terme t.

Ainsi, une preuve en logique intuitionniste est constructive.

Logique classique La règle de l’absurdité classique n’est pas démontrable
dans le cadre de la logique minimale. Elle ne l’est pas non plus en logique
intuitionniste. Elle constitue donc un enrichissement strict de la logique in-
tuitionniste et, à fortiori, un enrichissement encore plus important de la
logique minimale.

En effet, la règle de l’absurde intuitionniste est un cas particulier de la
règle de l’absurde classique qui correspond au cas où l’hypothèse ¬ϕ n’ap-
parait pas. Elle s’en déduit donc immédiatement par :

Γ ⊢⊥ aff

Γ,¬ϕ ⊢⊥
⊥ c

Γ ⊢ ϕ
Voici maintenant quelques exemples de formules démontrables en logique

classique et non en logique intuitionniste.

Exemples 9.14. Règle du tiers exclu ⊢ ϕ ∨ ¬ϕ :
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ax
¬(ϕ ∨ ¬ϕ) ⊢ ¬(ϕ ∨ ¬ϕ)

ax
¬(ϕ ∨ ¬ϕ) ⊢ ¬(ϕ ∨ ¬ϕ)

ax
ϕ ⊢ ϕ

∨ig

ϕ ⊢ ϕ ∨ ¬ϕ
¬e

¬(ϕ ∨ ¬ϕ), ϕ ⊢⊥
¬i¬(ϕ ∨ ¬ϕ) ⊢ ¬ϕ

∨id¬(ϕ ∨ ¬ϕ) ⊢ ϕ ∨ ¬ϕ
¬e

¬(ϕ ∨ ¬ϕ), ¬(ϕ ∨ ¬ϕ) ⊢⊥
ctr.

¬(ϕ ∨ ¬ϕ) ⊢⊥
⊥ c⊢ ϕ ∨ ¬ϕ

Loi de Peirce ⊢ (¬ϕ→ ϕ)→ ϕ :

ax
¬ϕ ⊢ ¬ϕ

ax
¬ϕ→ ϕ ⊢ ¬ϕ→ ϕ

ax
¬ϕ ⊢ ¬ϕ

→ e

¬ϕ→ ϕ,¬ϕ ⊢ ϕ
¬e+ctr

¬ϕ→ ϕ,¬ϕ ⊢⊥
⊥ c¬ϕ→ ϕ ⊢ ϕ
→ i⊢ (¬ϕ→ ϕ)→ ϕ

Élimination des doubles négations ⊢ ¬¬ϕ→ ϕ :

ax
¬¬ϕ ⊢ ¬¬ϕ

ax
¬ϕ ⊢ ¬ϕ

¬e

¬¬ϕ,¬ϕ ⊢⊥
⊥ c¬¬ϕ ⊢ ϕ
→ i⊢ ¬¬ϕ→ ϕ

Contraposition ⊢ (¬ψ → ¬ϕ)→ (ϕ→ ψ).

ax
¬ψ → ¬ϕ ⊢ ¬ψ → ¬ϕ

ax
¬ψ ⊢ ¬ψ

→ e

¬ψ → ¬ϕ,¬ψ ⊢ ¬ϕ
ax

ϕ ⊢ ϕ
¬e

¬ψ → ¬ϕ,¬ψ, ϕ ⊢⊥
⊥ c¬ψ → ¬ϕ, ϕ ⊢ ψ
→ i¬ψ → ¬ϕ ⊢ ϕ→ ψ

→ i⊢ (¬ψ → ¬ϕ)→ (ϕ→ ψ)

• ⊢c ¬∀x ϕ→ ∃x ¬ϕ :
(comparer avec la preuve de ⊢m ∀x ¬ϕ→ ¬∃x ϕ qui se trouve page 100)
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ax
¬∀x ϕ ⊢ ¬∀x ϕ

ax
¬∃x ¬ϕ ⊢ ¬∃x ¬ϕ

ax
¬ϕ[y/x] ⊢ ¬ϕ[y/x]

∃i¬ϕ[y/x] ⊢ ∃x ¬ϕ
¬e

¬∃x ¬ϕ,¬ϕ[y/x] ⊢⊥
⊥ c¬∃x ¬ϕ ⊢ ϕ[y/x]

∀i¬∃x ¬ϕ ⊢ ∀x ϕ
∀i¬∃x ¬ϕ,¬∀x ϕ ⊢⊥

⊥ c¬∀x ϕ ⊢ ∃x ¬ϕ
→ i⊢ ¬∀x ϕ→ ∃x ¬ϕ

Remarque 9.15. Il y a plusieurs façon d’obtenir la logique classique à partir
des logiques soit intuitionniste soit minimale en rajoutant des nouvelles règles
prises comme axiomes, c’est-à-dire des règles qui se positionnent comme
feuilles dans des déductions :

log. cl. = log. int. + tiers exclu⊢ (ϕ ∨ ¬ϕ) (principe du tiers exclu)

= log. int. +
loi de Peirce

⊢
(
(¬ϕ→ ϕ)→ ϕ

) (loi de Peirce)

= log. min. +
dbles négations élim.

⊢ (¬¬ϕ→ ϕ) (élimination des doubles négations)

= log. min. +
contraposition

⊢
(
(¬ψ → ¬ϕ)→ (ϕ→ ψ)

) (contraposition)
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9.3 Calcul des séquents

Certains résultats seront énoncés sans démonstration. Un lecteur qui vou-
drait trouver les preuves manquantes peut se référer aux livres [13, 22, 23,
67, 67].

Le calcul des séquents repose sur la notion de séquent. Mais contrairement
à la déduction naturelle qui mettait en jeu des séquents de la forme Γ ⊢ φ,
où φ était une formule et Γ un ensemble de formules, le calcul des séquents
symétrise la notion de séquent qui prend la forme Γ ⊢ ∆, où ∆ est également
un ensemble de formules.

Definition 9.16 (Séquent). Les séquents sont de la forme Γ ⊢ ∆, où Γ et
∆ sont des ensembles finis, éventuellement vides, de formules. On nomme Γ
la partie gauche du séquent et ∆ la partie droite du séquent.

Remarque 9.17. Intuitivement, on peut interpréter le séquent Γ ⊢ ∆ de la
façon suivante : la conjonction (et) des formules de Γ prouve la disjonction
(ou) des formules de ∆. De plus, on a :

(i) une conjonction vide « équivaut » à ⊤ (le vrai) ;
(ii) une disjonction vide « équivaut » à ⊥ (le faux) ;
(iii) ⊢ s’interprète comme l’absurde au sens où sans hypothèse on prouve le

faux (il correspond au séquent ⊢⊥ de la déduction naturelle).

9.3.1 Les règles du calcul des séquents

Les règles du calcul des séquents sont très proches de celles de la déduc-
tion naturelle. L’ensemble des règles du calcul des séquents se trouve dans
l’annexe page 138. Elles conservent en particulier le fait que d’un ensemble
de prémisses (il peut y en avoir 0,1 ou 2), on déduit un séquent conclusion et
elles sont représentées avec les prémisses au-dessus d’une barre horizontale
et la conclusion en dessous. De même, les règles d’introduction de la déduc-
tion naturelle sont conservées. Elles deviennent des règles d’introduction à
droite. Les règles d’élimination sont remplacées par des règles d’introduction
à gauche.

On retrouve également une règle pour les axiomes, des règles logiques
et des règles structurelles. Mais, chose nouvelle, une règle de coupure est
introduite :

Γ ⊢ φ,∆ Γ′, φ ⊢ ∆′
cut

Γ,Γ′ ⊢ ∆,∆′

Cette notion de coupure correspond à la partie non mécanique de l’acti-
vité démonstrative. C’est elle qui permet l’utilisation d’énoncés généraux, de
principes que l’on démontre une fois pour toute et que l’on applique ensuite
à des cas particuliers. Ceci est une pratique courante des mathématiques où
l’on fait grand usage de ces démonstrations indirectes.
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Calcul des Séquents

Axiomes
ax

φ ⊢ φ
⊥g

⊥ ⊢

Règles logiques
Γ, φ ⊢ ∆

∧g1

Γ, φ ∧ ψ ⊢ ∆

Γ, ψ ⊢ ∆
∧g2

Γ, φ ∧ ψ ⊢ ∆

Γ ⊢ φ,∆ Γ ⊢ ψ,∆
∧d

Γ ⊢ φ ∧ ψ,∆

Γ, φ ⊢ ∆ Γ, ψ ⊢ ∆
∨g

Γ, φ ∨ ψ ⊢ ∆

Γ ⊢ φ,∆
∨d1

Γ ⊢ φ ∨ ψ,∆
Γ ⊢ ψ,∆

∨d2

Γ ⊢ φ ∨ ψ,∆

Γ ⊢ φ,∆ Γ, ψ ⊢ ∆
→g

Γ, φ→ ψ ⊢ ∆

Γ, φ ⊢ ψ,∆
→d

Γ ⊢ φ→ ψ,∆

Γ ⊢ φ,∆
¬g

Γ,¬φ ⊢ ∆

Γ, φ ⊢ ∆
¬d

Γ ⊢ ¬φ,∆

Γ, φ[t/x] ⊢ ∆ 1
∀g

Γ,∀x φ ⊢ ∆

Γ ⊢ φ[y/x],∆
∀d

Γ ⊢ ∀x φ,∆ 2

Γ, φ[y/x] ⊢ ∆
∃g

Γ,∃x φ ⊢ ∆ 2

Γ ⊢ φ[t/x],∆
1

∃d

Γ ⊢ ∃x φ,∆

Γ, t = t ⊢ ∆
Ref

Γ ⊢ ∆

Γ, t = s, φ[s/x], φ[t/x] ⊢ ∆
Rep

Γ, s = t, φ[t/x] ⊢ ∆

Règles structurelles
Γ ⊢ ∆ affg

Γ, φ ⊢ ∆

Γ ⊢ ∆ affd

Γ ⊢ φ,∆

Γ, φ, φ ⊢ ∆
ctrg

Γ, φ ⊢ ∆

Γ ⊢ φ,φ,∆
ctrd

Γ ⊢ φ,∆

Règle de coupure

Γ ⊢ φ,∆ Γ′, φ ⊢ ∆′
cut

Γ,Γ′ ⊢ ∆,∆′

1. t : un terme
2. y n’a pas d’occurrence libre dans le séquent conclusion de la règle (dans Γ, ∃x φ ou

∀x φ, et ∆)
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9.3.2 Logique classique, intuitionniste et minimale

On définit la notion de déduction dans le système du calcul des séquents.
C’est globalement la même que pour la déduction naturelle. (De manière
équivalente on parlera de preuve ou de déduction.)

