
Exercise 1. We apply the Euler-Maclaurin formula as hinted:∑
2≤n≤x

1

n log n
=

∫ x

3/2

1

t log t
dt−

∫ x

3/2

log t+ 1

t2 log2 t
ψ(t) dt− 1

x log x
ψ(x),

using ψ(3/2) = 0. The integral

C =

∫ ∞

2

log t+ 1

t2 log2 t
dt

converges and we can use this information to write∣∣∣∣∫ x

2

log t+ 1

t2 log2 t
ψ(t) dt

∣∣∣∣ ≤ ∫ x

2

log t+ 1

t2 log2 t
dt

= −
∫ ∞

x

log t+ 1

t2 log2 t
dt+ C = C − 1

x log x
.

Next notice that ∫ x

2

1

t log t
dt = log log x− log log 2.

Also we have

|ψ(x) 1

x log x
| = O(

1

x log x
).

Summarizing, setting C1 = C − log log 2 we get∑
2≤n≤x

1

n log n
= log log x+ C1 +O

(
1

x log x

)
.

Exercise 2. We have

µ(n)2 =

{
1 n square free

0 otherwise

Recall also from last Exercise Sheet that µ(n)2 =
∑

d2|n µ(d). We have

Q2(x) =
∑
n≤x

µ(n)2

=
∑
n≤x

∑
d2|n

µ(d)

=
∑

d≤
√
x

∑
n≤x/d2

µ(d)

=
∑

d≤
√
x

µ(d)⌊x/d2⌋

= x
∑

d≤
√
x

µ(d)

d2
+O(

√
x).

The summation
∑∞

d=1
µ(d)
d2 is absolutely convergent, in particular a number. Also we have by triangular

inequality

|
∑

√
x<d

µ(d)

d2
| ≤

∫ ∞

√
x

1

t2
dt =

1√
x
.

Hence

Q2(x) = x

( ∞∑
d=1

µ(d)

d2

)
+O(

√
x).
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Exercise 3. Write F (x) =
∑

n≤x log n. We apply the summation by parts formula∑
1<n≤x

log n

n
=
F (x)

x
+

∫ x

1

F (t)

t2
dt.

Recall that log 1 = 0. We can estimate F (x) using monotonicity:

F (x) =
∑

2≤n≤x

log n

=

∫ x

1

log t dt+O(log x)

= x log x− x+ 1 +O(log x) = x log x− x+O(log x).

Now we estimate the integral trying not to abuse of the O-notation.1 Write E(t) = F (t)− t log t+ t. Then
by the above E(t) = O(log t) as t → ∞. In particular there exists t0 > 0 and C > 0 such that for all t > t0
it holds that

|E(t)| ≤ C log t.

Also since F (t) ≤ t log t (this is true for all t ≥ 1) we have that |E(t)| ≤ t0 for all t < t0. In particular
changing C > 0 above we can write |E(t)| ≤ C log t for all t > 0. Now we compute:

∫ x

1

F (t)

t2
dt =

∫ x

1

t log t

t2
dt−

∫ x

1

1

t
dt+

∫ x

1

E(t)

t2
dt

=

∫ x

1

log t

t
dt− log x+

∫ x

1

E(t)

t2
dt.

We estimate ∣∣∣∣∫ x

1

E(t)

t2
dt

∣∣∣∣ ≤ C

∫ x

1

log t

t2
dt

= −C log x

x
+

∫ x

C

1

t2
dt

= −C log x

x
− C

x
+ C = C +O(log x/x)

And we also have ∫ x

1

log t

t
dt =

1

2
log2 x.

Putting all together we have∑
n≥1

log n

n
=
F (x)

x
+

∫ x

1

F (t)

t2
dt

= log x− 1 +O(log x/x) +
1

2
log2 x− log x+ C +O(log x/x)

=
1

2
log2 x+ (C − 1) +O(log x/x).

Exercise 4. Let k ∈ N and p1, . . . , pk the smallest k’th primes. Order them so that p1 < · · · < pk. We have

log(p1 · · · pk) =
k∑

i=1

log(pi).

1In future we will often do it.
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On the other hand τ(p1 · · · pk) = 2k. Recall from the first exercise sheet that log(pi) ≤ log 22
i−1

= 2i−1 log 2.
Then

k∑
i=1

log pi ≤ log 2

k−1∑
i=0

2i = (2k − 1) log 2 < 2k

since log 2 < 1. We have seen that
τ(p1 · · · pk) > log(p1 · · · pk).

In order to deal with A > 0 we need to exploit powers. Let n = (p1 · · · pk)r, with r > 0 to be chosen
later, then

(log n)A = rA(

k∑
i=1

log pi)
A and τ(n) = (r + 1)k.

In particular if we choose k > 2A and r > (
∑k

i=1 log pi)
A (ex. r ≥ 2kA), we see that

τ(n) > (r + 1)2A > (log n)A.

Exercise 5. Fix ϵ > 0. First notice that for any prime number p we have p ≥ 2 and so

τ(pk) = k + 1, pkϵ ≥ 2kϵ.

Let Mϵ be so that Mϵ2
kϵ ≥ k + 1. This can be chosen independently of k since the real function

[0,∞) ∋ x 7→ x+ 1

2xϵ

is decreasing for x > 1
ϵ log 2 (compute the derivative) and is continuous, hence it attains a global maximum.

Call it Mϵ. We have shown that for any prime number p we have

τ(pk)

pkϵ
≤ k + 1

2kϵ
≤Mϵ.

For big prime number p we can do way better, in particular for p > e1/ϵ we have for any k ≥ 0

log(k + 1) ≤ kϵ log p,

i.e. after taking the exponential τ(pk) ≤ pkϵ.
Now let n ∈ N and write n =

∏
p∈P p

vp(n), where vp(n) = 0 for all but finitely many p ∈ P.2 Then

τ(n)

nϵ
=
∏
p∈P

τ(pvp(n))

pvp(n)ϵ

≤
∏
p≤Pϵ

Mϵ

=Mπ(Pϵ)
ϵ ,

where π(Pϵ) is the number of prime numbers smaller or equal than Pϵ. Set Cