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“La logique est le dernier refuge des gens sans imagination.”
Oscar Wilde !

1 Introduction

Le but de ce cours est d’introduire et de démontrer le théoréme de com-
plétude de la logique de premier ordre qui peut s’énoncer ainsi :

'k ¢ si et seulement si I' = .

Il exprime I'équivalence entre le fait que la formule ¢ est prouvable par I’en-
semble d’hypothéses I' et le fait que ¢ découle sémantiquement de I'. Pour
faire cela, il faudra formaliser certaines notions et réaliser la différentiation
entre syntaxe et sémantique. D’un coté on a une notion de conséquence
“syntaxique” (la preuve) dont on verra qu’elle est elle-méme un objet mathé-
matique particulier (en particulier un arbre fini) et de 'autre une notion de
conséquence sémantique, qui repose sur le fait de regarder les modéles dans
lesquels les hypothéses sont vérifiées et s’assurer que dans chacun d’eux la
conséquence (la formule) 'est également.
Ainsi I’énoncé
I'F ¢ si et seulement si I' = .
pourra se comprendre comme

il existe une preuve de ¢ a partir des hypothéses I’
si et seulement si
p est vraie dans tous les modéles qui satisfont les hypotheéses T'.

Bien siir, I’énoncé I' ¥ ¢ si et seulement si I' = ¢ est équivalent au pré-
cédent. 11 se lit

il n’existe pas de preuve de ¢ & partir des hypothéses I’
st et seulement si
il existe un modeéle qui satisfait les hypothéses I' mais ne satisfait pas .

Un tel modeéle s’appelle un contre-exemple. Gréce a ce théoréme de com-
plétude, prouver que ’on ne peut pas prouver revient a produire un contre-
exemple.

1. “Consistency is the Last Refuge of the Unimaginative.” Oscar Wilde "The Relation
of Dress to Art” in Pall Mall Gazette (2/28/1885).



8 2 PREAMBULE

2 Préambule

Dans ce cours, nous ne nous intéresserons pas a la théorie axiomatique
des ensembles (c’est le sujet d’un cours & part entiére). Toutefois, nous pré-
sentons un premier apergu de ce que ’on pourrait appeler la théorie naive des
ensembles en explicitant qu’un ensemble est une collection d’objets dont on
peut montrer I'existence en utilisant les propriétés (axiomes) suivant(e)s?.
Le but de cette présentation naive est de s’accorder sur certaines notions

fondamentales qui vont revenir tout le semestre.
Axiome 1 (Existence). Il existe un ensemble.

Axiome 2 (Extensionnalité). Soit x et y deux ensembles, alors z = y <
Vz(z ez &z €y).

Axiome 3 (Schéma d’axiomes de compréhension). Si A est un ensemble et
P est une propriété exprimable dans le langage de la théorie des ensembles,
alors 'ensemble {x € A | P(x)} existe.

A noter que 'on parle de schéma d’axiomes plutot que d’axiome car en
fait il y en a une infinité : il y en a autant qu’il y a de propriété a considérer.
Pour que cette remarque fasse sens, il faudrait définir proprement ce qu’est
une propriété. Mais cela requiert la logique du premier ordre que l'on est
précisément en train d’introduire. Donc, chaque chose en son temps!
Paradoxe de Russell : Attention, toute collection d’objets n’est pas un
ensemble. Par exemple, la collection E de tous les ensembles n’est pas un
ensemble. Pour voir cela, procédons par 'absurde et supposons que cette
collection F soit effectivement un ensemble. Par ’axiome de compréhension,
on peut alors former I'’ensemble des ensembles qui ne s’appartiennent pas,
c’est-a-dire ’ensemble A = {z € E | = € x}. Puisque A est un ensemble,
A € E. On peut donc se demander si A € A. Si A € A, par définition de
A cela signifie que A € A, une contradiction. Or si A &€ A, cela signifie, a
nouveau par définition de A, que A € A, encore une contradiction. D’ot1 I’'on
en déduit que la collection E de tous les ensembles n’est pas un ensemble.

Axiome 4 (Infini). N est un ensemble.

Axiome 5 (Paire). Si x et y sont des ensembles, alors il existe un ensemble

{z,y}.

Soient x et y des ensembles. On peut définir le couple (ou paire ordonnée)
(x,y) comme ’ensemble :

(.’L‘, y) - {{1’}, {x,y}}-

2. Noter que la plupart de ces axiomes semblent totalement naturel & tout mathéma-
ticien.




Il s’agit 14 d’une représentation comme une autre. Dans la notion de couple il
est primordial de distinguer le premier élément du second. On vérifie aisément
que pour tous ensembles z,y, on a (z,y) = (2/,y’) si et seulement si a la fois
r=1aety=1y.

Axiome 6 (Union, intersection). Soit {A;};c; une famille d’ensembles indi-
cée par un ensemble d’indices I.

(1) Il existe I'union des éléments de cette famille, notée | J;; A;, est définie
par
Udi={z:3jel ze4;}
el
(2) Il existe l'intersection des éléments de cette famille, notée [, A;, est
définie par
mAi:{:L’:VjGI x € Aj}.

iel

Axiome 7 (Ensemble des parties). Soit A un ensemble. Il existe Z(A)
I’ensemble des parties de A, défini par :

PA)={B:Vz (reB—zcA)}
A T’aide des axiomes précédents, on peut montrer Uexistence du

Definition 2.1 (Produit cartésien). Soient z et y deux ensembles. On définit
le produit cartésien de x avec y, noté x X y, qui est par définition I’ensemble

zxy={(u,v):uecxvey}
Axiome 8 (Fondation). Il n’existe pas de suite infinie d’ensembles vérifiant
ToDT12D2X222T3D ... 2T DTyl D oven..

En particulier, pour tout ensemble x on n’a jamais x € z.

Axiome 9 (Remplacement). Pour tout ensemble A et toute propriété P(z,y)
— écrite dans le langage de la théorie des ensembles — qui vérifie que, pour tout
x € Asi P(z,y) et P(x,2) alors y = 23, la collection {y | 3z € A P(x,y)}
est un ensemble.

Axiome 10 (Choix). Soit I un ensemble (d’indices) et pour chaque ¢ € T
un ensemble non vide A;. Il existe une fonction (de choix) C : I — (J;o; A
telle que pour chaque i € I, C(i) € A;.

3. La propriété P se comporte comme une fonction.
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Definition 2.2 (Fonction, application). Une fonction (partielle) f de do-
maine A et de codomaine B, notée f : A — B, est un sous-ensemble de
A x B vérifiant la propriété suivante :

Vee AVye BVy € B (((:):,y)ef/\(x,y’)ef) —>y:y’>.

Une application ou fonction (totale) est une fonction partielle vérifiant de
plus la condition qui la rend totale :

Ve e AJy € B (z,y) € f.

Lorsqu’on parlera d’une fonction, on entendra toujours par la “fonction
totale”. Nous préciserons les rares cas otl nous parlerons de fonctions par-
tielles.

Notation 2.3. On notera souvent f(z) =y pour (z,y) € f.
Definition 2.4 (Injection, surjection, bijection). Une fonction f: A — B
est dite

(1) injective si Va, 2’ € A, (f(z) = f(2') =z =2);

(2) surjective siVy € B, (3z (z € AN f(z) =y));

(3) bijective si elle est injective et surjective.
Definition 2.5 (Infini, dénombrable, indénombrable). Soit A un ensemble.
Il est dit

(1) infini* il existe une injection i : N — A;

(2) dénombrable s’il existe une injection i : A — N

(3) non dénombrable sl est infini et non dénombrable.

Definition 2.6 (Equipotence). Deux ensembles A et B sont dits équipotents
s’il existe une bijection de A vers B.

Notation 2.7. On notera
e A= B le fait que A et B sont équipotents;
e A < B le fait qu’il existe une injection de A dans B
e A Bpour AS Bet B Z A (On pourra également utiliser A < B.)

Le Théoréme 2.9 ci-dessous dit précisément que A =~ B est vérifié exac-
tement lorsque a la fois A < B et B < A le sont.

Deux ensembles finis sont équipotents précisément lorsqu’ils ont le méme
nombre d’éléments. A priori, il semble que pour les ensembles infinis ils soient
tous équipotents entre eux. Il n’en est rien!

4. On pourra préférer a cette définition celle qui dit qu'un ensemble est infini s’il existe
une injection de cet ensemble sur I'un de ses sous-ensembles propres. Cette définition est
meilleure en ce qu’elle ne procure pas un “bon ordre” des éléments de A.
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Theoréme 2.8 (Cantor). Soit A un ensemble. Il n'existe pas de surjection
de A sur Z(A).

Démonstration. On procéde par I’absurde en supposant qu’il existe une sur-
jection f : A — Z(A) et l'on construit :

B={a€A: a¢ f(a)}

Puisque f est surjective il existe b € A tel que f(b) = B. On obtient alors la
contradiction suivante : b € B si et seulement si b ¢ B.
O

Theoréme 2.9 (Cantor-Schroder-Bernstein). Soient A et B deux ensembles.

Sl existe deuz injections i : A =L B et j : B 22 A, alors il existe une
bij.

bijection h : A 2 B,

Démonstration. Remarquer tout d’abord que le théoréme est trivial pour
A = B. Si A # B, on procéde en deux temps. On prouve tout d’abord un
cas particulier puis I'on prouve que le cas général se rameéne trés facilement
au cas particulier.

Cas particulier, B C A :

On suppose tout d’abord que B est inclus dans A. On construit ensuite
par récurrence :

L CO =AN B,
i n+1 :Z[Cn]a

On définit alors h : A — B comme étant l'identité sur A ~. C et i sur C.
h est bien & valeurs dans B puisque :

e si un élément appartient a A ~. C, il n’appartient pas & Cy donc il

appartient a B ;

e ¢ est a valeurs dans B.
h est injective puisque l'identité sur A . C' est injective et i sur C est égale-
ment une fonction injective de C sur C. Par ailleurs h est également surjective
car pour tout y dans B :

e siy & C,alors h(y) = y;

e siy € C, alors il existe un entier n tel que y € C,, de plus n est non
nul car y € B et Cp = A\ B. Par conséquent, il existe x € Cp,_1 tel
que i(z) = y.
Cas général :
On considére alors B’ = j[B] et par le cas précédent on obtient une
bijection h : A +— B’. Comme j : B <— B’ est bijective, il ressort que
j~Yoh: A<+— B est également bijective. O



12 2 PREAMBULE

Definition 2.10 (Suite finie). Soit A un ensemble non vide, et n un entier.
On note par A™ ensemble des suites finies® s = (s(0),s(1),...,s(n — 1)) =
(s0,81,---,8n—1) de longueur n sur A, on note long(s) = n. En particulier,
AY = {e}, ot ¢ désigne la suite vide. Si s est de longueur n, alors pour tout
entier m inférieur & n on peut définir la restriction de s de longueur m,
désignée par s|m, comme étant la sous-suite (so, ..., Sm—1) de s.

Si s et t sont deux suites finies sur A, on dit que s est un segment initial
(ou encore préfize) de t, ou que t est une extension de s, noté s C ¢, s’il
existe un entier n < long(t) tel que t|n = s.

On note A<¥ (ou A* pour les informaticiens) I'ensemble J, .y A™ de
toutes les suites finies sur A.

Soient s € A" et u € A™, la concaténation de s et u est la suite

SU= (805 Sn—1,UQys -+, Un—1)
de A™™. On note s°a au lieu de s"(a) si (a) € AL

Definition 2.11 (Arbre, arbre de hauteur finie). Un arbre sur un ensemble
A est un sous-ensemble T' de A<% clos par préfixes, c’est a dire tel que pour
tous t et s dans A<Y, si t appartient & T et que s est un segment initial de
t, alors s appartient aussi a 7.

Les éléments d’un arbre sont appelés ses neuds. Si s est un nceud de T,
les fils du noeud s sont les neeuds de la forme s”a € T' pour un certain a € A.

Les nceuds de T qui n’admettent pas d’extension propre dans T sont
appelés les feuilles de T.

Un arbre T' C A=Y est dit de hauteur finie s'il existe un naturel n tel que
T C AS" = Ujgn AJ . Le plus petit n tel que T C AS™ est appelé la hauteur
de T

Si T est de hauteur finie, une branche de T est une suite finie de nceuds
(ng,n1,...,nk) telle que ng est la suite vide, pour chaque i < k n;+1 est un
fils de n;, et ni est une feuille. La hauteur de T' coincide avec la longueur
maximum des branches de T

Nous allons généralement considérer des arbres comme celui-ci :
Q \%
P P
Cet arbre n’est pas & proprement parler un arbre sur un ensemble au sens

de la Définition 2.11. Nous les voyons comme des arbres sur lesquels on est
venu apposer des étiquettes :

5. Nous verrons plus tard une notion bien plus générale de suite, les suites transfinies
— voir Définition 7.29.
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Definition 2.12. Un arbre étiqueté est un couple (T, j) ou T est un arbre
sur un certain ensemble A et j : T" — E est une fonction de T" vers un certain
ensemble d’étiquettes F.

Par abus de terminologie, nous appellerons souvent « arbre » ce qui serait
plus juste d’appeler un « arbre étiqueté ». De plus, en décrivant un arbre
étiqueté (77, ) on omettra toujours la description de I'arbre T" et de I’ensemble
sur lequel celui-ci est construit. Pour comprendre que cela ne pose pas de
problémes, reprenons '’exemple de I'arbre

Q v
P P
Formellement, nous pouvons le voir comme ’arbre étiqueté (.5, 7) ou S

est 'arbre sur 2 = {0, 1} donné par S = {e, (0), (1), (1,0),(1,1)} et que 'on
se représent comme suit

(0) (1)
\

(1,0) (1,1)

/N
/

et ou l'étiquetage j a image dans 'ensemble d’étiquettes £ = {—,Q,V, P}
est décrit par

j:S—FE
€+
(0) — Q
(1) — Vv
(1,0) — P
(1,1) — P

Toutefois, la description de S et de j ne sont pas nécessaires et seront en
général omises.
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3 Syntaxe
Dans cette partie, nous allons définir ce que sont le langage, les termes,
puis les formules ainsi que la substitution.

Definition 3.1 (Arité). L’arité d'une fonction f: Ax Ax...x A — B

n

est Pentier n.

Exemple 3.2. e [’addition sur les entiers est une fonction d’arité 2.
e L’exponentielle sur les réels et une fonction d’arité 1.

3.1 Langage, termes et formules

Definition 3.3 (Langage). Un langage du calcul des prédicats du premier
ordre est composé :

(i) D’un ensemble de variables : V = {vg,v1,v2,...}% (en particulier, 'en-
semble des variables est dénombrable).

De connecteurs logiques : {—, A, V, —, <> }.

De quantificateurs : {V, 3}.

De parenthéses.

D’un ensembles de symboles de constantes : {cg,cq,...}.

—~
—
< : :
~— — ~— ~— ~—

D’un ensemble de symboles de fonctions d’arité quelconque (mais fi-
nie) : { (gno), f1(n1)7 .. } (n; représente 'arité de la i®™° fonction).

(vii) Un ensemble de symboles de relations d’arité quelconque (mais finie) :
(R, ™.},

Remarque 3.4. On formule les remarques suivantes :

e Les points (i) a (iv) de la définition précédente sont le plus souvent
sous-entendus et non spécifiés.

e Les ensembles des points (v) a (vii) constitue la signature du lan-
gage. Celle-ci peut aussi bien étre réduite au minimum qu’étre non
dénombrable.

e Les symboles de constantes peuvent également étre considérés comme
des symboles de fonctions d’arité 0.

e Lorsque la relation d’égalité fait partie du langage, on parle alors d’un
langage égalitaire ou d’un langage avec égalité.

Exemple 3.5. On pourra prendre comme langage de la théorie des groupes :
Zgrp = {f(2)7 ‘9(1)3 C} .

Ces symboles correspondent respectivement, a ’opération interne (I’addition
de deux éléments), I'inverse (d’un élément) et 1’élément neutre.

6. par la suite on se permettra d’utiliser x,y,z, ou toute autre lettre qui nous semblera
commode pour dénoter des variables.
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Definition 3.6 (Termes). Soit .Z un langage du premier ordre quelconque.
L’ensemble des termes de £, noté 7 (%), est le plus petit ensemble véri-
fiant :
e les variables et les constantes de £ sont dans 7 (%) ;
e pour toute fonction n-aire f( de £ et pour tous termes t1,. .., tp,
f(t1,...,t,) est un terme.

Remarque 3.7. L’ensemble 7 (.Z) est un ensemble de mots finis sur l'alpha-
bet .Z. Lorsque, dans la définition ci-dessus, on écrit f(¢1,...,t,), on parle
de cette succession de symboles sans lui attribuer un sens.

Definition 3.8 (Hauteur d’un terme). La hauteur d’un terme est définie de
la maniére suivante :
e les variables et les constantes sont de hauteur 0 ;

® sity,...,t, sont des termes de hauteur hy,..., h, et f un symbole de
fonction n-aire, alors la hauteur du terme f(¢1,...,t,) est 1 4+max{h; :
1<i<n}.

Notation 3.9. Pour indiquer qu’un terme t est de hauteur h, on notera
souvent ht(t) = h.

Definition 3.10 (Formule atomique). Soit .£ un langage du premier ordre.
Une formule atomique est une suite (finie) de symboles de £ composée :

e d’une relation d’arité quelconque n ;

e d’une parenthése ouvrante ;

e de n termes séparés par des virgules;

e d’une parenthése fermante.
On note &7 (.Z) 'ensemble des formules atomiques de .Z.

FEzemple 3.11. Voici des exemples de formules atomiques, si .Z = {P(l), R® f(), c(o)} :

P(c), P(f(x)), R(e,f(c), R(f(f(c)),x), P(f(f(f(¥)))).

Definition 3.12 (Ensemble des formules). L’ensemble des formules d'un
langage du premier ordre .Z est le plus petit ensemble X C £* vérifiant :
e Toutes les formules atomiques sont dans X.
e Si p et ¢ sont dans X, alors

—p, (P AD), (P V), (p = 9) et (p <)

sont dans X.
e Soit x une variable et ¢ € X, alors Va ¢ et 3z ¢ sont dans X.
L’ensemble des formules de £ est noté .#(.Z).
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3.2 Arbre de décomposition d’une formule

Definition 3.13 (Arbre de décomposition). Soit ¢ une formule du premier
ordre. L’arbre de décomposition de ¢, noté T, est défini par induction :

* Si @ est une formule atomique :

2
* Si ¢ est de la forme — :

—

Ty
* Sip est de la forme Qz ¥, ou Q € {3,V} :
Qx

Ty

* Si ¢ est de la forme g * p1, oU * € {A,V,—, <} :

*
TSOO TAO1

Definition 3.14 (Hauteur d’une formule). Il s’agit de la longueur de la (les)
plus longue(s) branche(s) de son arbre de décomposition.

Definition 3.15 (Sous-formule). Une sous-formule 1) d’une formule ¢ est
une sous-suite consécutive de symboles de ¢ qui est une formule.

Proposition 3.16. Il y a une correspondance bijective entre les sous-formules
d’une formule et les noeuds de son arbre de décomposition.

3.3 Variables libres et variables liées

Definition 3.17 (Occurrence liée). Dans une formule ¢, une occurrence de
la variable z (dans une feuille de 'arbre de décomposition de ) est liée
si en remontant de cette feuille vers la racine on rencontre un nceud de la
forme Qx avec Q € {V,3}. Une occurrence liée de la variable = est quantifiée
universellement dans ¢ si le premier nceud de la forme @z, en remontant
de la feuille ot se trouve 'occurence de x considérée, est Vz, sinon elle est
quantifiée existentiellement.

Definition 3.18 (Occurrence libre). L’occurrence d’une variable x est dite
libre si elle n’est pas liée.



3.4 Formule close et cloture universelle 17

Definition 3.19 (Variable libre, variable liée). Une variable est libre dans
une formule si elle posséde au moins une occurrence libre. Dans le cas
contraire, elle est dite liée.

3.4 Formule close et cloture universelle

Definition 3.20 (Formule close). Une formule est dite close si elle ne pos-
séde aucune variable libre.

Definition 3.21 (Cloture universelle). Soit ¢ une formule dont les variables
libres sont parmi x1,...,x,. La cléture universelle de ¢ est :

Vxy...Vayp.

3.5 Substitution

Definition 3.22 (Substitution dans les termes). Soient xz1,...,z) des va-
riables deux-d-deux distinctes et t,tq,...,t; des termes. Le résultat de la
substitution des termes %1, ..., {; aux variables x1, ...,z dans le terme ¢ est
noté t . Plus précisément :

RYEIRSTYE P

(i) Siht(t) =0,
(a) sit=uxi€{l,...,k} alors t[tl/:cl,m,tk/xk] =1;;

(b) sit & {x1,..., 21} alors t[tl/xl,...,tk/xk] =t.

(ii) Si ht(t) > 0, alors par définition il existe un entier n et des termes
UL, . .., Uy tels que t = f(uq,...,uy,) et on définit

t[tl/xl ,...,tk/ﬁk} =f (ul [t1/m1 ,...,tk/xk] poeeo Un [t1/x1 ,...,tk/xk]> ’

Definition 3.23 (Substitution dans les formules). Soient ¢ une formule,

Z1,...,T, des variables deux-a-deux distinctes et t¢1,...,t; des termes. Le

résultat de la substitution des termes tq,...,t; aux occurrences libres des

variables x1, ..., x; dans la formule ¢ est noté . Plus préci-
) 2 90[751/1,1 ,_”’tk/xk] p

sément :
(i) Siht(yp) =0, alors ¢ est une formule atomique et il existe un entier n
et des termes uy, ..., u, tels que ¢ = R(uy,...,u,). On définit alors

S0[751/561 ,...,tk/xk] =k <u1 [tl/xl ,...,tk/xk] rreeoUn {tl/zl ,Uc/ﬂtd) ’
(ii) Si ht(p) > 0, alors
(a) si = -1, alors (p[tl/xl tifaoy] T —'w[tl/wl ity ]
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(b) si ¢ = (Yo x1)1) avec x € {A,V,—, <>}, alors

Plt1 [y i fay] <¢’0 [t1 /2y it fi ] * VL ,...,tk/xk]> )

(c) si o= (Qz ) avec Q € {V, 3}, alors plusieurs cas se présentent :
o six ¢ {xy,...,x} alors

(’O[tl/xl ,,,,,tk/xk] = (QHT w[tl/xl,...,tk/xk]) ;

e six=ux; pour 1 <i<n alors
= T , , .
(p[tl/l‘l ""7tk/$k] (Q w[tl/xl veobizt iy Vi1 f g tk/%])

En général, Pt /] dit la méme chose au sujet de ce qui est représenté par
t que @ dit au sujet de ce qui est représenté par x. Toutefois, ce n’est pas
toujours le cas, comme il est possible de s’en rendre compte en considérant
par exemple dy x = 2-y pour @, x pour z et y+1 pour ¢. La difficulté provient
du fait que 'occurrence de y dans y + 1 est devenue liée aprés substitution.
Nous souhaitons exclure ce genre de cas.

Definition 3.24. Nous disons qu’un terme ¢ est substituable & la variable x
dans la formule ¢, si pour toute variable y apparaissant dans ¢ il n’y a pas de
sous-formule de ¢ de la forme Qyi avec @ € {V,3} dans laquelle = possede
une occurrence libre.

Remarquons que t est toujours substituable a x dans ¢ si t ne continent
pas de variables ou si ¢ ne contient pas de quantificateurs. Nous faisons la
convention suivante :

Convention 3.25. Chaque fois que nous écrivons w[tl/x1,~-~,tk/xk] il est

sous-entendu que t; est substituable & x; dans @ pour tout ¢ = 1,...,k. Si
tel n’est pas le cas, il est sous-entendu que nous avons préalablement sub-
stitué aux occurrences liées des variables apparaissant dans ¢ des variables
n’apparaissant pas dans ti,--- ,tg.
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4 Sémantique

Dans cette partie, nous allons donner un sens, interpréter la syntaxe.

4.1 Reéalisation d’un langage

Definition 4.1 (.Z-réalisation). Soit .¥ = {ci,f;nj),R,(gn’“)} un langage du
premier ordre. Une .Z-réalisation (ou £ -structure) est une suite

A= (Mo (f) (R )

ot 'on a :
(i) M = |.#| est un ensemble non vide appelé domaine de base ;
(ii) ¢; est un élément du domaine pour chaque symbole de constante ¢;
de Z;
(iii) (f](n]))/// est une fonction (f;nj))‘//f : M™ — M, pour tout symbole
de fonction f](nj ) de & ;
iv) (R"™)) est une relation (R{™))# C M™ pour tout symbole de rela-
k k
tion Rkn’“) dans .Z;

Exemple 4.2. Soit £ = {c, @, R(Q)}. Voici deux .Z-réalisations :
(i) M = (N, f7 Ry ot c? =0, f7 =+py et RY = <y;
(il) A = <Z, CJV,fJV,RJ’/> oit ¢ =3, f est définie par f (a,b) =0
pour tout a,b € Z et R = (.

Remarque 4.3. On rappelle que les ensembles de constantes, fonctions et
relation peuvent étre indénombrable, malgré la notation...

Definition 4.4 (Langage égalitaire). On dit qu’un langage du premier ordre
Z est égalitaire lorsque le symbole d’égalité ~ appartient a .Z et que l'on
convient que l'interprétation de ~ dans toute Z-réalisation .# est la diago-
nale de |.Z|, c’est a dire,

o — {(m,m):me ||}

4.2 Evaluation d’une formule dans une structure

Definition 4.5. Soit . un langage du premier ordre, .# une .Z-structure,
ai,...,an € || et t un terme de £ dont les variables sont parmi 1, . .., Zy.

On définit ¢4 31/T1--0n/Tn ¢ |.#|, Pévaluation de t dans la Z-structure
M avec interprétation des variables x1, ..., x, par ai, ..., a, respectivement,
par induction sur la hauteur de ¢ :

* Sit:xi, t‘//[* = Q;.
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* Sit:C, t{///* :C‘%.
ou .Z_ est un raccourci pour 4,41 /gy ,...,0n [z, .

Definition 4.6. Soit . un langage du premier ordre, .# une .Z-structure,
© une formule dont les variables libres sont parmi x1,...,Z, et a1,...,a, €
|.#]. On note

‘//7(11/1'17"'7%"/3571 ’:90

le fait que ¢ est satisfaite dans .# lorsque les variables z1, ..., z, sont res-
pectivement interprétées par aq,...,ay, ce qui se définit par induction sur
la hauteur de ¢, ht(p) :

x Sip= R(tl, e ,tk), alors A ,01 [y ,...,0n /2, [= ¢ si et seulement si
*x Si =, alors
M s M,

x Si ¢ = (poV 1), alors

M_ =g ssi (M- = o ou M- = p1).
x Si = (po A p1), alors

M- = pssi (M=o et M= pr).
x Sip = (po — p1), alors

M- = @ ssi (M- po ou M- = ).

x S = (pg <> ¢1), alors

M_ = ssi ((///_ = o et A )z(pl) ou (///_ K= o et - bécpl)).
x Sip=3dx ¢, ouxd{xr,...,z,}, alors

M— = ¢ ssi (il existe a € || tel que A, 01 [z ..., 00 [z, 0 /2 E ).
x Sip=Va,onx¢{r,...,x,}, alors

M = ¢ ssi (pour tout a € [ A| ona M, a1 [z ,...,00 [z, 0 )z EV).
% Sip=73x; Y, onie{l,...,n}, alors

M=o
ssi il existe a € |.Z] tel que

M0 gy 0 [ 0 a0 [ag O a1
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* Sip=Va; ¢,onie{l,...,n}, alors

M=o

ssi pour tout a € |.#] on a
%7a1/x1 7"'7ai*1/x7j_1 7a/xi’ai+1/xi+1 )"'Jan/xn ):w

Definition 4.7. Soit ¢ et ¢ des formules closes.

(i) On dit que ¢ est universellement valide si pour toute Z-structure .#,

ona /A = .

(ii) On dit que ¢ est contradictoire (ou inconsistante) si pour toute .Z-
structure .#, on a A = .

(iii) On dit que ¢ est équivalente & 1, ce que I'on note ¢ = 1, si pour toute

ZL-structure A4 on a M = (¢ <> ).

Proposition 4.8. e Soient o, 1,4 des formules closes telles que
po=¢ etp =1". On a alors :

()
(i) (

) (b AY) = (@' AY);

) (=)= (¢ =¥,
(v) (p ) = (¢ < ).

e Soit ¢ une formule dont les variables libres sont incluses dans {x}.
On a alors :

(i) "3z o =V —p;
(it) =V ¢ =3z .
o Soit ¢ une formule telle que y n’apparait pas dans p. on a alors :
(1) Iz =Ty /a5
(1) Yo o =YY oy/p-
Proposition 4.9 (Propriétés des connecteurs). Soient ¢,1, 6 des formules

closes.
e Idempotence de la conjonction et de la disjonction :

p=(pNp)=(pVe).

e Commutativité de A, V, > :
(i) (pAY) =W A);

(it) (pVp)=(Ve);

(iti) (p ) = (Y < ).

e Associativité de A, V, <> :

Six € {\V, 0}, ((px1) x0) = (o x (¢ *0)).
e Distributivité entre conjonction et disjonction :
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(i) (pV (A0 = ((pVE) A (V)
(i) (o A (V) = (p AV)V (2 A D)) ;
e Lois de De Morgan :
(i) ~(p V) = (o A ) ;
(i) (¢ A ) = (= V ).
e Contraposée :
(o =) = (¢ = —p).