Definition 9.18 (Déduction). Dans le système du calcul des séquents, une
déduction est un arbre fini dont les noeuds sont des séquents (Si)i≤k, et
vérifiant les propositions suivantes. Pour chaque noeud Si de la déduction,

(i) Si est une feuille si et seulement si Si est un axiome ;

(ii) si Si n’est pas une feuille, alors le sous-arbre de hauteur un dont Si est
la racine et les fils/filles de Si sont les feuilles, est une instance de l’une
des règles du calcul des séquents.

Une formule φ est déductible des hypothèses Θ dans le calcul des séquents
s’il existe une déduction dont la racine soit un séquent de la forme Γ ⊢ φ,
avec Γ ⊆ Θ.

On va chercher maintenant à identifier les équivalents de la logique mini-
male, intuitionniste et classique de la déduction naturelle dans le calcul des
séquents.

Exemples 9.19. Voici quelques exemples de preuves en calcul des séquents :

(i) Élimination des doubles négations : ⊢ ¬¬φ→ φ

ax
φ ⊢ φ

¬d

⊢ φ,¬φ
¬g

¬¬φ ⊢ φ
→d

⊢ ¬¬φ→ φ

(ii) Déduction de ⊢ φ→ ¬¬φ

ax
φ ⊢ φ

¬g

φ,¬φ ⊢
¬d

φ ⊢ ¬¬φ
→d

⊢ φ→ ¬¬φ
On remarque que l’on peut prouver l’élimination des doubles négations

en calcul des séquents. Cela suggère que celui-ci, avec aucune restriction sur
les règles utilisées, correspond au moins à la logique classique en déduction
naturelle (voir la Remarque 9.15). La Proposition 9.21 exprime cette corres-
pondance.

Exemples 9.20. Voici encore comment on récupère l’absurdité intuitionniste
et l’absurdité classique en calcul des séquents :
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(i) Absurdité intuitionniste : Γ ⊢⊥
⊥ e

Γ ⊢ φ

...
Γ ⊢⊥

⊥g

⊥ ⊢
cut

Γ ⊢ affd

Γ ⊢ φ

(ii) Absurdité classique : Γ,¬φ ⊢⊥
⊥ c

Γ ⊢ φ

...
Γ,¬φ ⊢⊥

⊥g

⊥ ⊢
cut

Γ,¬φ ⊢
¬d

Γ ⊢ ¬¬φ

ax
φ ⊢ φ

¬d

⊢ φ,¬φ
¬g

¬¬φ ⊢ φ
cut

Γ ⊢ φ

(iii) Tiers exclu : ⊢ (φ ∨ ¬φ)

φ ⊢ φ
¬d

⊢ φ,¬φ
∨d1

⊢ (φ ∨ ¬φ),¬φ
∨d2

⊢ (φ ∨ ¬φ), (φ ∨ ¬φ)
ctrd

⊢ (φ ∨ ¬φ)

Proposition 9.21. Soient Γ un ensemble fini de formules et ∆ = {ψ1, . . . , ψn}.
On obtient que

le séquent Γ ⊢ ∆ est prouvable en calcul des séquents
si et seulement si

le séquent Γ ⊢ (ψ1 ∨ . . . ∨ ψn) est prouvable en déduction naturelle.

Cette proposition motive la notation suivante.

Notation 9.22. On écrit Γ ⊢c ∆ lorsque le séquent Γ ⊢ ∆ est prouvable en
calcul des séquents sans aucune restriction sur les règles utilisées.

Arrêtons nous un instant sur les deux derniers exemples. La différence
majeure entre les deux formules φ→ ¬¬φ et ¬¬φ→ φ est que la première
est prouvable en déduction naturelle intuitionniste alors que la seconde ne
l’est pas. Si l’on regarde de près les deux preuves, nous devons bien admettre
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que nous avons fait quasiment la même chose dans l’une et l’autre. A la pe-
tite différence que, dans la première preuve, nous avons d’abord effectué une
introduction de la négation à droite avant d’effectuer la même introduction
de la négation mais à gauche cette fois. Alors que, dans la seconde démons-
tration, nous avons d’abord effectué l’introduction de la négation à gauche
avant celle de droite.

En fait, la logique intuitionniste a une caractérisation extrêmement simple
en calcul des séquents.

Theorème 9.23. La logique intuitionniste est la version du calcul des sé-
quents dont les règles sont restreintes aux séquents ayant au plus une formule
à droite, la contraction à droite étant considérée comme implicite.

Autrement dit, si ∆ = {ψ1, . . . , ψn}, on a que Γ ⊢i (ψ1 ∨ . . . ∨ ψn) en
déduction naturelle si et seulement si le séquent Γ ⊢ ∆ est prouvable dans
la version du calcul des séquents où l’on se restreint aux règles ne faisant
intervenir que des séquents ayant au plus une formule à droite, la contraction
à droite étant considérée comme implicite.

Theorème 9.24. La logique minimale est la version du calcul des séquents
intuitionniste dépourvue de la règle d’affaiblissement à droite.

On peut remarquer que l’absurde intuitionniste est une instance de cette
règle :

...
Γ ⊢ ⊥

⊥g

⊥ ⊢
cut

Γ ⊢ affd

Γ ⊢ φ

9.3.3 L’élimination des coupures

On peut se demander si le séquent vide (⊢) est prouvable. C’est une
question grave, car si tel était le cas, nous nous retrouverions avec un système
de démonstration qui prouverait l’absurde sans hypothèse, et donc prouverait
n’importe quoi. Un tel système serait bon à jeter aux oubliettes et à nous
renvoyer à nos chères études. . .Le théorème suivant répond à cette question.

Theorème 9.25 (Élimination des coupures). S’il existe, en calcul des sé-
quents classique (resp. intuitionniste), une preuve du séquent Γ ⊢ ∆, alors il
existe une preuve en calcul des séquents classique (resp. intuitionniste) de ce
séquent sans utilisation de la règle de coupure.

Ce théorème extrêmement important justifie à lui seul la mise sur pied
du calcul des séquents. Il affirme que l’on peut toujours se passer de la règle
de coupure pour obtenir un séquent prouvable en logique classique. Mais, si
l’on peut faire fi de la règle de coupure, cela signifie que tout séquent Γ ⊢ ∆
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prouvable peut l’être par l’utilisation des seuls axiomes, règles logiques et
règles structurelles. La preuve de ce théorème n’est pas vraiment difficile
mais longue et fastidieuse puisqu’il faut remplacer dans une preuve donnée
chaque utilisation de la règle de coupure par d’autres règles logiques.

Ce résultat a deux conséquences majeures :

Corollaire 9.26. Le séquent ⊢ n’est pas prouvable en logique classique.

Démonstration. La preuve est immédiate : s’il existait une preuve de ce
séquent en calcul des séquents, il en existerait également une qui se ferait sans
utilisation de la règle de coupure. Or, toutes les autres règles introduisent une
formule soit à droite, soit à gauche, soit des deux côtés à la fois. La seule règle
qui permet de faire disparaître une formule est la règle de contraction, mais
celle-ci ne fait pas disparaître une formule, elle ne fait disparaître qu’une des
occurrences multiples d’une formule. Il est donc immédiat qu’il n’y a pas de
preuve sans coupure du séquent ⊢. Par application du théorème d’élimination
des coupures, il n’y a donc pas de preuve (avec ou sans coupure) du séquent
⊢.

La théorie de la démonstration est donc sauve.
Nous allons maintenant utiliser une notion de sous-formule d’une formule

plus étendue que celle donnée à la Définition 3.15 en autorisant les substitu-
tion des variables libres par des termes. Nous noterons « sous-formule » cette
notion nouvelle. De la sorte, alors qu’une formule n’a qu’un nombre fini de
sous-formules, elle peut maintenant avoir une infinité de « sous-formules ».

Definition 9.27 (« Sous-formules » d’une formule). Une formule ψ est une
« sous-formule » d’une formule φ si il existe une sous-formule (au sens usuel)
ψ de φ dont les variables libres sont parmi x1, . . . , xk et des termes t1, . . . , tk
tels que

ψ = ψ[t1/x1,...,tk/xk]

Corollaire 9.28 (Propriété de la « sous-formule »). Si le séquent Γ ⊢ ∆ est
prouvable en logique classique (resp. en logique intuitionniste), alors il existe
une preuve en logique classique (resp. en logique intuitionniste) de ce séquent
dans laquelle n’apparaissent que des séquents constitués de « sous-formules »
des formules de Γ et de ∆.

Démonstration. Par application du théorème de l’élimination des coupures,
il existe une preuve sans coupure de Γ ⊢ ∆. Or, une telle preuve satisfait
les conditions souhaitées. Cela se vérifie immédiatement, règle par règle, par
induction sur la hauteur d’une preuve sans coupure.
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Une des conséquences de la propriété de la « sous-formule » est qu’une
preuve d’une disjonction en logique intuitionniste passe nécessairement par
une preuve d’un des termes de la disjonction :

⊢i φ ∨ ψ si et seulement si
(
⊢i φ ou ⊢i ψ

)
.

De même,

⊢i ∃xφ ssi il existe un terme t tel que ⊢i φ[t/x ].

