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These lecture notes are very much inspired from Kunen’s Set Theory an Introduc-
tion to Independence Proofs [23].

The basic requirements for this course are contained in the ” Mathematical Logic” course. Among
other things, you should have a clear understanding of each of the following: first order language,
signature, terms, formulas, theory, proof theory, models, completeness theorem, compactness
theorem, Lowenheim-Skolem theorem.

It makes no sense to take this course without a solid background on first order logic
— see [2, 13 14, 15, 16, 133].

We use the following notations

Notation 1 (Formulas). Given L any first order language, the set of all L-formulas is the
C-least X € < L that satisfies:

e all atomic formulas belong to X.

o If p and ¢ belong to X, then

=, (o A ), (¢ v ), (p—¢)and (¢ < ¢)
also belong to X.
e [If x is any variable and ¢ belongs to X, then Va ¢ and dx ¢ also belong to X.

For better readability, we usually omit the outermost parentheses. For instance we write
dJrxey—x#y

instead of
Fzxey — x #y).

Notation 2. Given any first order language L, and any set of L-formulas I', and any L-formula
P, we write

o I' = for “p holds in all L-structures that satisfy T.

o I' = ¢ for “T" proves ¢ (in classical logic)”.
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