[ —|—|g05(p.
° (p =)= (mp V).

Remarque 4.10. Les parenthéses ne doivent pas étre omises ou déplacées dans
certains cas. En effet, si ¢ et ¢ sont deux formules avec x n’apparaissant pas

dans 1,
(Fz o =) #Fz (¢ = ¥).

Comme le montre le cas particulier ¢ :="x = ¢” et 9 :="—c = ¢”, puisque
dans toute structure avec au moins deux éléments : (3x ¢ — 1) est fausse
alors que 3z (p — 1) est vraie.

4.3 Théories et conséquence sémantique

Definition 4.11 (Théorie). Une théorie de £ est un ensemble de formules
closes de .Z.

e On dit quune .Z-structure .# est modéle d’une théorie 7 (noté
A = T) si chaque formule de 7 est satisfaite dans .Z.

e Une théorie est dite consistante (ou satisfaisable) si elle posséde un
modéle. Elle est dite inconsistante si elle n’en posséde aucun.

e Une théorie est dite finiment consistante si chacune de ses sous
parties finies posséde un modéle.

e Une formule est dite universellement valide si sa cloture universelle
¢ est satisfaite dans tous modeéles. Autrement dit si {-p} est une
théorie inconsistante.

Definition 4.12. 7 et .7’ sont deux .Z-théories équivalentes si et seulement
si elles sont satisfaites dans les mémes ¥-structures.

On notera 7 = 7' le fait qu’elles soient équivalentes.

Definition 4.13 (Conséquence sémantique). Une théorie .7 de £ a pour
conséquence sémantique la formule close ¢ de & si toute Z-structure satis-
faisant 7 satisfait également .
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Dans le cas ou ¢ n’est pas close, on dira que J a pour conséquence
sémantique ¢ si Z a pour conséquence sémantique la cloture universelle de

@.

On notera 7 = ¢ le fait que ¢ est conséquence sémantique de 7 et
T W= ¢ sa négation.

Remarque 4.14.

Si .7 est satisfaisable et .7’ C .7, alors .7 est également satisfaisable
car tout modéle de .7 est également un modéle de .7,

Si 7 est satisfaisable, alors toute théorie finie 7' C 7 est satisfai-
sable.

T = pssi T U{—p} est inconsistante.

Si .7’ est inconsistante et .7’ C .7, alors .7 est inconsistante.

Si 7' pet 7' C T, alors T E .

TU{ptE ¢¥ssi T E (¢ ).

T est inconsistante ssi pour toute formule ¢, T = .

T est inconsistante ssi il existe une contradiction o, telle que 7 = .
¢ est universellement valide ssi ) = ¢.

¢ est universellement valide ssi pour toute théorie 7, T = .

En remplacant dans .7 chaque formule par une formule logiquement
équivalente, on obtient une théorie équivalente & .7 .

{®0, ¥1,--., @k} est une théorie inconsistante ssi la formule

(_‘SDO Vopr V...V _‘SDk:)
est universellement valide.

{¢0, 1, wr} et {to, ¥1,..., ¥y} sont deux théories équivalentes
si et seulement si
<(g00 ANo1 Ao ANpg) < (Yo AL Ao A wn)> est universellement valide

si et seulement si
(o NP1 A ... Npg) = (o A1 Ao ANby)

4.4 Jeu d’évaluation d’une formule

Dans cette section, on va donner une définition alternative de I’évaluation
d’une formule, en utilisant la théorie des jeux. Pour commencer, quelques
mots sur la théorie des jeux.

4.4.1

Théorie des jeux

Nous allons considérer des jeux a deux joueurs a information parfaite un

jeu :
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e opposant deux joueurs;

e dont le déroulement est séquentiel 7 ;

e dont tous les éléments sont connus par chacun des deux joueurs a tout
moment du déroulement (jeu & information compléte) ;

e ol le hasard n’intervient pas pendant le déroulement du jeu.

Ezemples 4.15. (i) Le jeux d’échec est un jeu de ce type.

(ii) Le poker n’est pas de ce type, parce qu’il oppose plus que deux joueurs,
et que l'information n’est pas compléte (ni la main des autres joueurs
ni le contenu de la pioche n’est connu).

(iii) Le dilemme du prisonnier®

jouent simultanément.

n’est pas de ce type parce que les joueurs

Definition 4.16 (Jeu en temps fini). Un jeu est dit en temps fini s'il existe
un naturel n tel que toute partie se déroule en au plus n coups.

Exemple 4.17. Le jeu d’échec est un jeu en temps fini car une régle indique
que si 50 coups sont joués sans prise ni mouvement de pion, alors chacun des
joueurs peut demander que la partie soit déclarée nulle.

Formellement, nous faisons les définitions suivantes.

Definition 4.18 (Arbre de jeu). Un arbre de jeu est un arbre de hauteur
finie étiqueté par l'ensemble {1,2}, ou 1 et 2 sont des noms pour nos deux
joueurs. En symboles, c’est un couple (T, j) o T est un arbre de hauteur
finie sur un ensemble A et j : T — {1,2} est une fonction qui associe les
neeuds de ’arbre a chacun de nos deux joueurs.

Le jeu a deux joueurs & information parfaite associé & un arbre de jeu
(T, j) peut alors étre décrit comme suit”. On pose un pion sur la racine de
T. Le déroulement du jeu est alors le suivant. On considére que le pion se
trouve sur un nceud N € T :

e si IV est une feuille et
o j(N) =1, le joueur 1 remporte la partie;
o j(IN) = 2, le joueur 2 remporte la partie;
e si NV n’est pas une feuille et
o j(N) =1, le joueur 1 déplace le pion sur I'un des fils du nceud N
de son choix;

7. un seul joueur a la fois.

8. Voici une bréve description du jeu. Deux prisonniers (complices d’un délit) sont
retenus dans des cellules séparées et ne peuvent communiquer. Si un des deux prisonniers
dénonce 'autre, il est remis en liberté alors que le second obtient la peine maximale (10
ans) ; si les deux se dénoncent entre eux, ils seront condamnés & une peine plus légére (5
ans) ; si les deux refusent de dénoncer, la peine sera minimale (6 mois). Le but de chaque
joueur est de minimiser sa propre peine.

9. Intuitivement, le déroulement d’une partie correspond a la production d’une branche
de arbre et j est la fonction qui indique le joueur dont c’est le tour.
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o j(N) =2, le joueur 2 déplace le pion sur I'un des fils du nceud N
de son choix;

Le jeu associé a un arbre de jeu de hauteur finie est un jeu en temps fini.

Definition 4.19 (Stratégie, stratégie gagnante). Une stratégie pour le joueur
1 dans le jeu associé & un arbre de jeu (7, 7) est un sous-ensemble o de T
(en fait, un arbre) tel que

(1) la racine de T appartient a o ;

(2) pour tout nceud N dans o qui n’est pas une feuille de T :
e si j(N) =1, alors un fils de N et un seul appartient a o ;
e si j(IV) = 2, alors tous les fils de N appartiennent a o.
On définit mutatis mutandis une stratégie pour le joueur 2. Une stratégie o
pour le joueur 1 est gagnante si pour toute feuille F' de o, on a j(F) = 1.
Une stratégie 7 pour le joueur 2 est gagnante si pour toute feuille £’ de 7 on
aj(F)=2.

Definition 4.20 (Arbre de jeu dual). Pour tout arbre de jeu T = (T, j), on
définit 1’arbre de jeu dual 7° comme 'arbre (T, j%) avec

§O(N) =1 si et seulement si j(N) = 2.

Le déroulement du jeu sur I'arbre dual & T est identique a celui sur 7 mais
le role des joueurs 1 et 2 sont inversés.

Theoréme 4.21. Soit (T, j) un arbre de jeu. Il existe une stratégie gagnante
pour un des deux joueurs.

Démonstration. Commengons par une définition. Le sous-jeu (T, jn) de
(T, j) correspondant au nceud N = (ay,...,a,) € T est défini par

Tn ={(50,---,5m) € A | (ag, .- an, 80,---,5m) € T},et

JN(S0y .-y 8m) = j(ag,...an,So,-..,Sm) pour tout (sg,...,Sm) € TnN.

En particulier (7%, jc) = (T, j) pour ¢ la suite vide, la racine de T'.

Nous montrons que pour chaque noeud N € T de 'arbre de jeu, un (seul)
des deux joueurs posséde une stratégie gagnante dans le sous-jeu (T, jn)
correspondant. Notons h la hauteur de T' et appelons hauteur d’'un ngeud
N = (ag,...,an) € T la longueur de la suite N, dans ce cas n + 1. Nous
deéfinissons g : T — {1, 2} par induction inverse la hauteur des nceuds de T’
de sorte que pour tout N € T et i € {1,2}

le joueur ¢ posséde

N) =i ssi '
9N =1 sSE e stratégie gagnante dans (T, jy).

(1)

Comme h € N est la hauteur de T, tous les noeuds de hauteur h sont des
feuilles de T'. Le sous-jeu (1, jr) associé a une feuille consiste simplement a
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déclarer gagnant le joueur i pour lequel j(F') = 4. Il existe donc trivialement
une stratégie gagnante pour ce joueur-la et nous posons pour tout nceud N
de hauteur h, g(N) = j(N).

Dans le diagramme ci-dessous, nous avons représenté un arbre de jeu.

e
N
A NN

1 1

B
;

F1c. 1: Un arbre de jeu.

Nous entourons un nceud N d’un rectangle lorsque le joueur 1 posséde
une stratégie gagnante dans le sous-jeu correspondant (i.e. si g(N) = 1), nous
les entourons d’un cercle lorsque c’est le joueur 2 qui posséde un stratégie
gagnante dans le sous-jeu associé (i.e. si g(IN) = 2).

1

e

— N

N 2
o b e

FI1G. 2: Pour tout nceud N de hauteur h, g(N) = j(N).

Supposons pour 'étape de récurrence que nous avons défini g sur tous
les noeuds de hauteur strictement supérieure & k pour k < h de sorte que
pour tout nceud N de hauteur strictement supérieur k (1) soit satisfaite.
Considérons un nceud N = (ag,...,ax_1) de hauteur k. Plusieurs cas se
présente a nous :

1) N est une feuille, auquel cas on pose g(N) = j(N);
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2) N n’est pas une feuille, j(N) =1 et

a) ilexiste a € Atel que N' = (ag,...,ar_1,a) € T et g(N') = 1. Nous
posons alors g(IN) = 1. En effet, 1 posséde une stratégie gagnante
dans (T, jn). Celle-ci consiste & commencer par déplacer le pion
sur le nceud (a), puis & appliquer une stratégie gagnante qu’il
posséde dans (T, jn7).

b) pour tout a € A, si N' = (ag,...,ax_1,a) € T, alors g(N') = 2.
Nous posons alors g(IN) = 2. En effet, 2 a une stratégie gagnante
dans (T, jn). Celle-ci consiste laisser le joueur 1 déplacer le pion
de la racine vers un nceud (a) tel que N' = (ag,...,ax_1,a) € T
puis de suivre une stratégie gagnante qu’il posséde dans (T, jn7).

3) N n’est pas une feuille et j(N) = 2 : mutatis mutandis les deux cas
ci-dessus.

F1G. 3: Lorsque g est définie sur les noeuds de hauteur > k, nous pouvons la définir sur
les nceuds de hauteur k.

Puisque l'arbre de jeu est de hauteur finie, notre définition de g par
récurrence aboutit en un nombre fini d’étapes a la définition de ¢ en la
racine de T'. I’image par g de la racine de T est le joueur qui posséde une
stratégie gagnante dans T'. Supposons sans perte de généralité que g(0) = 1.
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FIG. 4: Une fois g totalement définie, 'image par g de la racine donne le vainqueur. Les
doubles fléches décrivent une stratégie gagnante pour le joueur 1.

En effet, nous pouvons définir par récurrence en nous basant sur g une
stratégie gagnante o pour le joueur 1. Nous définissons une stratégie o pour
le joueur 1 de sorte que g restreinte a o est constante égale a 1. Tout d’abord
posons oo = {()}. Supposons ensuite que nous ayons défini o, € ASF pour
0 < k < h de sorte que g restreinte & o est constante égale & 1. Nous
définissons alors o1 comme suit :

e pour tout N € o, N € 041
e pour tout N = (ag,...,a_1) € o qui n’est pas une feuille de T,

o si j(IN) = 1, alors nous avons par définition de g qu'il existe a € A
tel que N’ = (ag...,an,a) € T et g(N’') = 1. Nous choisissons
alors un tel a et pour lequel nous posons N’ = (ag...,an,a) €
Ok+1)

o si j(N) = 2, alors pour tout a € A tel que N’ = (ag, ...,ax_1,a) €
T nous posons N’ € op1.

Nous posons finalement o = oy,. Il est clair que ¢ ainsi définie est une stra-
tégie pour le joueur 1. En outre, tout feuille de o est une feuille de T'. Par
ailleurs, g restreinte a o et constante égale & 1 et par définition pour toute
feuille F' de T', nous avons j(F') = g(F). 1l s’ensuit que pour toute feuille F’
de o nous avons j(F') = 1 et par conséquent o est gagnante.

O

Remarque 4.22. Que signifie le théoréme précédent au sujet du jeu d’échecs ?
Afin de satisfaire aux hypothéses du théoréme, il nous faut déclarer un vain-
queur si la partie est nulle. Si nous déclarons les blancs vainqueurs lors d'un
nulle, le théoréme nous assure alors qu’il existe une stratégie gagnante pour
I'un des deux joueurs. Soit cette stratégie assure la victoire aux noirs, soit
elle assure la victoire ou le nul aux blancs. De la méme fagon, nous pouvons
déclarer les noirs vainqueurs et le théoréme nous assure alors l’existence
d’une stratégie gagnante pour 'un des deux joueurs dans cette variante du
jeu d’échecs. Il n’y a que trois possibilités. Premiérement, les blancs gagnent
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dans les deux variantes et ils possédent donc une fagon de gagner en évi-
tant le nul. Deuxiémement, les noirs gagnent dans les deux variantes et ils
possédent donc une fagon de gagner en évitant le nul. Derniérement, dans
chaque variante, la couleur qui posséde la stratégie gagnante est celle qui
obtient la victoire lors d’une partie nulle. Dans ce dernier cas, il existerait
aux échecs une stratégie tant pour les blancs que pour les noirs leur assurant
la victoire ou le nul.

4.4.2 Evaluation d’une formule

Definition 4.23 (Jeu d’évaluation d’une formule ¢). Soit un langage .2, .#
une Z-structure et ¢ une formule close sur ce langage dont les connecteurs
sont dans {—,V,A}. On définit le jeu d’évaluation de la formule ¢ dans #,
noté EV (., ). C'est un jeu a deux joueurs, a qui on attribue les roles
de Veérificateur et Falsificateur. Le premier joueur commence dans le réle
du Vérificateur. Par récurrence, on définit I’ensemble des coups possibles &
partir des régles suivantes :

‘ si ¢ est de la forme ‘ c’est le tour de ‘ le jeu continue avec
formule atomique personne ! fin du jeu
dx le Vérificateur choisit un élément a € M | Yja/y)
Va1 le Falsificateur choisit un élément a € M | Yja/y)
P11V 2 le Vérificateur choisit 1 ou @2 formule choisie
©1 A 2 le Falsificateur choisit (1 ou o formule choisie
=) on échange les roles P
Le but du jeu est de finir sur une formule atomique R(t1,...,t,) avec A4 =

R(t1,...,t,) en ayant le role du Vérificateur ou telle que # [~ R(t1,. .., 1)
en ayant le role du Falsificateur.

Remarque 4.24. Le fait de considérer seulement des formules avec les connec-
teurs dans {—, V, A} n’est pas restrictif, car on peut remplacer a — b par
—a Vb, et a <> bpar (maVb)A(=bVa).

Definition 4.25 (Arbre de jeu d’évaluation). On se fixe un langage .Z,
©lzo, ..., oy une formule sur ce langage dont les connecteurs sont dans
{—,V,A} et les variables libres sont parmi zo, ..., &, €t Mpyap,... zn—san
une Z-structure avec les interprétations ag,...,a, € |.#| des variables
xg, . .., Tp. On définit Varbre de jeu Tey (@[, - - -, Tnl, Mrg—sag,....in—san) (Lo u
pour alléger la notation) associé a la formule ¢z, ..., z,] dans la structure
Mao—aq,....xn—san, PAr induction sur la hauteur de ¢ comme suit.
e  est une formule atomique :
o si %xo—mo,..wa:n—mn }Z @, alors

Tow = \4
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o si %xoﬁao,...,znaan l?A @, alors

Tow = F

@ est de la forme @1 V g : alors

Pre

Teol,// T<P27//f

© est de la forme @1 A @9 : alors

P
Tsm,//f Ts@z,///

p est de la forme Jz v : alors

Vv
Tow = / | \ pour tout m € |.Z|.

@ est de la forme Vx ¢ : alors

Tow = / | \ pour tout m € |.#|.

@ est de la forme —) : alors

To.t = Tpn)

ot (Tyy.z)° est I'arbre de jeux dual & Ty, _, (voir Définition 4.20).
Ici les joueurs 1 et 2 sont appelés V (pour Vérificateur) et F (pour Falsifi-
cateur).

Remarque 4.26. La hauteur de arbre Try(p, #) et 'étiquetage des nceuds
qui ne sont pas des feuilles ne dépendent que de la formule . La largeur de
Varbre Try(p, .# ) ne dépend que de la cardinalité du domaine de la structure
A . 1 étiquetage des feuilles de I'arbre Ty (p, .#) dépend de 'interprétation
dans .# des symboles (et de I'interprétation des variables libres).

Remarque 4.27. Le jeu d’évaluation EV (.#, ¢) de la Définition 4.23 corres-
pond exactement au jeu sur 'arbre de jeu Ty (p, .#) (comme décrit dans la
Définition 4.18).
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Definition 4.28 (Evaluation d’une formule). Soit ¢ une formule et .# une
ZL-structure comme précédemment. On dit que ¢ est satisfaite dans .Z et
on note .# = ¢ si et seulement si dans le jeu EV (Z, ), le joueur qui
commence dans le role du Veérificateur a une stratégie gagnante. De fagon
équivalente, .# = ¢ si et seulement si le vérificateur, le joueur V, posséde
une stratégie gagnante dans le jeu Ty (p, .#). Dans le cas contraire, on note

M .

Theoréme 4.29. Les deux définitions d’évaluation d’une formule sont équi-
valentes.

Démonstration. La preuve est longue, ennuyeuse et trés facile. Elle consiste
essentiellement a vérifier que les régles du jeu d’évaluation ont été bien choi-
sies.

On montre simultanément par induction sur la hauteur de la formule ¢
& paramétres dans M les deux propositions suivantes :

. M = ¢
<~
le Veérificateur posséde une stratégie gagnante dans EV (., )

. M g
<~
le Falsificateur posséde une stratégie gagnante dans EV (., )

(1) Si ¢ est de hauteur 0, alors ¢ est une formule atomique & paramétres
dans M. Le jeu d’évaluation associé s’arréte aussitot sans qu’aucun
joueur n’ait a effectuer de quelconque choix. Le Vérificateur gagnant
si et seulement si .4 = ¢, il ressort que le Vérificateur posséde une
stratégie gagnante si et seulement si .# = ¢, et le Falsificateur en
posséde une si et seulement si .Z = .

(2) Si ¢ est de hauteur > 0, alors
(a) si@=(poVer):

(=)
o si A/ = p, alors

o soit 4 | ¢ d’ou il ressort, par hypothése d’induc-
tion, que le Vérificateur posséde une stratégie gagnante
oo dans EV (7, ). Dés lors la stratégie qui consiste
a choisir ¢g et ensuite appliquer oy est gagnante pour
lui dans EV (., ).
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o soit .4 = p1 d’ou le Vérificateur posséde également,
par hypothése d’induction, une stratégie gagnante o
dans EV (., ¢1) qu’il lui suffit d’appliquer aprés avoir
choisi ¢1 pour 'emporter dans le jeu EV (., ).

o si ./ = p, alors

o M = poet M = 1 don il existe, par hypothése d'in-
duction, une stratégie 7y (resp. 71) gagnante pour le
Falsificateur dans EV (., @) (resp. EV (4, 1)) ; ce
qui lui confére une stratégie gagnante dans EV (.7, ).

(<) e sile Vérificateur posséde une stratégie gagnante dans
EV (A, ), alors cette stratégie lui commande soit de
choisir ¢, soit de choisir ¢1, et bien siir ce joueur posséde
toujours une stratégie gagnante a partir de son choix. Par
conséquent 'hypothése d’induction implique, dans le pre-
mier cas que .Z = o, et dans le second cas que A = .
Ce qui dans les deux cas donne .Z |= ¢.

e si le Falsificateur posséde une stratégie gagnante dans
EV (A, ), alors cette stratégie est également gagnante
dans les deux jeux EV (., pg) et EV (., p1). Par hypo-
these d’induction il ressort que . B~ g et A = ¢ et
donc A W .

(b) si o= (poAep1):

(=)
e si A/ = p, alors

o M | poet M = ¢ don il existe, par hypothése d'in-
duction, une stratégie og (resp. o1) gagnante pour le
Veérificateur dans EV (A, @) (resp. EV (A, 1)) ; ce
qui lui confére une stratégie gagnante dans EV (.7, ).

o si ./ = p, alors

o soit . [~ o auquel cas, par hypothése d’induction,
le Falsificateur posséde une stratégie gagnante 79 dans
EV (A , o). Dés lors la stratégie qui consiste & choisir
o et ensuite appliquer 7y est gagnante pour lui dans

EV (A, ).

o soit A [~ ¢ d’ou le Falsificateur posséde également,
par hypothése d’induction, une stratégie gagnante 7|
dans EV (., ¢1) qu’il lui suffit d’appliquer aprés avoir
choisi 1 pour 'emporter dans le jeu EV (., ¢).
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(<)

si le Vérificateur posséde une stratégie gagnante dans le
jeu BV (A, ¢), alors cette stratégie est également gagnante
dans les deux jeux EV (.#, o) et EV (A, ¢1). Par hypo-
thése d’induction il ressort que # = ¢o et A = 1 et
donc A = .

si le Falsificateur posséde une stratégie gagnante dans
EV (A, ), alors cette stratégie lui commande soit de
choisir ¢g, soit de choisir 1, et ce joueur posséde tou-
jours une stratégie gagnante a partir de son choix. Par
conséquent 'hypothése d’induction implique, dans le pre-
mier cas que .# - o, et dans le second cas que A £~ .
Ce qui dans les deux cas donne .Z [~ ¢.

(c) sip=p:

(=)

(<)

si M | o, alors A = 1 d’ou il existe, par hypothése
d’induction, une stratégie gagnante pour le Falsificateur
dans EV (#,), ce qui donne immédiatement une stra-
tégie gagnante pour le Veérificateur dans EV (., ¢).

si M [~ @, alors A = 1 d'ou il existe, par hypothése
d’induction, une stratégie gagnante pour le Vérificateur
dans EV (., 1)), d’ott découle une stratégie gagnante pour
le Falsificateur EV (., ¢).

si le Vérificateur posséde une stratégie gagnante dans le
jeu EV (., ), alors le Falsificateur posséde une stratégie
gagnante dans EV (., ). L’hypothése d’induction donne
M ), dou il apparait que A | .

si le Falsificateur posséde une stratégie gagnante dans
EV (A, ), alors le Vérificateur posséde une stratégie ga-
gnante dans EV (.#,v). L’hypothése d’induction donne
A =1, dou il apparait que #Z = .

(d) si =T :

(=)

e si # = ¢, alors il existe un élément a de M tel que

M ,a/z = 1 ce que 'on peut écrire .4 = ¢[a/z] 0. L'hy-
pothése d’induction, nous donne une stratégie gagnante

10. o a est un paramétre de M, autrement dit un nouveau symbole de fonction dont

I'interprétation est a.
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o, pour le Vérificateur dans EV (.7, ¢[a/z]). Dés lors la
stratégie consistant a choisir a et appliquer o, ensuite est
gagnante pour le Vérificateur dans EV (.7, ).

si A [~ o, alors pour tous éléments a € M, A ,a/x =
(ou A [~ 1la/x]). L’hypothése d’induction, nous procure
alors, pour chaque a € M une stratégie gagnante 7, pour
le Falsificateur dans EV (., ¢[a/x]). Dés lors la stratégie
consistant & appliquer 7, lorsque le Vérificateur choisit a
est gagnante pour le Falsificateur dans EV (.7, ¢).

si le Vérificateur posséde une stratégie gagnante dans le
jeu EV (, p), alors cette stratégie choisit un élément a
de M tel que le Vérificateur ait toujours une stratégie
gagnante dans EV (.7, ¢[a/z]). L’hypothése d’induction
donne A = Yla/x], dou A = p.

si le Falsificateur posséde une stratégie gagnante dans
EV (A, ), alors quelque soit le choix de a € M que fait
le Veérificateur, le Falsificateur posséde une stratégie 7,
gagnante dans EV (.Z,]a/z]). L’hypothése d’induction
donne . [~ ila/x] pour tout a de M, d’ou A [~ .

(e) si =V :

(=)

(<)

e si . | o, alors pour tous éléments a € M, A4 | 1la/z].

L’hypothése d’induction, nous procure alors, pour chaque
a € M une stratégie gagnante o, pour le Vérificateur
dans EV (. ,1[a/x]). Dés lors la stratégie consistant a
appliquer o, lorsque le Falsificateur choisit a est gagnante
pour le Vérificateur dans EV (.7, ¢).

si A = o, alors il existe un élément a de M tel que
A = Yla/z]. L'hypothése d'induction, nous donne alors
une stratégie gagnante 7, pour le Falsificateur dans le jeu
EV (A ,1[a/x]). Dés lors la stratégie consistant a choisir
a et appliquer ensuite 7, est gagnante pour le Falsificateur
dans EV (4, p).

si le Vérificateur posséde une stratégie gagnante dans le
jeu EV (., ), alors quelque soit le choix de a € M que
fait le Falsificateur, le Vérificateur posséde une stratégie
o, gagnante dans EV (.7, ¢[a/z]). L’hypothése d’induc-
tion donne .# |= 1[a/x] pour tout a de M, d’ou A = .
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e si le Falsificateur posséde une stratégie gagnante dans
EV (A, p), alors cette stratégie choisit un élément a de M
tel que le Falsificateur ait toujours une stratégie gagnante
dans EV (.# ,¢[a/x]). L’hypothése d’induction donne alors
M Plajx], don A = . O
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5 Un soupgon de théorie des modéles

5.1 Homomorphisme, plongement et isomorphisme

Lorsqu’on a différents modéles d’un méme langage, il est souvent intéres-
sant de les comparer. Les notions d’homomorphisme et d’isomorphisme sont
une réponse a cette exigence comparative.

Definition 5.1. Soit .Z un langage du premier ordre et .#, A4 deux .Z-
structures,

Un homomorphisme de .# dans .4 est une fonction 5 de M dans N
qui vérifie :

(1) pour tout symbole de constante ¢ de .Z,

H (™) =c"

(2) pour tout entier n et tout symbole de fonction f d’arité n du langage
Z, et pour tous éléments ay,...,a, de [.Z] :

([ ar,...,a,)) = [ (H(ar),...,7(an))

(3) pour tout entier n et tout symbole de relation R d’arité n du langage
%, et pour tous éléments aq,...,a, de [.Z] :

si (a1,...,a,) € R* alors (' (ay),...,7(a,)) € R
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Ezemple 5.2. Deux structures # = (M, E* c”) et N/ = (N,E", ")
ou M et N désignent les nceuds des graphes respectifs et (z,y) € E“
(respectivement (z,y) € E*¥) si et seulement si il existe une aréte de x
versy;etc? =c* =a:

Un homomorphisme de .# vers A

Definition 5.3. Soit .Z un langage du premier ordre et .#, A4 deux .Z-
structures. Un plongement de .# dans .4 est un homomorphisme 57 de
M dans N qui vérifie les deux conditions supplémentaires suivantes :

(1) A est injectif,

(2) pour tout entier n et tout symbole de relation R d’arité n du langage
%, et pour tous éléments aq,...,a, de [.Z| :

(a1,...,a,) € R si et seulement si (' (ay),..., 7 (a,)) € R

A noter que I’homomorphisme de ’exemple 5.2 n’est pas un plongement
car le noeud ¢ posséde une aréte vers f dans .4 mais pas dans ..

Le plongement d’un modéle dans un autre détermine une copie conforme
du premier modéle dans le second. En effet, I'injectivité du plongement im-
plique que I'image du premier modéle dans le second forme une sous-structure
du second modéle parfaitement semblable au premier modéle, au changement
de nom prés.
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Ezemple 5.4. Deux structures # = (M, E*,c”) et /" = (N,E* ¢*) on
M et N désignent les nceuds des graphes respectifs et (z,y) € E““ (respec-
tivement (z,y) € E-) si et seulement si il existe une aréte de = vers y; et
c”=aetc’ =c:

Un plongement de .# vers A4

Pour étre plus précis, dans I'image ci-dessus, 'image du domaine de .#
par le plongement forme un sous-modéle de .4 qui est isomorphe & .Z.
Cela signifie que cette image est une copie conforme du modéle de départ,
une copie qui “vit” dans le modéle .4 et qui en forme donc une partie,
une restriction : la restriction de toutes les interprétations des symboles de
constante, de fonction, de relation, au domaine image du domaine de .# .