Une conséquence majeure de la propriété de la « sous-formule », qui elle-
même repose directement sur l’élimination des coupures, est de permettre,
tout particulièrement en logique intuitionniste, une recherche de preuve au-
tomatique. On peut ainsi mettre en place des « prouveurs automatiques »
dont la tache est la production mécanique de preuves, comme par exemple
les preuves de programmes. Le caractère nécessairement abstrait des preuves
par coupure étant oublié, ces machines recherchent des preuves, certes plus
longues, mais aussi plus simples dans le fait qu’elles ne font appel qu’aux
« sous-formules » des formules du séquent qu’il s’agit de prouver.
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10 Indécidabilité de la logique du premier ordre

10.1 Traduction de Gödel

10.1.1 Langages non égalitaires

Definition 10.1 (Traduction de Gödel (sans égalité)). Soit φ une formule
ne contenant pas le symbole d’égalité. La traduction de Gödel de φ, notée
φg, est la formule définie par induction de la façon suivante :

• ⊥g = ⊥ ;

• φg = ¬¬φ, si φ est atomique ;

• (¬φ)g = ¬φg ;

• (φ ∧ ψ)g = φg ∧ ψg ;

• (φ ∨ ψ)g = ¬¬ (φg ∨ ψg) ;

• (φ→ ψ)g = φg → ψg ;

• (∀xφ)g = ∀xφg ;

• (∃xφ)g = ¬¬∃xφg.

Theorème 10.2. Soient Γ un ensemble de formules dans lesquelles le sym-
bole d’égalité n’apparaît pas et φ une formule dans laquelle le symbole d’égalité
n’apparaît pas. Alors

Γ ⊢c φ ssi Γg ⊢m φg,

où Γg est l’ensemble des traductions de Gödel des formules de Γ.

Intuitivement, ce théorème nous dit que, pour prouver une formule en
logique classique, on peut se restreindre à n’utiliser les raisonnements par
l’absurde que sur les formules atomiques, disjonctives et existentielles.

10.1.2 Langages égalitaires

Definition 10.3 (Traduction de Gödel (avec égalité)). On rajoute à la dé-
finition précédente de la traduction de Gödel (sans égalité) une traduction
de l’égalité :

(t1 = t2)
g = ¬¬(t1 = t2).

Dans ce cas, le théorème devient :

Theorème 10.4. Soient Γ un ensemble de formules et φ une formule. Alors

Γ ⊢c φ ssi Γg,∀x ∀y ((¬¬x = y)→ x = y) ⊢m φg,

où Γg est l’ensemble des traductions de Gödel des formules de Γ.
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10.2 Décidabilité

Definition 10.5 (Décidabilité d’un problème). Un problème est dit déci-
dable s’il existe un algorithme qui, à partir de la donnée, travaille, s’arrête
et répond oui ou non au problème posé. Dans le cas contraire, il est dit
indécidable.

Definition 10.6 (Décidabilité d’une théorie). Une théorie T est dite déci-
dable si le problème suivant est décidable :

• donnée : une formule φ du langage de T ;
• question : T ⊢c φ ?

10.3 Indécidabilité de la logique du premier ordre

On énonce sans le démontrer un théorème qui est une conséquence du
théorème d’incomplétude de Gödel.

Theorème 10.7. Les théories de l’arithmétique de Robinson, de Peano et la
théorie des ensembles avec ou sans l’axiome du choix (ZF ou ZFC) — voir
l’annexe A — sont toutes indécidables.

Corollaire 10.8 (Indécidabilité de la logique classique du premier ordre).
La logique classique du premier ordre est indécidable.

Démonstration. Soit φR la formule obtenue par conjonction de tous les axiomes
de l’arithmétique de Robinson (qui est une théorie finie !). Alors pour toute
formule ψ,

φR ⊢c ψ si et seulement si ⊢c φR → ψ.

L’indécidabilité de la logique classique du premier ordre découle donc de
l’indécidabilité de l’arithmétique de Robinson.

Corollaire 10.9 (Indécidabilité de la logique minimale du premier ordre).
La logique minimale du premier ordre est indécidable.

Démonstration. D’après le théorème sur la traduction de Gödel, pour toute
formule ψ,

⊢c ψ si et seulement si ⊢m
(
∀x ∀y

(
¬¬x = y → x = y

)
→ ψg

)
.

L’indécidabilité de la logique minimale du premier ordre découle donc de
l’indécidabilité de la logique classique du premier ordre.
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11 Modèles de Kripke de la logique du 1er ordre

11.1 Logique intuitionniste

11.1.1 Langages non égalitaires et sans symbole de fonction

Definition 11.1 (Modèle de Kripke de la logique intuitionniste, 1965). Soit
L un langage du premier ordre non égalitaire et sans symbole de fonction
(ni de constante). Un modèle de Kripke 41 de la logique intuitionniste sur le
langage L est un quadruplet K = (|K|,≤,D ,⊩), où :

(i) (|K|,≤) est un ensemble ordonné, les éléments de |K| sont appelés des
mondes.

(ii) D est une fonction qui associe à tout élément α ∈ |K| un ensemble
Dα ̸= ∅, que l’on appelle le domaine du monde α, tel que

∀α ∀β (α ≤ β → Dα ⊆ Dβ).

(iii) ⊩ est une relation binaire entre les éléments de |K| et les formules
atomiques à paramètres dans

⋃
α∈|K| Dα, dite de « forcing ». Le symbole

⊩ se lit « force ». Soient α, β ∈ |K| et R ∈ L un symbole de relation
d’arité n. La relation ⊩ est telle que : 42

◦ α ̸⊩ ⊥ ;
◦ si α ⊩ R(a1, . . . , an) on a a1, . . . , an ∈ Dα ;
◦ si α ⊩ R(a1, . . . , an) et α ≤ β, alors on a β ⊩ R(a1, . . . , an).

On peut étendre ⊩ en une relation binaire entre les éléments de |K| et les
formules à paramètres dans

⋃
α∈|K| Dα. Soient α ∈ |K| et φ,ψ deux formules

de L . On étend ⊩ par récurrence de la façon suivante :

◦ α ⊩ φ ∧ ψ si et seulement si α ⊩ φ et α ⊩ ψ ;
◦ α ⊩ φ ∨ ψ si et seulement si α ⊩ φ ou α ⊩ ψ ;
◦ α ⊩ φ → ψ si et seulement si pour tout β ∈ |K| tel que α ≤ β, si
β ⊩ φ alors β ⊩ ψ ;
◦ α ⊩ ¬φ si et seulement si α ⊩ φ→ ⊥ ;
◦ α ⊩ ∀xφ si et seulement si pour tout β ∈ |K| tel que α ≤ β et b ∈ Dβ ,

on a β ⊩ φ[
b/x

] ;

◦ α ⊩ ∃xφ si et seulement s’il existe a ∈ Dα tel que α ⊩ φ[a/x ].

41. Saul Aaron Kripke était un philosophe analytique et logicien américain (1940-2022)
venant de Omaha dans le Nebraska. Il était professeur émérite à Princeton.

42. On peut aussi considérer pour tout α ∈ |K| un sous-ensemble Rα ⊆ Dn
α (l’interpréta-

tion de R dans le monde α) avec la condition selon laquelle pour tout α ≤ β Rα ⊆ Rβ . La
relation de forcing est alors définie en disant que, pour a1, . . . an ∈ Dα, α ⊩ R(a1, . . . , an)
si (a1, . . . , an) ∈ Rα. En logique minimale, on doit de plus spécifier si α ⊩⊥.
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Remarque 11.2. (i) On va donner une condition nécessaire et suffisante un
peu plus explicite pour α ⊩ ¬φ. Au vu de la définition de α ⊩ φ→ ψ,
on a α ⊩ ¬φ si et seulement si pour tout β ∈ |K| tel que α ≤ β, on a
β ̸⊩ φ. Attention : cette condition utilise le fait que pour tout β ∈ |K|
β ̸⊩ ⊥, ceci n’est pas le cas dans les modèles de Kripke de la logique
minimale.

(ii) Si β est un élément maximal de (|K|,≤), alors le monde en β est essen-
tiellement une L -structure M et on a pour toute formule φ, M |= φ
si et seulement si β ⊩ φ.

(iii) Intuitivement, on peut voir un modèle de Kripke comme un ensemble
de mondes empilés les uns sur les autres. (On peut représenter le dia-
gramme de Hasse du poset (|K|,≤) pour bien voir comment les mondes
s’emboitent.) Chaque monde pris seul est en soi un modèle de la logique
du 1er ordre au sens classique. Par contre les formules ont des valeurs
de vérité qui peuvent varier d’un montre à l’autre.

Néanmoins, si une formule est forcée dans un monde α, alors elle est
également forcée dans tout monde supérieur β :

si α ⊩ ϕ et α ≤ β, alors β ⊩ ϕ.

En sorte que l’on peut imaginer que “la connaissance” (c’est à dire
l’ensemble des formules qui sont forcées à un nœud) ne fait que croître
au fur et à mesure que l’on progresse vers le haut le long d’une chaîne
de l’ordre partiel sous-jacent au modèle de Kripke.

Exemple 11.3.
Soit L = {P (1)} un langage non-égalitaire du premier ordre et K le

modèle de Kripke suivant :

β • {a, b} P (a)

α • {a} P (a)

◦ On se donne deux mondes, α et β avec α ≤ β.
◦ Les domaines de ces mondes sont respectivement,

Dα = {a}, et Dβ = {a, b}.

◦ On définit la relation de forcing par

⊩ =
{(
α, P (a)

)
,
(
β, P (a)

)}
.
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On a

β • {a, b} P (a)

α • {a} P (a)

(1) α ̸⊩ ∀x P (x)
(2) α ̸⊩ ∃x ¬P (x)
(3) α ̸⊩ ∀x P (x) ∨ ∃x ¬P (x)

(4) β ⊩ ∃x ¬P (x)
(5) α ̸⊩ ¬∃x ¬P (x)
(6) α ̸⊩ ∃x ¬P (x)∨¬∃x ¬P (x)

Exemple 11.4.
Soit L = {P (1)} un langage non-égalitaire du premier ordre et K le

modèle de Kripke suivant :
On se donne N pour ensemble des mondes, équipé de l’order usuel sur N.

On définit les domaines de ces mondes par Dn = {0, . . . , n} et la relation de
forcing par

⊩ =
⋃
n∈N

{(
n, P (k)

)
: k < n

}
.

