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10.5 Jech’s Proof of Gödel’s Second Incompleteness Theorem
for Set Theory

This section is dedicated to a very short proof of Gödel’s Second Incompleteness Theorem in
the framework of set theory due to Tom Jech [15]. This proof is short only if one does not count
how many pages are needed for the whole coding process that will only be exposed in a few
lines.

Theorem 258 (Jech’s version of Gödel’s second incompleteness theorem). It is unprovable in
set theory — unless it is inconsistent — that there exists a model of set theory.

Proof of Theorem 258: Towards a contradiction, we assume that set theory is consistent and
that it proves that there exists some model of set theory. We also let T be any finite set of
axioms that is large enough to be able to formulate the concepts of “model of a finite theory ”,
“ satisfiability ”, and also to prove the existence of a model of set theory.

From now on, we focus on the finite sub-theory T , and “model ” means “model of T ”.

Given M “ →M, PM ↑ ,N “ →N, PN ↑ two models of T , we write M ! N if there exists some set
m P N and some EN such that N |ù “EN is a binary relation ” and EN æ m ˆ m “PM .

Notice that if M ! N holds, then for each closed formula5 ω, we have

M |ù ω if and only if N |ù “m |ù ω ”. (10.1)

In particular, we have

if there exists M ! N , then N |ù “m |ù T ”;

and also

if there exists m P N s.t. N |ù “m |ù T ”, then there exists some M ! N .

It follows that the relation ! is transitive. i.e.

M1 ! M2 ! M3 ùñ M1 ! M3. (10.2)

We now consider pωnqnPω some Gödel numbering of the formulas with one free variable x, and
let

Sn “ tk P ε | ωnpkqu .

We set
S “ tn P ε | “ there exists a model M such that M |ù n R Sn ”u (10.3)

5From the language of set theory.
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Since the sentence “ there exists a model M such that M |ù x R Sx ” stands for a formula with
one free variable x, there exists some integer k such that

ωkpxq :““ there exists a model M such that M |ù x R Sx ”,

hence
S “ Sk

We see that T proves the following sentence:

“ k P S ” !Ñ “ DM M |ù k R S ” (10.4)

If M is any model (of T ), then we have

M |ù “ k P S ” "ñ DN ! M N |ù k R S (10.5)

.
Let us say that M is positive if M |ù “ k P S ”, and negative if M * “ k P S ”.

By 10.5, we have:

if M is positive, then there exists some negative N # M . (10.6)

By 10.3, we have:

If M is negative, then all N ! M are positive. (10.7)

Since T proves that there exists a model of T , for every model M (of T ), we have

˝ if M is negative, by 10.5 there exists some positive N ! M , and by 10.5 again, there
exists some negative O ! N . Hence, O ! M holds by 10.2, which contradicts 10.7.

˝ In case M is positive, by 10.5 there exists some negative N ! M , which leads to the same
contradiction as the previous case.
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