

Index of Notations

\mathbb{A} the set of atoms, page 361

$\tilde{\pi}$ automorphism on \mathbb{P} -names, page 298

$\check{\pi}$ the automorphism on \mathbb{P} -names induced by some permutation (for **ZFA**), page 364

axiom of Atoms the axiom of atoms (for **ZFA**), page 361

$\mathcal{M}_{\mathcal{F}_0}^{\text{HS}_x}$ the basic Fraenkel model (for **ZFA**), page 372

\check{x} the canonical \mathbb{P} -name for any set x , page 242

CH the continuum hypothesis, page 76

Choice the axiom of choice, page 14

$\neg\text{AC}$ the negation of the axiom of choice, page 401

Comprehension Schema the axioms of Comprehension, page 14

Comprehension Schema for ZFA the strengthening of the comprehension axiom schema (for **ZFA**), page 362

V = L the axiom of constructibility, page 213

c.c.c. countable chain condition, page 279

Δ_0^0 the Delta zero zero formulas, page 181

Δ_n^0 the Delta zero n formulas, page 181

Δ -system Delta-system, page 286

DC the axiom of dependent choice, page 84

Empty Set Existence for ZFA the axiom of empty set existence (for **ZFA**), page 361

Extensionality the axiom of extensionality, page 13

Extensionality for ZFA the axiom of extensionality (for **ZFA**), page 361

\Vdash_* forcing from inside \mathbf{M} , page 251

$\Vdash_{\mathbb{P}, \mathbf{M}}$ forcing from inside \mathbf{V} , page 249

(\mathbb{P}, \leq) notion of forcing, page 226

Foundation the axiom of foundation, page 14

GCH the generalized continuum hypothesis, page 76

$\mathbf{M}[G]$ the generic extension of \mathbf{M} , page 238

HS _{\mathcal{F}} the class of all hereditarily symmetric \mathbb{P} -names, page 326

HS _{\mathcal{F}} the class of hereditarily symmetric sets (for **ZFA**), page 366

$\mathcal{M}^{\text{HS}_*}$ the permutation model (for **ZFA**), page 369

HOD(A) the class of all hereditarily ordinal definable sets from A , page 301

Infinity the axiom of infinity, page 14

$\overset{1-1}{\lesssim}$ injects to, page 309

$\overset{1-1}{\not\lesssim}$ does not inject to, page 309

$\mathcal{P}^\infty(\emptyset)$ the kernel (for **ZFA**), page 363

λ -chain condition , page 279

λ -closed lambda closure, page 282

L Gödel's constructible universe, page 197

\in -automorphism the membership class automorphism, page 364

$\mathcal{M}^{\text{HS}_*}_{\text{ost}}$ the ordered Mostowski model (for **ZFA**), page 380

$\widehat{\mathbf{M}[G]}^{\mathcal{F}_A}$ the symmetric model (for **ZFA**), page 387

1 one, page 226

OD(A) the class of all sets ordinal definable from A , page 301

On the class of ordinal numbers, page 38

Pairing the axiom of pairing, page 14

Part. Rec. the partial recursive functions, page 143

Peano Peano arithmetic, page 180

\mathbb{P} -generic over genericity over a poset, page 228

$\mathcal{P}^\infty(S)$ the von Neumann hierarchy generated by S , page 362

Π_n^0 the Pi zero n formulas, page 181

\mathbb{P}_{Levy} the Levy forcing, page 337

\mathbb{P} -name the set of names, page 235

$\mathbf{V}^\mathbb{P}$ the class of all \mathbb{P} -names, page 238

$\mathbf{M}^\mathbb{P}$ the class of all \mathbb{P} -names of \mathbf{M} , page 238

\mathbb{P} partially ordered set (poset), page 226

Power Set the axiom of powerset, page 14

Prim. Rec. the primitive recursive functions, page 145

Replacement Schema the axioms of replacement, page 14

Rob. Robinson arithmetic, page 146

Δ_0^{0-rud} -formula the rudimentary formulas, page 130

$\mathcal{M}_{\mathcal{F}_2}^{\text{HS}_s}$ the second Fraenkel model (for **ZFA**), page 375

Set Existence the axiom of set existence, page 13

Σ_n^0 the Sigma zero n formulas, page 181

$(\tau)_G$ the stripping of a \mathbb{P} -name τ , page 238

\lesssim^{onto} surjects to, page 309

$\not\lesssim^{\text{onto}}$ does not surject to, page 309

$\widehat{\mathbf{M}[G]}^{\mathcal{F}}$ the symmetric submodel of a generic extension, page 328

$\text{sym}_g(\tau)$ the symmetry group of a \mathbb{P} -name τ , page 324

Union the axiom of union, page 14

\mathbf{V} the Universe, or von Neumann hierarchy, page 38

WF the class of well founded sets, page 79

Z Zermelo set theory, page 13

ZF Zermelo-Fraenkel set theory, page 13

ZFA set theory with atoms, page 361

ZFC Zermelo-Fraenkel set theory with axiom of choice, page 13

$\mathcal{Z}^{\text{HS}_\alpha}$ the permutation model induced by \mathcal{Z} and $\mathcal{F}_\mathbb{A}$, page 387