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Exercise 1. Consider the group algebra C[G] of a finite group G. We know from the course that the the regular
representation C[G],., decomposes as a direct sum

Ck?]::€}9‘6®dhnw
=1

where {V;}7_, are the inequivalent irreducible representations of G. In particular, C[G],., always contains the trivial
subrepresentation of the group with multiplicity 1. The following exercise gives a description of the complement to
the trivial representation in C[G],¢4 in the basis of group elements.

(a) Define a subspace N in C[G] by

N = Zagg: ag € C, Zagzo

9€G e
Show that N C C[G] is a C[G]-submodule in the left regular module C[G] over itself and find its dimension.
(b) Consider the quotient module, M = C[G]/N. Find its dimension, introduce a basis and describe its structure.

Solution 1. (a) First we check that N C C[G] is a vector subspace. Indeed, if we have a = 3
b=>,ccbgg € N, then

gec g9 € N and

a+8b:a:Zagg+SZbgg=Z(ag+5bg)9

geG geG geG

with 30 cq(ag +sbg) = > cqag + 8> ,caby =0, so that a + sb € N. Now consider an action of C[G] on an
element a € N. Since C[G] is a vector space with basis {g}4ecq, it suffices to consider the action of an arbitrary
group element z € G. We have

Ta = xZagg = Zag(xg) = Zaxqgg €N,

geG geG geq

since left multiplication by 2~! permutes the elements of G and so deG Ug-14 = deG ag = 0. So N is a
submodule of C[G] with respect to the left multiplication. Since all coeflicients in the expression geG (gg but
one can be chosen to be arbitrary complex numbers, and the last coefficient is uniquely determined by the condition
>_gec Ag = 0, the dimension of N is |G| — 1.

(b) Consider the C[G]-module M = C[G]/N. Let 1 denote the neutral element of G. For any element in C[G] we can
write uniquely b=1¢-1+ deG agg, where dec agg € N. Then M ~ C -1 in this presentation. Let us compute
the action of a group element z € G on M:

xb:x(t~1+2agg):z (t+a) 14+az 2zt + Z agg | =
9eG g#z~1,g#1

=(t+a)r+a,—-1+ Z ap—1g9 =t 14 |(az—1 —t) - 1+ (t+ar)z+ Z ay-1g9| =t-1+mn,
9#1,9#x 9#1,9#x
where n is the sum of the terms in the square brackets. Since ZQGG ag = 0, we have that n € N. Therefore, for

any element ¢ in one-dimensional C[G]-module M, we have x -t =t for any € G, and therefore M is the trivial
C[G]-module.

Remark: Of course Vj is also a subrepresentation in C[G] ¢4, that is spanned by > gec 9-



Exercise 2. A group is nilpotent if its ascending central series terminates in the whole group. The ascending central
series is the sequence of normal subgroups

1=2yCZiC...CZ;C...,
where Z; 11 = {z € G : zyz~ 1y~ € Z; Vy € G}. In particular, Z; is the center of G.
(a) Show that a nilpotent group is solvable.
(b) Give an example of a solvable group that is not nilpotent.

(c) Show that a group of order p¥, where p is a prime, is nilpotent.
(This is another way to show that a group of order p* is solvable — an easy special case of Burnside’s theorem).

Solution 2. (a) If the ascending central series terminates in a whole group, then we have a sequence of normal
subgroups,
1:ZOC21C...CZ]€,1CZ]€:G,

such that for all x,y € Z;11/Z;, we have {zxyx~'ly~ = 1}, and so Z;1/Z; is abelian. Therefore, by definition G
is solvable.

(b) The center of G = S3 is trivial, and therefore its ascending central series terminates at the first step. However, S3
contains a normal subgroup Cs ~ {1, (123), (132)}. We have a sequence of normal subgroups with abelian factors,

1cCcCsCSs,

so that S3 is solvable. Alternatively, Ss is solvable as a group of order 6 = 2 - 3 by Burnside’s theorem.

(c) A group G of order p¥, k > 1, has a nontrivial center of order a power of p, because otherwise the class equation

=1Z|+)_lci]

i>1

where each |C;|,7 > 1 is divisible by p, cannot be satisfied. Then consider the group G/Z. It has order p™ with
m < k and the same argument applies. By induction, we can construct an ascending central series that terminates
with the whole group.

Exercise 3. Show that if V' is an irreducible complex representation of a finite group G, and dimV > 1, then there
is an element g € G such that xy(g) = 0. Hint:

(a) Use orthonormality of characters to show that the arithmetic mean of the numbers |y (g)|? for g # e is strictly
less than 1. Deduce that
B = H Ixv(9)?

g7#e

(b) Consider the map G — G defined by g — g7, where j is any positive integer such that ged(j,|G|) = 1. Show that
it is a bijection, and deduce that it leaves the number 3 fixed.

(c) Show that B € Z[¢], where & = ¢?™/|Cl is the |G|-th root of unity. Use (b) to show that 8 = 0.

Solution 3. (a) We have,
(xv,xv) xv(9)xv(9) xv(g)l* =
> "
Then
|G| — dim?(V)

D hwlo)P = 1G] = din(V) = g 3@ = g

g#e gie

<1

Set m = |G| —1. Then by the arithmetic-geometric mean inequality we have for these numbers that their geometric
mean is also strictly less than 1,

(I v@F < 23wl <1 = a=[Thviolf <1
g#e g#e g#e



(b)

The map g — ¢’ maps e — e € G. If g # e, then g7 # e because g generates a cyclic subgroup in G whose order
must divide |G|, and ged(j,|G|) = 1. Suppose now that h # e,g # e and k = hY = ¢/ € G. Then k generates
a cyclic subgroup K = {e,k,k?,...k* '} in G, such that K C H = {e,h,h?,...h" "1} C G, where the positive
integers s and n divide |G|. Then h?® = k* = e, and therefore js = nt for some positive integer t. Then s = nt/j,
and since ged(n,j) = 1, s is a multiple of n. Since K C H, we have m = s and K = H. By the same argument,
K = H’, the cyclic subgroup generated by g. Therefore, the cyclic subgroups generated by g and h are the same,
and in particular h = g*, for some k, such that ¢"/ = ¢7. Then ¢*~17 = ¢, and k — 1 is divisible by the order of
the group generated by g. Therefore, h = ¢g*~1g = eg = g¢.

All characters of G are sums of roots of unity of orders that divide |G|, and so are their conjugates. Therefore,
8= Hg;,ée Ixv(g)|? is a polynomial in & = ¢?™%/|Cl with integer coefficients. Let 8 = ag + Zﬁ‘fl a;¢'. By (b), the
map g — ¢’ leaves 3 unchanged and in each character it acts by sending & to £&7. We have 3 € Q(¢) the extension
of the filed @ by the roots of unity of order |G|. The Galois group of this extension is isomorphic to (Z/|G|Z)*,
which is exactly generated by the automorphisms ¢ — ¢/ with j coprime to |G|. The elements stabilized by the
Galois group of Q(§) are exactly Q. Since § € Q is an algebraic integer, we conclude that 8 € Z. Therefore,
0 < B <1 and finally g8 = 0.