Definition 5.5. Soit .Z un langage du premier ordre et .#, A4 deux .Z-
structures,

Un isomomorphisme de .# dans .4 est un plongement surjectif de M
dans N.

Les deux structures sont alors dites isomorphes.

Remarque 5.6.
e Un homomorphisme d’une .Z-structure .# vers elle-méme est appelé
endomorphisme.
e Un isomorphisme d’une .Z-structure .# vers elle-méme est appelé
automorphisme.

5.2 Sous-structure

Definition 5.7 (Sous-structure). Soit .£ un langage du premier ordre et
M, N deux ZL-structures, on dit que A4 est une sous-structure de .Z si et
seulement si les conditions suivantes sont réalisées :
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(1) [A] C |4

(2) pour tout symbole de constante ¢ de £ : ¢* = ¥,

(3) pour tout entier k > 1 et tout symbole de fonction f d’arité k de £ :
I =70
(4) pour tout entier k£ > 1 et tout symbole de relation R d’arité k de .Z :
RY = R”nN |,/V|k
Ezemple 5.8. e (Z,0,4) est une sous-structure de (Q, 0, +),
e (Q,0,1,4+,-) est une sous-structure de (R,0,1,+, ),
e (27,0, +) est une sous-structure de (Z,0,+). 1!

e Deux structures .# = (M, E* c¢*) et /" = (N,EY, c¢") ou M et
N désignent les nceuds des graphes respectifs et (z,y) € E# (respec-
tivement (z,y) € E¥) si et seulement si il existe une aréte de x vers
y;ete? =c¥ =a:

A est une sous-structure de A4

5.3 Equivalence élémentaire

Definition 5.9 (Equivalence élémentaire). Soit . un langage, et soient .4
et A deux Z-structures. Les structures .# et .4 sont dites élémentairement
équivalentes si et seulement si elles satisfont exactement les mémes formules
closes, c’est-a-dire si et seulement si pour toute formule close ¢ de .Z, on a

M = si et seulement si A .

Remarque 5.10.

(1) Pour une .Z-structure .#, on définit la théorie de .# comme l’ensemble
des formules closes de £ qui sont satisfaites par .# :

Th(#) = {p: formule close de .Z, et A = ¢}

(2) Deux Z-structures .# et A4 sont élémentairement équivalentes si et
seulement si leurs théorie sont égales, i.e. Th(.#) = Th(A4").

11. 27Z est ’ensemble des entiers relatifs pairs.
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(3) Deux .Z-structures .4 et A~ élémentairement équivalentes ne sont pas
nécessairement isomorphes. C’est le cas des deux ordres denses (Q, <)
et (R, <).

Lemme 5.11.

Si deur L -structures .M et N sont isomorphes alors elles sont également
élémentairement équivalentes.

Démonstration. Soit f un isomorphisme entre .# et .4 . Soit ¢ une formule
close de .Z telle que . |= ¢ et o une stratégie gagnante pour le Vérificateur
dans le jeu d’évaluation associé. La stratégie o induit une stratégie o’ pour le
Vérificateur dans le jeu EV (.4, ¢) par un va-et-vient qui consiste a choisir
f(a) dans le jeu EV (4, ¢) lorsque le Vérificateur choisit a dans EV (.7, ¢)
et a choisir f~1(b) dans EV (4, p) lorsque le Falsificateur choisit b dans
EV (A, ).

La condition suivante de la définition d’un isomorphisme garantit la vic-
toire de ¢’ : pour tout entier n et tout symbole de relation R d’arité n du
langage £, et pour tous éléments ay, ..., an de || :

(a1,...,a,) € R si et seulement si (f(a1),..., f(a,)) € RY.
O

Definition 5.12 (Théorie compléte). Une théorie .7 de £ est dite com-
pléte si et seulement si les deux conditions suivantes sont vérifiées :

(1) 7 est consistante,

(2) tous les modéles de .7 sont élémentairement équivalents.

Exemple 5.13. Soit .Z le langage constitué de la seule égalité. La Z-théorie
{VaVy = = y} est compléte puisque tous ses modéles n’ayant qu'un seul
élément sont isomorphes. Par contre la Z-théorie {VaVyVz (z = yVx =
z)} n’est pas compléte puisque tous ses modéles n’ayant qu'un seul élément
satisfont la formule VzVy x = y alors que ceux & deux éléments ne la satisfont
pas.

Lemme 5.14. Une théorie 7 de £ est compléte si et seulement si les
deux conditions suivantes sont vérifiées :

(1) T est consistante,

(2) pour toute formule close ¢ du langage £ soit T |= ¢, soit T = —p.

Démonstration. (=) Puisque tous les modéles de .7 satisfont les mémes
formules, ils satisfont soit tous ¢ 12, soit tous —p 3.

12. auquel cas I = .
13. auquel cas 7 = —p.
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(<) Si tous les modéles de 7 ne sont pas élémentairement équivalents, alors
il existe une formule ¢ de .Z et deux modeéles .4 et A de T avec A4 = ¢
et A = . Par conséquent, . [~ —p et A B~ o pour A et A des modéles
de T, contredisant la condition (2).

O

Remarque 5.15. Si .7 est une .£-théorie compléte, alors il existe une théorie
équivalente 14 77 telle que :

(1) 7C T et 7=9,
(2) pour toute formule close ¢ du langage .Z soit ¢ € F, soit ~p € T’

. . . N /!

En Poccurrence il n’est plus possible d’ajouter une seule formule & .7 sans
la rendre inconsistante. Elle est donc compléte au sens ot "plus personne ne
peut rentrer”.

Démonstration. On construit 7’ en ajoutant a .7 chaque formule close ¢
de .Z vérifiant .7 |= .

T"={p: ¢ formule close de £ et T = p}.

5.4 Sous-structure élémentaire

Definition 5.16 (Sous-structure élementaire). Soit £ un langage du pre-
mier ordre et .#, une Z-structure et .4 une sous-structure de ., on dit
que 4 est une sous-structure élémentaire de .# (ou de maniére équivalente
A est une extension élémentaire de .4”) si et seulement si

pour toute formule p[x1, ..., z,] de £ et tous éléments ay, ..., a, de |4
on a:

M = plai,. .., ay] si et seulement si A = plag, ..., an)
On note A < A le fait que A4 soit sous-structure élémentaire de .# .

Ezemple 5.17. e (Z,0,+) est une sous-structure de (Q,0,+) mais elle
n’est pas sous-structure élémentaire car la formule Vzdy y +y = x
est satisfaite dans (Q, 0, 4) mais non dans (Z,0,+).

e (Q,0,1,+, ) est une sous-structure de (R, 0, 1, +, -) mais pas une sous-
structure élémentaire car la formule dx = - x = 2, & paramétre dans
Q, est satisfaite dans (R, 0, 1,4+, -) mais pas dans (Q,0,1,+,-).

e (27,0,+) est une sous-structure de (Z,0,+).Mais ce n’est pas une
sous-structure élémentaire car la formule dz x 4+ x = 2, a paramétre
dans 27, est satisfaite dans (Z,0,+) mais pas dans (27,0, +).

14. et donc elle-méme compléte aussi.
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e Deux structures # = (M, E“ c*) et N/ = (N,E*, c”) ou M et
N désignent les noeuds des graphes respectifs et (z,y) € E# (respec-
tivement (z,y) € E¥) si et seulement si il existe une aréte de x vers
y;ete? =c¥ =a:

M est une sous-structure de .4 mais pas une sous-structure élémen-
taire car la formule Va(bEx — xEd) est satisfaite dans .# mais pas
dans A 15,

Remarque 5.18. L’utilisation du Théoréme de Compacité sera un moyen
certes brutal mais extrémement efficace pour obtenir des extensions élémen-
taires.

Definition 5.19 (Test de Tarski-Vaught). Soit . un langage du premier
ordre, .# une £-structure et .4 une sous-structure de .#Z. Supposons que
pour toute formule @[zg,z1,...,2,] de Z et tous éléments ay,...,a, de

A

si A = 3xoplar,. .., ay], alors il existe ag € |A7| tel que A |= lao, a1, ..., an].

Alors AN < A .

Démonstration. On considére ¢ quelconque (dont les connecteurs sont parmi
{—=, A} et les seuls quantificateurs sont existentiels). On montre que pour
tous éléments ay, ..., a, de [A| A = plal, ..., ay] si est seulement si A =
vlai, ..., ay]. On procéde par induction sur la hauteur de .

(1) si ¢ est une formule atomique, le résultat est immédiat.

(2) si ¢ est une conjonction, le résultat découle immédiatement de I’hypo-
thése d’induction.

(3) si ¢ est une négation, le résultat découle également directement de
I’hypothése d’induction.

(4) si ¢ est une formule existentielle, le sens (=) est immeédiat, et le sens
(<) découle de I'hypotheése du test de Tarski-Vaught.

O

15. car A |= (bEe A —eEd)).
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6 Théoréme de compacité

Nous allons maintenant introduire le théoréme de compacité. Pour faire
ceci, nous avons besoin de quelques outils que 'on va présenter maintenant.

6.1 Filtre, base de filtre et ultrafiltre
Definition 6.1 (Filtre). Soit E un ensemble non vide. Un sous-ensemble
F C P(F) est appelé filtre sur E §'il vérifie les points suivants :
(i) 0&F;
(i) si A,B € F, alors ANB € F;
(iii) si Ae Fet AC B, alors B € F.

Definition 6.2 (Ensemble cofini). Soit £ un ensemble et A C E. Alors, A
est dit cofini si E'\ A est fini.

Ezemples 6.3. (i) Soit ) # A C E. Alors F = {B C E: A C B} est un
filtre.
(ii) Prenons £ =Net F = {A CN: A est cofini}. Alors F' est un filtre. Il
est appelé filtre de Fréchet.

Definition 6.4 (Base de filtre). Soit E un ensemble non vide et B C Z(E).
On dit que la collection B est une base de filtre si elle satisfait les deux
conditions suivantes :

(i) 0 ¢ B;
(i) si A,B € B, alors AN B € B.
Le filtre engendré par B est

F={BCFE:3A¢€Btel que AC B}.

Il s’agit d’un filtre car :
(i) 0 ¢ F.

(i) Si B,B' € F, alors il existe A, A’ € B tels que A C Bet A’ C B.
Puisque ANA'C BNB et que ANA" € B,ona BNB € F.

(iii) Si B € F et B C B’, alors il existe A € B tel que A C B C B, ce qui
implique B’ € F.

FExemple 6.5. Soit I un ensemble non vide et E ’ensemble des parties finies
de I. Pour a € F, on définit

E,={be E:aCb}.

Alors B = {E, : a € E} est une base de filtre sur E. Pour cela, vérifions les
deux conditions :
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(i) 0¢B.
(ii) Soient E,, Ey € B, alors
E.NE, = {ceE:aCcinN{ceE:bC¢}
= {c€eFE:(aUb) Cc}
= EaubeB.

Definition 6.6 (Ultrafiltre). Soit E un ensemble non vide. Un sous-ensemble
U C P(E) est appelé ultrafiltre sur E si

(i) U est un filtre sur F;

(ii) pourtout FF C E,ona F € Y ou E\F € U (c’est-a-dire, U est maximal,

voir la preuve de la remarque 6.10).

Pour pouvoir étendre un filtre en un ultrafiltre, nous allons avoir besoin
de nous munir de ’axiome du choix.

Axiome 11 (Axiome du choix). Soit (A;);er, une collection d’ensembles telle
que A; # 0 pour tout i € I. Alors, il existe une fonction f : I — J;c; A
telle que f(i) € A; pour tout i € I.

L’axiome du choix est lui-méme équivalent au lemme de Zorn, que 'on
énonce maintenant.

Definition 6.7 (Ensemble inductif). Un ensemble partiellement ordonné
(X, <) est dit inductif si toute partie C C X totalement ordonnée® (que
'on nomme chaine) de X admet au moins un majorant '”.

Theoréme 6.8 (Lemme de Zorn). Tout ensemble ordonné inductif (X, <)
admet (au moins) un élément mazimal ',

Lemme 6.9. L’Aziome du Choiz est équivalent au Lemme de Zorn.

Axiome 12 (Axiome de 'ultrafiltre). Tout filtre peut étre étendu en un
ultrafiltre.

Remarque 6.10. L’axiome du choix implique I'axiome de 'ultrafiltre (mais
la réciproque est fausse).

Démonstration. Soit F un filtre sur un ensemble E non vide. Considérons
I’ensemble des filtres F/ sur E qui étendent F :

2 ={F C E|F estun filtre et F C F'}.

16. Cela signifie que (C, <) est un ordre total.

17. C’est-a-dire un élément m € X satisfaisant la relation ¢ < m pour tout élément c
de la chaine.

18. Cela signifie qu’il existe m € X qui est supérieur ou égal a tous les éléments avec
lesquels il est comparable. i.e., tel que pour tout élément a € X, si m < a alors a = m.
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Muni de I'inclusion, (£, C), cet ensemble devient un ordre partiel induc-
tif. En effet, soit (F;);er une chaine de ce poset. Montrons tout d’abord que
Uicr Fi est bien un filtre sur £ :

(i) Puisque 0 ¢ F; est vérifié par chaque i € I, nous avons 0 & | J,; F-
(ii) Soient A, A" € |J;c; Fi- Alors il existe ja,jar € I telsque A € Fj,, A" €
]:J"A‘ Or, (F;)ier est une chaine et donc on peut supposer sans perte
de généralité que l'on a F;, C ]:j'A' Par conséquent, AN A’ € ‘Fle C
Uier 7
(iii) Soient A € |J;e; Fiet AC B C E. Alors il existe j € I tel que A € F.
Ceci implique que B € F; C ;<1 Fi-
Ensuite, il est clair que
o U;cr Fi étend F, puisque F C F; est vérifié pour chaque 19 indice i
et donc F C ;e Fi-
o |J;c; Fi est un majorant de la chaine puisque F; C J;c; Fi est vérifié
pour tou j € 1.

Par le lemme de Zorn (qui est équivalent a I'axiome du choix), nous
obtenons 'existence d’un élément maximal de (27, C), notons le U. Clest
donc un filtre sur E qui étend F. Montrons que c’est un ultrafiltre. Pour
cela, procédons par I’absurde et supposons qu’il existe S C E tel qu’on ait a
la fois S ¢ U et SC ¢ U (on ST désigne E < S).

Tout d’abord, remarquons que pour chaque A € U, nous avons ANS # (.
En effet, s’il existait un ensemble A € U vérifiant A NS = @), nous aurions
A C SCet donc — puisque U est un filtre — steu , ce qui contredit notre
hypothése.

Ensuite, remarquons que l'ensemble ¥ ={BC E|JAclU ANS C B}
est un filtre :

(1) 0 ¢ ¥ puisque pour tout A € U, ANS C ) n’est jamais vérifié.
(2) SiB,B’' € ¥, alorsil existe A, A’ € U tels que ANS C Bet A'/NS C B'.

On obtient AN A'NS C BN B’ ce qui montre que BN B’ € ¥ puisque
ANA el.

(3) Si Be ¥ et B C C, alors il existe A € U tel que ANS C B et donc
ANS CC, ce qui montre que C € 7.

Montrons maintenant que ¥ € 2 : pour tout ensemble A € U nous
avons ANS C A, dou A € ¥ ; par conséquent, nous avons F CU C 7.

Par ailleurs, pour tout ensemble A € U nous avons ANS C S, d’ou S € 7.
Or, puisque par hypothése, S ¢ U, nous obtenons U C ¥ ; autrement dit, ¥
est un majorant strict de U, ce qui contredit la maximalité de U.

O

19. On peut noter qu’il est suffisant que F C F; soit vérifié par au moins un indice 4.
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6.2 Ultraproduit

Definition 6.11 (Ultraproduit). Soient .Z un langage du premier ordre, I
un ensemble non vide, (.#;),;.; une famille de Z-structures et un ultrafiltre
U sur .

L'ultraproduit .# de la famille (.#;);.; par I'ultrafiltre U est la Z-structure

notée : H Y
_ Llier 7
M= / -

On définit d’abord une relation d’équivalence ~ sur [],c; |-#;| de la fagon
suivante :
(ai),;ej ~ (bi)iel = {’L el:a = bz} cu.

On vérifie que c’est bien une relation d’équivalence :

Réflexivité Pour tout (a;);c; € [Lic; |-4], on a que {i € I : a; = a;} =
I.Or, ) & U car U est un filtre. Par conséquent, puisque U est un
ultrafiltre, I € U et donc (a;);c; ~ (ai);c;-

Symeétrie

(ai)ier ~ (bi)ier < {t€l:a;=b}elU
=4 {iEI:bizai}Eu
& (bi)ier ~ (ai)ier-

Transitivité Si (a;);c; ~ (0:);cr et (bi);er ~ (¢i);ep, alors
{ie]:ai:ci}Z_){ie[:ai:bi}ﬂ{iel:bi:ci}.

-~

eu cu

eu

Or, par hypothése, {i € I : a; = b} eU et {i € I :b; = ¢} € U.
Puisque U est un filtre, {i € [ : a; = b;} N{i € [ : b; = ¢;} € U et donc
{i€I:a;=c} €eU;autrement dit (a);c; ~ (¢i)ier-

Maintenant, on pose :
) ) = hier 41/

(ii) pour tout symbole de constante ¢ de .Z,

=1,

(iii) pour tout symbole de fonction f de .Z,

F([@ie] o (@] ) = [(F7 @lnial)) ]

(iv) pour tout symbole de relation R de .Z,

([(all)iel}w""’ {(G%N)iel}w> eER” & {Z el: (a%,...afv) € R‘”Z} eu.
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On vérifie que tout ceci est bien défini. C’est-a-dire que si

(a})ief ~ (bll)ief RRRE (agv)iel ~ (bgv)iel’

(% (al,. . al)). o~ (1 (b},...,b{-V))Z_eI

1€

alors

et
{ier:(a,....a)er}eus{icr: (. ..00)er"}cu.

e On vérifie d’abord la premiére partie :

{ie]:f%‘ (al,....a) = f (b},...,bfv)}gﬁ{ie[:agzb{}.

J=1

Or, le deuxiéme membre est par hypothése une intersection finie d’élé-
ments de U et donc, par définition d’un filtre, c’est un élément de U.
Ainsi, le premier membre étend un élément de U et c’est par consé-
quent aussi un élément de . On a ainsi vérifié que

(s (ag,...,aﬁ))ia ~ (0 8Y))

e On s’occupe maintenant de la deuxiéme partie.
Posons A= {i€I: (al,...a)) € R¥%} et B= ﬂjvzl {z el:al :bg}
et supposons que

el

{ie[: (al,....a)) eR/”i} eU.

Alors
{ier:(}...o}) er"} 2ANB.

Or par hypothése, A et B sont dans U et de ce fait ANB € U. Ainsi, le
premier membre étend un élément de U et c’est donc aussi un élément
de U, par définition d’un filtre. Il suffit maintenant de constater que
la situation est symétrique pour trouver 'implication inverse.

6.3 Théoréme de Los

Theoréme 6.12 (Théoréme de Los). Soit £ un langage du premier ordre et
I un ensemble non vide. Soient encore (M;);c; une famille de £ -structures,
un ultrafiltre U sur I et ¢ une formule dont les variables libres sont parmi
T1, ..., 2y et [al]e, ... [~ € |4,

Alors, si ozg est la i-éme projection de o,

Siel: M=

al}"’/xlvv"v[an]’\‘/xn] a%/xlvnvay/in

///:Hiel///i/u ):SD[[

eu.
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Démonstration. Sans perte de généralité, on peut supposer que seuls —, A et
J apparaissent dans ¢. La démonstration se fait par récurrence sur la hauteur
de ¢.
e Siht(y) =0, alors il existe un entier naturel n et des termes ¢y, ..., ¢,
tels que ¢ = R(t1,...,t,). On obtient

o w[[a1]~/x1,...,[an]~/xn}
= [[al]N/xl,,..,[an]N/xn] et [[a11~/x1,...,[a"]N/wn} =
sliel: [t il cR%ocU

5
[a%/ml,...,a?/xn} [a%/ml,...,a?/xn}

& ieI:%izw[ €U,

a%/xl,.‘.,a?/mn]

ol ’on a utilisé la simple définition de I’évaluation d’une formule dans
un modéle pour la premiére double implication et également pour la
troisiéme. La seconde double implication est la seule pour laquelle on
utilise la définition méme de la satisfaction des formules atomiques
dans l'ultraproduit.

e Siht(e) >0:

(i) Si ¢ =, alors

W [a!]~ /@1, @]~ fan GAaEY [[alh/wl,m,[a"h/xn}
siel:METY [a%/a:l,._,,a?/;tn} U
Sciel: MET [a}/xl,...,a;‘/xn} e
S el .///l }: - [a%/xl ..... a?/ajn] eu

On remarque que pour la direction (=) de la double implication
(<) on utilise fortement le fait que U est un ultrafiltre (si 'on
travaillait avec un filtr,. cela ne suffirait pas).
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(ii) Sig = (¢o A¢1), alors

M=o [[al}w/xh_,.,[a"%/axn}

& ///)2(900/\%01)[[ e Jar o] }
alle/x1,. (0]~ /Ty

] et M = o1 [[al]w/zl,...,[a"%/x”]

[al],\,/zl,...,[a"}«,/mn

EN {z el: M E po |:OCZ'1/J717---704?/:1}71:| } ceU et {z el: M= pol |:Oé,1/$1,...,oc?/wn} } eu

SRiel: M= (poAer) cu.
{ [a}/zl,...,a?/rn}

& %):@o[

Montrons les deux cotés de la double implication (<).

o Pour le sens (=) :

{i el: .4 =g [a%/th’a?/xn} } celU et {z el: M= pr [a}/zl,...,a?/mn} } cu
= {Z el: M= o [a}/mma?m} } N {z el: M=o |:azl/x1,,..,oz?/xn:| } cu

=iel: M= (poNepr) cu.
{ [a}/ml,...,a?/ln}

o Pour le sens (<) :

i €1 Mk (o A1) eu
[a%/ml,...,a?/ﬂln}

{i €l M= (po 1) [al/xl,.,.,an/xn] } - {Z €l M = o {al/xl,‘..,a”/zn} } cu

— et

{i €l: M= (po 1) [al/ml,...,a”/zn} } - {l €l: M=o [al/zl,...,oﬂ.‘/xn} } cu
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(iii) Si ¢ = Iz ¢, alors

M= 90[@1%/9:1,...,[&"“/“}

A" ¢[[QI]N/%._.,[@”]~/M}

& ilesiste [(eiei]. %Fw[k et felatl o o] o]
ai)ier| /mlat]~/xr, o~ fan

& il existe |(ai);er| (€L M= ceu
[( ) EI] { ): |:ai/1:7a%/a;1,...,a?/$ni| }

& {Z cl: M3 Tﬂ[a}/xlw’a?/xn] } cU

& {1 el M= w{a%/xl,...,a?/xn} } ceu.

Pour établir la double implication (<) :
o Pour le sens (=) :

{i €I M= ¢[///} } -

= {z el: M= w[ai/z’a%/mw?a?/zn} } C {Z el: M= w[a}/mw’a?/%} } cu.

o Pour le sens («=) :

Puisqu’on a {z €l: M&E=3x 1/1{ ) } € U, com-
aj [z1,..., a?/xn]

mencons par appeler J cet ensemble :

J{iefi///ikawﬂ[al/z ...aﬂ/w}}

Ensuite, pour chaque ¢ € I on considére ’ensemble F; suivant
(dont on remarquera qu'il est non-vide) :

(a) sii € J,alors E; =S a € | M| | A =
[a/x,a}/xl,...,a?/xn}
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(b) sii ¢ J, alors E; = |.A;].

Par application de I’Axiome du Choix, il existe une fonction de
choix qui préléve un élément dans chaque ensemble E;, de sorte
que l'on obtient une famille (a;);er qui vérifie

z‘eI:///i}:¢[ clu

ai/x,ag/xh...,a?/xn}

et par conséquent on a montré :

il existe [(ai);er] . Qi€ M= 1/1[ eu.

ai/$,a%/x1,...,a?/mn]

6.4 Théoréme de compacité

Theoréme 6.13 (Théoréme de compacité). Soit £ un langage du premier
ordre et T une £ -théorie.

T est satisfaisable si et seulement si T est finiment satisfaisable.

Démonstration. = : Evident.

< : On remarque tout d’abord que si la théorie T est finie, le résultat est
évident. Un suppose donc que la théorie T est infinie.

Soit I I’ensemble des parties finies de la théorie T :
I = Pqni(T).

Pour chaque indice ¢ € I on considére I'ensemble I'; C I des sous-
théories finies de T' qui étendent ¢ :

I, ={Ael|iCA}

On remarque aisément que quel que soit ¢, ’ensemble I'; n’est pas
vide (il est méme infini puisqu’on a supposé la théorie T infinie). On
considére ensuite la famille

B={I;|iel}.

et on vérifie que c’est une base de filtre :

(1) 0 ¢ B est vérifié puisque B ne contient que des ensembles infinis
donc non-vides.
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(2) Pour i, j € I des valeurs quelconques, on a

0Ny ={Acl|iCAIN{AcT]|jCA}
—{AeTl|iUjCA}
= T'y;-

Puisque 7 et j sont des parties finies de T, il en est de méme de
iU j. Par conséquent I'; N T'; = I'yy; € B.

On consideére alors le filtre .%# engendré par cette base :
F ={JCI]| ilexiste'; € B tel que T'; C J},
ainsi que n’importe quel ultrafiltre Y D .%.

Puisque T est finiment satisfaisable, pour chaque partie finie ¢ C T,
il existe au moins une .Z-structure .4 qui vérifie A" |= i. Grace a
I’Axiome du Choix, on peut choisir pour chaque indice 7, un modéle
A ; et obtenir ainsi une famille (.#;);cr telle que #; |= i est vérifié
pour chaque indice i € I.

On peut finalement former 'ultraproduit

///:Hiel‘//{i/u

et vérifier que . |= T. Pour cela, soit ¢ une formule quelconque de T,
il nous faut montrer que .# = ¢. Remarquons tout d’abord que si i
(qui est un ensemble fini de formules de T') vérifie ¢ € i, alors puisque
A i = i, on a en particulier .#; = . Ainsi, pour chaque i € I'y,,) on
a ;= ¢ et donc

Ligy=liel:{ptCiyCliel| A=y}
—~—
eB pey

Par le Théoréme de L.o$, on obtient

Hief///i/u = .

Puisque ¢ était une formule quelconque de T, on a montré

Hiel///i /Z/[ ): T.

Voici maintenant une des nombreuses applications de ce théoréme.
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6.5 Modéles non-standard de Parithmétique

Soit . = {0,S5,+, } le langage égalitaire ou 0 est un symbole de
constante, S est un symbole de fonction unaire et +,- sont des symboles
de fonction binaires. La théorie de Peano Tp est I’ensemble infini des for-
mules closes suivantes :

axiome 1. Vo Sx # 0

axiome 2. Ve Jy (x #0 — Sy = x)
axiome 3. Va Yy (Sx =Sy — x=1y)
axiome 4. Ve z+0 =2

axiome 5. Vo Vy (:r+Sy = S(x—i—y))
axiome 6. Vz -0 =0

axiome 7. Vo Yy (m-Sy = (a:~y)+:c>

schema d’axiome (induction). Pour chaque .Z-formule ¢ dont les va-
riable libres sont parmi {z, ..., z,}, Paxiome suivant :

Ve, ... Vo, ((‘P[O/xo] A Yxq ((p — SO[Sxo/xo})) — Vo (p)

On suppose ici que la théorie de Peano 7p admet un modéle (que 'on
nomme modéle standard) A4 = (N, 0¥, S+ ") et défini par :
(1) 0 :=0;
(2) S : N — N est la fonction usuelle successeur ;
(3) +* : N x N — N est la fonction usuelle addition ;
(4) ¥ : N x N — N est la fonction usuelle multiplication ;
On ajoute au langage £ un nouveau symbole de constante ¢ de sorte

qu’on considére maintenant le langage égalitaire ¥’ = {¢,0,5,+,-}. Pour
chaque entier n on définit la Z’-formule ,, par

e pg:=—c=0 ¢ Yoy :i=—c=5...50.
n+1 fois

On considére ensuite 'ensemble de .#’-formules closes I' = {¢,, | n € N}
et enfin la .#’-théorie T = Tp UT.

La théorie T est finiment satisfaisable. En effet, soit A un sous-ensemble
fini quelconque de T'. Puisque A est fini, I'N\NA est infini. Considérons k le plus
petit entier tel que p ¢ A et formons le .£’-modeéle 2 = (D, ¢?,07,57,+7,-7)
suivant :

(1) D=N;
(2) ¢? :=k;
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S? : N — N est la fonction usuelle successeur ;

+2 :N x N — N est la fonction usuelle addition ;

2 N x N — N est la fonction usuelle multiplication ;
On voit alors facilement que

(1) 2 satisfait chaque formule de A N Tp car Z satisfait chacune des for-
mules de Tp ;

(2) 2 satisfait chaque formule de A N T (par construction, puisque ces
formules disent simplement que ¢? est différent d’'un nombre fini de
valeurs qui sont toutes différentes de la valeur (k) que prend ¢? dans
ce modéle).

