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December 10, 2024
Problem Set 12 Solutions

Exercise 1. Recall that an irreducible Specht module V) for S, is determined by a partition A = (A > Ay > A3 >
. > Ap), such that >% | \; = n. It can be defined by V(A\) = C[S,]cx, where ¢y = axby with
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Here the subgroups Py € S,, and Qy € S, are the stabilizers respectively of rows and columns of a Young tableau T)
of shape A.

(a) In class we showed that ¢3 = z()\)cy, where z()\) € Q is a coefficient. Find z(\). Hint: Consider the action of ¢y
in the right regular representation of S,,.

(b) Let C = >, ;(ij) € C[S,] be the sum of all transpositions. Show that C' acts on the Specht module V) by

multiplication by the scalar z(A\) = 3°7_, Zf‘;l(z — ). (The integer z(A) is called the content of the Young
diagram of shape \.)

Solution 1. (a) The element ¢y is proportional to an idempotent because ¢3 = ax(byar)by = z(A)ex. If £ is an
eigenvalue of ¢y in any representation, then x? = x(A\)k, and k = x(A\) or kK = 0. To find the nonzero eigenvalue
of ¢y, notice that since Py N @y = {1}, the coeflicient of 1 in ¢, is ‘P)\|1|Q>\‘. Taking the trace of ¢y in the right

regular representation, we get

n!

tr(pr(cr)) = INICNE

On the other hand, we have dimC|[S,]c) = dimV). Now we want to find the trace of the right regular action of ¢y
on Vy. It is given by p,(cx)(ven) = ves = kvey, for any v € C[S,,]. Therefore, We have
tr(pr(cy)) = dimV k.

Therefore,
n!

|PA||Qa]dim(Vy)

k=z(\) =

Using the hook length formula for dim(Vy), we get
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where )\; is the number of boxes in the jth row of the Young diagram of A, AY — the number of boxes in the ith
column, and h(%,j) — the length of the hook starting at the square (4, j).

xz(A) =

(b) First, notice that C is central: gCg~! = doicy g(i,j)gt = >i<i(9(i),9(4)) = C. Therefore, C acts on V) by a
scalar, and we have C - ¢y = z(A)ex. Then C - ¢y = Capby = a)Cby. We have:

.. - a,\b>\ = C), if (Z,]) € Py
ax(i: j)bx = { —axby = —cy, if (4,5) € Qx

If (4,7) ¢ Py U@y, then ¢ and j are in different rows and different columns of the Young diagram. Suppose i is
in the longest of the two rows. Then there is a transposition in Py, (7, s), that moves ¢ to the column of j, and
(4,5)(i,8)(3,7) = (4,5) € Qx. Then, similarly to the proof we did in class, we have

a)\(iaj)bA = ak(iv 8)(Z7J)bA = a)\(ivj)(ja S)bA = *ak(iaj)b)\ =0.
So the value of z(\) is the number of all transpositions in Py minus the number of all transpositions in . This
number is
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Exercise 2. Let G = SL(2,F,;) be the group of 2 x 2 matrices of determinant 1 with coefficients in the field of ¢
elements F, (¢ > 3 a prime). Consider the 2-dimensional F,-vector space V' with the basis e; = (1,0) and e = (0,1).

(a) Find the order of G.

(b) Show that G acts transitively on V '\ {(0,0)}.

(c¢) Find the stabilizer N C G of e;.

(d) Show that the representation (F, p) of G in the complex vector space F of functions f : V'\ {(0,0)} — C given by

p((&0) Hn) = fldn = by ot an)

c
is isomorphic to the induced representation of G from the trivial representation of V.

(e) Use Frobenius reciprocity to deduce that p is not irreducible.

Solution 2. (a) The condition ad—bc = 1 means that if a # 0, then d is uniquely determined with any values of b and
¢, and if @ = 0, then b and ¢ have to be nonzero. In the first case, we have (¢ — 1)q? possibilities, and in the second,
q(q—1), q choices for d and (¢— 1) for b. Totally, the order of G is (¢—1)¢*>+q(qg—1) = (¢—1)(¢*> +q) = q(¢* - 1).

