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Exercise 1. Consider the group algebra C[G] of a finite group G. We know from the course that the the regular
representation C[G]reg decomposes as a direct sum

C[G] =

r⊕
i=1

V ⊕dimVi
i

where {Vi}ri=1 are the inequivalent irreducible representations of G. In particular, C[G]reg always contains the trivial
subrepresentation of the group with multiplicity 1. The following exercise gives a description of the complement to
the trivial representation in C[G]reg in the basis of group elements.

(a) Define a subspace N in C[G] by

N =

∑
g∈G

agg : ag ∈ C,
∑
g∈G

ag = 0

 .

Show that N ⊂ C[G] is a C[G]-submodule in the left regular module C[G] over itself and find its dimension.

(b) Consider the quotient module, M = C[G]/N . Find its dimension, introduce a basis and describe its structure.

Solution 1. (a) First we check that N ⊂ C[G] is a vector subspace. Indeed, if we have a =
∑
g∈G agg ∈ N and

b =
∑
g∈G bgg ∈ N , then

a+ sb = a =
∑
g∈G

agg + s
∑
g∈G

bgg =
∑
g∈G

(ag + sbg)g

with
∑
g∈G(ag + sbg) =

∑
g∈G ag + s

∑
g∈G bg = 0, so that a + sb ∈ N . Now consider an action of C[G] on an

element a ∈ N . Since C[G] is a vector space with basis {g}g∈G, it suffices to consider the action of an arbitrary
group element x ∈ G. We have

xa = x
∑
g∈G

agg =
∑
g∈G

ag(xg) =
∑
g∈G

ax−1gg ∈ N,

since left multiplication by x−1 permutes the elements of G and so
∑
g∈G ax−1g =

∑
g∈G ag = 0. So N is a

submodule of C[G] with respect to the left multiplication. Since all coefficients in the expression
∑
g∈G agg but

one can be chosen to be arbitrary complex numbers, and the last coefficient is uniquely determined by the condition∑
g∈G ag = 0, the dimension of N is |G| − 1.

(b) Consider the C[G]-module M = C[G]/N . Let 1 denote the neutral element of G. For any element in C[G] we can
write uniquely b = t · 1 +

∑
g∈G agg, where

∑
g∈G agg ∈ N . Then M ' C · 1 in this presentation. Let us compute

the action of a group element x ∈ G on M :

xb = x(t · 1 +
∑
g∈G

agg) = x

(t+ a1) · 1 + ax−1x−1 +
∑

g 6=x−1,g 6=1

agg

 =

= (t+ a1)x+ ax−1 · 1 +
∑

g 6=1,g 6=x

ax−1gg = t · 1 +

(ax−1 − t) · 1 + (t+ a1)x+
∑

g 6=1,g 6=x

ax−1gg

 = t · 1 + n,

where n is the sum of the terms in the square brackets. Since
∑
g∈G ag = 0, we have that n ∈ N . Therefore, for

any element t in one-dimensional C[G]-module M , we have x · t = t for any x ∈ G, and therefore M is the trivial
C[G]-module.

Remark: Of course V0 is also a subrepresentation in C[G]reg, that is spanned by
∑
g∈G g.



Exercise 2. A group is nilpotent if its ascending central series terminates in the whole group. The ascending central
series is the sequence of normal subgroups

1 = Z0 ⊂ Z1 ⊂ . . . ⊂ Zi ⊂ . . . ,

where Zi+1 = {x ∈ G : xyx−1y−1 ∈ Zi ∀y ∈ G}. In particular, Z1 is the center of G.

(a) Show that a nilpotent group is solvable.

(b) Give an example of a solvable group that is not nilpotent.

(c) Show that a group of order pk, where p is a prime, is nilpotent.
(This is another way to show that a group of order pk is solvable – an easy special case of Burnside’s theorem).

Solution 2. (a) If the ascending central series terminates in a whole group, then we have a sequence of normal
subgroups,

1 = Z0 ⊂ Z1 ⊂ . . . ⊂ Zk−1 ⊂ Zk = G,

such that for all x, y ∈ Zi+1/Zi, we have {xyx−1y−1 = 1}, and so Zi+1/Zi is abelian. Therefore, by definition G
is solvable.