On peut résumer tout cela par le diagramme :

n+ 1 • {0, 1, . . . n+ 1} P (0), . . . , P (n− 1), P (n)

n • {0, 1, . . . n} P (0), . . . , P (n− 1)

1 • {0, 1} P (0)

0 • {0}

Voici quelques relations (que l’on peut à chaque fois déduire des précédentes)
qui sont vérifiées pour tout entier n par ce modèle :

(1) n ̸⊩ P (n)

(2) n ̸⊩ ¬P (n)
(3) n ̸⊩ P (n) ∨ ¬P (n)

(4) n ̸⊩ ∀x
(
P (x) ∨ ¬P (x)

)
(5) 0 ⊩ ¬∀x

(
P (x) ∨ ¬P (x)

)
(6) 0 ̸⊩ ¬¬∀x

(
P (x) ∨ ¬P (x)

)
.



116 11 MODÈLES DE KRIPKE DE LA LOGIQUE DU 1ER ORDRE

11.1.2 Langages égalitaires avec symbole de fonction

On rappelle que les symboles de constantes sont assimilés à des symboles
de fonctions d’arité 0.

Definition 11.5 (Modèle de Kripke de la logique intuitionniste). Soit L un
langage du premier ordre. Un modèle de Kripke de la logique intuitionniste
sur le langage L est un sextuple K = (|K|,≤,D ,E ,F ,⊩), où :

(i) (|K|,≤,D ,⊩) est un modèle de Kripke au sens de la définition précé-
dente.

(ii) F est la donnée, pour chaque symbole de fonction f d’arité n de L et
chaque monde α ∈ |K|, d’une fonction fα : Dα

n −→ Dα.

(iii) E est la donnée, pour chaque monde α ∈ |K|, d’une relation d’équiva-
lence Eα sur Dα qui satisfait :

∀α, β ∈ |K| (α ≤ β → Eα ⊆ Eβ).

(iv) ⊩ vérifie de plus, pour tout monde α ∈ |K| :

Compatibilité entre E , F et les relations de L

Si a1, . . . , an, b1, . . . , bn ∈ Dα et pour tout 1 ≤ i ≤ n on a Eα(ai, bi)
(R, f sont des symboles d’arité n) :

◦ α ⊩ R(a1, . . . , an) si et seulement si α ⊩ R(b1, . . . , bn) ;
◦ Eα

(
fα(a1, . . . an), fα(b1, . . . bn)

)
.

On ajoute maintenant quelques règles sur la réalisabilité des for-
mules atomiques lorsqu’elles font intervenir des termes ou l’égalité.

Réalisabilité des formules atomiques

On définit la valeur d’un terme t à paramètre dans Dα (les va-
riables libres de t sont remplacées par des éléments de Dα) par :
◦ si t = a ∈ Dα, alors tα = a ;
◦ si t = f(u1, . . . , un), alors tα = fα(u

1
α, . . . , u

n
α).

On peut ajouter maintenant quelques règles sur la réalisabilité
des formules atomiques lorsqu’elles font intervenir des termes ou
l’égalité :
◦ α ⊩ u = v si et seulement si Eα(uα, vα) ;
◦ pour tout symbole de relation R d’arité n et t1, . . . , tn des

termes, on a : α ⊩ R(t1, . . . , tn) si et seulement si α ⊩ R(t1α, . . . , t
n
α).

On peut étendre ⊩ en une relation binaire entre les éléments de |K| et les
formules de la même façon que précédemment.
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Exemple 11.6. On se donne le modèle de Kripke suivant :

β • {a, b} Eβ = {a, b} × {a, b}

α • {a, b} Eα = {(a, a), (b, b)}

On peut voir que

(1) α ̸⊩ a = b

(2) α ̸⊩ ¬a = b

(3) α ̸⊩ a = b ∨ ¬a = b

(4) α ̸⊩ ∀x ∀y (x = y ∨ ¬x = y).

11.1.3 Satisfaction et conséquence sémantique

Definition 11.7 (Satisfaction d’une formule dans un modèle de Kripke de la
logique intuitionniste). Soient L un langage, K un modèle de Kripke de la
logique intuitionniste sur L et φ une formule de L . On dit que K satisfait φ
que l’on note

K |=i φ

si pour tout monde α ∈ |K| on a α ⊩ φ.

Definition 11.8 (Satisfaction d’une théorie dans un modèle de Kripke de la
logique intuitionniste). Soient L un langage, K un modèle de Kripke de la
logique intuitionniste sur L et T une théorie de L . On dit que K satisfait T
que l’on note

K |=i T

si pour toute formule φ ∈ T on a K |=i φ.

Definition 11.9 (Conséquence sémantique en logique intuitionniste). Soient
L un langage, T une théorie et φ une formule de L . On dit que φ est
conséquence sémantique en logique intuitionniste de T que l’on note

T |=i φ

si pour tout modèle de Kripke K de la logique intuitionniste tel que K |=i T
on a K |=i φ.

Un cas particulier est celui de la théorie vide :

|=i φ

qui revient à dire que
K |=i φ

est vérifié dans tout modèle de Kripke de la logique intuitionniste et par
conséquent,

α ⊩ φ

est vrai en tout nœud α de tout modèle de Kripke de la logique intuitionniste.
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Exemple 11.10. Le modèle de Kripke K de l’exemple page 115 reproduit
ci-dessous,

β • {a, b} P (a)

α • {a} P (a)

on a

◦ α ̸⊩ ∀x P (x) ∨ ∃x ¬P (x) ◦ α ̸⊩ ∃x ¬P (x) ∨ ¬∃x ¬P (x).

On a donc également :

◦ K ̸|=i ∀x P (x) ∨ ∃x ¬P (x) ◦ K ̸|=i ∃x ¬P (x)∨¬∃x ¬P (x).

Et par conséquent, aucune de ces deux formules n’est conséquence de la
théorie vide :

◦ ̸|=i ∀x P (x) ∨ ∃x ¬P (x) ◦ ̸|=i ∃x ¬P (x) ∨ ¬∃x ¬P (x).

On verra plus loin que par application du Théorème de complétude de
la logique intuitionniste (Théorème 12.2, page 121), qu’aucune de ces deux
formules n’est prouvable en logique intuitionniste :

◦ ̸⊢i ∀x P (x) ∨ ∃x ¬P (x) ◦ ̸⊢i ∃x ¬P (x) ∨ ¬∃x ¬P (x).

11.2 Logique minimale

Definition 11.11 (Modèle de Kripke de la logique minimale). Les modèles
de Kripke K de la logique minimale sont définis de façon analogue à ceux de
la logique intuitionniste à la seule différence que l’on n’exige pas que pour
tout monde α ∈ |K|, on ait α ̸⊩ ⊥.

Les définitions d’évaluation d’une formule, d’une théorie et de la consé-
quence sémantique sont analogues à précédemment, seule la notation diffère.

Definition 11.12 (Satisfaction d’une formule dans un modèle de Kripke de
la logique minimale). Soient L un langage, K un modèle de Kripke de la
logique minimale sur L et φ une formule de L . On dit que K satisfait φ
que l’on note

K |=m φ

si pour tout monde α ∈ |K| on a α ⊩ φ.

Definition 11.13 (Satisfaction d’une théorie dans un modèle de Kripke de
la logique minimale). Soient L un langage, K un modèle de Kripke de la
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logique minimale sur L et T une théorie de L . On dit que K satisfait T
que l’on note

K |=m T

si pour toute formule φ ∈ T on a K |=m φ.

Definition 11.14 (Conséquence sémantique en logique minimale). Soient
L un langage, T une théorie et φ une formule de L . On dit que φ est
conséquence sémantique en logique minimale de T que l’on note

T |=m φ

si pour tout modèle de Kripke K de la logique minimale tel que K |=m T on
a K |=m φ.

Exemple 11.15. On considère le langage L dont la signature ne contient
que le symbole de relation unaire P . On construit le modèle de Kripke de la
logique minimale K suivant.

On se donne un unique monde α
dont le domaine est Dα = {a} et
la relation de forcing est simplement
α ⊩ ⊥.

Dα = {a}α �⊥

Les relations suivantes sont vérifiées :

(1) α ̸⊩ ∃x P (x)
(2) α ⊩ ¬∃x P (x)

(3) α ⊩ ¬¬∃x P (x)
(4) α ̸⊩ ¬¬∃x P (x) −→ ∃x P (x).

Par ailleurs, nous avons également

(5) α ̸⊩ ¬∃x P (x) −→ ∃x P (x) (6) α ⊩ ¬¬∃x P (x) ∨ ∃x P (x)

(7) α ̸⊩
(
¬¬∃x P (x) ∨ ∃x P (x)

)
−→

(
¬∃x P (x) −→ ∃x P (x)

)
.

On verra plus loin que par application du Théorème de complétude de la
logique minimale (Théorème 12.1, page 121), qu’aucune de ces deux formules
n’est prouvable en logique minimale :

(8) ̸⊢m ¬¬∃x P (x) −→ ∃x P (x)

(9) ̸⊢m
(
¬¬∃x P (x) ∨ ∃x P (x)

)
−→

(
¬∃x P (x) −→ ∃x P (x)

)
.

Par contre, on a ⊢i
(
¬¬∃x P (x) ∨ ∃x P (x)

)
−→

(
¬∃x P (x) −→ ∃x P (x)

)
,

comme le montre la preuve suivante en Calcul des Séquents :
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ax
¬∃x P (x) ⊢ ¬∃x P (x)

¬g

¬¬∃x P (x),¬∃x P (x) ⊢
affd

¬¬∃x P (x),¬∃x P (x) ⊢ ∃x P (x)
ax

∃x P (x) ⊢ ∃x P (x)
∨g

¬¬∃x P (x) ∨ ∃x P (x),¬∃x P (x) ⊢ ∃x P (x)
→d

¬¬∃x P (x) ∨ ∃x P (x) ⊢ ¬∃x P (x) −→ ∃x P (x)
→d

⊢
(
¬¬∃x P (x) ∨ ∃x P (x)

)
−→

(
¬∃x P (x) −→ ∃x P (x)

)
Nous avons donc trouvé une formule démontrable sans hypothèse en lo-

gique intuitonniste mais pas en logique minimale. Parconséquent, la logique
minimale est strictement moins expressive que la logique intuitionniste.
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12 Théorèmes de complétude

Le théorème de complétude de la logique classique est dû à Gödel, c’est
le sujet de sa thèse de doctorat. On énonce maintenant les théorèmes de
complétude pour les différentes logiques ainsi que leurs conséquences, puis
on prouvera le théorème de complétude de la logique classique.