Dot 2 satisfait chaque formule de A. Par application du théoréme de
compacité, on obtient que T est satisfaisable. Il existe donc un .#’-modéle
M o= (M, 0% 5% % ) tel que A4 = T. Sil'on appelle entiers
standards de ce modéle, les seuls éléments du domaine de base M qui sont

e soit 07,

e soit S ... S 0 pour un entier n € N;

—
n+1 fois

alors ce modeéle .# posséde un élément qui n’est pas un entier standard (c#).
On appelle un tel élément un entier non standard. Un modéle qui contient
un tel entier est dénommé modéle non standard®°.

6.6 Théoréme de compacité et ensembles définissables

Definition 6.14. Soit £ un langage du premier ordre et M une L-structure.
Une partie D C M™ est dite définissable dans M ¢§’il existe une formule

o[T1,. .., Tn, Y1,...,Y;] et des paramétres by, ...,b; dans M tels que :

z Y b

D={aeM": Mk ¢la,b}

20. On peut par ailleurs montrer que la restriction d’un tel modéle non standard .#
aux seuls entiers standards est une sous-structure de .# isomorphe au modéle standard.
Plus précisément, la fonction

I: N — {s“"...s“"o”ﬂneN}
———
n
E = S%...5%0*
—_——
k
est un isomorphisme entre le modéle standard A = <N,0JV,S“V,+“V, -JV> et la &Z-
structure obtenue en oubliant la constante ¢ et en prenant la restriction de .# aux
seuls entiers standards. Autrement dit, si 'on pose E = {S/” ... 8 o | n € N},
N———

alors Z est un .Z-isomorphisme entre les structures 4 = <N,O‘/V,S‘/V,+“V,-"V > et
&=(E,0%, 8" | E,+" | ExE, " | ExE).
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On note Def(M) la famille des ensembles définissables de M.

Exemple 6.15. Soit <G,e, -,_1> un groupe. Le centre C de G est défini par
la formule Vyz -y =y - x.

Definition 6.16. Soit M une L-structure, et A C M. On peut considérer
I’expansion M 4 de M par des constantes dans A, c’est a dire la £ 4 structure
(M, M aMAa :a e A), ot Lo = LU{a:a€ A}, et a™4 = a. On note
Th(,A) = Th(A4)

Remarque 6.17. Soit .4 une sous-structure de .#. Alors on a :
N <M= Th(d ,M)=Th(N M) N = Th(#, M)

Corollaire 6.18. Soit .# une L-structure et une famille de formules (@;[T,T5))icr-
St pour toute partie finie Iy de I il existe @ € M™ tel que pour tout i € Iy,

M = pila, mg), alors il existe une extension élémentaire A de M eta € N"

tel que pour tout i € I, N = p;[a,m;]

Démonstration. Soit L' = LU {eq,...,c,} le langage £ auquel on a ajouté
de nouvelles constantes. On considére sur le langage £}, la théorie :

Y =Th(a,M)U{pic,m;]:iel}.

Par hypothése, cette théorie est finiment satisfaisable. D’aprés le théoréme de
compacité, elle est satisfaisable et admet donc un modéle 4. L’interprétation

des constantes {m‘/V meM } C N forme une sous-structure élémentaire

M g de N !, la structure sur N réduite au langage £. Cette sous-structure
est par ailleurs isomorphe & .#, car N' = Th(.#, M). Par isomorphisme,
on identifie .# a ./ 4, et U'interprétation @ € N™ des constantes ¢ dans .4
implique que tout i € I, A" |= p;[a, m;). O

6.7 Le corps ordonné des réels

Soit L le langage des corps ordonnés, c’est a dire :
£=1{0,1, +@ ) .(2). S(Q)}

et R la L-structure de domaine R, les réels. On rappelle que le corps des
réels est
e ordonné, i.e. :
o la relation < est un ordre total sur R;
o pour tous x,y et zdans R, si x <y alorsx+2 <y+ z;
o pour tous z,y et zdans R, si0 < zetx <yalorsx-z2<y-z.
e archimédien, c’est & dire que pour tout = dans R il existe un entier
naturel n (vu comme le terme 1 + 1+ ...+ 1) tel que z < n.

n fois



56 6 THEOREME DE COMPACITE

e tel que tout sous-ensemble non vide majoré admet une borne supé-
rieure.
Soit L' = Lr Uc, et soit la théorie

Y =Th(R,R)u{n<c:neN}

sur L', otm = 1+1+...+1. Cette théorie est finiment satisfaisable, et
————

n fois
d’aprés le théoréme de compacité il existe donc une £'-structure K’ satisfai-
sant . Dans cette structure, il existe un élément ¢ plus grand que tous
les entiers. Si on restreint K’ & £, on obtient une L-structure K telle que
R < K?! avec K non-archimédien.

Par ailleurs R, vu comme sous-ensemble de K, est majoré dans K mais
n’a pas de borne supérieure! En effet, pour tout majorant b de R, b/2 est un
majorant de R strictement plus petit que b. Or dans IC, tout sous-ensemble
définissable non vide et qui a un majorant admet une borne supérieure. Pour
le voir, prenons D = {a eEK:KE gp[a,g]} non vide et majoré. On a donc :

K (Buelv,b] A Fyvz(plz,b] = 2 < y)).
Mais si [y, w] = Vz(p[z,w] — z < y), alors
R EVw ((Fz¢lz,w] A3y ¢ly, w]) = B (Yo, 0] AV (e, w] = v < 2)))).

Puisque R < I, cette formule est aussi vraie dans K et doit étre en particulier
vraie pour w = b, donc D doit admettre un plus petit majorant. Ainsi, R
n’est pas définissable dans .

21. si par isomorphisme on identifie R avec la sous-structure de K’ de domaine {r’c, :
r € R}.
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7 Nombres ordinaux et cardinaux

7.1 Bons ordres
Definition 7.1 (Ordre strict). Soit E un ensemble quelconque. (E, <) est
un ordre strict sur F si < C E x E est une relation binaire vérifiant :

(1) Ve,y,z€ E (z<yAhy<z)— (z<2);

(2) Vz € E =(z < x).

Remarque : on utilise la notation usuelle “x < y” au lieu de la disgracieuse
“z,y) € <.

Definition 7.2 (Ordre total). Un ordre strict < sur E est dit un ordre total
sur F si pour tout z,y € F,

six #y, alors z <y ouy < x.

Remarque 7.3. Si (A, <) est un ordre total et B C A, alors (B, <p) — ou
<p=<| B x B — est également un ordre total.

Les deux définitions suivantes sont des rappels de la section 5 : Un soupgon
de théorie des modéles.

Definition 7.4 (Homomorphisme). Un homomorphisme f entre deux ordres
(E,<pg) et (F,<p) est une fonction f : E — F telle que pour tout z,y € F,

six <py, alors f(z) <p f(y).

Definition 7.5 (Isomorphisme). Un isomorphisme f entre deux ordres (E, <p)

.. . bij.
et (F,<p) est une bijection f : F 225 F telle que pour tout z,y € E,

x <py sietseulementsi f(z)<p f(y).
Proposition 7.6. Si f : E hom- B est un homomorphisme bijectif entre
deuz ordres totaur (E,<pg) et (F, <), alors c’est un isomorphisme.

Démonstration. 11 suffit de considérer que pour tout f(x),f(y) € F, si
f(z) <p f(y), alors z <g y. Puisque (E, <pg) est un ordre total, une seule
des trois possibilités suivantes est réalisée : * = y, y <gp x ou x <g ¥.
Montrons que les deux premiéres ne le sont pas.

(1) =y, est contredit par le fait que f(x) # f(y);

(2) y <g z entrainerait f(y) <p f(x) (car f est un homomorphisme). On
aurait donc f(y) <p f(x) et f(x) <p f(y) et donc par associativité de
>r, f(y) <r f(y), ce qui contredit l'irréflexivité de <p.

O
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Definition 7.7 (Bon ordre). Soit E un ensemble et < une relation d’ordre
stricte sur E. (F, <) est un bon ordre si

(1) (E, <) est un ordre total et
(2) toute partie non vide F' C E posséde un plus petit élément selon <.
i.e., pour tout ) # F C E,
il existe a € F tel que pour tout b € F' \ {a} on ait a < b.

On dit alors que E est bien ordonné par <.

Ezemples 7.8. (1) Tout ensemble fini totalement ordonné est un bon ordre.
(2) (N, <) est un bon ordre.
(3) (Z,<) n’est pas un bon ordre.
(4) (QT, <) n’est pas un bon ordre.

Notation 7.9 (Ensemble des prédécesseurs). Soit E un ensemble bien or-

donné par <. Pour = € E, l'ensemble des prédécesseurs (pour l'ordre <) de
zest noté [Z]n ={ye€ EF:y <z}

Remarque 7.10. Si (A, <) est un bon ordre et B C A, alors (B, <p) — ou
<p=<| B x B — est également un bon ordre.

Lemme 7.11. Si A est un ensemble non vide et (A, <g) est un bon ordre,
alors pour tout x € A,

<A’ <R> % <[£~|,§1Rﬂ <R> :

Démonstration. Par 1'absurde, soient x € A et f: A =% [€]57 un isomor-
phisme.

A

Considérons ’ensemble

B={yecA: fly) #y}

Cet ensemble est non vide car x € B. Puisque (A, <g) est un bon ordre, il
existe un élément a € B qui est <gz-minimal dans B.
Par définition de B, on a que a <g f(a) ou bien f(a) <g a.
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(1) Sia <g f(a), alors a € [£] 7. Par conséquent, f~!(a) <p a et donc
f~(a) € B, ce qui contredit la minimalité de a.

(2) Si f(a) <gr a, alors f(f(a)) <gr f(a), par conséquent f(a) € B, ce qui
contredit la minimalité de a.

Lemme 7.12. Si (A, <g) = (B, <g), alors l'isomorphisme est unique.

isom. isom.

Démonstration. Soient f: A — B et g: A —— B deux isomorphismes
de (A, <pg) vers (B,<g) et supposons par I’absurde qu'ils sont différents.
Alors 'ensemble suivant est non vide :

C={aecA:fla)#gla)}

Puisque (A, <pg) est un bon ordre, il existe un élément a € C' qui est <p-
minimal dans C. Par définition de C, on a que f(a) <g g(a) ou bien g(a) <g
f(a). Par symétrie, il suffit de traiter 'un des deux cas. Supposons donc
g(a) <g f(a) et posons b = f~tog(a). On obtient que b <g a et donc b & C.
Ainsi, f(b) = g(b) ce qui donne g(a) = g(b). C’est une contradiction avec
I'injectivité de g, car a # b (pusique a € C).
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R >4 f(a)

R 09(@)

i)t !

O

Theoréme 7.13. Soient (A, <g) et (B,<g) deuz bons ordres. Il y a trois
possibilités (mutuellement exclusives) :

(1) (A,<r) =(B,<s);
(2) Jy € B (A, <g) = ([Y]5%,<s);
(3) 3w e A ([Z]37, <gr) = (B,<s).

T <1\ B A [g“ég

12
12
12

Démonstration. Soit I'ensemble Gy défini de la maniére suivante :

Gy = {(v,w) € Ax B: <[Q]1§R,<R> = <f%§s,<5>}.

Assertion.

G est le graphe d'une fonction f.

Preuve de l’assertion : Supposons que cela ne soit pas le cas. Alors il existe
deux éléments distincts w, w’ € B et v € A tels que (v, w), (v,w') € Gy. Sans
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perte de généralité, supposons que w <g w’. Les deux couples appartenant
aGy,ona

(3" <r) = ([“15%.<s)
= ([*15% <s)-

Or, puisque w <g w’, on obtient que [%] ;S =[® WFMS]

(1152 <) = (157, <s),

ce qui est en contradiction avec le lemme 7.11. Donc, Gy est le graphe d'une
fonction. Un argument similaire permet de montrer que la fonction f repré-
sentée par Gy est injective.

<5 et par conséquent
on a

(1) On va maintenant prouver que f est un isomorphisme d’un segment
initial de A vers un segment initial de B.
Commencons par montrer que ¢’est un homomorphisme.
Pour cela, soit dom(f) le domaine de f. Considérons a,a’ € ANdom(f)
tels que a <pg @, et supposons par 'absurde que f(a’) <g f(a). On a
alors que

o ([*] ’<R>N<(f 55, <s>;

. <MA <) = (M55, <s).
Soit h, h' les isomorphismes correspondants. On obtient que la compo-
sition
hloh! s 258 — [P lel@)] <R

est un isomorphisme. Or h=! o f(a’) <g a, ce qui est en contradiction
avec le lemme 7.11.

Prouvons que le domaine et le codomaine de f sont des segments ini-
tiaux.

Soit (v',w') € Gy et v € A tels que v <r v’ et montrons qu’il existe
w € B tel que (v,w) € Gy. Par I'absurde, supposons le contraire et

posons
E={aec A:Vbe B (a,b) € Gy},

qui est alors non vide. Puisque (A, <pg) est un bon ordre, il existe
¥ un élément <p-minimal de E. Posons alors F' = B\ f[[¥]37] et
on choisit W un élément <g-minimal de F. On va montrer qu’en fait
<[ A ,<R> = < <s> ce qui nous donne que (9,w) € Gy, une
contradiction.

L’isomorphisme est donné par la fonction g de graphe

Gy =GN [M5" x [#15°
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En effet, par minimalité de 9, le domaine de g est dom(g) = [¥] ZR.

Par ailleurs, par minimalité de w, on a que

[#15° € fIF13"] = olM137)-

Ainsi, la fonction g de graphe G est une application bijective de [ ZR
vers [Y] ES . Par la proposition 7.6, il reste a vérifier que g est bien un
homomorphisme, ce qui est trivialement le cas puisque f en est un.

Ainsi, pour tout couple (v, w') € Gy et v € A tels que v <p v/, il existe
w € B tel que (v,w) € Gy. Ainsi, si v € dom(f) alors [¥] 3% C dom(f).
On a donc prouvé que le domaine de f est un segment initial.

Par symétrie de la définition de Gy, on obtient de la méme maniere
que le codomaine codom(f) de f est un segment initial.

Il suffit maintenant de montrer que le domaine et le codomaine de f ne
peuvent étre en méme temps des segments initiaux propres. Par ’ab-
surde, supposons le contraire. Alors dom(f) = [¥]3" et codom(f) =
[%] ]<33 pour un certain v € A et un certain w € B. Par conséquent, f
est un isomorphisme de [¥]5% vers [%]5°, et donc (v,w) € Gy, une

contradiction. Ainsi, trois cas sont possibles :

1. Ni le domaine ni le codomaine de f ne sont des segment initiaux
propres. Alors f est un isomorphisme de (A, <pr) vers (B, <g), ce
qui implique que

2. Seul le codomaine de f est un segment initial propre. Par consé-
quent, il existe y € B tel que codom(f) = [¥]5*, ce qui donne

Jy e B (A, <g) L (4155, <s) -

3. Seul le domaine de f est un segment initial propre. Par conséquent,
il existe = € A tel que dom(f) = [£] 3%, ce qui donne

L

oz e A ([E]38, <gr) = (B, <s).

Ordinaux

Definition 7.14 (Ensemble transitif). Un ensemble E est dit transitif si
pour tout z € E,onaxz C E.

Autrement dit, E est transitif si pour tous z,y : x €y F = x € E.
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Definition 7.15 (Ordinal). Un ensemble « est appelé ordinal ou nombre
ordinal s’il est transitif et si la relation d’appartenance forme un bon ordre
sur a.

Formellement, la relation d’appartenance est <c= {(a,b) € a x a: a € b}.

Ezemples 7.16. (1) Les ensembles 0, {0}, {0,{0}}, ... sont des ordinaux.
On les note :
0=10
1={0} ={0}
2=H0,1} = {0,{0}}
3=1{0,1,2} = {0,{0},{0,{0}}}

Paur”c'ontre7 I'ensemble {0,2} = {0,{0,{0}}} n’est pas un nombre or-
dinal, car il n’est pas transitif puisque {0} € {0,{0}} € {0,{0,{0}}}
mais {0} ¢ {0, {0,{0}}}.

(2) Siz = {x}, alors x n’est pas un ordinal.

Notation 7.17. Dans la suite, pour a un ordinal, nous notons simplement :
(1) « ala place de («, <¢) et nous appelons son ordre €
(2) Pred®(8) a la place de [2]5€, et ce pour tout § € a.

Theoréme 7.18. Soient x ety des ordinauz. On a les propriétés suivantes :
(1) siz €z, alors z est un ordinal et z = Pred”(z) ;
(2) six =y, alorsx =vy;
(8) il y a trois possibilités (mutuellement exclusives) :
1. z=y;
2. xey;
S yex;
(4) siz€x etx €y, alors z €y ;

(5) si C est un ensemble non vide d’ordinauz, alors
JrVyelC (reyVe=y).

Démonstration. (1) Puisque z est un ordinal, z C z et donc (z, €) est un
bon ordre. Par ailleurs, par transitivité de =, pour tout z € z, Z € x.
De plus, trivialement, pour tous Z € x tels que Z € z, alors Z € z et on
obtient que z = Pred”(z). Enfin, pour tout Z € z € z, alors Z € z et
donc Z C x. Or, € est un bon ordre sur z, il est en particulier transitif.
Par conséquent, si 2/ € Z € z, alors 2/ € z. Ainsi, z est un ordinal.

(2) Soit f I'isomorphisme entre x et y et posons

E={2ex:2 # f(2')}.
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Si cet ensemble est vide, alors V2! € x 2’ = f(2') € y, et puisque f est
surjective, Vy' € y 32’ € x (y = f(2/) = 2/ € z). Ainsi, par Paxiome
d’extensionalité x = y.

Par I'absurde, supposons donc que ’ensemble est non-vide. Alors il
existe m un élément minimal de E. Par minimalité, pour tout =’ € m,
' = f(2'). Puisque f est un homomorphisme, V2’ € m (' = f(2') €
f(m)) et donc m C f(m).

Soit ¥’ € f(m). Alors, f~1(y') € m. Par minimalité de m,

y=Ffof'y)=f")em.

Par conséquent, f(m) C m.
Par laxiome d’extensionalité, f(m) = m, une contradiction.
(3) Par le théoréme 7.13, il y a trois possibilités (mutuellement exclusives) :
1. o 2 y ce qui implique par le point (2) que = = y;
2. x = Pred?(z) pour un certain z € y, ce qui implique par les points
(1) et (2) que x = z € y.
3. Pred®(z) = y pour un certain z € z, ce qui implique par les points
(1) et (2) que y = z € x.
(4) Par définition.
(5) Soit z € C.
e SizNC = 0, alors z est I’élément recherché. En effet, d’apres le
point (3), il suffit de vérifier que Vy € C' (—y € x), ce qui est le cas.
e SixNC # 0, alors par le point (1), c’est un ensemble non vide
bien ordonné par €. Le plus petit élément z de z N C est 1’élément
recherché. En effet, d’aprés le point (3), il suffit de vérifier que
Yy € C (—y € z). Supposons par 'absurde qu'’il existe y € C tel
que y € z. Alors, par transitivité de x, y € x N C, ce qui contredit
la minimalité de z.

O

Theoréme 7.19. La classe On de tous les ordinauzx n’est pas un ensemble.
Autrement dit,

122

—3Jz Vz (= est un ordinal ** — x € z).

Démonstration. Par 'absurde, supposons le contraire. Alors il existe un en-
semble On = {z : = est un ordinal}. Ainsi, par le théoréme 7.18, On est un
ordinal. En effet, 7.18 (1) implique que On est transitif et 7.18 (5) implique
que On est bien ordonné par €.

Par conséquent, On € On, une contradiction avec 'irréflexivité de €.
O

22. On note x est un ordinal comme abréviation de la formule axiomatisant les ordi-
naux.
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Lemme 7.20. Si A est un ensemble d’ordinaux transitif, alors A est un
ordinal.

Démonstration. L’ensemble A est transitif, et par le théoréme 7.18 (3) un
ordre total, puis par le théoréme 7.18 (5), bien ordonné par €.
O

Theoréme 7.21. Si (A,<g) est un bon ordre, alors il existe un unique
ordinal « tel que (A, <gr) = a.

Démonstration. Unicité : Soient «, @’ deux ordinaux tels que (4, <g) = «
et (A, <g) = /. Par transitivité de =, on obtient que o = o et par le
théoréme 7.18 (2), a = &/,

Existence : D’aprés le Théoréme 7.13, deux bons ordres sont toujours com-
parables soit parce qu’ils sont isomorphes, soit parce que 'un est iso-
morphe aux prédécesseurs de I'un des éléments de 'autre.

(1) Soit il existe un ordinal a tel que (A, <gr) = (o, €}q) et le tour
est joué.

(2) Soit il existe un ordinal § tel que Ja € 5 (A, <pg) = <(9W§w, €m>.
Dans ce cas, d’aprés le Théoréme 7.18, o est un ordinal et 'ordre
sur « induit par 'ordre sur 8 n’est autre que la relation d’appar-
tenance restreinte a «, ce qui nous rameéne au cas (1).

(3) Supposons maintenant que le cas (1) (et par conséquent égale-
ment le cas (2)) ne soit jamais vérifie. On se retrouverait donc
dans le cas ou quel que soit 'ordinal S considéré, il existerait
z € A ([Z]3%,<r) = (B,€p). Par le Lemme 7.11, on a que si
x € A vérifie <[Q] ZR, <R> = (3, €1), alors il n'existe pas d’autre
élément y € A, x # y tel que <[QZR,<R> = (B,€15). On peut
alors définir une fonctionnelle f : A =% On par

e f(z) = l'unique ordinal 3 tel que ([ TE, <g) = (B, €p), sl
existe un tel ordinal, et
e f(z) =0 sinon.

12
12
12
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Par une instance de 'axiome de remplacement, I'image du do-
maine (I’ensemble A) est un ensemble. Or cette image n’est autre
que la classe de tous les ordinaux, qui n’est pas un ensemble par
le Théoréme 7.19

O

Notation 7.22.
(1) On note type (A, <g) 'unique ordinal « tel que (A, <g) = a.
(2) Soient «, f deux ordinaux. Alors on note < 3 pour (o € SV a = f3)
et a < 8 pour « € .

Definition 7.23 (Suprémum, Infimum). Soit X un ensemble d’ordinaux.
Alors le suprémum de X, noté sup X, est :

supX:UX ={y: Iz eX (yeux)}?
Si X # 0, infimum de X, noté inf X, est :
ian:ﬂX:: {yv:Vze X (yeux)}

Lemme 7.24. On a les propriétés suivantes :
(1) Ya VB (o, B des ordinaux — (o < < a C ) ;

(2) si X est un ensemble d’ordinauz, alors sup X est le plus petit ordinal
qut majore X.
(8) si X est un ensemble non vide d’ordinauz, alors inf X est le plus petit

élément de X .

Démonstration. Evident.
O

Definition 7.25 (Successeur d’un ordinal). Pour un ordinal «, on définit
son successeur s(a) = a U {a}.

On écrira 1 pour s(0), 2 pour s(1), 3 pour s(2), etc. et on dénotera par
w ’ensemble de ces entiers. Cet ensemble est un ordinal.
Lemme 7.26. Pour tout ordinal o, on a que :
(1) s(a) est un ordinal;
(2) a < s(0);

23. On remarquera que sup0 = sup® = [JO = 0. Pour a un ordinal quelconque :
sup (¢ + 1) = sup (e U{a}) = U(a U {a}) = a. Pour A un ordinal limite quelconque :
supA =sup{&: £ € A\} = A. Pour C un ensemble d’ordinaux possédant un mazimum «,
sup C' = a. Si par contre C un ensemble d’ordinaux qui ne posséde pas de mazimum, alors
sup C' est un ordinal limite : le plus petit majorant des ordinaux de C.
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(3) VB (B <s(a) = < a).

Démonstration. Immédiat.

O]

Definition 7.27 (Ordinal successeur, ordinal limite). Un ordinal « est dit
successeur s’il existe un ordinal /5 tel que s() = «. Sinon, s’il est différent
de 0, on le dit limite.

Ezxemple 7.28. Les ordinaux 1, 2, 3,4, etc. sont des ordinaux successeurs. Par
contre w est un ordinal limite 24,

Definition 7.29 (Suite). Soit A un ensemble. Une suite d’éléments de A
est une fonction d’un ordinal o dans A. « est alors dénommé la longueur de
cette suite.

La définition de la suite que nous avons donné dans la Définition 2.10
correspond & cette définition générale restreinte aux seuls ordinaux a < w.

On peut étendre le principe du raisonnement par récurrence des entiers
aux ordinaux.

Le raisonnement par récurrence consiste a montrer que des éléments d’un
ensemble A satisfont une propriété P par le procédé suivant :

(1) Les éléments de A sont distribués le long des entiers par le truchement
d’une fonction (appelée hauteur) de A dans N.

(2) On montre que les éléments de hauteur 0 satisfont la propriété P,

(3) on montre ensuite, (pour n quelconque) que ceux de hauteur n + 1 sa-
tisfont la propriété P en supposant que ceux de hauteur n la satisfont
également.

Le raisonnement par récurrence transfinie procéde de méme mais au lieu
de distribuer les éléments d’un ensemble A sur les entiers, on les distribue sur
les ordinaux. Il faut donc, pour grimper le long des ordinaux, non seulement
partir du niveau 0 et étre capable d’effectuer les étapes successeurs (grimper
d’un barreau n au barreau m + 1) mais encore pouvoir passer les étapes
limites.

Le raisonnement par récurrence transfinie consiste & montrer que des
éléments d’un ensemble A satisfont une propriété P par le procédé suivant :

(1) Les éléments de A sont distribués le long des ordinaux par une fonction
appelée hauteur.

(2) On montre que les éléments de hauteur 0 satisfont la propriété P,

(3) On montre ensuite, (pour a quelconque) que ceux de hauteur « +
1 satisfont la propriété P en supposant que ceux de hauteur « la
satisfont également.

24. c’est d’ailleurs le plus petit ordinal limite
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(4) On montre finalement, (pour A limite quelconque) que ceux de hauteur
A satisfont la propriété P en supposant que tous ceux de hauteur a
pour a < A la satisfont également.

De méme que 'on définit des objets mathématiques par induction le long
des entiers, on peut également définir de tels objets par induction le long des
ordinaux transfinis.

Application 7.30 (Arithmétique ordinale). On définit [’addition d’ordinauz
par récurrence transfinie.
Soit o, B deux ordinaux. Par récurrence sur B8, on définit a4+ (5 :

Etape 0: a+0=qa;
Etape successeur : o+ s(3) = s(a + ) ;
Etape limite : o+ 3 =sup{a+v:v < 8}.

On vérifie aisément que l’addition ordinale est associative. Par contre elle
n’est pas commutative comme le montre les exemples suivants.

Ezxemples 7.31. (1) w+1=s(w+0)=s(w) =wU{w};
(2) 1+w=sup{l+n:n<w}=w.
B)l+w+24+w+3+w=w+w+w.

Par récurrence sur 3, on définit a- 3 :
Etape 0: a-0=0;

Etape successeur : a-s(f)=a-B+a;
Etape limite : -8 =sup{a-v:v < B}

On remarque que la multiplication ordinale est associative mais n’est pas
commutative.

Ezxemples 7.32. (1) w-2=(w-1)+w=(w-0)+w)+tw=w+w;
(2) 2-w=sup{2-n:n<w}=w.

Par récurrence sur 3, on définit o :
Etape 0: o' =1;

Etape successeur : o*®) =af . o ;
Etape limite : o’ =sup{a? : vy < g}.

On remarque que l’exponentiation ordinale n’est ni associative ni commuta-
tive.

Exemples 7.33. (1) 2(12) — 91 — 9 et (212 =22 =4;
2) W=(wWH w=((W)w w=01w w=w w;

(3) 2¢ =sup{2" :n < w} =w.
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7.3 Axiome du Choix, Lemme de Zorn et Théoréme de Zer-
melo

« The Aziom of Choice is obviously true, the well-ordering principle
obviously false, and who can tell about Zorn’s lemma ? »

Jerry L. Bona

Ou 'on montre, dans ZF, que ces trois énoncés (AC, TZ, LZ) sont tous
équivalents.

Axiome 13 (Axiome du choix). Soit (A4;)ier, une collection d’ensembles
indexée par un ensemble I telle que A; # () pour tout ¢ € I. Alors, il existe
une fonction f : I — (J,c; Ai telle que f(i) € A; pour tout i € I.

[’axiome du choix est lui-méme équivalent au lemme de Zorn, que 1’on
énonce maintenant.

Definition 7.34 (Ensemble inductif). Un ensemble partiellement ordonné
(X, <) est dit inductif si toute partie totalement ordonnée (que l’on nomme
chaine) de X admet au moins un majorant.

Definition 7.35 (Lemme de Zorn). Tout ensemble ordonné inductif admet
(au moins) un élément maximal.

Definition 7.36 (Théoréme de Zermelo). Tout ensemble peut étre bien
ordonné.

