

10.5 Jech's Proof of Gödel's Second Incompleteness Theorem for Set Theory

This section is dedicated to a very short proof of Gödel's Second Incompleteness Theorem in the framework of set theory due to Tom Jech [15]. This proof is short only if one does not count how many pages are needed for the whole coding process that will only be exposed in a few lines.

Theorem 258 (Jech's version of Gödel's second incompleteness theorem). *It is unprovable in set theory — unless it is inconsistent — that there exists a model of set theory.*

Proof of Theorem 258: Towards a contradiction, we assume that set theory is consistent and that it proves that there exists some model of set theory. We also let \mathcal{T} be any finite set of axioms that is large enough to be able to formulate the concepts of “model of a finite theory”, “satisfiability”, and also to prove the existence of a model of set theory.

From now on, we focus on the finite sub-theory \mathcal{T} , and “model” means “model of \mathcal{T} ”.

Given $\mathcal{M} = \langle M, \in_M \rangle, \mathcal{N} = \langle N, \in_N \rangle$ two models of \mathcal{T} , we write $\mathcal{M} < \mathcal{N}$ if there exists some set $m \in N$ and some E_N such that $\mathcal{N} \models "E_N \text{ is a binary relation}"$ and $E_N \upharpoonright m \times m = \in_M$.

Notice that if $\mathcal{M} < \mathcal{N}$ holds, then for each closed formula⁵ φ , we have

$$\mathcal{M} \models \varphi \text{ if and only if } \mathcal{N} \models "m \models \varphi". \quad (10.1)$$

In particular, we have

$$\text{if there exists } \mathcal{M} < \mathcal{N}, \text{ then } \mathcal{N} \models "m \models \mathcal{T}";$$

and also

$$\text{if there exists } m \in N \text{ s.t. } \mathcal{N} \models "m \models \mathcal{T}", \text{ then there exists some } \mathcal{M} < \mathcal{N}.$$

It follows that the relation $<$ is transitive. i.e.

$$\mathcal{M}_1 < \mathcal{M}_2 < \mathcal{M}_3 \implies \mathcal{M}_1 < \mathcal{M}_3. \quad (10.2)$$

We now consider $(\varphi_n)_{n \in \omega}$ some Gödel numbering of the formulas with one free variable x , and let

$$S_n = \{k \in \omega \mid \varphi_n(k)\}.$$

We set

$$S = \{n \in \omega \mid \text{“there exists a model } \mathcal{M} \text{ such that } \mathcal{M} \models n \notin S_n\}\} \quad (10.3)$$

⁵From the language of set theory.

Since the sentence “there exists a model \mathcal{M} such that $\mathcal{M} \models x \notin S_x$ ” stands for a formula with one free variable x , there exists some integer k such that

$$\varphi_k(x) := \text{“there exists a model } \mathcal{M} \text{ such that } \mathcal{M} \models x \notin S_x \text{”},$$

hence

$$S = S_k$$

We see that \mathcal{T} proves the following sentence:

$$\text{“}k \in S\text{”} \longleftrightarrow \text{“}\exists \mathcal{M} \quad \mathcal{M} \models k \notin S\text{”} \quad (10.4)$$

If \mathcal{M} is any model (of \mathcal{T}), then we have

$$\mathcal{M} \models \text{“}k \in S\text{”} \iff \exists \mathcal{N} < \mathcal{M} \quad \mathcal{N} \models k \notin S \quad (10.5)$$

Let us say that \mathcal{M} is *positive* if $\mathcal{M} \models \text{“}k \in S\text{”}$, and *negative* if $\mathcal{M} \not\models \text{“}k \in S\text{”}$.

By 10.5, we have:

$$\text{if } \mathcal{M} \text{ is positive, then there exists some negative } \mathcal{N} < \mathcal{M}. \quad (10.6)$$

By 10.3, we have:

$$\text{If } \mathcal{M} \text{ is negative, then all } \mathcal{N} < \mathcal{M} \text{ are positive.} \quad (10.7)$$

Since \mathcal{T} proves that there exists a model of \mathcal{T} , for every model \mathcal{M} (of \mathcal{T}), we have

- o if \mathcal{M} is negative, by 10.5 there exists some positive $\mathcal{N} < \mathcal{M}$, and by 10.5 again, there exists some negative $\mathcal{O} < \mathcal{N}$. Hence, $\mathcal{O} < \mathcal{M}$ holds by 10.2, which contradicts 10.7
- o In case \mathcal{M} is positive, by 10.5 there exists some negative $\mathcal{N} < \mathcal{M}$, which leads to the same contradiction as the previous case.

□ 258