12.1 Énoncés des théorèmes de complétude

De même que les relation de conséquence syntaxique sont notées ⊢m
,⊢i et ⊢c, on note respectivement |=m, |=i, |=c les relations de conséquence
sémantique pour les logiques minimale, intuitionniste et classique.(Donc |=c

n’est autre que la relation |= du chapitre 4.)

Theorème 12.1 (Complétude de la logique minimale). Soient L un langage
de la logique du premier ordre, T une théorie et φ une formule, toutes deux
construites sur ce langage. Alors

T |=m φ si et seulement si T ⊢m φ.

Theorème 12.2 (Complétude de la logique intuitionniste). Soient L un
langage de la logique du premier ordre, T une théorie et φ une formule,
toutes deux construites sur ce langage. Alors

T |=i φ si et seulement si T ⊢i φ.

Theorème 12.3 (Complétude de la logique classique). Soient L un langage
de la logique du premier ordre, T une théorie et φ une formule, toutes deux
construites sur ce langage. Alors

T |=c φ si et seulement si T ⊢c φ.

(C’est-à-dire T |= φ ssi T ⊢c φ.)

12.2 Preuve du théorème de complétude de la logique clas-
sique

On rappelle les notions de théorie consistante et de théorie non-contradictoire.

Definition 12.4 (Non-contradiction).

Une théorie T est dite non-contradictoire si T ̸⊢c ⊥.

Definition 12.5 (Consistance).

Une théorie T est dite consistante si elle admet un modèle.

On va prouver un énoncé qui est équivalent au théorème de complétude.



122 12 THÉORÈMES DE COMPLÉTUDE

Theorème 12.6 (Théorème de complétude bis). Soit T une théorie quel-
conque.

T est non-contradictoire si et seulement si T est consistante.

C’est-à-dire T ̸⊢c ⊥ ssi T ̸|= ⊥. Ou encore pour le dire autrement, T ⊢c
⊥ ssi T |= ⊥.

Proposition 12.7. Le théorème de complétude de la logique classique et le
théorème de complétude bis sont équivalents.

Démonstration. on va montrer que dans le schéma ci-dessous on a ⇐⇒
si et seulement si on a ⇐⇒ , simplement en montrant que l’on a les deux
équivalences verticales

(
⇐
⇒

)
.

T |= φ ⇐⇒ T ⊢c φ

⇐
⇒

⇐
⇒

T,¬φ |= ⊥ ⇐⇒ T,¬φ ⊢c ⊥

(1) L’équivalence

T |= φ

⇐
⇒

T,¬φ |= ⊥

a été vue page 23.

(2) Pour l’équivalence

T ⊢c φ

⇐
⇒

T,¬φ ⊢c ⊥

il suffit de montrer que pour un sous-

ensemble fini de formule Γ ⊆ T , on a

Γ ⊢c φ

⇐
⇒

Γ,¬φ ⊢c ⊥

(a)

...
Γ ⊢ φ

ax
¬φ ⊢ ¬φ

¬e

Γ,¬φ ⊢ ⊥
(b)

...
Γ,¬φ ⊢ ⊥

⊥c

Γ ⊢ φ
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12.2.1 Non-contradictoire ⇐= consistant

Démonstration du Théorème bis sens direct : On prouve T consistante =⇒
T non-contradictoire On procède par contraposition et on montre donc

T contradictoire =⇒ T inconsistante,

c’est-à-dire
T ⊢c ⊥ =⇒ T |= ⊥.

En fait, on va montrer un résultat plus général : pour toute théorie T et
pour toute formule φ, on va montrer

T ⊢c φ =⇒ T |= φ.

On suppose donc que T ⊢c φ. Par conséquent, il existe Γ ⊆ T un sous-
ensemble fini de la théorie tel que le séquent Γ ⊢ φ est prouvable en logique
classique. La preuve se fait par induction sur la hauteur d’une déduction du
séquent Γ ⊢ φ. Pour cela, convenons 43 de considérer les preuves effectuées en
déduction naturelle et de définir la hauteur d’une preuve comme la longueur
de sa (ses) plus longue(s) branche(s) — car après tout une preuve est un
arbre.

(i) Si la hauteur de la preuve est 0, alors c’est un axiome ou une introduc-
tion de l’égalité. Par définition, on a bien que φ |= φ et que |= t = t.

(ii) Si la hauteur de la preuve est n + 1, on considère l’ensemble des pré-
misses de la dernière règle utilisée. Soit Γi ⊢c ψi une de ces prémisses.
Alors par hypothèse de récurrence, on a que Γi |= ψi, puisque la hau-
teur de sa preuve est au plus n. Il faut maintenant vérifier règle par
règle que l’on peut déduire Γ |= φ. Ceci étant un peu fastidieux sans
être difficile, nous vérifions seulement quelques cas. La totalité de tous
les cas est indiquée dans la page qui suit. Pour bien comprendre, il suffit
de vérifier pour chacune des règles, que si l’on admet les conséquences
sémantiques de la forme « |= », alors on est en droit d’admettre celles
de la forme « |= ».

43. Ce n’est qu’une convention, on pourrait tout aussi bien considérer les preuves effec-
tuées en calcul des séquents par exemple.
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Axiome
ax

φ |=φ

Règles logiques

Γ |=φ Γ′ |=ψ
∧i

Γ,Γ′ |=φ ∧ ψ
Γ |=φ ∧ ψ

∧eg

Γ |=φ

Γ |=φ ∧ ψ
∧ed

Γ |=ψ

Γ |=φ
∨ig

Γ |=φ ∨ ψ
Γ |=ψ

∨id

Γ |=φ ∨ ψ
Γ |=ψ ∨ φ Γ′, ψ |= θ Γ′′, φ |= θ

∨e

Γ,Γ′,Γ′′ |= θ

Γ, φ |=ψ
→ i

Γ |=φ→ ψ

Γ |=φ→ ψ Γ′ |=φ
→ e

Γ,Γ′ |=ψ

Γ, φ |= ⊥
¬i

Γ |=¬φ
Γ |=¬φ Γ′ |=φ

¬e

Γ,Γ′ |= ⊥

Γ |=φ[y/x]
1

∀i
Γ |=∀x φ

Γ |=∀x φ
∀e

Γ |=φ[t/x]
2

Γ |=φ[t/x]
2

∃i
Γ |=∃x φ

Γ |=∃x φ Γ′, φ[y/x] |=ψ 3

∃e
Γ,Γ′ |=ψ

= i

|= t = t 2
Γ |=φ[t/x] Γ′ |= t = u

= e

Γ,Γ′ |=φ[u/x]

Règles structurelles
Γ |=ψ

aff

Γ, φ |=ψ

Γ, φ, φ |=ψ
ctr

Γ, φ |=ψ

Règles de l’absurdité intuitionniste et classique

Γ |= ⊥
⊥ e

Γ |=φ

Γ,¬φ |= ⊥
⊥ c

Γ |=φ

1. y n’a pas d’occurrence libre dans Γ, φ
2. t : un terme
3. y n’a pas d’occurrence libre dans Γ′, φ, ψ
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Introduction de la conjonction
On a Γ1 |= φ1, Γ2 |= φ2, on veut en déduire que Γ1∪Γ2 |= φ1∧φ2.
Pour cela, soit M un modèle de Γ1 ∪ Γ2. Alors par définition, il
existe pour le vérificateur des stratégies gagnantes σ1, respective-
ment σ2, dans EV (M , φ1), respectivement EV (M , φ2). Construi-
sons une stratégie gagnante pour le vérificateur dans EV (M , φ1 ∧ φ2).
Dans ce jeu, c’est au falsificateur de commencer. Si le falsifica-
teur choisit φ1, alors le jeu devient EV (M , φ1), le vérificateur
applique σ1 et gagne. Si le falsificateur choisit φ2, alors le jeu
devient EV (M , φ2), le vérificateur applique σ2 et gagne. Cette
stratégie est clairement gagnante et donc M |= φ1 ∧ φ2.

Élimination de la disjonction
On a Γ1 |= φ2 ∨ φ3, Γ2, φ2 |= φ, Γ3, φ3 |= φ, on veut en
déduire que Γ1 ∪ Γ2 ∪ Γ3 |= φ. Pour cela, soit M un modèle de
Γ1 ∪ Γ2 ∪ Γ3. Alors par définition, il existe une stratégie gagnante
pour le vérificateur dans EV (M , φ2 ∨ φ3), ce qui veut dire que soit
le vérificateur a une stratégie gagnante dans EV (M , φ2), soit le
vérificateur a une stratégie gagnante dans EV (M , φ3). Par consé-
quent, M |= Γ2 ∪ {φ2} ou M |= Γ3 ∪ {φ3}. Ainsi, M |= φ.

Absurde classique
On a Γ ∪ {¬φ} n’a pas de modèle, ce qui est vrai si et seulement
si tout modèle de Γ ne satisfait pas ¬φ. Cette dernière assertion
est équivalente à Γ |= φ.

12.2.2 Non-contradictoire =⇒ consistant

Dans cette section, on prouve T non-contradictoire =⇒ T consistante.
i.e.,

T ̸⊢c ⊥ =⇒ T ̸|= ⊥.
Pour la preuve du sens direct, nous avons besoin de quelques lemmes

préparatoires.

Lemme 12.8. Soit (Ti)i∈I une famille de théories non-contradictoires qui
est totalement ordonnée par l’inclusion. Alors

⋃
i∈I Ti est non-contradictoire.

Démonstration. Par l’absurde, supposons que
⋃
i∈I Ti n’est pas non-contradictoire.