Theoréme 7.37. Les trois assertions suivantes sont équivalentes :
(1) (AC) Axiome du Choix
(2) (LZ) Lemme de Zorn
(3) (TZ) Théoréme de Zermelo

Démonstration. (AC = LZ) Soit (X, <) un ensemble non vide partielle-
ment ordonné inductif. Supposons en vue d’une contradiction que (X, <)
n’admet pas d’élément maximal. Notons C I'’ensemble des chaines de
(X, <). Pour toute chaine C' € C notons

Maj(C)={m € X | pour tout c€ C (c<metc#m)}

Pensemble des majorants stricts de C. Pour tout C' € C, Maj(C) est
non vide car sinon un majorant de C est un élément maximal de X,
contredisant notre hypothése. Par I’axiome du choix, il existe une fonc-
tion de choix pour la collection {Maj(C) | C € C}. Désignons par
C' — mce une telle fonction. Par le théoréme de récurrence transfinie
on définit la fonctionelle (a¢)ccon :
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e ag est un élément quelconque de X ;

¢ Gat+l = M(ag)e<q 3

e pour A\ limite, ay = M (ag)ecr-
Les a, sont bien définis car pour tout 8 {aq | @ < B} est une chaine de
X.? La fonctionnelle o — a, ainsi définie est injective comme on le
voit par induction. On peut donc définir une fonctionnelle de domaine
X qui envoie z sur « si * = aq, et x sur () si pour tout ordinal «
T # ao. Par remplacement, I'image de cette fonctionnelle sur X, a
savoir la classe On, serait un ensemble, contredisant le fait vu en cours

selon lequel c’est une classe propre.

(LZ = TZ) Soit E un ensemble non vide. Pour montrer l'existence d’un

bon ordre sur E on procéde comme suit. On considére X l’ensemble
des bons ordres sur des parties de F, i.e.

X ={(P,R)| P C E et R est un bon ordre sur P}

Observer que X n’est pas vide car pour e € E, ({e},0) est un bon
ordre. On définit sur X la relation C de segment initial définie par

PCP et
(P,R) C (P',R) ssi { pour tous a,b € P(aRb < aR'D) et
pour tout a € P et tout b € P/ . P aR'b.

On vérifie que (X,C) est un ensemble inductif. Pour toute chaine
(P;, Ri)icr, I'ensemble P = |J;c; P; est bien ordonné par la relation
R = ;er Ri, et on vérifie que (P, R) est un majorant de la chaine
(P, Ri)ier-

Par le Lemme de Zorn il existe un élément maximal (M, R) de (X,C).
Nous montrons que M = E et donc que R est un bon ordre sur FE.
Supposons qu’au contraire il existe e € E'\ M, alors (M U {e}, RU
{(m,e) | m € M} est un bon ordre qui étend strictement (M, R),
contredisant la maximalité de (M, R).

(TZ = AC) Soit (A;)ier une famille d’ensembles non vides. Par le théo-

réme de Zermelo, il existe un bon ordre < 4 sur I’ensemble A = Uz‘el A;.
Nous pouvons alors définir une fonction de choix f : I — A en posant
f(i) égale a I'élément < 4-minimal de A;.

O

Proposition 7.38. L’axiome du choix est équivalent a I’énoncé suivant :
sotent X, Y deuxr ensembles, et f : X — Y wune surjection. Alors il existe
g:Y — X telle que pour tout y €Y, f(9(y)) =y

25. Formellement, il faudrait définir mg pour tout sous-ensemble non vide de X (par
ao par exemple), puis définir la suite des aq, enfin vérifier par induction transfinie que
{aa | @ < B} est une chaine pour tout 8 pour étre assuré que pour tout 3, ag est bien le
majorant strict de {ao | @ < 8} donné par la fonction de choix.
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Démonstration. Supposons tout d’abord AC, et soient X, Y deux ensembles,
et f: X — Y une surjection. Pour tout y € Y, on a f~!(y) # 0. Il existe
donc une fonction de choix

g: Y= rwy=x
yey

telle que pour tout y € Y, f(g(y)) = v.
Dans 'autre sens, soit (X;);er une famille d’ensembles telle que pour tout
i €I, X; # (. On consideére la fonction

fU&Eix{ih) -1

el

telle que pour tout i € I et = € X;, f(x;i) =i. Cette fonction est surjective
puisque tous les X; sont non vides. Par hypothése, il existe donc une fonction

g: 1= J &= {i})

iel

telle que pour tout i € I, g(i) = (x;1), avec x € X;. La fonction

W109¢I—>UX1'
el

est donc une fonction de choix. O

Definition 7.39 (AC,). L’axiome du choix dénombrable et la restriction
de T'axiome du choix aux familles dénombrables. Soit (X, )ne. une famille
d’ensembles non vides. Alors il existe une fonction

frw— UX"

new
telle que pour tout n € w, f(n) € X,,.

L’axiome du choix dénombrable est strictement plus faible que I'axiome
du choix, dans ZF on peut prouver I'implication (AC) = (AC,,), mais pas
I'inverse. Méme si (AC,,) ne permet pas de développer toute ’analyse, il suffit
par exemple pour établir ’équivalence entre les définitions de continuité.

Proposition 7.40. Les deux implications suivantes sont vraies :

(1) (AC, ) implique que toute réunion dénombrable d’ensembles dénom-
brables est dénombrable.

(2) Si toute réunion dénombrable d’ensembles dénombrables est dénom-
brable, alors tout produit dénombrable de parties dénombrables est non
vide.
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Démonstration.

(1)

Sans perte de généralité, on considére une famille (Ay,),e, d’ensembles
dénombrables et deux a deux disjoints. Pour tout n € w, on définit
I’ensemble

O, ={f:A, = w: [ est injective}.

Puisque chaque A,, est dénombrable, O,, # () pour tout n € w. D’aprés
(AC,), il existe donc une fonction de choix

g:w—>UOn

new

telle que pour tout n € w, g(n) est une injection de A, dans w. On
peut alors définir

F UAn—H,uxw
new

a— (n;g(n)(z)), sia€ A,

La fonction F' est injective, et puisque w x w est dénombrable, | J,,c,, An
est dénombrable.

Soit une famille (Ay)ne,n d’ensembles dénombrables. Par hypotheése,
Unew An est dénombrable, il existe donc une injection

frlJAn—w

new

On définit alors pour tout n € w

gn = £~ (min (f(4n)))

Pour tout n € w, on a g, € A,, et donc (Qn)new € Hnew Ap.
O

Il est intéressant de noter que la deuxiéme implication est indépendante

de ZF.

Definition 7.41. Un ensemble est infini s’il n’est équipotent & aucun ordinal
fini. Un ensemble X est Dedekind-infini s’il existe une injection non surjective
f:X-X.

Proposition 7.42. Un ensemble X est Dedekind infini si et seulement st il
eriste Y C X tel que Y ~ w.

Démonstration.
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= Soit f: X — X injective non surjective, et soit a € X\ f(X). On définit
par induction la suite (a,)new de la maniére suivante :

apg —=a
ant1 = f(an)

Cette suite forme une fonction
1:w— X
n— a,

injective, car pour tous entiers naturels n et m distincts, a, # apm.
Ainsi w ~ i(w) C X.
< Soit Y C X tel que Y ~ w, et soit une bijection g : ¥ — w. On définit
f:X—>X
x size X\Y
T — ) )
g (g(z)+1) sizeY

Cette fonction est injective mais n’est pas surjective car gil(O) n’est
jamais atteint.

O]

Cela prouve que dans ZF, tout ensemble Dedekind-infini est infini. L’im-
plication inverse nécessite ’axiome du choix dénombrable.

Proposition 7.43. (AC, ) implique que tout ensemble infini est Dedekind-
Démonstration. Soit X infini. Pour tout n € w, soit
Ap={BCX:B~2"}.

Comme X est infini, pour tout n € w on a A, # (. En utilisant ’axiome
du choix dénombrable, on obtient une famille d’ensembles (B, )ne, telle que
pour tout n € w, By, € A,,. On définit alors par induction la famille (C,)new :

Co = By
Cn= Bn\ Ui<n G

On obtient ainsi une famille telle que, pour tout n € w, C,, # 0, et telle que
pour tous n,m € w, n # m = C, NC,, = 0. En utilisant a nouveau ’axiome
du choix dénombrable, on obtient une fonction

c:w—X

telle que pour tout n € w, ¢(n) € C,. Comme les C,, sont disjoints, cette
fonction est injective, et on a donc w = ¢(w) C X. Ainsi, X est Dedekind-
infini. O
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Definition 7.44 (DC). L’axiome des choix dépendants est I’énoncé suivant.
Soit X un ensemble et R une relation binaire sur X telle que pour tout
a € X, il existe b € X satisfaisant aRb. Alors il existe une suite (,)new
d’éléments de X tels que z, Rxy+1 pour tout n € w.

L’axiome des choix dépendants est strictement plus faible que ’axiome du
choix, et strictement plus fort que ’axiome du choix dénombrable, c’est a dire
que dans ZF on peut prouver les implications (AC) = (DC) = (AC,,), mais
pas les implications inverses. L’axiome des choix dépendants et suffisant pour
développer une majeure partie de ’analyse, en particulier on peut prouver
qu’il est équivalent au fait que tout espace complétement métrisable est de
Baire. Par ailleurs 2% il existe un modéle de ZF-+(DC) dans lequel il n’existe
pas d’ensembles non Lebesgue mesurables.

7.4 Cardinaux

Definition 7.45 (Cardinal d’un ensemble). Si A peut étre bien ordonné,
le cardinal de A, noté Card (A), est le plus petit ordinal « tel qu'il existe

a2y A
Remarque 7.46.

(1) Avec I’Axiome du Choix, tout ensemble peut étre bien ordonné par le
théoréme de Zermelo (équivalent a ’axiome du choix). Par conséquent
il existe <g un bon ordre sur A. Par ailleurs un bon ordre est iso-
morphe & un ordinal unique. Donc il existe a tel que (A, <g) = «a. Cet
isomorphisme est entre autre une bijection entre A et . Par conséquent
I’ensemble des ordinaux qui sont en bijection avec A est non vide. Dés
lors, Card (A) est bien défini comme le plus petit d’entre eux.

(2) Pour tout ordinal «, Card (o) < a.

On présupposera I’Axiome du Choix pour le reste de
cette section.

Definition 7.47 (Nombre cardinal). Un ordinal « est un (nombre) cardinal
si w = Card («).
Remarque 7.48.

(1) Un nombre cardinal infini est un cardinal qui n’est pas fini c’est-a-dire
qui est en bijection avec un de ses sous-ensembles propres.

(2) Chaque cardinal infini est un ordinal limite 2.

26. Si ZF est consistant !
27. Car 1 + w = w.
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Ezxemples 7.49.

(1) Chaque entier est un cardinal.
2) w est un cardinal.
4
5

(2)
(3) w+ 1 n’est pas un cardinal : Card (w + 1) = w.
(4) w-w n’est pas un cardinal.

(5) w® n’est pas un cardinal.

On peut se demander quelle est la relation entre la cardinalité de Z?(N)
et celle de N. On sait déja que Card (Z(N)) > Card (N) puis qu’on sait que
pour tout ensemble A il n’y a pas de bijection entre A est I’ensemble de
ses parties Z(A) (voir Théoréme 2.8 (Cantor)). Par conséquent, pour tout
nombre cardinal x, on a Card (£ (k)) > k et donc ’ensemble suivant est non
vide.

{A < Card (Z(k)) | kK < A et A est un nombre cardinal}

I1 posséde donc un plus petit élément que I'on note k™ : c’est le plus petit
nombre cardinal strictement plus grand que k.

Cela motive la définition suivante :

Definition 7.50 (JAC| Suite ordinale aleph). On définit par récurrence
transfinie la suite ordinale X (aleph) par :

Etape 0 : Xy =w;

Etape successeur : Nz est le plus petit cardinal plus grand que Ng;
Etape limite : Ng = sup {X, : v < 3}.

Il est facile de montrer que chaque N, est un cardinal infini et que la
famille (X4 )acon contient exactement tous les cardinaux infinis.
Proposition 7.51.

(1) Pour chaque ordinal o, R,, est un nombre cardinal infini.

(2) Chague cardinal infini est de la forme R, pour un ordinal c.

Démonstration.
(1) C’est immédiat pour o = 0 et pour « successeur. Pour « un ordinal
limite, on a 8, = sup {X, : v < a}. En supposant Card (X,) < R, il
existerait v < a tel que Card (R,) <R, <X, et donc également

Card (Ro) <Ny <Ry <X,

ainsi que les injections suivantes :

inj. inj. injg.

Ny 295 Card (Ry)

VAN (UL
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(Par composition d’injections) on aurait donc une injection entre n’im-
porte lesquels de ces ensembles. En particulier il y aurait une injec-
tion N,yq RN R, et linjection triviale id : N, TN N,y1. Par le
Théoréme de Cantor-Schroder-Bernstein (2.9) il existerait une bijec-
tion N, LN R, 1, ce qui contredirait la définition de N, .

Soit k un cardinal infini. Considérons « le plus petit ordinal tel que
k < Ngy. On remarque aisément qu’un tel ordinal « existe car pour tout
nombre ordinal 3 on a 8 < Ng et par conséquent k£ < N, est vérifié.
On montre ensuite que I'on ne peut pas avoir kK < N, et donc kK = N,,.
Pour cela supposons que k < N,. On a alors

(a) o =0 est impossible puisque & est infini.

(b) o=+ 1 est impossible puisqu’alors on aurait
Ng < Kk < Ngyq =NgT.

(¢) «a ordinal limite est impossible puisqu’alors il existerait v < « tel
que £ < N, contredisant la minimalité de .
O

Remarque 7.52.

(1)

(2)

On écrit trés souvent w,, pour X, avec la convention que wy = w. Plus
précisément lorsqu’il est important de distinguer ’ordinal du cardinal
on utilise w, pour parler de I'ordinal et N, pour parler du cardinal.

L’Hypothése du Continu est 'affirmation :
Card(Z(N)) = . (CH)
L’Hypothése Généralisée du Continu est : I’affirmation :

VYo € On Card(@(Na)) =Ngi1. (GCH)

En fait (pour autant que ZFC soit consistante) ni 'Hypothése du
Continu ni I’'Hypothése Généralisée du Continu ne sont prouvables ou
réfutables par ZFC.

Kurt Godel a montré?® que I'ajout de I'Hypothése Généralisée du
Continu & la théorie des ensembles ne changeait nullement la consis-
tance de cette derniére.

Paul Cohen a montré?” que 'hypothése du continu n’était pas prou-
vable & partir de ZFC?°. Elle est donc indépendante de la théorie des
ensembles.

28. Godel, K. (1940). The Consistency of the Continuum-Hypothesis. Princeton Uni-
versity Press.

29. Cohen, Paul J. (December 15, 1963). "The Independence of the Continuum Hypo-
thesis". Proceedings of the National Academy of Sciences of the United States of America
50 (6) : 1143-1148.

30. sauf si cette derniére est inconsistante !
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Plus précisément on sait maintenant que les théories suivantes sont

équiconsistantes 3! :
(a) ZF (d) ZF + GCH (g) ZF + -AC
(b) ZF + CH (e) ZF + -GCH (h) ZF + AC+ CH
(¢) ZF + -CH (f) ZF + AC (i) ZF + AC + GCH

Definition 7.53 ([AC]| Arithmétique cardinale). Pour A, k deux cardinaux,
on définit les opérations cardinales suivantes :

Addition : A+ k = card({0} x AU {1} x k)

Multiplication : \ -k = card(\ x k)

Exponentiation : A" = card(")\); ou ")\ désigne I’ensemble des fonctions
(totales) de k dans .

Remarque 7.54.

(1) Lorsque A et k sont des cardinaux finis, les opérations définies ne sont
pas différentes de ’addition, de la multiplication et de I’exponentiation
sur les entiers.

(2) 20 désigne la cardinalité de I’ensemble des fonctions des entiers dans
{0, 1}; autrement dit la cardinalité de ’ensemble des parties d’entiers.
Et plus généralement 28 désigne la cardinalité de 'ensemble des par-
ties de N,.

Ainsi 'Hypothése du Continu devient :
280 = N, (CH)
L’Hypothése Généralisée du Continu devient : I'affirmation :

VYoo € On 28 =R, ;. (GCH)

Les opérations arithmétiques sur les cardinaux se révelent extrémement
simples puisqu’on a :

Lemme 7.55 (AC). Soient A\, k deux cardinaux non nuls et dont l'un au
moins est infini.
A+ Kk =Xk =max(\ k)

Démonstration. Posons k = max(\, k). 1l suffit de monter que pour tout
cardinal infini x, ’ensemble x X k s’injecte dans x puisqu’alors

k= {0} xAU{l} XKk = AXK <> KXK < K

31. c’est-a-dire qu’elles sont toutes consistantes ou bien toutes inconsistantes.
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L’hypothése est évidente pour kK = Ng. Supposons k > Ny et procédons
par récurrence : on suppose I’hypothése vraie pour des cardinaux plus petits
que k. On définit le bon ordre strict suivant sur kK X & :

(o, 8) a(d, B))

—

max(«, ) < max(d/, 8')
ou

max(a, f) = max(a/, 5')
et

(v, B) <lexicog. (o, B)

On considére alors I'ordinal 6 qui représente le type d’ordre du bon ordre
(k X k,<), c’est-a-dire 'unique ordinal auquel ce bon ordre est isomorphe.
Il nous suffit dés lors de montrer que le cardinal de 6 est k pour obtenir
KXK — 6 < k.

Soit f I'unique isomorphisme entre (k X K, <) et 6. Considérons un couple
quelconque (a, #) € k X K tel que a, B ne soient pas tous les deux finis, ainsi
que son image f(a,3) =~ € 6. On a que

Card (y) < Card((max(a, B)+1) x (max(a,fB)+ 1))

Or si 'on pose A = Card(max(a,ﬁ) + 1), puisque A < k est vérifié, en
appliquant 'hypothése d’induction on obtient :

Card (v) Card((max(a, B)+1) x (max(a,B)+ 1))
Card (A x \)
A

K.

N ININ A

On en déduit que pour tout ordinal v < 0, Card (y) < k d’ou 0 < k. Par
ailleurs k — kxk < @, dou k < 6. Ce qui donne au final § = &,
montrant que k X k s’injecte dans k.

O

Proposition 7.56 (Propriétés des nombres cardinaux infinis). Soit A un
ensemble de cardinalité infinie k. Alors,

(1) A x A est de cardinalité k ;

(2) A< (I’ensemble des suites finies sur A) est de cardinalité k.
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Démonstration. On montre aisément par récurrence sur n € N* que

Card A><A><...><4 =K

n

en utilisant le fait que :
Card (A x A) = Card (Card (A) x Card (A)) = Card (A)-Card (A) = k-k = k.
On montre ensuite que

Kk < Card (A<“’) = Card U AxAx...xA] <Card(A4)Ny < k-¥y < K.

neN n

O]

Definition 7.57. Un cardinal infini s est dit régulier si pour toute partie
X C k telle que Card (X) < &, on a sup(X) < . Un cardinal qui n’est pas
régulier est dit singulier.

I est clair que g est régulier. Par contre, N, est singulier, car I’ensemble

{N,, :n €w} C N, est de cardinalité Ry < N, et vérifie sup{X,, : n € w} =
N,. De méme

Definition 7.58. Soient a et 8 deux ordinaux non nuls.

(1) On dit que « est cofinal & ( §'il existe une fonction f : (3 ﬁ) a qui
soit cofinale, i.e., vérifiant que pour tout v € «, il existe § € 3 tel que
f(6) 2.

(2) La cofinalité d'un ordinal a non nul est le plus petit ordinal § — noté
B = cof(ar) — tel que « soit cofinal & j.

Proposition 7.59. Soit a un nombre ordinal non nul.

(1) Si a est un ordinal successeur, alors cof(a) = 1.

(2) Si a est un ordinal limite, alors cof(a) est un nombre cardinal.

Démonstration. (1) Si a =+ 1, alors la fonction

Foo{0y “oguisy
0 — I5]

telle que f(0) = (3 est cofinale dans a.

(2) Soit  un ordinal tel qu'’il existe une fonction cofinale f : LN «, et

soit une bijection h : Card (/) LN B. On a a la fois Card (8) < 3 et

foh:Card(B) & est cofinale.

O]

Ezxemples 7.60.
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(1) cof(w) =w (7) cof(Ng) =Ny
(2) cof(w+tw) =w (8) cof(N3g) = Nag
(3) cof(w?) = w (

(4) cof(w”) =w

€

w

L (10
w _

(5) cof | w ) =w (11

(6) cof(N1) =Ny (12

Proposition 7.61. Soit o, 8 deux ordinauz limites. S’il existe une fonction

cofinale f' : B % «, alors il existe une fonction cofinale strictement

crotssante f : 3 i0f—> Q.

Démonstration. On construit f par récurrence transfinie en posant :
(1) f(0) = f(0);
(2) f€+1) =sup{f'(§+1),f(&) +1};
(3) SO =sup ({F/(NIU{fE)E<A}).
O

Proposition 7.62. Soit « un ordinal limite. Alors cof(cof(a)) = cof(a).

Démonstration. Découle directement du fait que la composition de deux
fonctions cofinales strictement croissantes est elle méme une fonction co-

finale. O

Proposition 7.63. Soit A un cardinal infini. Alors X est régulier si et seule-
ment si cof(A) = A.

Démonstration.

(=) Supposons tout d’abord que cof(A) = k < A. Il existe donc une fonc-

tion cofinale f : & % A. Mais par définition, cela implique que
sup ({f(a) : @ € k}) = A. Le cardinal A n’est donc pas régulier, car
Card ({f(a) :a € K}) =K < A

(<=) Supposons que A n’est pas régulier. Il existe alors un sous-ensemble
X C X tel que Card (X) = k < A et sup(X) = A. Comme X est un
ensemble d’ordinaux, il est bien ordonné et est donc isomorphe a un

unique ordinal £ < A. Soit I’ (unique) isomorphisme f : £ o, X , on
aalors f: ¢ <of, A, car sup(X) = A. On a donc cof(\) = cof (§) < A.

O

Proposition 7.64. Tout cardinal successeur infini (de la forme k%) est
régulier.
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Autrement dit, pour tout ordinal «, le nombre cardinal N, est régulier.

Démonstration. Soit kT un cardinal successeur, et supposons par ’absurde

qu’il existe une fonction cofinale f : A iOf—> x* pour un certain nombre
cardinal A < k. Pour chaque o € A, on a Card ( f (a)) < k et on choisit alors

une surjection g : £ —%5 f(a) et on définit

g:AXK—= KT

(a, B) = ga(P).
Comme f est cofinale, g est une surjection. On a donc
k= Card (A x k) > KT,
une contradiction. O

Definition 7.65. Un nombre cardinal x est dit faiblement inaccessible s’il
vérifie les deux conditions suivantes :

(1) k est un cardinal limite 3% et

(2) K est régulier.

L’existence de cardinaux faiblement inaccessibles est indépendante de
ZFC. Sil'on ajoute (comme axiome) & ZFC la formule close 3In. qui dit « il
existe un cardinal faiblement inaccessible »alors la théorie obtenue (ZFC +3
In.) prouve la consistance de ZFC. Une conséquence du second théoréme
d’incomplétude de Godel est que ZFC ne prouve pas sa propre consistance
(& moins d’étre inconsistante car nous verrons que toute théorie inconsis-
tante prouve absolument n’importe quoi). Une formule close qui ajoutée a
ZFC permet de prouver la consistance de ZFC est appelée une hypothése de
grand cardinal. Ainsi 'existence d’un cardinal faiblement inaccessible est une
hypothése de grand cardinal.

Lemme 7.66 (Lemme de Konig). Pour tout cardinal infini k, on a

k< Kcof(n) )

Démonstration. On montre qu’il n’existe pas de bijection g : & 2y eof(x)

SUTJ-, cof (k)

pour la raison qu’il n’existe pas de surjection g : K —— K.

Pour cela, il suffit & partir de n’importe quelle fonction g : k — ©f(F)k

et d’une fonction cofinale f : cof(k) <of, Kk, de construire (par un argument
diagonal) une fonction h : cof(k) — k qui n’appartienne pas a 'image de

32. Cela signifie que k = Ny pour un ordinal limite A\. On rappelle que 0 n’est pas un
ordinal limite!
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la fonction g (montrant ainsi que g n’est pas surjective). On définit ainsi la
fonction h : cof(k) — k en posant pour tout a < cof(k) :

h(a) = le plus petit ordinal dans {B €r|VE< fla) g(§)(a) # ﬂ}
Montrons que h est bien définie et pour cela montrons que I’ensemble
{Ben|¥eE< fla) g&)(a)# B}

est non vide. Pour cela il suffit de remarquer que pour a < cof(k) on a
f(a) € k (autrement dit f(a) < k) et donc Card(f(a)) < k. Par conséquent

Card({g(&)(@) | € < f(a)}) < w

et donc 'ensemble suivant est non vide

i {9(©)() [ €< fla)} ={Ber|VE< fla) g(§)(a) # B}

cardinalité <k

cardinalité =k

Supposons maintenant que h appartienne a I'image de g et donc qu’il

existe un ordinal v < & tel que g(v) = h. Puisque f : cof(k) Oy est une
fonction cofinale, il existe un ordinal § < cof(k) tel que f(6) > . On obtient
alors

h(0) = le plus petit ordinal dans {B € x| V¢ < £(0) g(£)(0) # B}.
Or v < f(8) et g(y) = h entraine que
h(0) = g()(0) € {g()(0) | £ < f(0)}
et par conséquent
h(0) ¢ 6~ {9(€)(O) [E< f(O)} ={B €r[VESF(O) g(&)(O) # B},

une contradiction. O

Une conséquence trés importante du Lemme de Konig c’est que la puis-
sance du continu (la cardinalité de 2%) ne peut pas étre un ordinal de la
forme N, pour un « limite de cofinalité w. En effet, on ne peut pas avoir
cof (2N0) = Ng comme le montre le résultat suivant :

Corollaire 7.67. Pour tout cardinal infini k, on a

cof (2%) > k.
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Démonstration. D’aprés ce qui précéde et en utilisant le fait que (k#) = x#
(cf. Série 9), on obtient :

or (2n)cof(2”) _ Qn-cof(Z") — gmax {k, cof(2"“)}.
Il y a alors deux possibilités pour max {x, cof(2")} :

e Si l'on suppose k = max {x, cof(2”)}, on obtient alors la contradic-
tion qui suit montrant que ce cas n’est pas possible :

o (2n)cof(2’“) _ 2max{n, cof(27)} _ 9K

e On a donc max {x, cof(2")} = cof(2") et également cof(2") # &, ce

qui donne cof (2%) > k.
0

On a ainsi que pour tout « ordinal limite de cofinalité dénombrable,
PAUIST N

C’est l'unique restriction a (CH) prouvable dans ZFC. Cette restriction in-
terdit par exemple d’avoir 2% = R, ou bien 2% = N, +w ou bien R0 = N
ou bien 280 = Ny, 4w OU encore R0 — NNNNN )

NNNNNNNNW

Choix. Un certain nombre des résultats que I’on a énon-

Dans tous ce chapitre on a travaillé avec I’Axiome du
A cés ne sont plus vrais lorsqu’on travaille sans AC.
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8 Théorémes de Lowenheim-Skolem

« Les escaliers encombrés ne suffisent plus; l’ascenseur a la descente
comme & la montée est toujours plein. »

Henri Michaux (La nuit remue, 1935)

Il y a deux maniéres de prendre 'ascenseur : l'une pour monter (1),
l'autre pour descendre ({). Ou l'on verra que si on ne peut pas descendre
trop bas, on peut par contre parfois monter trop haut. Néanmoins, dans les
cas ol on sera monté trop haut, on pourra toujours, grace au Théoréme de
compacité, redescendre & 1'étage désiré ...

8.1 Enoncés des théorémes

Theoréme 8.1 (Léwenheim-Skolem descendant (LS])). Soient £ un lan-
gage égalitaire et T une théorie sur ce langage. Si £ est infini, on pose
k = Card (&), sinon on pose k = w (o0 w est la cardinalité de N). S’il
existe un modeéle de T de cardinalité X > K, alors il existe un modeéle de T
de cardinalité k.

Theoréme 8.2 (Léwenheim-Skolem montant (LST)). Soient £ un langage
égalitaire et T wune théorie sur ce langage. Si £ est infini, on pose k =
Card (.Z), sinon on pose k = w(ou w est la cardinalité de N). S’il existe un
modele de T de cardinalité k, alors pour tout A > k il existe un modeéle de T’
de cardinalité \.

Remarque 8.3. On note respectivement, (LS]) et (LS?1) pour référer aux
théorémes de Lowenheim-Skolem descendant et de Lowenheim-Skolem mon-
tant respectivement.

Avant de prouver les théorémes, on introduit quelques outils dont on a
besoin.

Definition 8.4 (Forme prénexe polie). Une formule ¢ est sous forme prénexe
polie si elle s’écrit ¢ = Qrx1...QrxrV avec pour tout 1 < i < j < k,
Qi, Qj € {V,3}, x; # x; et si de plus ¥ est sans quantificateur.

Proposition 8.5. Pour toute formule ¢, il existe une formule ¥ sous forme
prénexe polie universellement équivalente a @, i.e. telle que ¢ <> VU est uni-
versellement valide.

Démonstration. Exercice. O
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Un premier résultat facile sur la maniére dont on obtient le plus petit
ensemble clos par un ensemble de fonctions.

Lemme 8.6. Si A et M sont des ensembles tels que A C M, et (f;)ier est
une famille de fonctions telles que f; : M™ — M ou n; € N; alors le
plus petit ensemble N qui vérifie A C N C M et soit clos par chacune des
fonctions f; (i € I) est obtenu par récurrence par :

(1) Ag = A

(2) A = AU J{filor, o san) | (anso o an) € A7)
el

(3) N = JAs.

keN
De plus, si |A] =k > Vg et |I| < k, alors |[N| = k.