Another way to look at it is to first compute the order of the group of invertible matrices GL(2,F,). To be
invertible, the columns have to be linearly independent. So we have ¢? — 1 choices for the first column (it has to
be nonzero) and ¢> — ¢ choices for the second column that cannot be a multiple of the first. Then the order of
GL(2,F,) is (¢> — 1)(¢*> — 2). Now consider the group homomorphism det : GL(2,F,) — (F,)*. The kernel is by
definition isomorphic to SL(2,F,). Since the order of the image is (¢ — 1), we get the order of SL(2,F,) equal to
(¢* = 1)(¢* —a)/(g — 1) = q(¢* — 1) as before.

(b) This amounts to checking that any vector (x,y) can be transformed into, say, (0, 1) by the action of G. We have

(e 0)(o)-(asi)- (1)

With the condition ad — bc = 1, if y # 0, then a = y,b = —z,d = 1+Tbc. Ify=0,seta=0,b=—z, ¢c= 2% and

xT )
d is arbitrary. The inverse matrix then will map (0,1) to any given vector (x,y). Therefore, the action of G on

V' \ {0} is transitive.

(¢) By direct computation, the stabilizer of e; = (1,0) is

1 b
v=(a 1),

where b € F, is arbitrary. Check by the orbit-stabilizer theorem, knowing from (b) that the orbit of any vector is
v\ {0}:
[N|-|Orb(er)| = [N]- [V\ {0} =q- (¢° = 1)) = q(¢* = 1) = |G].

The order of V'\ {0} is given by all 2-vectors except the zero vector.

(d) Let F denote the given representation of G. Since G acts transitively on V'\ {0}, we can represent obtain any vector
(z,5)T as the result of action of an element g € G on ey: (7,5)7 = g~le;. Let V) be the trivial representation of
N and consider the map ® : IndgVO — F defined by

O(f)(z,y) = (f)(g"er) = f(9)-
Then it is a G- homomorphism. Let t € G, then
(tf)(2,y) = @(tf) (g er) = tf(g) = f(gt) = (F)((gt) er) = ()t g er) =
=t0(f)(g " er) = tO(f) (2, ).

Here we used that the action of t € G of a function ®(f) € F is by t®(f)(z,y) = ()t (z,y)).

If ®(f)(V\ {0}) = 0, then f(G) = 0, so the kernel of ® is trivial. Characteristic functions of the elements in
V\ {0} form a basis of F. The representation Ind§ V; has dimension |G|/|N|, which equals to |Orb(e;)| = [V \ {0}
by (c). Therefore, ® is an isomorphism of representations of G.



(e) Let Wy be the trivial representation of G. Frobenius reciprocity shows that the multiplicity of the trivial repre-
sentation of G in Ind; is 1:

Home (W, Ind§ Vo) = Hompy (Res$ (Wo), Vo) = Homy (Vo, Vo) = 1.

This is a general result: an induction from a trivial representation of a subgroup always contains the trivial
representation of the group as a subrepresentation. In this particular case, the trivial subrepresentation corresponds
to the subspace of constant functions on V' \ {0}.

Exercise 3. Let K C G be a subgroup, and C,, a one-dimensional representation of K with character x : K — C*.
Consider the central idempotent corresponding to x:

ex = % > xl9) g eCIK].
geK

Show that the induced representation IndgC, is naturally isomorphic to C[G]e,, with the action of G in C[G]e, by
left multiplication.

Solution 3. Let k € K, and {x;} € G,i=1,...,|G/K| be the representatives of the left cosets G/K. Then
1 _ 1 -
key = @ Z x(9)" kg = @ Z Xk~ = x(k)ey.
geK teK
Any element of G can be written uniquely as g = x;k for some z; € G/K and some k € K. Then
(C[xikex} = C[X(k)xiex] = (C[xiex]~

The elements {z;ey},i = 1,...|G/K| form a basis in C[G]e,. Similarly, the elements {z; ®c[x] Cy},i = 1,...|G/K]|
form a basis in

Ind§C, =~ C[G] ®cx] Cy-

Then map @ : C[G] ®&c(x) C, — C[Gley given by ®(g ®c[x] Cy) = gey for any g € G sends the basis to the basis and
commutes with the action of G: if g1g = z;k for some z; and some k € K, then

®(g19 ®cix) Cy) = (2% @cix) Cy) = x(k)®(z; @cix) Cy) = x(k)zjey =

= xjk;ex = gi19ey = glq)(g ®(C[K] (CX)'