Alors il existe une déduction du séquent
⋃
i∈I Ti ⊢c ⊥. Puisque une déduc-

tion est un objet fini, alors seulement un nombre fini d’hypothèses peut être
utilisé (voir remarque 9.9). Il existe donc un sous-ensemble fini F ⊆ ⋃i∈I Ti
tel que F ⊢c ⊥. Pour toute formule φ ∈ F , il existe iφ ∈ I tel que φ ∈ Tiφ .
Comme F est fini, il existe j ∈ I tel que Tj = max{Tiφ : φ ∈ F}. Ainsi,
F ⊆ Tj et donc Tj n’est pas non-contradictoire, une contradiction.
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Definition 12.9 (Théorie complète). Une théorie T sur un langage L est
dite complète si elle est non-contradictoire et si pour toute formule close φ
sur L , on a φ ∈ T ou ¬φ ∈ T .

Lemme 12.10 (AC). Soit T une théorie sur un langage L qui soit non-
contradictoire. Alors il existe une théorie Tc sur le même langage qui soit
complète et telle que T ⊆ Tc.

Démonstration. On considère l’ensemble des théories non-contradictoires sur
L qui étendent T . Muni de l’inclusion, c’est un ordre partiel inductif. En
effet, pour toute chaîne (Ti)i∈I , la théorie TI =

⋃
i∈I Ti est non-contradictoire

(voir lemme 12.8) et c’est un majorant de la chaîne. On peut donc utiliser le
lemme de Zorn pour obtenir l’existence d’une théorie Tc qui est un élément
maximal de l’ordre partiel considéré. Il reste à montrer que c’est une théorie
complète.
Par l’absurde, supposons qu’il existe une formule φ telle que φ ̸∈ Tc et
¬φ ̸∈ Tc. Par maximalité de Tc, on obtient qu’aucune des deux théories
Tc∪{φ} et Tc∪{¬φ} n’est non-contradictoire. Autrement dit, elles sont toutes
deux contradictoires, ce qui veut dire que l’on a Tc, φ ⊢c ⊥ et Tc,¬φ ⊢c ⊥.
Par conséquent, il existe deux ensembles finis Γ ⊆ Tc et Γ′ ⊆ Tc tels que
Γ, φ ⊢c ⊥ et Γ′,¬φ ⊢c ⊥. On obtient alors

...
Γ,¬φ ⊢ ⊥

⊥c

Γ ⊢ φ

...
Γ′, φ ⊢ ⊥

¬i

Γ′ ⊢ ¬φ
¬e

Γ,Γ′ ⊢ ⊥

Comme Γ ∪ Γ′ ⊆ Tc, il en résulte Tc ⊢c ⊥, une contradiction.

Lemme 12.11. Soient Γ un ensemble de formules, φ une formule et c un
symbole de constante n’apparaissant ni dans Γ ni dans φ. Alors Γ ⊢c φ[c/x ]

implique que Γ ⊢c ∀x φ.

Démonstration. On montre d’abord que pour tout ensemble de formule ∆
et toute formule ψ, si ∆[c/x ] ⊢c ψ[c/x ], alors pour tout terme t du langage,
∆[t/x ] ⊢c ψ[t/x ]. La preuve se fait par récurrence sur la hauteur de la dé-
monstration en remplaçant partout c par t.
Puisque x est liée dans ∀x φ, alors sans perte de généralité, on peut suppo-
ser que x n’a pas d’occurrence libre dans Γ (sinon, il suffit de considérer la
nouvelle formule ∀y φ[y/x ] où y est une nouvelle variable). En choisissant
pour terme z (une nouvelle variable) dans le résultat précédent, on obtient
que, puisque Γ = Γ[c/x ] ⊢c φ[c/x ], on a Γ = Γ[z/x ] ⊢c φ[z/x ]. Appliquant
l’introduction du quantificateur universel, puisque z n’a d’occurrence libre
ni dans Γ ni dans φ, alors Γ ⊢c ∀z φ[z/x ] et donc Γ ⊢c ∀x φ.
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Lemme 12.12. Soient Γ un ensemble de formules d’un langage L , L ′ le
langage L augmenté de nouveaux symboles de constantes et Γ′ le même en-
semble de formules Γ mais cette fois-ci vue comme ensemble de L ′-formules
et non plus de L -formules. Alors

Γ ⊢c ⊥ si et seulement si Γ′ ⊢c ⊥.

Il est clair qu’en ajoutant des constantes aux langages, on ajoute égale-
ment de nouvelles formules et par conséquent de nouvelles preuves. Il s’agit
dès lors de montrer que si une théorie était consistante dans le langage ori-
ginel, elle le resterait également dans le langage augmenté.

Démonstration. Tout d’abord, si Γ est contradictoire, alors il en est de même
de Γ′ puisqu’une preuve de Γ ⊢c ⊥ est également une preuve de Γ′ ⊢c ⊥.
Ensuite il suffit de montrer que pour toute formule φ de L ′ et toute L ′-
preuve de φ à partir de Γ′, si l’on prend cette preuve (qui est un arbre
composé de séquents) et que l’on remplace dans chaque formule de chaque
séquent chaque nouvelle constante ci par une nouvelle variable yi, alors la
preuve que l’on obtient est bien une L ′-preuve de φ[y0/c0,...,yn/cn] à partir de
Γ′.

Précisément, pour n’importe quelle L ′-preuve P′ de ∆ ⊢ φ′ (avec ∆ ⊆ Γ′

et ∆ fini), ne faisant intervenir comme nouveaux symboles de constantes de
L ′ que c0, . . . , cn, on considère y0, . . . , yn des nouvelles variables n’apparais-
sant nulle part dans la preuve P′ et l’on pose

φ′ = φ[c0/y0,...,cn/yn] et P′ = P[c0/y0,...,cn/yn]
44

on montre alors très facilement par induction sur la hauteur de la preuve,
que P′ est une preuve du séquent ∆ ⊢ φ′ si et seulement si P est une preuve
du séquent ∆ ⊢ φ.

Par conséquent, si Γ′ ⊢c ⊥ il existe alors une L ′-preuve P′ de ∆ ⊢ ⊥ et
donc une L -preuve de ∆ ⊢ ⊥ également.

Démonstration du Théorème bis sens direct :
(on prouve Γ ̸⊢c ⊥ =⇒ Γ ̸|= ⊥).

Soit T une théorie sur un langage L . On suppose que T est non-contradictoire
et on cherche un modèle de T . La démonstration se fait en trois étapes.

Première étape : On construit une théorie Th sur un langage Lh telle que :

(i) Th est un théorie complète ;

44. où P et P′ ne se distingue qu’en ce que pour chaque i ≤ n, tout symbole ci de P′

devient yi dans P et inversement tout tout symbole yi de P devient ci dans P′.
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(ii) pour toute formule φ sur Lh ayant x pour seule variable libre,
il existe un témoin de Henkin cφ, c’est-à-dire un symbole de
constante de Lh tel que :

Th ⊢c ∃x φ→ φ[cφ/x ].

Pour cela, définissons par récurrence des langages Ln et des théories
Tn, pour tout entier n. On pose L0 = L , T0 = T et

Ln+1 = Ln ∪ {cφ | φ[x] formule avec une variable libre de Ln},

Tn+1 = Tn ∪ {∃x φ→ φ[cφ/x ] | φ[x] formule de Ln avec x libre}.
On considère maintenant

Lh =
⋃
n∈N

Ln et T∞ =
⋃
n∈N

Tn.

Montrons que T∞ est non-contradictoire. Par le lemme 12.8 et le lemme
12.12, il suffit de montrer que Tn est non-contradictoire pour tout entier
n. On fait cela par récurrence. On a par hypothèse que T0 = T est
non-contradictoire. Supposons par l’absurde que Tn+1 n’est pas non-
contradictoire – autrement dit, supposons que Tn+1 est contradictoire –
avec T0, . . . , Tn toutes non-contradictoires. Alors, il existe des formules
φ1, . . . , φk de Ln telles que :

Tn,
∧

1≤i≤k

(
∃x φi → φi[cφi/x ]

)
⊢c ⊥.

On en déduit que

Tn ⊢c
∧

1≤i≤k

(
∃x φi → φi[cφi/x ]

)
→ ⊥

et par le lemme 12.11 appliqué k fois, on peut conclure que

Tn ⊢c ∀y1 . . . ∀yk

 ∧
1≤i≤k

(
∃x φi → φi[yi/x ]

)
→ ⊥

 .
Or, on sait que ⊢c ∀y (θ → ψ) ←→ (∃y θ → ψ) si ψ n’a pas
d’occurrence libre de y (par combinaison d’exercices des séries). Par
conséquent,

Tn ⊢c

∃y1 . . . ∃yk ∧
1≤i≤k

(
∃x φi → φi[yi/x ]

)→ ⊥.
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Du fait que ⊢c ∃y (φ ∧ ψ) ←→ (∃y φ ∧ ψ) si ψ n ’a pas d’occurrence
libre de y, on obtient que :

Tn ⊢c
∧

1≤i≤k

[
∃yi
(
∃x φi → φi[yi/x ]

)]
→ ⊥.

On sait de plus que ⊢c ∃y (θ → ψ) ←→ (θ → ∃y ψ), si θ n’a pas
d’occurrence libre de y, ce qui donne

Tn ⊢c
∧

1≤i≤k

(
∃x φi → ∃yi φi[yi/x ]

)
→ ⊥.

Or, pour tout 1 ≤ i ≤ k, on a que ⊢c ∃x φi → ∃yi φi[yi/x ], ce qui
implique que :

⊢c
∧

1≤i≤k

(
∃x φi → ∃yi φi[yi/x ]

)
.

Par élimination de l’implication, il vient que Tn ⊢c ⊥, ce qui contredit
l’hypothèse de récurrence.
On utilise maintenant le lemme 12.10 pour étendre T∞ en une théorie
complète Th.
Soit φ une formule de Lh avec une seule variable libre x. Il reste à
vérifier que

Th ⊢c ∃x φ→ φ[cφ/x ].

Par définition, φ étant une suite finie, elle ne contient qu’un nombre
fini de symboles de Lh. Par construction, il existe donc un entier n tel
que φ ∈ Ln et ainsi

∃x φ→ φ[cφ/x ] ∈ Tn+1 ⊆ Th.