Démonstration. Exercise. O

8.2 Preuves des théorémes

Prewve de Lowenheim-Skolem descendant (LS| ) :

Si T = (), le résultat est immédiat. Supposons donc T # ) et également
que chaque formule de T est sous forme prénexe polie.

Soit .# un modele de T' de cardinalité A > k. Pour chaque formule (close)
¢ € T on choisit o, (AC) une stratégie gagnante pour le Vérificateur dans
EV (4 ,p). Chacune de ces stratégies induit un nombre fini de fonctions
(9:'7 q0)z‘<ng‘,3 — oll Ny, désigne le nombre de quantificateurs existentiels dans ¢
— tel quindiqué dans I'exemple qui suit 33 :

@ =V, dvg Vs dry Jrs Vg dxy Y

(1)
967 M — M
1 +H—— X2

oil gg* est définie, pour chaque a € M par gg*(a) := 'unique b € M
que la stratégie o, choisit pour x3 lorsque le Falsificateur choisit a pour

xX1.
(2)
@r . M? — M
(x1,23) — x4
ol g‘f“" est définie, pour chaque a,b € M par g‘f“"(a,b) := 'unique

¢ € M que la stratégie o, choisit pour z4 lorsque le Falsificateur choisit
a pour x1 et b pour xs.

33. ol ¥ est une formule sans quantificateur.
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9°: M — M
(x1,23) — x5
oil go* est définie, pour chaque a,b € M par g?(a,b) := l'unique
¢ € M que la stratégie o, choisit pour x5 lorsque le Falsificateur choisit
a pour x1 et b pour xg3.

gg‘p : M3 — M
(v1,23,26) > w7

oil g5* est définie, pour chaque a,b,c € M par g37(a,b,c) := I'unique
d € M que la stratégie o, choisit pour x7 lorsque le Falsificateur choisit
a pour x1, b pour x3 et ¢ pour xg.
On considére alors n’importe quel sous-ensemble A C M tel que
(1) pour tout symbole de constante ¢ du langage .Z, ¢ € A;
(2) 4] = &.
On considére alors N le plus petit ensemble tel que A C N C M et N est
clos pour ’ensemble des fonctions suivantes :

F={g)?|peTeti<ngy} U {f”|f symbole de fonction de £}

On définit alors le modéle .4 comme étant la restriction de # au do-
maine N :

(1) [A]=N;

) pour tout symbole de constante ¢ de .Z, e =

(2
(3) pour tout symbole de fonction f de . d’arité ng, f* = f# | N ;
(4) pour tout symbole de relation R de .Z d’arité ng, R = R% N N"&,

Il ressort que
e |N| = k par application du Lemme 8.6 en remarquant que l'on a
|F| < k;
e pour chaque ¢ € T, la stratégie o, est gagnante pour le Vérificateur
dans EV (1, p).
En conséquence .4 est un modéle de cardinalité x satisfaisant 7T'.

Preuve de Lowenheim-Skolem montant (LST) :

On enrichit le langage .Z avec un ensemble C' de cardinalité A composé
de nouveaux symboles de constantes. On définit pour cela ¥’ = £ UC, qui
est de cardinalité A, puisque |-Z| < k < A. On considére de plus I'ensemble
de formules sur ¢’ suivant :

F={-c=d|c#detc,d eC}
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puis la théorie 77 = T'UT. On utilise maintenant le théoréme de compacité
pour construire un modéle de T”. Soit A C T’, A fini. Par hypothése, il
existe un modeéle .# de T de cardinalité infinie k. Or, A NI est fini, on
peut donc étendre le modéle .# en un modele .#’ de A, en interprétant les
symboles de constantes apparaissant dans A N I" de fagon appropriée. Par
conséquent, T” est finiment satisfaisable, et par le théoréme de compacité
T’ est satisfaisable. Or, un modeéle de T” est en particulier un modele de T'
de cardinalité supérieure ou égale & X\. On applique maintenant (LS|) a ce

modéle pour obtenir un modéle de T de cardinalité égale a A.
O
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9 Théorie de la démonstration

Nous allons étudier trois approches qui sont équivalentes :

(1) les systémes axiomatiques (réalisés par différents mathématiciens, dont
Hilbert) ;

(2) la déduction naturelle (Gentzen 1930) ;
(3) le calcul des séquents (Gentzen 1936).

Le but est d’obtenir le théoréme de complétude, c’est-a-dire I' = ¢ si et
seulement si I' F . On rappelle tout de méme la définition de conséquence
sémantique vue aux exercices :

Definition 9.1 (Conséquence sémantique). On dit que ¢ est conséquence
sémantique de la théorie I', ce que 'on note I' |= ¢, si et seulement si tout
modéle de I' satisfait .

9.1 Systémes axiomatiques

On se restreint aux formules avec uniquement les symboles —, = comme
connecteurs et V comme quantificateur. Voici I'un des systémes d’axiomes
possibles :

Axiomes 1. Pour toutes formules ¢, 1,6 et pour tout terme ¢,
(Ax 1) (p = (v = ¢));

(Ax2) ((p = @ = 0) = (e = v) = (9= 0));

(Ax 3) (= = =) = (¢ = ¥));

(Ax 4) (Voo — ¢ t/x])

(Ax 5) (Vz(p = ) = (Vo — Vay));

(Ax 6) (¢ — Vzyp) si x n’a pas d’occurrences libres dans .

Reégle 9.2 (Modus ponens). Pour toutes formules ¢ et 1, a partir de ¢ et
de ¢ — ¥ on déduit .

Definition 9.3 (Démonstration). Une démonstration d’une formule ¢ a
partir d’un ensemble de formules I" est une suite finie de formules (o, . . . , @n)
telle que ¢, = ¢ et que chaque formule ; vérifie I'une des trois conditions
suivantes :

(i) la formule ¢; est un axiome;
(i) la formule p; est une hypothése (c’est-a-dire ¢; € ') ;
(iii) la formule ¢; est obtenue par modus ponens a partir de ¢; et ¢y, avec
g,k <.
L’avantage de cette approche est que le nombre d’axiomes et de régles est

relativement petit. Par contre, son gros défaut est que ’écriture d’une preuve
est vraiment difficile et non intuitive, comme le montre ’exemple suivant :
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Ezemple 9.4. On va construire une preuve (assez courte!) de ¢ — ¢ avec

I'=0.

(= ((p—=9) =2 9) = (= (p—=0) = (0= ) (Az 2)
o= ((p—=¢) =) (Az 1)
(b= (p—=9) = (p—=0) modus ponens (1,2)
o= (=) (Az 1)
p—p modus ponens (3,4)

9.2 Déduction naturelle

On introduit maintenant une autre théorie de la démonstration qui est
beaucoup plus naturelle. Le lecteur qui désirerait en savoir plus pourra se
référer a |13, 22, 23, 51, 67, 67].

Definition 9.5 (Séquent). Un séquent est un couple (I',p) ou I' est un
ensemble fini de formules et ¢ est une formule. On le note
'k .
L’ensemble I' représente 1’ensemble des hypothéses et ¢ représente la
conclusion.

Notation 9.6. On se place dans le cadre de la définition précédente. On
introduit des notations alternatives a I' - ¢ suivant 1’écriture de I'.
(i) Le symbole F se lit « démontre » ou « prouve ».
(ii) Cas ouI' =0 : on notera
«F@» aulieude « D - ».
(iii) Cas ou I' = {wo, ..., ¢k} : on notera
K Qo, - 0k Fp»aulieude « {go,...,0k} F p».
(iv) Casou I = Uf:o I'; : on notera
«To,....,TgFp»aulieude «TgUTTU...UTg Fp».
(v) CasouI' = AU {¢} : on notera
« Ay aulieude « AU{Y}F p».
4

(vi) Le symbole L soit tient lieu d’une formule qui soit une contradiction 34,
soit on le considére comme un symbole de relation 0-aire dont l'inter-
prétation ®® dans tout modéle est 1’ensemble vide (d’oit le fait que la
relation . |= L ne soit jamais vérifée).

34. Comme par exemple la formule (¢ A —p).

35. L’interprétation d’un symbole de relation 0-aire R dans un modéle .Z quelconque est
un sous ensemble de M°. Or, M est ’ensemble des fonctions de 0 (c’est-a-dire 'ensemble
vide) dans M, cet ensemble ne contient donc qu’une unique fonction : la fonction vide
dont le graphe est (. Puisque M° = {0}, il y a exactement deux interprétations possibles
pour une relation O-aire R dans .# : puisque par définition, on doit avoir R C M°, cela
ne peut étre que soit R% = 0, soit R = {0}. Autrement dit, soit R# =0, soit R* =1.
Ainsi, on convient de noter L le symbole de relation 0-aire qui s’interpréte par 0 et T le
symbole de relation 0-aire qui s’interpréte par 1.
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Nous détaillons maintenant les régles et axiomes de cette théorie.

9.2.1 Anatomie d’une régle

(1) Chaque régle est composée :

e D’un ensemble de prémisses (il peut y en avoir 0,1,2, ou 3). Chacune
de ces prémisses étant un séquent.

e D’un séquent conclusion de la régle.

e D’une barre horizontale séparant les prémisses (en haut) de la
conclusion (en bas). Et sur la droite de la barre, le nom de la régle
est indiqué en abrégé.

(2) Une régle se lit de haut en bas : si on a prouvé les prémisses alors on a
également prouvé la conclusion. Mais elle a également une signification
si on la lit de bas en haut : afin de prouver la conclusion, il me suffit
de chercher a prouver les prémisses.

(3) A chaque connecteur logique correspondent deux types de régles.

(a) Les régles d’introduction qui permettent de prouver une formule
dont ce connecteur est ’opérateur principal.

(b) Les régles d’élimination qui permettent d’utiliser dans les pré-
misses une formule ayant ce connecteur comme opérateur princi-
pal.

(4) On ne considére que les seuls connecteurs —, A, V, —, étant entendu
que les formules du genre ¢ < 1 correspondent a (¢ — ¥) A (¢ — ¢).

9.2.2 Les régles de la logique minimale

En dehors des axiomes représentés par le séquent ¢ F ¢, le systéme a deux
sortes de régles : des régles logiques (subdivisées en régles d’introduction et en
régles d’élimination des différents connecteurs) et des régles structurelles qui
permettent de manipuler les hypothéses, d’en décrire précisément la gestion
(Iaffaiblissement permettant d’ajouter de nouvelles hypothéses et la contrac-
tion permet de confondre deux occurrences d’'une méme hypothése). Vous
pouvez retrouver toutes ces régles dans I’annexe B, dans les blocs axiomes,
regles logiques et régles structurelles.



9.2 Déduction naturelle 91
Déduction Naturelle Minimale
Axiome
pFo
Reégles logiques
'y T'Fy Ireny o LThery
A1 e e
L,TVE oAy ke Ity
Ty . ¢ THyve Tk Tek6
FFovy LEpvy [,I',T"F 6
| RRGRC , 'p—1 I
The—¢ 0T F 4
oL 'k —p ko
Tk—p O,TFL
Fl—tp[y/z]l F"V{E(p v
—_— . g Ve
F'EVz e 'k @[t/x}z
Fl—(p[t/z]2 ., Fl—a.r(p F/Np[y/w]}_wg .
T3z e LI+ ‘
- Fl_(P[t/m] I'tt=u
Fr=t? LI - -
) Plu/x]
Régles structurelles
Tky Lot
—— a ctr
T, ok Lok

1. y n’a pas d’occurrence libre dans I,

2. t: un terme

3. y n’a pas d’occurrence libre dans I, p, 1
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Axiome
oF ¢
Un séquent, dans lequel la conclusion est aussi ’hypothése, est prou-
vable.

Introduction de la conjonction
I'ko | RS
At
OLIVE oAy

Si 'on a montré ¢ et par ailleurs 1, alors on a montré ¢ A 1.

Elimination de la conjonction
oAy res oAy s
I'ko 'k
De ¢ A 1, on peut déduire, d’une part, ¢ et, d’autre part, 1.

Introduction de I’implication
roky
I'F¢ =
Pour prouver ¢ — 1, il suffit de prendre ¢ comme hypothése et de
prouver .

Elimination de I’implication (modus ponens)
'kFo—v "o

T, o -

Si on a prouvé ¢, et, par ailleurs, ¢ — 9, alors on a prouvé ¥. Ou
encore, pour démontrer v, il suffit de montrer a la fois ¢ — ¥ et ¢.

e

Introduction de la négation
TokL
'k —-¢
Pour montrer —¢, il suffit de montrer une contradiction en supposant
o.
Elimination de la négation
I'k—¢ ' ¢
T, FL )

Si on a montré a la fois ¢ et —¢, alors on a montré une contradiction.

i

e

On verra plus loin que —¢ est équivalent (au sens syntaxique comme
au sens sémantique) & ¢ —_L, on aurait donc pu se passer de ces deux
régles concernant la négation.

Introduction de la disjonction
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I'ko i 'y .
THevey TV

Cette régle peut paraitre trés étrange car la conclusion est clairement
plus faible que la prémisse. Pourtant il est de nombreux raisonnements
dans lesquels on a besoin d’affaiblir la conclusion, ne serait-ce que pour
la faire coincider avec la prémisse d’'une autre régle. Par exemple, il est
courant d’avoir une propriété du type « si un nombre est supérieur ou
égal & 0 alors ... » et de vouloir I'appliquer & un nombre dont vous
avez montré qu’il est strictement positif. Vous étes alors bien obligés
de passer du fait que ce nombre est strictement positif au fait qu’il est
positif ou nul pour montrer qu’il vérifie la propriété désirée.

iq

Elimination de la disjonction
'Eyvoe I ¢yF6 I'" ¢+ 06
Vv
L,I, 17+ 0

Si on a montré ¢ V 1, alors pour montrer 6, il suffit de montrer 8 en
supposant ¢ et encore de le montrer en supposant .

[

Introduction du quantificateur universel

I'F ¢y ®
T+ Vz ¢

C’est une maniére de dire que I'on s’intéresse aux occurrences libres
de la variable = dans ¢ et que ’on ne souhaite faire aucune hypothése
particuliére sur cette variable x. Elle peut apparaitre dans I', mais si
elle y apparait, alors c’est qu’elle y est liée. Tout se passe donc comme
si cette variable n’apparaissait pas dans les hypothéses, puisqu’une
variable liée peut tout a fait étre renommée sans changer en rien la
signification de la formule considérée.

i

Cette régle dit par conséquent que si 'on a prouvé ¢ sans hypothése
particuliére sur z, alors on a prouvé ¢ pour tout x, donc on a prouvé

vV ¢.

Elimination du quantificateur universel
I'-Vx ¢ y
T'E e/ ™

Si 'on a montré Va ¢, alors on a montré que ¢ valait lorsqu’on substi-
tuait n’importe quel terme aux occurrences libres de x. Intuitivement,
les termes désignent les objets au sujet desquels parlent les formules. Si

36. y n’a pas d’occurrence libre dans I, ¢
37. t: un terme
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I'on a montré Vx ¢, on a montré que la formule ¢, en tant qu’elle parle
de 'objet x, valait pour toute valeur que pouvait prendre cet objet x,
donc en particulier, lorsque x prend la valeur t.

Introduction du quantificateur existentiel

L+ dpym ™
I'kdx o
Si 'on a montré que ¢ vaut pour un certain terme t (ce que l'on écrit
oI /z]) alors on a montré qu’il existe un objet qui satisfait ¢, /), par
conséquent Ix .

3

Elimination du quantificateur existentiel
CE3z¢ I ¢ty
| N R T

Jde

Lorsqu’on a pu prouver dx ¢, on peut utiliser cette conclusion comme
hypothése en donnant un nom & cet x qui satisfait ¢. Mais donner un
nom a cet objet x signifie qu’il n’a aucune raison d’apparaitre dans la
démonstration par ailleurs. Cet objet x n’a aucune raison d’étre I’'un des
autres objets apparaissant dans la démonstration, raison pour laquelle
la condition z n’a pas d’occurrence libre dans IV, 1 est réclamée.

Introduction de 1’égalité

Ft=¢90
t = t est démontrable sans hypothése. Cette régle signifie que la relation
d’égalité est réflexive.
Elimination de ’égalité
L' @ /al I'tt=wu
LT F bpuya

Lorsque, d’une part, on a prouvé ¢(t), et d’autre part ¢t = u, alors on
a prouvé ¢(u).

Affaiblissement
'Ey

— T af
Lok

38. t : un terme
39. y n’a pas d’occurrence libre dans I, ¢, ¢
40. t : un terme
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Si je peux prouver ¥ avec les hypotheéses I, alors je peux encore prou-
ver ¥ si jajoute d’autres hypothéses a I'. Autrement dit, il y a des
hypothéses qui peuvent ne pas servir dans une démonstration.

Contraction
L' o, 99
Lok
Cette régle est une conséquence immédiate de la définition du séquent
puisque lorsqu’on écrit I', ¢, ¢ = 1), on écrit en vérité T'U{¢, ¢} - 1. Or,
{, ¢}, par définition, n’est autre que I’ensemble qui contient un seul
élément : ¢. On a donc I'égalité suivante : {¢, ¢} = {¢}. Par conséquent
FTU{¢, o} et T U{¢p} sont le méme ensemble, d’ot T' U {¢p, ¢} F 9 et
I'u{¢} F 1 sont la méme chose. Pour utiliser les conventions d’écriture
que nous avons : I'; ¢, ¢ - 1 et I'U ¢ I 9 sont en fait le méme séquent.

ctr

9.2.3 Les régles de la logique intuitionniste

La logique intuitionniste est un enrichissement de la logique minimale
avec la régle supplémentaire :

Absurdité intuitionniste
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Déduction Naturelle Intuitionniste

Axiome

ax

ek

Regles logiques

T'e T'F9y Lhony o Theny
LTV E oAy 'k Ty
I'Foe via =+ i 'y ve T ¢+-6 I k6 y

I'EeVvy vy L, I/,T"+6
| ARV RR T ‘ T'kp— Ik
The—¢ 0T F 4
oL Ik —p I
Tk—p TV FL
N o ! 'V
Ply/] i ‘/92 ve
I'EVz e T'F ©p/a]
Fl—g@[t/m}z ) F'—HZ‘()O F/,(p[y/x]l—wg .
CF3r o O, -4 ‘
R F}_Qo[t/x] F’l—t:u
Fe=t? T I F -
Régles structurelles
'y o Lppbd
T,k ok

Regle de I’absurdité intuitionniste

-1
'y

Le

1. y n’a pas d’occurrence libre dans T,

2. t: un terme

3. y n’a pas d’occurrence libre dans I", @,
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9.2.4 Les régles de la logique classique

La logique classique est aussi un enrichissement de la logique minimale
avec en plus la régle suivante :

Absurdité classique
I—¢kL
I'kFo
Remarque 9.7. Chacune de ces régles, a 'exception de I’Axiome et de la régle
=;, fait intervenir un séquent conclusion et 1, 2 ou 3 prémisses. Ainsi chaque
régle peut étre regardée comme définissant une structure arborescente simple.
Par exemple, la régle de I’élimination de I'implication peut étre regardée

comme un arbre de hauteur 1, avec une racine (I',I” I ) et deux feuilles
TH¢— et F @)

lec

'Fo— Ik ¢
| R )

e

De méme la régle de I’élimination de la disjonction :

THyve Tyko T 60
A\
I, T, T+ ¢

e

donne lieu, cette fois-ci, & un arbre avec une racine et trois feuilles.
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Déduction Naturelle Classique

Axiome

ax

ek

Regles logiques

T'e T'F9y Lhony o Theny
LTV E oAy 'k 'ty
'k vig 'k i 'y ve T ¢+-6 I k6 y

I'EeVvy vy L, I/,T"+6
| ARV RR T ‘ T'kp— Ik
ThFo—¢y T,T 4
oL Ik —p I
Tk—p TV FL
N o ! 'V
Ply/z] i 992 ve
I'EVz e T'F ©p/a]
Fl—g@[t/m}z ) F"H]}(p F/,(p[y/x]l—wg .
CF3r o O, -4 ‘
R F}_Qo[t/x] F’l—t:u
Fe=t? T I F -
Régles structurelles
'y o Lppbd
T,k ok

Regles de I'absurdité classique

T'=pFL
ke

1. y n’a pas d’occurrence libre dans T,

2. t: un terme

3. y n’a pas d’occurrence libre dans I", @,
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9.2.5 Déduction

Dans le systéme de la déduction naturelle, une « déduction » — encore
appelée « preuve » — est un arbre fini représenté avec la racine en bas et
les feuilles en haut et dont les noeuds sont des séquents, et chaque relation
entre un noeud quelconque et ses descendants immédiats est une instance de
I'une des régles de la déduction naturelle.

Definition 9.8 (Déduction). Dans une logique (minimale, intuitionniste ou
classique) et dans le systéme de la déduction naturelle, une déduction est un
arbre fini dont les noeuds sont des séquents (S;);<k, et vérifiant les propriétés
suivantes. Pour chaque noeud S; de la déduction,

(i) S; est une feuille si et seulement si S; est un axiome ou la régle =; ;

(ii) si S; n’est pas une feuille, alors le sous-arbre de hauteur un, dont S;
est la racine et les fils/filles de S; sont les feuilles, est une instance de
I'une des régles de la logique correspondante (voir respectivement 9.2.2,
9.2.3,9.2.4, ou pour une version plus condensée, ce qui est présenté dans
I'annexe B).

Une formule ¢ est déductible des hypothéses I' — on dit aussi prouvable
a partir des hypothéses I' — dans une logique (minimale, intuitionniste ou
classique) s’il existe une déduction dont la racine soit un séquent de la forme
AF ¢, ou ACT.

Remarque 9.9. Puisque une déduction est un objet fini, ne faisant intervenir
dans tout séquent qu'un ensemble fini de formules, une formule quelconque
est prouvable & partir d’'un nombre infini d’hypothéses si et seulement si il
est possible d’extraire un nombre fini d’hypothéses a partir desquels cette
formule est prouvable. En particulier, si ’on travaille avec un théorie infinie
(comme 'axiomatique de Péano pour l'arithmétique ou bien la théorie des
ensembles) alors pour tout théoréme de cette théorie, il existe un nombre
fini d’axiomes & partir desquels ce théoréme est obtenu.

Notation 9.10. On notera :

(i) T ko ¢, le fait que cette déduction s’effectue dans le cadre de la logique
minimale ;
(ii) ' F; ¢ lorsque cette déduction s’effectue dans le cadre de la logique
intuitionniste ;
(iii) I' k¢ ¢ lorsque cette déduction est du ressort de la logique classique.
Ezemples 9.11. (i) On montre b, ¢ — (¢ — ¢) en donnant une preuve

du séquent - ¢ — (¢ — @) qui ne fasse intervenir que les régles de la
logique minimale :
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T

L

oo

oY — ¢
Fo— (Y — o)

(ii) Une preuve de Fp, =3z ¢ — Va —¢ est une preuve du séquent
=3z ¢ — Vo —¢ en logique minimale :

— i

O " /el
—3z $F 3z ¢ Gyl F T &
=3z 6, Ppyye L
"I O Pyl
=3z ¢ -V —¢
F-3z ¢ = Vz ¢

i

—e

-

i

i

(iii) On peut aussi prouver b, Vo =¢ — =3z ¢ :

Yz ¢ Vo ¢ v -
A AT Ply/a) = Ply/a)
Jz ¢F Iz ¢ Yz =, Py F L
Vo —¢, dJx o L
Ve —pF Tz o
FVz ¢ — -3z ¢

e

i

Remarque 9.12. Les conditions du type « y n’a pas d’occurrence libre dans
I', ¢ » que ce soit pour la régle de ’élimination du quantificateur existentiel
ou pour celle de l'introduction du quantificateur universel sont absolument
primordiales. Sans le respect de celle-ci, on pourrait trés bien construire la
démonstration fausse suivante de la formule 3z ¢ — Vx ¢ :

axr

R d Oy Oy
Fz ¢ F @y /a)

Jx ¢V ¢ _
F3z ¢ >V .

Je erroné

7

9.2.6 Comparaison entre les différentes logiques

Nous comparons maintenant les différentes logiques. Pour prouver qu’une
formule n’est pas prouvable dans une certaine logique, nous avons besoin des
théorémes de complétude. Nous énoncons donc pour l'instant les résultats
de ce type sans les démontrer. Les preuves sont faites dans la partie 13.0.1.
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Logique intuitionniste La régle de I'absurdité intuitionniste n’est pas
démontrable dans le cadre de la logique minimale. Elle enrichit donc stricte-
ment cette derniére. Cela signifie il existe des déductions possibles en logique
intuitionniste, qui ne le sont pas en logique minimal. Par conséquent, il existe
des formules qui sont des théorémes de la logique intuitionniste mais qui ne
sont pas déductibles dans le cadre restreint de la logique minimale.

Par exemple, la formule =—(——¢ — ¢) n’est pas démontrable en logique
minimale mais elle I’est en logique intuitionniste :

oFé "
bdF o N

SF9—=¢ | (o= d)F (-9 — 9)
(o0 > 9),0FL

—e

x

R —

(o= Ao
~¢, 20 @ FL
""¢7 "("ﬁ¢ — ¢) F ¢ ‘)l ax
(9= k9 ¢ (o= d) F (-6~ 9)
(9 FL
F (6~ 6)

—e-fctr

—i

Remarque 9.13. La logique intuitionniste remonte aux constructivistes (dont
Brouwer). En effet, en logique intuitionniste,
e si['; @V W, alors une preuve de ceci fait apparaitre une preuve de
' Poudel' ; U
e si I' F; 3@, alors une preuve de ceci fait apparaitre une preuve de
'k <I>[t/$] pour un certain terme ?.

Ainsi, une preuve en logique intuitionniste est constructive.

Logique classique La régle de ’absurdité classique n’est pas démontrable
dans le cadre de la logique minimale. Elle ne I’est pas non plus en logique
intuitionniste. Elle constitue donc un enrichissement strict de la logique in-
tuitionniste et, @ fortiori, un enrichissement encore plus important de la
logique minimale.

En effet, la régle de ’absurde intuitionniste est un cas particulier de la
régle de I'absurde classique qui correspond au cas ot 'hypothése —¢ n’ap-
parait pas. Elle s’en déduit donc immédiatement par :

_reL .
T,-pFL
TFo

Voici maintenant quelques exemples de formules démontrables en logique
classique et non en logique intuitionniste.

Ezxemples 9.14. Régle du tiers exclu F ¢V —¢ :
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T

~(¢V ~¢) - =(¢V ~9) SrovV-g
(V) oL
—(pV-p) -9

~(OV -9 F~(6V =) @V oV
~(6V—9), ~(6V @) FL
(¢ vV —g) L
S oV

Loi de Peirce F (=¢ — ¢) = ¢ :

T

T R e ey R L 2
~6F ¢ ~6 = ¢, ¢t ¢
—|(;5 — qb, —|¢) Ll
~¢—>ok¢

F(o¢ =) = ¢

e+ctr

Elimination des doubles négations F ——¢ — ¢ :

—HF ——d  —pF g ﬁ
¢, oL
——|—\¢ ~¢ -
+ —|—|¢) — gf)

Contraposition + (-1 — —¢) — (¢ — ).

T

—|¢—)—|¢|——|QZ)—)—|¢ “ _‘¢'__‘7,[) ie
Y = ¢, Y- ok ¢
_'w_>_'¢7_'¢7¢|_J— N
b 6.0F0
R X
(Y = 2¢) = (¢ = ¢)

azr

—e

— 1

o o~V ¢ — Iz 6 :

(comparer avec la preuve de b, V& —¢ — —3x ¢ qui se trouve page 100)
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I 7 R 7 I
3z —¢ F -3z —¢ ~Gly/a] F 3T 0
—dx —|(;5, ﬂqf)[y/z} FL

3 P Py
Vb Vz b 3z ¢ Vz & :
Tz —¢, vz L
-z ¢+ dr —¢ v
F—Vz ¢ — Iz =

c

c

Remarque 9.15. 11 y a plusieurs fagon d’obtenir la logique classique & partir
des logiques soit intuitionniste soit minimale en rajoutant des nouvelles régles
prises comme axiomes, c’est-a-dire des régles qui se positionnent comme
feuilles dans des déductions :

log. cl. = log.int. + - (6 V ) trers cxelu (principe du tiers exclu)
= log. int. + - ((~¢ — ¢) — ¢) fot de Peiree (loi de Peirce)
= log. min. + - (~—¢ — ¢) dotes mégations clim. (élimination des doubles négations)

contraposition

= log. min. + F (= = =) = (¢ — ) (contraposition)
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9.3 Calcul des séquents

Certains résultats seront énoncés sans démonstration. Un lecteur qui vou-

drait trouver les preuves manquantes peut se référer aux livres [13, 22, 23,
| 67].

Le calcul des séquents repose sur la notion de séquent. Mais contrairement
a la déduction naturelle qui mettait en jeu des séquents de la forme I' - ¢,
ol ¢ était une formule et I' un ensemble de formules, le calcul des séquents
symétrise la notion de séquent qui prend la forme I' H A, ott A est également
un ensemble de formules.

Definition 9.16 (Séquent). Les séquents sont de la forme I' = A, ou I" et
A sont des ensembles finis, éventuellement vides, de formules. On nomme I'
la partie gauche du séquent et A la partie droite du séquent.