(b) The center of G = S3 is trivial, and therefore its ascending central series terminates at the first step. However, S3

contains a normal subgroup C3 ' {1, (123), (132)}. We have a sequence of normal subgroups with abelian factors,

1 ⊂ C3 ⊂ S3,

so that S3 is solvable. Alternatively, S3 is solvable as a group of order 6 = 2 · 3 by Burnside’s theorem.

(c) A group G of order pk, k > 1, has a nontrivial center of order a power of p, because otherwise the class equation

pk = |Z|+
∑
i>1

|Ci|

where each |Ci|, i > 1 is divisible by p, cannot be satisfied. Then consider the group G/Z. It has order pm with
m < k and the same argument applies. By induction, we can construct an ascending central series that terminates
with the whole group.

Exercise 3. Show that if V is an irreducible complex representation of a finite group G, and dimV > 1, then there
is an element g ∈ G such that χV (g) = 0. Hint:

(a) Use orthonormality of characters to show that the arithmetic mean of the numbers |χV (g)|2 for g 6= e is strictly
less than 1. Deduce that

β =
∏
g 6=e

|χV (g)|2 < 1.

(b) Consider the map G→ G defined by g → gj , where j is any positive integer such that gcd(j, |G|) = 1. Show that
it is a bijection, and deduce that it leaves the number β fixed.

(c) Show that β ∈ Z[ξ], where ξ = e2πi/|G| is the |G|-th root of unity. Use (b) to show that β = 0.

Solution 3. (a) We have,

(χV , χV ) =
1

|G|
∑
g∈G

χV (g)χV (g) =
1

|G|
∑
g∈G
|χV (g)|2 = 1.

Then ∑
g 6=e

|χV (g)|2 = |G| − dim2(V) =⇒ 1

|G| − 1

∑
g 6=e

|χV(g)|2 =
|G| − dim2(V)

|G| − 1
< 1.

Set m = |G|−1. Then by the arithmetic-geometric mean inequality we have for these numbers that their geometric
mean is also strictly less than 1,

m

√∏
g 6=e

|χV (g)|2 ≤ 1

m

∑
g 6=e

|χV (g)|2 < 1 =⇒ β =
∏
g 6=e

|χV (g)|2 < 1.



(b) The map g → gj maps e→ e ∈ G. If g 6= e, then gj 6= e because g generates a cyclic subgroup in G whose order
must divide |G|, and gcd(j, |G|) = 1. Suppose now that h 6= e, g 6= e and k = hj = gj ∈ G. Then k generates
a cyclic subgroup K = {e, k, k2, . . . ks−1} in G, such that K ⊂ H = {e, h, h2, . . . hn−1} ⊂ G, where the positive
integers s and n divide |G|. Then hjs = ks = e, and therefore js = nt for some positive integer t. Then s = nt/j,
and since gcd(n, j) = 1, s is a multiple of n. Since K ⊂ H, we have m = s and K = H. By the same argument,
K = H ′, the cyclic subgroup generated by g. Therefore, the cyclic subgroups generated by g and h are the same,
and in particular h = gk, for some k, such that gkj = gj . Then g(k−1)j = e, and k − 1 is divisible by the order of
the group generated by g. Therefore, h = gk−1g = eg = g.

(c) All characters of G are sums of roots of unity of orders that divide |G|, and so are their conjugates. Therefore,

β =
∏
g 6=e |χV (g)|2 is a polynomial in ξ = e2πi/|G| with integer coefficients. Let β = a0 +

∑|G|−1
i=1 aiξ

i. By (b), the

map g → gj leaves β unchanged and in each character it acts by sending ξ to ξj . We have β ∈ Q(ξ) the extension
of the filed Q by the roots of unity of order |G|. The Galois group of this extension is isomorphic to (Z/|G|Z)∗,
which is exactly generated by the automorphisms ξ → ξj with j coprime to |G|. The elements stabilized by the
Galois group of Q(ξ) are exactly Q. Since β ∈ Q is an algebraic integer, we conclude that β ∈ Z. Therefore,
0 ≤ β < 1 and finally β = 0.