Seconde étape : On construit maintenant un Lh-modèle M de Th, dont
la restriction à L est un modèle de T .
On pose (voir définition 3.6)

Tclos(Lh) = {t ∈ T (Lh) | t ne contient pas de variable}.

On définit le modèle M suivant :
(i)

|M | = Tclos(Lh)
/
∼ ,

où t ∼ t′ si et seulement si Th ⊢c t = t′ ;
(ii) pour tout symbole de constante c, cM = [ c ]∼ ;
(iii) pour tout symbole de fonction f d’arité n,

fM
(
[t1]∼ , . . . , [tn]∼

)
=
[
f(t1, . . . , tn)

]
∼
;
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(iv) pour tout symbole de relation R d’arité n,(
[t1]∼ , . . . , [tn]∼

)
∈ RM ⇐⇒ Th ⊢c R(t1, . . . , tn).

Vérifions que c’est bien défini. C’est-à-dire que la définition ne dépend
pas du choix des termes dans les classes d’équivalence données. Soient
t1, . . . tn, t

′
1, . . . t

′
n des termes tels que ti ∼ t′i pour tout 1 ≤ i ≤ n.

Alors on a Th ⊢c ti = t′i pour tout 1 ≤ i ≤ n. L’élimination de
l’égalité appliquée n fois sur le résultat de l’introduction de l’égalité
avec f(t1, . . . , tn) nous donne que

Th ⊢c f(t1, . . . , tn) = f(t′1, . . . , t
′
n).

L’élimination de l’égalité appliquée n fois sur l’axiome R(t1, . . . , tn) ⊢c
R(t1, . . . , tn) donne Th, R(t1, . . . , tn) ⊢c R(t′1, . . . , t′n). Par conséquent,

Th ⊢c R(t1, . . . , tn)→ R(t′1, . . . , t
′
n).

Par symétrie

Th ⊢c R(t1, . . . , tn) ←→ R(t′1, . . . , t
′
n)

et on obtient le résultat par modus ponens, Th ⊢c R(t1, . . . , tn) si et
seulement si Th ⊢c R(t′1, . . . , t′n).

Par ailleurs |M | ̸= ∅ car la formule avec une variable libre ∃x x = x
est une formule de Lh et donc la classe de son témoin de Henkin est
un élément de |M |.

Troisième étape : On vérifie que M |= Th. Pour cela, on prouve que pour
toute formule de la forme φ(x1, . . . , xn) dont les variables libres sont
parmis x1, . . . , xn, et tous termes clos t1, . . . , tn,

Th ⊢c φ[t1, . . . , tn] si et seulement si M |= φ[t1, . . . , tn].

où φ[t1, . . . , tn] désigne la formule φ[t1/x1, . . . , tn/xn].

On suppose sans perte de généralité que φ ne comporte que le quan-
tificateur ∃ et les connecteurs ∧,¬. On procède par récurrence sur la
hauteur de φ :

Si ht(φ) = 0 :

(i) Si φ = ⊥ :
comme Th est non-contradictoire, on a à la fois Th ̸⊢c ⊥ et
M ̸|= ⊥ et donc Th ⊢c ⊥ ⇐⇒ M |= ⊥.
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(ii) Si φ = R(t1, . . . , tn) :

M |= φ ⇐⇒ (t1
M , . . . , tn

M ) ∈ RM (par définition)

⇐⇒ ([t1]∼ , . . . , [tn]∼) ∈ RM (par définition des tiM )

⇐⇒ Th ⊢c R(t1, . . . , tn) (par définition de RM )

Si ht(φ) > 0 :

(i) Si φ = (ψ1 ∧ ψ2) :

M |= (ψ1 ∧ ψ2) ⇐⇒ M |= ψ1 et M |= ψ2 (par définition)

⇐⇒ Th ⊢c ψ1 et Th ⊢c ψ2 (par hypothèse d’induction)

⇐⇒ Th ⊢c (ψ1 ∧ ψ2) (par les règles ∧i et ∧e)

(ii) Si φ = ¬ψ :

M |= ¬ψ ⇐⇒ M ̸|= ψ (par définition)

⇐⇒ Th ̸⊢c ψ (par hypothèse d’induction)

⇐⇒ Th ⊢c ¬ψ (car Th est complète)

(iii) Si φ = ∃x ψ :

M |= ∃x ψ ⇐⇒ il existe [t]∼ ∈ |M | M , [t]∼ /x |= ψ[x] (par définition)

⇐⇒ il existe un terme clos t M , t
M

/x |= ψ[x] (par définition de tM )

⇐⇒ il existe un terme clos t M |= ψ[t] (par définition)

⇐⇒ il existe un terme clos t Th ⊢c ψ[t] (par hyp. d’ind.)

⇐⇒ Th ⊢c ∃x ψ ( (⇒) par ∃i ; (⇐) par témoin de Henkin)

Pour la dernière double implication, le sens (⇒) est une simple
application de la règle d’introduction du quantificateur exis-
tentiel en déduction naturelle. Pour le sens (⇐), il suffit de
remarquer que le témoin de Henkin cψ est le terme recherché.
En effet, on a

Th ⊢c ∃x ψ
et

Th ⊢c ∃x ψ → ψ[cψ /x ]
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Par modus ponens (élimination de l’implication), on obtient

Th ⊢c ψ[cψ /x ].

Ainsi, on a montré qu’il existait une Lh-structure satisfaisant la théo-
rie complète Th puisque M |= Th. Comme la théorie T ⊆ Th, on a
donc montré qu’il existait une Lh-structure satisfaisant la théorie T .
Pour obtenir une L -structure N satisfaisant T , il suffit de retirer les
témoins de Henkin du langage et d’en oublier les interprétations dans
la structure M .

Remarque 12.13. Le choix de la relation d’équivalence employée pour construire
le modèle M de la preuve précédente est en fait assez logique. En effet, si
l’on veut que cela puisse fonctionner, il faut en tout cas que cela marche
pour les formules du type t = t′ et ¬t = t′. Ainsi, il faut que M |= t = t′

si et seulement si Th ⊢c t = t′. Par conséquent, il faut que tM = t′M si et
seulement si Th ⊢c t = t′.
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13 Conséquences des théorèmes de complétude

Les théorèmes de complétude nous indiquent qu’une formule n’est pas
démontrable dans une certaine logique si et seulement si il existe un modèle
de la logique correspondante dans lequel la formule n’est pas satisfaite (c’est
ce qu’on appelle généralement un contre-exemple).

13.0.1 Quelques formules non démontrables en logique intuition-
niste

Proposition 13.1. Les formules suivantes ne sont pas démontrables en lo-
gique intuitionniste :

(i) (φ ∨ ¬φ) ;
(ii) (¬¬φ→ φ).

Démonstration. On se donne K le modèle de Kripke de la logique intuition-
niste suivant :

β • {a} P (a) cβ = a

α • {a} cα = a

(i) On observe que dans le modèle K, α ̸⊩ P (c) et α ̸⊩ ¬P (c).
Par conséquent, α ̸⊩ P (c) ∨ ¬P (c) et donc K ̸|=i P (c) ∨ ¬P (c).

(ii) De même, on a α ̸⊩ P (c), β ⊩ P (c) et α ̸⊩ ¬P (c), β ̸⊩ ¬P (c). Par
conséquent, on a α ⊩ ¬¬P (c) et ainsi α ̸⊩

(
¬¬P (c) → P (c)

)
. Pour

conclure, K ̸|=i

(
¬¬P (c)→ P (c)

)
.

13.0.2 Une formule non démontrable en logique minimale

Proposition 13.2. La formule
(
(φ∨ψ)→ (¬φ→ ψ)

)
n’est pas démontrable

en logique minimale, mais elle l’est en logique intuitionniste.

Démonstration. On se donne K le modèle de Kripke de la logique minimale
suivant :

α • {a} cα = a ⊥ P (c)

On observe que dans le modèle K, α ⊩ P (c), et donc α ⊩
(
P (c) ∨ P ′(c)

)
.

Par ailleurs α ⊩
(
P (c) → ⊥

)
et donc α ⊩ ¬P (c). On obtient alors que

α ̸⊩
(
¬P (c)→ P ′(c)

)
et donc K ̸|=m

((
P (c) ∨ P ′(c)

)
→
(
¬P (c)→ P ′(c)

))
.

Ainsi, ̸⊢m
(
φ ∨ ψ)→ (¬φ→ ψ)

)
.

Montrons maintenant que ⊢i (φ ∨ ψ)→ (¬φ→ ψ) :
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ax
(φ ∨ ψ) ⊢ (φ ∨ ψ)

ax
φ ⊢ φ

ax
¬φ ⊢ ¬φ

¬e

φ,¬φ ⊢ ⊥
⊥e

φ,¬φ ⊢ ψ
ax

ψ ⊢ ψ
∨e

(φ ∨ ψ),¬φ ⊢ ψ
→ i

(φ ∨ ψ) ⊢ (¬φ→ ψ)
→ i

⊢
(
φ ∨ ψ)→ (¬φ→ ψ)

)

13.0.3 Théorème de compacité

Le théorème de compacité est en fait un corollaire du théorème de com-
plétude.

Corollaire 13.3. Une théorie est satisfaisable si et seulement si elle est
finiment satisfaisable.

Démonstration. Par le théorème de complétude bis (qui est équivalent au
théorème de complétude, voir 12.6 et 12.7), l’énoncé du théorème de com-
pacité est équivalent à l’énoncé suivant : une théorie est non-contradictoire
si et seulement chaque sous-théorie finie est non-contradictoire. Ceci est en
fait une trivialité du fait qu’une preuve est un objet fini. En effet, ceci qui
implique que T ⊢c ⊥ si et seulement s’il existe une sous-théorie finie ∆ ⊆ T
telle que ∆ ⊢c ⊥. Ou pour le dire autrement, on remarque que l’énoncé
suivant :

T ̸|= ⊥ ⇐⇒ pour chaque sous-théorie finie ∆ ⊆ T, ∆ ̸|= ⊥

est équivalent, via le théorème de complétude, à l’énoncé

T ̸⊢c ⊥ ⇐⇒ pour chaque sous-théorie finie ∆ ⊆ T, ∆ ̸⊢c ⊥
qui est équivalent à l’énoncé

T ⊢c ⊥ ⇐⇒ il existe une sous-théorie finie ∆ ⊆ T, ∆ ⊢c ⊥.
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Appendices
Voici des documents fournis par le professeur lui-même durant le cours.