Remarque 9.17. Intuitivement, on peut interpréter le séquent I' H A de la
fagon suivante : la conjonction (et) des formules de T prouve la disjonction
(ou) des formules de A. De plus, on a :

(i) une conjonction vide « équivaut » a T (le vrai) ;

(ii) une disjonction vide « équivaut » a L (le faux);

(iii) F s’interpréte comme ’absurde au sens ot sans hypothése on prouve le
faux (il correspond au séquent -1 de la déduction naturelle).

9.3.1 Les régles du calcul des séquents

Les régles du calcul des séquents sont trés proches de celles de la déduc-
tion naturelle. L’ensemble des régles du calcul des séquents se trouve dans
I’annexe page 138. Elles conservent en particulier le fait que d’un ensemble
de prémisses (il peut y en avoir 0,1 ou 2), on déduit un séquent conclusion et
elles sont représentées avec les prémisses au-dessus d’une barre horizontale
et la conclusion en dessous. De méme, les régles d’introduction de la déduc-
tion naturelle sont conservées. Elles deviennent des régles d’introduction a
droite. Les régles d’élimination sont remplacées par des régles d’introduction
a gauche.

On retrouve également une régle pour les axiomes, des régles logiques
et des régles structurelles. Mais, chose nouvelle, une régle de coupure est
introduite :

I'top, A I, ok A
T TFA A

cut

Cette notion de coupure correspond & la partie non mécanique de ’acti-
vité démonstrative. C’est elle qui permet I'utilisation d’énoncés généraux, de
principes que ’on démontre une fois pour toute et que ’on applique ensuite
4 des cas particuliers. Ceci est une pratique courante des mathématiques ot
I’on fait grand usage de ces démonstrations indirectes.
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Calcul des Séquents

Axiomes
ar L.(]
pkp 1+
Reégles logiques
IpFA . ry+-A . ke A ', A .
oAy EA oAy EA F'EpAyY,A
L,pEA LA | R R 7RAN y 'ky, A .
LoV kA ‘ TFoVvy,A I'Fovey, A
ke, A ykFEA Loy, A
—g —_— 7d
e—vkEA 'kFp—Yv, A
e, A FoFA
T'-pFA 'k —p, A
T, Plt/z] FAL ' (p[y/a:]aA
O TWE — v
I\WVz ok A I'-Vz o, A2
L, opyz) - A y LF i, A
I3z kA2 F'kF3dz p, A
Tit=tFA Rer F,tzs,(p[s/x],(p[t/ﬁ]l—A .
_ Re ep
r=A L5 =101/ - A
Reégles structurelles
A o, 'eA
Mok A Tk A
LopbA IFepd
| TN AN 'kp A
Regle de coupure
I'ep,A I ok A )
LT = AA ‘

1. t : un terme
2. y n’a pas d’occurrence libre dans le séquent conclusion de la régle (dans I', 3z ¢ ou
Yz @, et A)
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9.3.2 Logique classique, intuitionniste et minimale

On définit la notion de déduction dans le systéme du calcul des séquents.
C’est globalement la méme que pour la déduction naturelle. (De maniére
équivalente on parlera de preuve ou de déduction.)

Definition 9.18 (Déduction). Dans le systéme du calcul des séquents, une
déduction est un arbre fini dont les noeuds sont des séquents (.5;)i<g, et
vérifiant les propositions suivantes. Pour chaque noeud S; de la déduction,

(i) S; est une feuille si et seulement si S; est un axiome;

(i) si S; n’est pas une feuille, alors le sous-arbre de hauteur un dont S; est
la racine et les fils/filles de S; sont les feuilles, est une instance de I'une
des régles du calcul des séquents.

Une formule ¢ est déductible des hypothéses © dans le calcul des séquents
s’il existe une déduction dont la racine soit un séquent de la forme I' F ¢,
avec I' C O.

On va chercher maintenant & identifier les équivalents de la logique mini-
male, intuitionniste et classique de la déduction naturelle dans le calcul des
séquents.

Exemples 9.19. Voici quelques exemples de preuves en calcul des séquents :

(i) Elimination des doubles négations : - =—=p — ¢

azr

A
Fe e
ok
F——p—p

—d

—d

(ii) Déduction de - ¢ — ——¢p

azr

ko
@,
oo
|—g0—>—|—|(,0

-

—d

—d

On remarque que l'on peut prouver I’élimination des doubles négations
en calcul des séquents. Cela suggére que celui-ci, avec aucune restriction sur
les régles utilisées, correspond au moins a la logique classique en déduction
naturelle (voir la Remarque 9.15). La Proposition 9.21 exprime cette corres-
pondance.

Exemples 9.20. Voici encore comment on récupére ’absurdité intuitionniste
et 'absurdité classique en calcul des séquents :
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(i) Absurdité intuitionniste : 5 I}: J(}; Le
: 1
L =
L' affa
I'kFoe
(ii) Absurdité classique : Lophl Le
I'kFoe
Llg ax
I,—pFLl 1+ e
cut
F, "2 F - ¥, P
—d —_— g
'E—-=p o »
I'kFe
(iii) Tiers exclu : F (¢ V =)

e

Feme

Flevoe)oe
FlpVop)lpVay)
= (e V)

Proposition 9.21. Soient I un ensemble fini de formules et A = {11,..., ¥, }.
On obtient que

le séquent I' = A est prouvable en calcul des séquents
st et seulement si
le séquent T'F (1 V...V by,) est prouvable en déduction naturelle.

Cette proposition motive la notation suivante.

Notation 9.22. On écrit I' F. A lorsque le séquent I' = A est prouvable en
calcul des séquents sans aucune restriction sur les régles utilisées.

Arrétons nous un instant sur les deux derniers exemples. La différence
majeure entre les deux formules ¢ — ——p et ——p — @ est que la premiére
est prouvable en déduction naturelle intuitionniste alors que la seconde ne
I’est pas. Si I'on regarde de prés les deux preuves, nous devons bien admettre
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que nous avons fait quasiment la méme chose dans I'une et autre. A la pe-
tite différence que, dans la premiére preuve, nous avons d’abord effectué une
introduction de la négation & droite avant d’effectuer la méme introduction
de la négation mais & gauche cette fois. Alors que, dans la seconde démons-
tration, nous avons d’abord effectué 'introduction de la négation a gauche
avant celle de droite.

En fait, la logique intuitionniste a une caractérisation extrémement simple
en calcul des séquents.

Theoréme 9.23. La logique intuitionniste est la version du calcul des sé-
quents dont les régles sont restreintes aux séquents ayant au plus une formule
a droite, la contraction a droite étant considérée comme implicite.

Autrement dit, si A = {1,...,¢%n}, on a que T' = (Y1 V...V ,) en
déduction naturelle si et seulement si le séquent I' = A est prouvable dans
la version du calcul des séquents ot l’on se restreint aux régles ne faisant
intervenir que des séquents ayant au plus une formule & droite, la contraction
a droite étant considérée comme implicite.

Theoréme 9.24. La logique minimale est la version du calcul des séquents
intuitionniste dépourvue de la régle d’affaiblissement & droite.

On peut remarquer que ’absurde intuitionniste est une instance de cette
régle :

-1 1+
'
'k

9.3.3 L’élimination des coupures

On peut se demander si le séquent vide (F) est prouvable. C’est une
question grave, car si tel était le cas, nous nous retrouverions avec un systéme
de démonstration qui prouverait I’absurde sans hypothése, et donc prouverait
n’importe quoi. Un tel systéme serait bon & jeter aux oubliettes et & nous
renvoyer & nos chéres études. . .Le théoréme suivant répond & cette question.

Theoréme 9.25 (Elimination des coupures). Sl existe, en calcul des sé-
quents classique (resp. intuitionniste), une preuve du séquent I' = A, alors il
existe une preuve en calcul des séquents classique (resp. intuitionniste) de ce
séquent sans utilisation de la régle de coupure.

Ce théoréme extrémement important justifie a lui seul la mise sur pied
du calcul des séquents. Il affirme que 'on peut toujours se passer de la régle
de coupure pour obtenir un séquent prouvable en logique classique. Mais, si
I’on peut faire fi de la régle de coupure, cela signifie que tout séquent I' H A
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prouvable peut I'étre par 'utilisation des seuls axiomes, régles logiques et
régles structurelles. La preuve de ce théoréme n’est pas vraiment difficile
mais longue et fastidieuse puisqu’il faut remplacer dans une preuve donnée
chaque utilisation de la régle de coupure par d’autres régles logiques.

Ce résultat a deux conséquences majeures :

Corollaire 9.26. Le séquent - n’est pas prouvable en logique classique.

Démonstration. La preuve est immédiate : s’il existait une preuve de ce
séquent en calcul des séquents, il en existerait également une qui se ferait sans
utilisation de la régle de coupure. Or, toutes les autres régles introduisent une
formule soit & droite, soit & gauche, soit des deux cotés a la fois. La seule régle
qui permet de faire disparaitre une formule est la régle de contraction, mais
celle-ci ne fait pas disparaitre une formule, elle ne fait disparaitre qu’une des
occurrences multiples d’une formule. Il est donc immédiat qu’il n’y a pas de
preuve sans coupure du séquent . Par application du théoréme d’élimination
des coupures, il n’y a donc pas de preuve (avec ou sans coupure) du séquent
F.

O

La théorie de la démonstration est donc sauve.

Nous allons maintenant utiliser une notion de sous-formule d’une formule
plus étendue que celle donnée a la Définition 3.15 en autorisant les substitu-
tion des variables libres par des termes. Nous noterons cette
notion nouvelle. De la sorte, alors qu'une formule n’a qu’un nombre fini de
sous-formules, elle peut maintenant avoir une infinité de

Definition 9.27 ( d’une formule). Une formule ¢ est une

d’une formule ¢ si il existe une sous-formule (au sens usuel)
1 de p dont les variables libres sont parmi x1, ...,z et des termes ty,..., g
tels que

= Vit oty i)

Corollaire 9.28 (Propriété de la ). Sile séquent T' = A est
prouvable en logique classique (resp. en logique intuitionniste), alors il existe
une preuve en logique classique (resp. en logique intuitionniste) de ce séquent

dans laquelle n’apparaissent que des séquents constitués de
des formules de ' et de A.

Démonstration. Par application du théoréme de I’élimination des coupures,
il existe une preuve sans coupure de I' = A. Or, une telle preuve satisfait
les conditions souhaitées. Cela se vérifie immédiatement, régle par régle, par
induction sur la hauteur d’une preuve sans coupure.

O
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Une des conséquences de la propriété de la est qu’une
preuve d’une disjonction en logique intuitionniste passe nécessairement par
une preuve d’un des termes de la disjonction :

Fi oV siet seulement si ( Fi pou Fy w).
De méme,

F; Jz ¢ ssi il existe un terme ¢ tel que F; Plt/z]

Une conséquence majeure de la propriété de la , qui elle-
méme repose directement sur ’élimination des coupures, est de permettre,
tout particuliérement en logique intuitionniste, une recherche de preuve au-
tomatique. On peut ainsi mettre en place des « prouveurs automatiques »
dont la tache est la production mécanique de preuves, comme par exemple
les preuves de programmes. Le caractére nécessairement abstrait des preuves
par coupure étant oublié, ces machines recherchent des preuves, certes plus
longues, mais aussi plus simples dans le fait qu’elles ne font appel qu’aux
des formules du séquent qu’il s’agit de prouver.
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10 Indécidabilité de la logique du premier ordre

10.1 Traduction de Godel
10.1.1 Langages non égalitaires

Definition 10.1 (Traduction de Godel (sans égalité)). Soit ¢ une formule
ne contenant pas le symbole d’égalité. La traduction de Gddel de o, notée
@9, est la formule définie par induction de la fagon suivante :

o 19=1;

e I =, si g est atomique;
o (mp) = —ypY;

P AY)T = @I A9

P V) === (e V),
o = P) = = 9
Vrp)d =Vrpd;

Jz )9 = =—Jz 9.

(=
(
(
(
(
* (

Theoréme 10.2. Soient I' un ensemble de formules dans lesquelles le sym-
bole d’égalité n’apparait pas et @ une formule dans laquelle le symbole d’égalité
n’apparait pas. Alors

Lk pssilY by, ¢,

ou I'Y est ’ensemble des traductions de Gédel des formules de T'.

Intuitivement, ce théoréme nous dit que, pour prouver une formule en
logique classique, on peut se restreindre & n’utiliser les raisonnements par
I’absurde que sur les formules atomiques, disjonctives et existentielles.

10.1.2 Langages égalitaires

Definition 10.3 (Traduction de Godel (avec égalité)). On rajoute a la dé-
finition précédente de la traduction de Godel (sans égalité) une traduction
de I'égalité :
(t1 =t2)9 = = (t] = ta).
Dans ce cas, le théoréme devient :
Theoréme 10.4. Soient I un ensemble de formules et ¢ une formule. Alors

ChepssiD VaeVy (—ax=y) = 2 =y) bm @7,

ot I'9 est ’ensemble des traductions de Gddel des formules de T'.
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10.2 Décidabilité

Definition 10.5 (Décidabilité d’un probléme). Un probléme est dit déci-
dable §’il existe un algorithme qui, & partir de la donnée, travaille, s’arréte
et répond oui ou non au probléme posé. Dans le cas contraire, il est dit
indécidable.

Definition 10.6 (Décidabilité d’une théorie). Une théorie T est dite déci-
dable si le probléme suivant est décidable :

e donnée : une formule ¢ du langage de T';

e question : Tk, ¢?

10.3 Indécidabilité de la logique du premier ordre

On énonce sans le démontrer un théoréme qui est une conséquence du
théoréme d’incomplétude de Godel.

Theoréme 10.7. Les théories de l’arithmétique de Robinson, de Peano et la
théorie des ensembles avec ou sans l’axiome du choix (ZF ou ZFC) — voir
lannexe A — sont toutes indécidables.

Corollaire 10.8 (Indécidabilité de la logique classique du premier ordre).
La logique classique du premier ordre est indécidable.

Démonstration. Soit g la formule obtenue par conjonction de tous les axiomes
de l'arithmétique de Robinson (qui est une théorie finie!). Alors pour toute
formule 1,

YRrtcY sietseulement si F.pr — Y.

L’indécidabilité de la logique classique du premier ordre découle donc de
I’indécidabilité de I'arithmétique de Robinson.
O

Corollaire 10.9 (Indécidabilité de la logique minimale du premier ordre).
La logique minimale du premier ordre est indécidable.

Démonstration. D’aprés le théoréme sur la traduction de Goédel, pour toute
formule 1,

Fc 1 siet seulement si -, (Vx Yy (—|—|x =y —>x= y) — w‘]).
L’indécidabilité de la logique minimale du premier ordre découle donc de

I'indécidabilité de la logique classique du premier ordre.
O
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11 Modéles de Kripke de la logique du 1°" ordre

11.1 Logique intuitionniste
11.1.1 Langages non égalitaires et sans symbole de fonction

Definition 11.1 (Modele de Kripke de la logique intuitionniste, 1965). Soit
% un langage du premier ordre non égalitaire et sans symbole de fonction
(ni de constante). Un modeéle de Kripke*' de la logique intuitionniste sur le
langage .Z est un quadruplet K = (|K|, <, 2,1F), ou :

(i) (JK], <) est un ensemble ordonné, les éléments de || sont appelés des
mondes.

(ii) 2 est une fonction qui associe a tout élément o € |K| un ensemble
Do # 0, que 'on appelle le domaine du monde «, tel que

VaVp (a < B — P C PDp).

(iii) IF est une relation binaire entre les éléments de |K| et les formules
atomiques a parameétres dans | J ac|k] D4, dite de « forcing ». Le symbole
I se lit « force ». Soient a, § € |K| et R € £ un symbole de relation

d’arité n. La relation |- est telle que : 42
o alf L;
osialk R(a,...,ap)onaay,...,an € o ;

osialk R(ay,...,ay) et a < B, alorson a g 1I- R(ay,...,a,).

On peut étendre |- en une relation binaire entre les éléments de || et les
formules a parametres dans (J,¢|x) Za- Soient a € |K| et ¢, ¢ deux formules
de .Z. On étend I par récurrence de la fagon suivante :

o alF @AY siet seulement si ol g et a -

e}

alF @V si et seulement si al- @ ou a lF ¢

e}

alF ¢ — 1 si et seulement si pour tout 8 € |K| tel que a < f, si
B I @ alors B 1
o alF - siet seulement si alF p — L;

e}

a |-V ¢ si et seulement si pour tout 8 € |K| tel que oo < S et b € D,
on a 5 |- (p[b/x] 5

e}

a | Jz ¢ si et seulement §'il existe a € Z, tel que a - a1

41. Saul Aaron Kripke était un philosophe analytique et logicien américain (1940-2022)
venant de Omaha dans le Nebraska. Il était professeur émérite & Princeton.

42. On peut aussi considérer pour tout o € || un sous-ensemble R* C 7 (I'interpréta-
tion de R dans le monde «) avec la condition selon laquelle pour tout o < 8 R* C RP. La
relation de forcing est alors définie en disant que, pour ai,...an € Za, alk R(a1,...,an)
si (ai1,...,an) € R®. En logique minimale, on doit de plus spécifier si « IF_L.
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Remarque 11.2. (i) On va donner une condition nécessaire et suffisante un

peu plus explicite pour « IF —=p. Au vu de la définition de a IF ¢ — ¥,
on a «a IF =y si et seulement si pour tout 8 € |K| tel que a < 3, on a
B I ¢. Attention : cette condition utilise le fait que pour tout g € |K]
B IF L, ceci n’est pas le cas dans les modéles de Kripke de la logique
minimale.

Si (B est un élément maximal de (|K[, <), alors le monde en [ est essen-
tiellement une .Z-structure .# et on a pour toute formule ¢, #Z = ¢
si et seulement si 5 IF .

Intuitivement, on peut voir un modéle de Kripke comme un ensemble
de mondes empilés les uns sur les autres. (On peut représenter le dia-
gramme de Hasse du poset (|K]|, <) pour bien voir comment les mondes
s’emboitent.) Chaque monde pris seul est en soi un modéle de la logique
du ler ordre au sens classique. Par contre les formules ont des valeurs
de vérité qui peuvent varier d’'un montre a l'autre.

Néanmoins, si une formule est forcée dans un monde «, alors elle est
également forcée dans tout monde supérieur § :

sialF ¢ et a< g, alors 81 ¢.

En sorte que l'on peut imaginer que “la connaissance” (c’est a dire
I’ensemble des formules qui sont forcées & un noeud) ne fait que croitre
au fur et & mesure que I'on progresse vers le haut le long d’une chaine
de 'ordre partiel sous-jacent au modéle de Kripke.

Exemple 11.3.
Soit £ = {P(l)} un langage non-égalitaire du premier ordre et C le
modéle de Kripke suivant :

8 . {a, b} P(a)

o' o {a} P(a)

o On se donne deux mondes, o et 8 avec a < .
o Les domaines de ces mondes sont respectivement,

Do ={a}, et P5={a,b}.
o On définit la relation de forcing par

k= {(o, P(a)), (B, P(a)}.
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On a
B o {a, b} P(a)
« o {a} P(a)
(1) alf Vo P(x) (4) B3z =P(x)
(2) alff 3z =P(x) (5) alf =3z =P(x)
(3) alf Vo P(x)V Iz —~P(x) (6) alf Ix =P(z)V Iz =P (x)

FExemple 11.4.

Soit . = {P(l)} un langage non-égalitaire du premier ordre et K le
modéle de Kripke suivant :

On se donne N pour ensemble des mondes, équipé de 'order usuel sur N.

On définit les domaines de ces mondes par Z,, = {0,...,n} et la relation de
forcing par
Ik = U {(n,P(k:)) k< n}
neN

On peut résumer tout cela par le diagramme :

n+1 {0,1,...n+1} P(0),...,P(n—1),P(n)
n . {0,1,...n} P(0),...,P(n—1)
1 . {0,1} P(0)

0 ) {0}

Voici quelques relations (que 'on peut a chaque fois déduire des précédentes)
qui sont vérifiées pour tout entier n par ce modéle :

(1) nlf P(n) (4) nlf Vo (P(z) vV —P(z))
(2) nlF =P(n) (5) 0k =Vz (P(z) vV ~P(z))
(3) nlf P(n)Vv —P(n) (6) 01f ~—Vz (P(z) V-P(z)).
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11.1.2 Langages égalitaires avec symbole de fonction

On rappelle que les symboles de constantes sont assimilés & des symboles
de fonctions d’arité 0.

Definition 11.5 (Modéle de Kripke de la logique intuitionniste). Soit £ un
langage du premier ordre. Un modéle de Kripke de la logique intuitionniste
sur le langage .Z est un sextuple K = (|K|, <, 2, &, Z,1F), ou :

(i) (K|, <, 2,IF) est un modeéle de Kripke au sens de la définition précé-
dente.

(ii) .Z est la donnée, pour chaque symbole de fonction f d’arité n de £ et
chaque monde « € |K|, d’'une fonction f, : Z," — Za.

(iii) & est la donnée, pour chaque monde « € |K|, d’une relation d’équiva-
lence E, sur 9, qui satisfait :

Va,B € K] (a < 8 — E, C Ep).
(iv) I+ vérifie de plus, pour tout monde a € |K] :

Compatibilité entre &, .% et les relations de .

Siaj,...,an,b1,...,bn € Dy etpourtout 1 <i < nona Ey(a;b;)
(R, f sont des symboles d’arité n) :

o alF R(ay,...,ay) si et seulement si a I R(by,...,by,);
© Ea(fa(ala-”an)afoz(bla”-bn))'

On ajoute maintenant quelques régles sur la réalisabilité des for-
mules atomiques lorsqu’elles font intervenir des termes ou I'égalité.

Reéalisabilité des formules atomiques

On définit la valeur d’un terme ¢ & parameétre dans %, (les va-
riables libres de t sont remplacées par des éléments de Z,,) par :

osit=a€ YD,,alorsty =a;

osit=f(ul,...,u"), alors ty, = fo(u'a,...,u"s).
On peut ajouter maintenant quelques régles sur la réalisabilité
des formules atomiques lorsqu’elles font intervenir des termes ou
I’égalité :

o alFu=wsiet seulement si Fy(uq,va);

o pour tout symbole de relation R d’arité n et t1,...,%¢, des

termes, ona: a lF R(t!,... ") siet seulement sia I R(t!q, ...

On peut étendre |- en une relation binaire entre les éléments de |K] et les
formules de la méme fagon que précédemment.

7).
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Ezxemple 11.6. On se donne le modéle de Kripke suivant :

B ° {a,b} Ez = {a,b} x {a,b}

! . {a,b} E, ={(a,a),(b,b)}
On peut voir que
(1) alfa=b B) alfa=bV-a=0>b
(2) alf —a=0b (4) alf Ve Vy (r =y V ~x=y).

11.1.3 Satisfaction et conséquence sémantique

Definition 11.7 (Satisfaction d’une formule dans un modéle de Kripke de la
logique intuitionniste). Soient .Z un langage, K un modéle de Kripke de la
logique intuitionniste sur .Z et ¢ une formule de .£. On dit que K satisfait ¢
que ’on note

KEig

si pour tout monde «a € || on a a I .

Definition 11.8 (Satisfaction d’une théorie dans un modéle de Kripke de la
logique intuitionniste). Soient . un langage, K un modéle de Kripke de la
logique intuitionniste sur .Z et 1" une théorie de .Z. On dit que K satisfait T
que ’'on note

KE=T
si pour toute formule ¢ € T on a K |=; ¢.

Definition 11.9 (Conséquence sémantique en logique intuitionniste). Soient
£ un langage, T une théorie et ¢ une formule de .Z. On dit que ¢ est
conséquence sémantique en logique intuitionniste de T' que I'on note

T i
si pour tout modeéle de Kripke K de la logique intuitionniste tel que K |=; T
on a K |=; ¢.

Un cas particulier est celui de la théorie vide :
i@

qui revient a dire que

Kk
est vérifié dans tout modeéle de Kripke de la logique intuitionniste et par

conséquent,
alk

est vrai en tout noeud « de tout modéle de Kripke de la logique intuitionniste.
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Exemple 11.10. Le modéle de Kripke K de l'exemple page 115 reproduit
ci-dessous,

B o {a, b} P(a)

o' . {a} P(a)

on a
o alf Vo P(x)V Iz —~P(x) o alff 3z =P(z)V —Iz —P(z).
On a donc également :
o KW Vo P(x)V 3z —~P(x) o KW 3z =P(z) V -3z - P(x).

Et par conséquent, aucune de ces deux formules n’est conséquence de la
théorie vide :

o [£; Vo P(x) V 3z —P(x) o [£; Jr —~P(x) V -z - P(x).

On verra plus loin que par application du Théoréme de complétude de
la logique intuitionniste (Théoréme 12.2, page 121), qu’aucune de ces deux
formules n’est prouvable en logique intuitionniste :

o ViV P(z)V Jz —P(x) o Vi dx —~P(x) V -3z —~P(x).

11.2 Logique minimale

Definition 11.11 (Modéle de Kripke de la logique minimale). Les modéles
de Kripke K de la logique minimale sont définis de fagon analogue a ceux de
la logique intuitionniste a la seule différence que I'on n’exige pas que pour
tout monde a € ||, on ait a I L.

Les définitions d’évaluation d’une formule, d’une théorie et de la consé-
quence sémantique sont analogues a précédemment, seule la notation différe.

Definition 11.12 (Satisfaction d’une formule dans un modeéle de Kripke de
la logique minimale). Soient .Z un langage, K un modéle de Kripke de la
logique minimale sur .Z et ¢ une formule de .Z. On dit que K satisfait ¢
que ’on note

]C):mSO

si pour tout monde « € |K| on a a IF .

Definition 11.13 (Satisfaction d’une théorie dans un modéle de Kripke de
la logique minimale). Soient .# un langage, K un modéle de Kripke de la
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logique minimale sur . et T une théorie de .Z. On dit que K satisfait T
que 'on note

KEnT
si pour toute formule ¢ € T on a K =, ¢.

Definition 11.14 (Conséquence sémantique en logique minimale). Soient
% un langage, T une théorie et ¢ une formule de .. On dit que ¢ est
conséquence sémantique en logique minimale de T que 'on note

TkEme

si pour tout modeéle de Kripke K de la logique minimale tel que K |=,, T on
alkl = e

Exemple 11.15. On considére le langage .2 dont la signature ne contient
que le symbole de relation unaire P. On construit le modéle de Kripke de la
logique minimale £ suivant.

On se donne un unique monde « -
al-L D, = {a
dont le domaine est D, = {a} et - o = {a}

la relation de forcing est simplement
al- L.

Les relations suivantes sont vérifiées :

(1) alff 3z P(x) (3) alF ==3z P(x)
(2) alk =3z P(x) (4) alf ==3z P(z) — Tz P(x).

Par ailleurs, nous avons également
(5) alf =3z P(x) — Jz P(x) (6) alF ==3z P(z)V 3z P(x)

(7) alf (-—3z P(z) V 3z P(z)) — (—-3z P(z) — Iz P(z)).

On verra plus loin que par application du Théoréme de complétude de la
logique minimale (Théoréme 12.1, page 121), qu’aucune de ces deux formules
n’est prouvable en logique minimale :

(8) Vm ——3z P(x) — 3z P(x)
(9) WV (-=3z P(z)V 3z P(z)) — (=3z P(z) — Jz P(x)).

Par contre, on a t; (=—3z P(z) V 3z P(z)) — (-3z P(z) — Jz P(z)),
comme le montre la preuve suivante en Calcul des Séquents :
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-3z P(z) F -3z P(z) ai
——3dz P(z),~3z P(x) F . Ny
——3Jz P(z),-3z P(zx) F 3z P(x) dz P(x) F 3z P(x) ,
——3Jz P(z)V 3z P(x),~3x P(zx) F Jdz P(x) ’
——3x P(z)V 3z P(x) F -3z P(z) — Jz P(x)
- (==3z P(z) V3z P(z)) — (-3 P(z) — 3z P(z))

Nous avons donc trouvé une formule démontrable sans hypothése en lo-
gique intuitonniste mais pas en logique minimale. Parconséquent, la logique
minimale est strictement moins expressive que la logique intuitionniste.



121

12 Théorémes de complétude

Le théoréme de complétude de la logique classique est di & Godel, c’est
le sujet de sa thése de doctorat. On énonce maintenant les théorémes de
complétude pour les différentes logiques ainsi que leurs conséquences, puis
on prouvera le théoréme de complétude de la logique classique.

12.1 Enoncés des théorémes de complétude

De méme que les relation de conséquence syntaxique sont notées ,
,Fi et ¢, on note respectivement |=,, =, =. les relations de conséquence
sémantique pour les logiques minimale, intuitionniste et classique.(Donc =,
n’est autre que la relation = du chapitre 4.)

Theoréme 12.1 (Complétude de la logique minimale). Soient £ un langage
de la logique du premier ordre, T une théorie et ¢ une formule, toutes deux
construites sur ce langage. Alors

T Em ¢ si et seulement si T b, .

Theoréme 12.2 (Complétude de la logique intuitionniste). Soient £ un
langage de la logique du premier ordre, T une théorie et ¢ une formule,
toutes deux construites sur ce langage. Alors

T =i ¢ si et seulement si T ;.

Theoréme 12.3 (Complétude de la logique classique). Soient £ un langage
de la logique du premier ordre, T une théorie et @ une formule, toutes deux
construites sur ce langage. Alors

T ¢ ¢ si et seulement si T b, .

(C’est-a-dire T |= ¢ ssi T b .)
12.2 Preuve du théoréme de complétude de la logique clas-

sique

On rappelle les notions de théorie consistante et de théorie non-contradictoire.
Definition 12.4 (Non-contradiction).
Une théorie T est dite non-contradictoire si T t/, L.

Definition 12.5 (Consistance).

Une théorie T est dite consistante si elle admet un modéle.

On va prouver un énoncé qui est équivalent au théoréme de complétude.
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Theoréme 12.6 (Théoréme de complétude bis). Soit T' une théorie quel-
conque.

T est non-contradictoire si et seulement si T est consistante.

C’est-a-dire T t/. L ssi T = L. Ou encore pour le dire autrement, T F.
1LssiTE L.

Proposition 12.7. Le théoréeme de complétude de la logique classique et le
théoréeme de complétude bis sont équivalents.

Démonstration. on va montrer que dans le schéma ci-dessous on a <=
si et seulement si on a <=, simplement en montrant que l'on a les deux

équivalences verticales (ﬂ)

TEp — Tk,

] !

T7_‘30):J— — Tv_'gpl_CJ-

TEe
(1) L’équivalence ﬂ a été vue page 23.
T,-p =1
ThkHep
(2) Pour I’équivalence H il suffit de montrer que pour un sous-

T,—-pt. L
I'cp

ensemble fini de formule I' € T', on a ﬁ

I=pt. L

(a) 1k Y = - . (b) L=pk L
—e —_— lc

Li=pk L 'k
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12.2.1 Non-contradictoire <= consistant

Démonstration du Théoréme bis sens direct : On prouve 1" consistante =—-
T non-contradictoire On procéde par contraposition et on montre donc

T contradictoire == T inconsistante,

c’est-a-dire
T, Ll =Tk L.

En fait, on va montrer un résultat plus général : pour toute théorie T et
pour toute formule ¢, on va montrer

Thep =Tk ¢.

On suppose donc que T' F. ¢. Par conséquent, il existe I' C T" un sous-
ensemble fini de la théorie tel que le séquent I' F ¢ est prouvable en logique
classique. La preuve se fait par induction sur la hauteur d’une déduction du
séquent I' - . Pour cela, convenons 43 de considérer les preuves effectuées en
déduction naturelle et de définir la hauteur d’une preuve comme la longueur
de sa (ses) plus longue(s) branche(s) — car aprés tout une preuve est un
arbre.

(i) Sila hauteur de la preuve est 0, alors ¢’est un axiome ou une introduc-
tion de l'égalité. Par définition, on a bien que ¢ = ¢ et que =t = t.

(ii) Si la hauteur de la preuve est n + 1, on considére '’ensemble des pré-
misses de la derniére régle utilisée. Soit I'; F. 1; une de ces prémisses.
Alors par hypothése de récurrence, on a que I'; = 1;, puisque la hau-
teur de sa preuve est au plus n. Il faut maintenant vérifier régle par
régle que 'on peut déduire I' = . Ceci étant un peu fastidieux sans
étre difficile, nous vérifions seulement quelques cas. La totalité de tous
les cas est indiquée dans la page qui suit. Pour bien comprendre, il suffit
de vérifier pour chacune des régles, que si I'on admet les conséquences
sémantiques de la forme « |= », alors on est en droit d’admettre celles
de la forme « .

43. Ce n’est qu’une convention, on pourrait tout aussi bien considérer les preuves effec-
tuées en calcul des séquents par exemple.
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Axiome
L
Reégles logiques
Tky  ThEy ClEehy  ThEend
LI oAy I'—¢ L
F|:<10 Vig : F‘:w id F\Zi/JVSO Flv’(/)|:9 F”?@‘ZH v
I oV ' —pVvy r,rr"-—6
Loy N A N A
' ¢o—=9 LI vy
LeEL TE T'Ee |
- r,r-— L
TE@y/q y PEvey
r YV [%2) r @[t/zﬁ
U= e ° N TEIze T eymEe? )
'3z LIV =qv
- F‘:W[t/z] F’|:t:u
t=t” T, T o
’ Plu/x]
Reégles structurelles
Py LooEy
F, Y2 1,[1 F7 2 1/1
Reégles de I'absurdité intuitionniste et classique
rel Dol L
L'~ I'—o

1. y n’a pas d’occurrence libre dans T,
2. t : un terme

3. y n’a pas d’occurrence libre dans I", @,
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Introduction de la conjonction

OnaTl; | ¢1, 2 = @2, on veut en déduire que I'y UTy = 1 Apa.
Pour cela, soit .# un modéle de T'y U T's. Alors par définition, il
existe pour le vérificateur des stratégies gagnantes o1, respective-
ment oy, dans EV (.7, ¢1), respectivement EV (.Z, ¢3). Construi-
sons une stratégie gagnante pour le vérificateur dans EV (.7, p1 A ¢2).
Dans ce jeu, c’est au falsificateur de commencer. Si le falsifica-
teur choisit ¢1, alors le jeu devient EV (.Z, 1), le vérificateur
applique o1 et gagne. Si le falsificateur choisit 2, alors le jeu
devient EV (., p2), le vérificateur applique o9 et gagne. Cette
stratégie est clairement gagnante et donc . = 1 A pa.

Elimination de la disjonction
Onalyl E paVes, To,o ¢, TI's,03 F ¢, on veut en
déduire que T'y UTy UT3 = ¢. Pour cela, soit .# un modéle de
't UTy UT's. Alors par définition, il existe une stratégie gagnante
pour le vérificateur dans EV (.7, 2 V 3), ce qui veut dire que soit
le vérificateur a une stratégie gagnante dans EV (.7, ¢3), soit le
vérificateur a une stratégie gagnante dans EV (.Z, p3). Par consé-

quent, A |=To U {p2} ou A |=T35U {p3}. Alnsi, 4 |= ¢.

Absurde classique
On a I'U {—p} n’a pas de modeéle, ce qui est vrai si et seulement
si tout modeéle de I' ne satisfait pas —p. Cette derniére assertion
est équivalente a I' |= .

O]

12.2.2 Non-contradictoire =—> consistant

Dans cette section, on prouve T non-contradictoire => T' consistante.
ie.,

Thel =T L

Pour la preuve du sens direct, nous avons besoin de quelques lemmes
préparatoires.

Lemme 12.8. Soit (T;);e;r une famille de théories non-contradictoires qui
est totalement ordonnée par linclusion. Alors | J;c; T; est non-contradictoire.

Démonstration. Par’absurde, supposons que | J;; 7; n’est pas non-contradictoire.
Alors il existe une déduction du séquent | J;.; T; ¢ L. Puisque une déduc-
tion est un objet fini, alors seulement un nombre fini d’hypothéses peut étre
utilisé (voir remarque 9.9). Il existe donc un sous-ensemble fini ' C (J;c; T
tel que F' I L. Pour toute formule ¢ € F| il existe i, € I tel que p € T} .
Comme F est fini, il existe j € I tel que T; = max{T;, : ¢ € F}. Ainsi,
F C Tj et donc Tj n’est pas non-contradictoire, une contradiction. ]
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Definition 12.9 (Théorie compléte). Une théorie T' sur un langage .2 est
dite compléte si elle est non-contradictoire et si pour toute formule close ¢
sur Z,onapeT ou—pel.

Lemme 12.10 (AC). Soit T une théorie sur un langage £ qui soit non-
contradictoire. Alors il existe une théorie T, sur le méme langage qui soit
compléte et telle que T C T,.

Démonstration. On considére ’ensemble des théories non-contradictoires sur
% qui étendent T'. Muni de l'inclusion, c¢’est un ordre partiel inductif. En
effet, pour toute chaine (73);ecr, la théorie Tt = | J;o; T} est non-contradictoire
(voir lemme 12.8) et c’est un majorant de la chaine. On peut donc utiliser le
lemme de Zorn pour obtenir 'existence d’une théorie T, qui est un élément
maximal de 'ordre partiel considéré. Il reste & montrer que c’est une théorie
compléte.

Par I’absurde, supposons qu’il existe une formule ¢ telle que ¢ & T, et
—p ¢ T,.. Par maximalité de T,, on obtient qu’aucune des deux théories
TcU{p} et T.U{—¢} n’est non-contradictoire. Autrement dit, elles sont toutes
deux contradictoires, ce qui veut dire que 'on a T,, o . L et Tp, - . L.
Par conséquent, il existe deux ensembles finis I' C T, et IV C T, tels que
ok, Let I, —pt. L. On obtient alors

T, -k L I ok L

le -
| R I —p
| R
Comme 'UT” C T,, il en résulte T, . L, une contradiction. [l

Lemme 12.11. Soient I' un ensemble de formules, ¢ une formule et ¢ un
symbole de constante n’apparaissant ni dans I' ni dans @. Alors I b e/
implique que I' . Vo .

Démonstration. On montre d’abord que pour tout ensemble de formule A
et toute formule 9, si Aic/p) be Yyc/y), alors pour tout terme ¢ du langage,
A[t /z] Fe 1[1[75 Jz]" La preuve se fait par récurrence sur la hauteur de la dé-

monstration en remplagant partout ¢ par .

Puisque x est liée dans Vx ¢, alors sans perte de généralité, on peut suppo-
ser que x n’a pas d’occurrence libre dans I' (sinon, il suffit de considérer la
nouvelle formule Vy ¢y, ot y est une nouvelle variable). En choisissant
pour terme z (une nouvelle variable) dans le résultat précédent, on obtient
que, puisque I' = F[c/x] l_c go[c/x], onal = F[z/x} l_c (p[z/x}. Appliquant
I'introduction du quantificateur universel, puisque z n’a d’occurrence libre
ni dans I' ni dans ¢, alors I' -¢ Vz @[z, et donc I' =¢ Vi . O
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Lemme 12.12. Soient I' un ensemble de formules d’un langage £, &' le
langage £ augmenté de nouveauz symboles de constantes et I le méme en-
semble de formules I’ mais cette fois-ci vue comme ensemble de £’ -formules
et non plus de Z-formules. Alors

I't. L siet seulement si TV . L.

Il est clair qu’en ajoutant des constantes aux langages, on ajoute égale-
ment de nouvelles formules et par conséquent de nouvelles preuves. Il s’agit
dés lors de montrer que si une théorie était consistante dans le langage ori-
ginel, elle le resterait également dans le langage augmenté.

Démonstration. Tout d’abord, si I" est contradictoire, alors il en est de méme
de I” puisqu’une preuve de I' . L est également une preuve de I'V . L.
Ensuite il suffit de montrer que pour toute formule ¢ de %’ et toute .#’-
preuve de ¢ a partir de I”, si on prend cette preuve (qui est un arbre
composé de séquents) et que 'on remplace dans chaque formule de chaque
séquent chaque nouvelle constante c; par une mnouvelle variable y;, alors la
preuve que I’on obtient est bien une .#’-preuve de Plyo/co,yn/cn] & PATtIT de
I

Précisément, pour n’importe quelle .#’-preuve P’ de A I ¢’ (avec A C T
et A fini), ne faisant intervenir comme nouveaux symboles de constantes de
< que cg, . ..,cy, on considére yo, . . ., y, des nouvelles variables n’apparais-
sant nulle part dans la preuve P’ et I'on pose

¢ = Pleofyorensin] € P =Pl cnfyal ™

on montre alors trés facilement par induction sur la hauteur de la preuve,
que P’ est une preuve du séquent A ¢’ si et seulement si P est une preuve
du séquent A F .

Par conséquent, si IV . L il existe alors une .¢’-preuve P’ de A - L et
donc une Z-preuve de A + L également.
O

Démonstration du Théoreme bis sens direct :
(on prouve I't/. L =T~ 1).

Soit T une théorie sur un langage .. On suppose que T est non-contradictoire
et on cherche un modéle de T'. La démonstration se fait en trois étapes.

Premiére étape : On construit une théorie T}, sur un langage %}, telle que :

(i) T} est un théorie compleéte ;

44. ou P et P’ ne se distingue qu’en ce que pour chaque i < n, tout symbole ¢; de P’
devient y; dans P et inversement tout tout symbole y; de P devient ¢; dans P’.
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(ii) pour toute formule ¢ sur .}, ayant x pour seule variable libre,
il existe un témoin de Henkin c,, c’est-a-dire un symbole de
constante de %, tel que :

Th Fe dx © —= (’D[ctﬂ/l"]'

Pour cela, définissons par récurrence des langages %, et des théories
T,, pour tout entier n. On pose %5 =2, Ty =T et

L1 =2, U{cy | ¢[z) formule avec une variable libre de Loty

Thp1 =To U{32 © = Qiep/z | Pl formule de £, avec x libre}.

On considére maintenant

L=J % et Tw=|]JTn

neN neN

Montrons que Ty, est non-contradictoire. Par le lemme 12.8 et le lemme
12.12, il suffit de montrer que 7;, est non-contradictoire pour tout entier
n. On fait cela par récurrence. On a par hypothése que Ty = T est
non-contradictoire. Supposons par ’absurde que 7,41 n’est pas non-
contradictoire — autrement dit, supposons que T,41 est contradictoire —
avec Ty, ..., T, toutes non-contradictoires. Alors, il existe des formules
©1,--., 0k de £, telles que :

T N (356 i %%[C%/m) Fe L.
1<i<k

On en déduit que

Tt <E|$ Yi = Soz‘[c%,/x]) -1
1<i<k

et par le lemme 12.11 appliqué k fois, on peut conclure que

T, Fe Yy ... Vyg /\ (Elaz i — @i[yz‘/x]> — 1
1<i<k

Or, on sait que F. Yy (0 — ¢) +— (Jy 6 — 1) si ¥ n’a pas
d’occurrence libre de y (par combinaison d’exercices des séries). Par
conséquent,

Tobe [Fyr... ye /\ (Elx i — @z’[yi/m]) — 1.
1<i<k
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Du fait que . Jy (¢ AY) «— (Jy ¢ A1) si 1 n’a pas d’occurrence
libre de y, on obtient que :

T, Fe /\ [Elyi (Elx i = Wi[yi/x])] — L.
1<i<k

On sait de plus que . Jy (0 — ¥) <— (0 — Ty ), si 6 n’a pas
d’occurrence libre de y, ce qui donne

1<i<k

Or, pour tout 1 < ¢ < k, on a que k. dx ¢; — Jy; Pify; /1> e qui
implique que :

. /\ (Ex i = Jyi W[Z/z‘/ﬂ) :

1<i<k
Par élimination de I'implication, il vient que T,, . L, ce qui contredit
I’hypothése de récurrence.
On utilise maintenant le lemme 12.10 pour étendre T, en une théorie
compléte T},.
Soit ¢ une formule de .}, avec une seule variable libre x. Il reste &
vérifier que

Th '_c dx © — SO[CQD/ZU}‘

Par définition, ¢ étant une suite finie, elle ne contient qu’un nombre
fini de symboles de .%},. Par construction, il existe donc un entier n tel
que @ € .7, et ainsi

3z = @ep/z) € Tnt1 © Th.

Seconde étape : On construit maintenant un .%-modéle .# de T}, dont
la restriction a .% est un modéle de T'.

On pose (voir définition 3.6)
Felos(Lh) = {t € T (%) | t ne contient pas de variable}.

On définit le modéle .# suivant :
(i)
|%| _ %los(gh)/

ou t ~ t' si et seulement si T), .t =t

(ii) pour tout symbole de constante ¢, ¢ = [c]

~ 7

(iii) pour tout symbole de fonction f d’arité n,

Pl ) = [Fl et s

~
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(iv) pour tout symbole de relation R d’arité n,
([tl]N e [tn]N) € R? «— TyteR(t1,... t).

Vérifions que c’est bien défini. C’est-a-dire que la définition ne dépend
pas du choix des termes dans les classes d’équivalence données. Soient
t1,...tn,t'1,...t, des termes tels que t; ~ t/; pour tout 1 < i < n.
Alors on a Ty, F. t; = t/; pour tout 1 < ¢ < n. L’élimination de
I’égalité appliquée n fois sur le résultat de I'introduction de 1’égalité
avec f(t1,...,t,) nous donne que

Thbe fltr, .o otn) = f('1, ..., th).

L’élimination de I’égalité appliquée n fois sur 'axiome R(t1,...,t,) e
R(ty,...,t,) donne Ty, R(ty,...,t,) Fe R(t'1,...,t',). Par conséquent,

ThFe R(t1, ... ty) — R(t'1,...,t').
Par symétrie
Th I—C R(tl, . ,tn) — R(tll, A ,t/n)

et on obtient le résultat par modus ponens, T}, k. R(t1,...,t,) si et
seulement si Tj, e R(t'1,...,t'5).

Par ailleurs |.#| # () car la formule avec une variable libre 3z x = x
est une formule de .%}, et donc la classe de son témoin de Henkin est
un élément de |.Z|.

Troisiéme étape : On vérifie que .# |= T}. Pour cela, on prouve que pour
toute formule de la forme ¢(x1,...,z,) dont les variables libres sont
parmis xz1,...,x,, et tous termes clos t1,...,ty,

Th Fe plt, ..., ty] si et seulement si A |= @lt,. .., t,)].

ol @[t1,...,t,] désigne la formule @[t1/z1, ..., tn/xy].

On suppose sans perte de généralité que ¢ ne comporte que le quan-
tificateur 3 et les connecteurs A, —. On procéde par récurrence sur la
hauteur de ¢ :

Si ht(¢) =0:
(i) Sig=L1:

comme T}, est non-contradictoire, on a & la fois Tj, /. L et
ML et done Ty e L «— A4 = L.
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(ii) Si @ = R(t1,...,tn) :

M ): Y (tl'//l, . ,tn‘///) € R/// (par définition)
<~ ([tl]N N [tn]w) € R” (par définition des t;** )
<~ 1T} l_c R(tl, - ,tn) (par définition de R )

Si ht(p) >0 :
(1) Si@= (Y1 A2):

M= (Y1 Npg) = M =Y et M=o (par définition)
— T+, wl et Ty Fe 19 (par hypothese d’induction)
<— Tyt (Qpl A\ ’gbg) (par les régles Ni et Ae)

(ii) Sip=—p:

M ): ) = A l# P (par définition)

<~ T} |7(c "gb (par hypothése d’induction)

— Th l_c _‘¢ (car Ty, est compléte)

(iii) Sip =3z ¢ :

METxy = il existe [t]_ €M M, [t )r = Y2] (par définition)
< il existe un terme clost Mt Jx = Ylx]  (var définition de t# )
<= il existe un terme clos t M = Y[t] (par définition)
<= il existe un terme clos t Ty . [t] (par hyp. d’ind.)
— Tpt.dx v ( (=) par3i; (<) par témoin de Henkin)

Pour la derniére double implication, le sens (=) est une simple
application de la régle d’introduction du quantificateur exis-
tentiel en déduction naturelle. Pour le sens (<), il suffit de
remarquer que le témoin de Henkin ¢y, est le terme recherché.
En effet, on a

Ty e dx

et
Ty e Fz b = pley /]



132 12 THEOREMES DE COMPLETUDE

Par modus ponens (élimination de I'implication), on obtient

Th l_c ﬂ)[cw /x]

Ainsi, on a montré qu’il existait une .%-structure satisfaisant la théo-
rie compléte Ty, puisque .# = Tj. Comme la théorie T C Ty, on a
donc montré qu’il existait une .%),-structure satisfaisant la théorie T
Pour obtenir une .#-structure .4 satisfaisant 7T, il suffit de retirer les
témoins de Henkin du langage et d’en oublier les interprétations dans
la structure ..

O

Remarque 12.13. Le choix de la relation d’équivalence employée pour construire
le modéle .# de la preuve précédente est en fait assez logique. En effet, si
I'on veut que cela puisse fonctionner, il faut en tout cas que cela marche
pour les formules du type t = ¢ et =t = ¢. Ainsi, il faut que # =t =t
si et seulement si T}, F. t = t/. Par conséquent, il faut que 7 = t'# si et
seulement si T), F. t = t'.
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13 Conséquences des théorémes de complétude

Les théorémes de complétude nous indiquent qu’une formule n’est pas
démontrable dans une certaine logique si et seulement si il existe un modéle
de la logique correspondante dans lequel la formule n’est pas satisfaite (c’est
ce qu’on appelle généralement un contre-exemple).

13.0.1 Quelques formules non démontrables en logique intuition-
niste

Proposition 13.1. Les formules suivantes ne sont pas démontrables en lo-
gique ntuitionniste :

(1) (pV-9);
(%) (—=p = ).

Démonstration. On se donne K le modéle de Kripke de la logique intuition-
niste suivant :

B . {a} P(a) cg=a

o' o {a} Ca =0
(i) On observe que dans le modele IC, a I P(c) et ol =P(c).
Par conséquent, a Iff P(c)V =P(c) et donc K [~ P(c) V —P(c).
(ii) De méme, on a « |f P(c),B Ik P(c) et a If =P(c), B If =P(c). Par

conséquent, on a a |- ==P(c) et ainsi o I (=—P(c) — P(c)). Pour
conclure, K [£; (==P(c) = P(c)).

O

13.0.2 Une formule non démontrable en logique minimale

Proposition 13.2. La formule ((cp\/w) = (mp — w)) n’est pas démontrable
en logique minimale, mazis elle l’est en logique intuitionniste.

Démonstration. On se donne K le modéle de Kripke de la logique minimale
suivant :

a . {a} Ca=a 1 P(c)
On observe que dans le modéle K, a I+ P(c), et donc a I+ (P(c) V P'(c)).
Par ailleurs o IF (P(c) — L) et donc a IF =P(c). On obtient alors que
alf (=P(c) = P'(c)) et donc K by, ((P(c) V P'(c)) = (~P(c) — P'(c))).

Alnsi, i (V) = (m¢ = 1)),
Montrons maintenant que k; (¢ V¢) = (¢ — ) :
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pFe  SpF-e
ax 7¢7ﬂ()0|_—]— le
(V) (p V) 0, =1 Y
(p V), ~p 1
(e V) (o =)
F(pV) = (=)

—-e

ax

Ve

— 4

13.0.3 Théoréme de compacité

Le théoréme de compacité est en fait un corollaire du théoréme de com-
plétude.

Corollaire 13.3. Une théorie est satisfaisable si et seulement si elle est
finiment satisfaisable.

Démonstration. Par le théoréme de complétude bis (qui est équivalent au
théoréme de complétude, voir 12.6 et 12.7), I’énoncé du théoréme de com-
pacité est équivalent & 1’énoncé suivant : une théorie est non-contradictoire
si et seulement chaque sous-théorie finie est non-contradictoire. Ceci est en
fait une trivialité du fait qu'une preuve est un objet fini. En effet, ceci qui
implique que T . L si et seulement s’il existe une sous-théorie finie A C T
telle que A . 1. Ou pour le dire autrement, on remarque que 1’énoncé
suivant :

T~ 1 <= pour chaque sous-théorie finie A C T, A} L
est équivalent, via le théoréme de complétude, & I’énoncé
T t/. 1 <= pour chaque sous-théorie finie A CT, AF. L

qui est équivalent a I’énoncé

Tt. L <= il existe une sous-théorie finie A C T, A+, L.
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Appendices

Voici des documents fournis par le professeur lui-méme durant le cours.

A Axiomatique : Peano, Robinson et ZFC

A.1 Arithmétique de Peano

Soit . = {0, 5, +, -} ot 0 est un symbole de constante, S est un symbole
de fonction unaire et +,- sont des symboles de fonction binaires. La théorie
de Peano Tp est ’ensemble infini de formules contenant :

axiome 1. Ve Sz # 0

axiome 2. Ve Jy (x #0 — Sy =x)

axiome 3. Va Yy (Sx =Sy —» x=1y)

axiome 4. Ve z+0 =2

axiome 5. YV Vy (:r+Sy = S(x—i—y))

axiome 6. Vz z:0=0

axiome 7. Vo Vy (:):-Sy = (x~y)+x)

schema d’axiome (induction) pour chaque formule ¢y 2, 2.1) 45
I'axiome suivant :

)

Vzyp ... Vo, <<90[0/x0] A Yxq ((p — 90[5‘:100/900})> — Vo cp)

A.2 Arithmétique de Robinson

axiome 1. Yz Sz # 0

axiome 2. Ve Jy (x #0 — Sy = x)
axiome 3. Vax Yy (Sx =Sy — x=1y)
axiome 4. Ve 2+0 =2z

axiome 5. Vx Yy (m+5y = S(:L‘er))
axiome 6. Vo -0 =0

axiome 7. Vz Yy (:U-Sy = (;Uy)Jr:U)

On convient généralement de noter “z < y” pour la formule “Jz z+ 2z = y".

45. la notation ¢
Loy L1y.-.yTn.

20,1,z Signifie que les variables libres de ¢ sont parmis
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A.3 Les axiomes de Zermelo-Fraenkel

(1) Extensionnalité :
VaVy (Vz(z €z z€y) 2z =1y).
(2) Le schéma d’axiomes de compréhension :
VzVw ... Vw, JyVer (:v cEy+ (ze z/\«p)),

ol ¢ := ¢(x,z,w) est une formule dont toutes les variables libres fi-
gurent parmi z, z, wy, ..., Wy,

(3) Paire :
VeVy3z(rx € z ANy € 2).

(4) Union :
Va3bVazVy (z €y Ay € a) = z €b),

on note b = Ja.
(5) Infini :
Jz (Jyy ez AVy(y €z > yU{y} € z)).

(6) Parties :
VeIyVz (Vu(u €z s uea) = z€y).

(7) Le schéma de remplacement :
VAYw; ...V, (vx (weA—Myp)»WVa(ze Ao Iyye Y/\Lp))),

ou ¢ := ¢(x,y, A,w) est une formule dont toutes les variables libres
figurent parmis x,y, A, wi, ..., wy,, et ot Ilyy est une abréviation de

Iy (gp(:ﬁ,y, A,) AVz (@, 2, A, ) — 2 = y)).
(8) Fondation :
Va:(EInyx—>5|y(y€$/\ﬁ5|z(z€x/\z€y))).
(9) Choix :

Va deVz dyVu (zeac—> ((uez/\UEC) —>u:y)).
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Axiome

axr

ek

Regles logiques

I'typ T'H9 Treny ., LTrery
AL e e
T oAt Tho Tk
ke . ey Thyve ko TVeko
FFoVvy FFevy LI, I+ 6 ‘
| RN ) _ L'ty —1 Iy
—_— =1 =
o= I
oL 'k = 'k
Tk-p IV +L
1
' oLy /al y 'V <p2 v
LEVr o LF ¢p/a
FFQD[t/x]z ., F}—Elxgo F/,w[y/x]FLDg .
T-3ze LI F ‘
-, L't o/ I'bt=u
Fr=t? LTE o
Regles structurelles
ey - Lippby
Lok Lok

Régles de I'absurdité intuitionniste et classique

I'-1
't

Le

'k

r-pkFL K

1. y n’a pas d’occurrence libre dans I,
2. t : un terme
3. y n’a pas d’occurrence libre dans I, p, 1
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Calcul des Séquents

Axiomes

ax Lg

pFo 1k

Reégles logiques

Lok A INRTESN Tk A Thy,A
g2 d
oAy FEA oAnYvEA oAy, A
oA  TgpFA Tk, A Ty, A
I,pVy kA ' I'FpVvy, A eV, A
'k A Tyk-A Loy, A
Lo—sykA ' koo, A
'Ep, A oA
L-pkFA I'E=p, A
Fa‘ﬁ[t/w]FAI y F"Q&[y/x],A vy
L'V ok A ’ I'FVz o A2
L, op) b A N LEopup Al _
I3z kA2 T'F3dz p, A
Lit=tkA Lt =8, Qs/a)s Plt/a) A .
——————— Re ep
'cA F,S:t,cp[t/z]l—A

Vaz

Reégles structurelles

affg M affy

'k A

LA
kA

Lip,pF A
LA

T+ pp,A

ctrg _  cilryg

'k A

Regle de coupure

ke A I ok A
T.TFA A

cut

1. t: un terme
2. y n’a pas d’occurrence libre dans le séquent conclusion de la régle (dans I', 3z ¢ ou
YV @, et A)
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C Compilation de certains résultats importants vus
dans les séries d’exercices

Theoréme C.1 (Critére de Vaught). Soit T une théorie non contradictoire
du premier ordre sur un langage £ dénombrable, et telle que T ne posséde pas
de modéle fini. Si tous les modéles dénombrables de T sont élémentairement
équivalents, alors T est compléte.

Corollaire C.2. Soit T une théorie du premier ordre sur un langage dé-
nombrable, et telle que T' ne posséde pas de modéle fini. Si tous les modéles
dénombrables de T sont isomorphes, alors T est compléte.

Theoréme C.3 (Compacité bis). Soit T' une théorie. On a T = @ si el
seulement si il existe un sous-ensemble fini Ty de T tels que Ty = ®.

Proposition C.4. Le théoréme de compacité et le théoréme de compacité
bis sont équivalents.

Definition C.5 (Axiomatisabilité¢). Soient .Z un langage égalitaire et C' une
classe de Z-structures. La classe C est dite aziomatisable (resp. finiment
aziomatisable) s'il existe une théorie T (resp. une théorie finie T¢) de &
telle que, pour toute Z-structure ., on ait :

%EC@%):TC'.

Proposition C.6. Soient & un langage égalitaire et C' une classe de £-
structures axiomatisée par la théorie Te. Alors C' est finiment aziomatisable
si et seulement si il existe un sous-ensemble fini T de T¢ telle que T axio-
matise C.
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