A Axiomatique : Peano, Robinson et ZFC

A.1 Arithmétique de Peano

Soit L = {0, S,+, ·} où 0 est un symbole de constante, S est un symbole
de fonction unaire et +, · sont des symboles de fonction binaires. La théorie
de Peano TP est l’ensemble infini de formules contenant :

axiome 1. ∀x Sx ̸= 0

axiome 2. ∀x ∃y (x ̸= 0→ Sy = x)

axiome 3. ∀x ∀y (Sx = Sy → x = y)

axiome 4. ∀x x+0 = x

axiome 5. ∀x ∀y
(
x+Sy = S(x+y)

)
axiome 6. ∀x x·0 = 0

axiome 7. ∀x ∀y
(
x·Sy = (x·y)+x

)
schema d’axiome (induction) pour chaque formule φ[x0,x1,...,xn])

45,
l’axiome suivant :

∀x1 . . . ∀xn
((

φ[0/x0] ∧ ∀x0
(
φ→ φ[Sx0/x0]

))
→ ∀x0 φ

)
A.2 Arithmétique de Robinson

axiome 1. ∀x Sx ̸= 0

axiome 2. ∀x ∃y (x ̸= 0→ Sy = x)

axiome 3. ∀x ∀y (Sx = Sy → x = y)

axiome 4. ∀x x+0 = x

axiome 5. ∀x ∀y
(
x+Sy = S(x+y)

)
axiome 6. ∀x x·0 = 0

axiome 7. ∀x ∀y
(
x·Sy = (x·y)+x

)
On convient généralement de noter “x < y” pour la formule “∃z z+ x = y”.

45. la notation φ[x0,x1,...,xn] signifie que les variables libres de φ sont parmis
x0, x1, . . . , xn.
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A.3 Les axiomes de Zermelo-Fraenkel

(1) Extensionnalité :

∀x ∀y
(
∀z (z ∈ x↔ z ∈ y)→ x = y

)
.

(2) Le schéma d’axiomes de compréhension :

∀z ∀w1 . . . ∀wn ∃y ∀x
(
x ∈ y ↔ (x ∈ z ∧ φ)

)
,

où φ := φ(x, z, w) est une formule dont toutes les variables libres fi-
gurent parmi x, z, w1, ..., wn.

(3) Paire :
∀x ∀y ∃z (x ∈ z ∧ y ∈ z).

(4) Union :
∀a ∃b∀x ∀y

(
(x ∈ y ∧ y ∈ a)→ x ∈ b

)
,

on note b =
⋃
a.

(5) Infini :
∃x
(
∃y y ∈ x ∧ ∀y (y ∈ x→ y ∪ {y} ∈ x)

)
.

(6) Parties :
∀x ∃y ∀z

(
∀u (u ∈ z → u ∈ x)→ z ∈ y

)
.

(7) Le schéma de remplacement :

∀A∀w1 . . . ∀wn
(
∀x (x ∈ A→ ∃!y φ)→ ∃Y ∀x

(
x ∈ A→ ∃y (y ∈ Y ∧φ)

))
,

où φ := φ(x, y,A,w) est une formule dont toutes les variables libres
figurent parmis x, y,A,w1, ..., wn, et où ∃!yφ est une abréviation de

∃y
(
φ(x, y,A,w) ∧ ∀z

(
φ(x, z,A,w)→ z = y

))
.

(8) Fondation :

∀x
(
∃y y ∈ x→ ∃y

(
y ∈ x ∧ ¬∃z (z ∈ x ∧ z ∈ y)

))
.

(9) Choix :

∀x ∃c∀z ∃y ∀u
(
z ∈ x→

(
(u ∈ z ∧ u ∈ c)→ u = y

))
.
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B Déduction naturelle et calcul des séquents

Déduction Naturelle

Axiome
ax

φ ⊢ φ

Règles logiques

Γ ⊢ φ Γ′ ⊢ ψ
∧i

Γ,Γ′ ⊢ φ ∧ ψ
Γ ⊢ φ ∧ ψ

∧eg

Γ ⊢ φ
Γ ⊢ φ ∧ ψ

∧ed
Γ ⊢ ψ

Γ ⊢ φ
∨ig

Γ ⊢ φ ∨ ψ
Γ ⊢ ψ

∨id
Γ ⊢ φ ∨ ψ

Γ ⊢ ψ ∨ φ Γ′, ψ ⊢ θ Γ′′, φ ⊢ θ
∨e

Γ,Γ′,Γ′′ ⊢ θ
Γ, φ ⊢ ψ

→ i
Γ ⊢ φ→ ψ

Γ ⊢ φ→ ψ Γ′ ⊢ φ
→ e

Γ,Γ′ ⊢ ψ
Γ, φ ⊢⊥

¬i
Γ ⊢ ¬φ

Γ ⊢ ¬φ Γ′ ⊢ φ
¬e

Γ,Γ′ ⊢⊥

Γ ⊢ φ[y/x]
1

∀i
Γ ⊢ ∀x φ

Γ ⊢ ∀x φ
∀e

Γ ⊢ φ[t/x]
2

Γ ⊢ φ[t/x]
2

∃i
Γ ⊢ ∃x φ

Γ ⊢ ∃x φ Γ′, φ[y/x] ⊢ ψ 3

∃e
Γ,Γ′ ⊢ ψ

= i

⊢ t = t 2
Γ ⊢ φ[t/x] Γ′ ⊢ t = u

= e

Γ,Γ′ ⊢ φ[u/x]

Règles structurelles
Γ ⊢ ψ

aff
Γ, φ ⊢ ψ

Γ, φ, φ ⊢ ψ
ctr

Γ, φ ⊢ ψ

Règles de l’absurdité intuitionniste et classique

Γ ⊢⊥
⊥ e

Γ ⊢ φ
Γ,¬φ ⊢⊥

⊥ c
Γ ⊢ φ

1. y n’a pas d’occurrence libre dans Γ, φ
2. t : un terme
3. y n’a pas d’occurrence libre dans Γ′, φ, ψ
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Calcul des Séquents

Axiomes
ax

φ ⊢ φ
⊥g

⊥ ⊢

Règles logiques
Γ, φ ⊢ ∆

∧g1

Γ, φ ∧ ψ ⊢ ∆

Γ, ψ ⊢ ∆
∧g2

Γ, φ ∧ ψ ⊢ ∆

Γ ⊢ φ,∆ Γ ⊢ ψ,∆
∧d

Γ ⊢ φ ∧ ψ,∆

Γ, φ ⊢ ∆ Γ, ψ ⊢ ∆
∨g

Γ, φ ∨ ψ ⊢ ∆

Γ ⊢ φ,∆
∨d1

Γ ⊢ φ ∨ ψ,∆
Γ ⊢ ψ,∆

∨d2

Γ ⊢ φ ∨ ψ,∆

Γ ⊢ φ,∆ Γ, ψ ⊢ ∆
→g

Γ, φ→ ψ ⊢ ∆

Γ, φ ⊢ ψ,∆
→d

Γ ⊢ φ→ ψ,∆

Γ ⊢ φ,∆
¬g

Γ,¬φ ⊢ ∆

Γ, φ ⊢ ∆
¬d

Γ ⊢ ¬φ,∆

Γ, φ[t/x] ⊢ ∆ 1
∀g

Γ,∀x φ ⊢ ∆

Γ ⊢ φ[y/x],∆
∀d

Γ ⊢ ∀x φ,∆ 2

Γ, φ[y/x] ⊢ ∆
∃g

Γ,∃x φ ⊢ ∆ 2

Γ ⊢ φ[t/x],∆
1

∃d

Γ ⊢ ∃x φ,∆

Γ, t = t ⊢ ∆
Ref

Γ ⊢ ∆

Γ, t = s, φ[s/x], φ[t/x] ⊢ ∆
Rep

Γ, s = t, φ[t/x] ⊢ ∆

Règles structurelles
Γ ⊢ ∆ affg

Γ, φ ⊢ ∆

Γ ⊢ ∆ affd

Γ ⊢ φ,∆

Γ, φ, φ ⊢ ∆
ctrg

Γ, φ ⊢ ∆

Γ ⊢ φ,φ,∆
ctrd

Γ ⊢ φ,∆

Règle de coupure

Γ ⊢ φ,∆ Γ′, φ ⊢ ∆′
cut

Γ,Γ′ ⊢ ∆,∆′

1. t : un terme
2. y n’a pas d’occurrence libre dans le séquent conclusion de la règle (dans Γ, ∃x φ ou

∀x φ, et ∆)
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C Compilation de certains résultats importants vus
dans les séries d’exercices

Theorème C.1 (Critère de Vaught). Soit T une théorie non contradictoire
du premier ordre sur un langage L dénombrable, et telle que T ne possède pas
de modèle fini. Si tous les modèles dénombrables de T sont élémentairement
équivalents, alors T est complète.

Corollaire C.2. Soit T une théorie du premier ordre sur un langage dé-
nombrable, et telle que T ne possède pas de modèle fini. Si tous les modèles
dénombrables de T sont isomorphes, alors T est complète.

Theorème C.3 (Compacité bis). Soit T une théorie. On a T |= Φ si et
seulement si il existe un sous-ensemble fini T0 de T tels que T0 |= Φ.

Proposition C.4. Le théorème de compacité et le théorème de compacité
bis sont équivalents.

Definition C.5 (Axiomatisabilité). Soient L un langage égalitaire et C une
classe de L -structures. La classe C est dite axiomatisable (resp. finiment
axiomatisable) s’il existe une théorie TC (resp. une théorie finie TC) de L
telle que, pour toute L -structure M , on ait :

M ∈ C ⇔M |= TC .

Proposition C.6. Soient L un langage égalitaire et C une classe de L -
structures axiomatisée par la théorie TC . Alors C est finiment axiomatisable
si et seulement si il existe un sous-ensemble fini T de TC telle que T axio-
matise C.
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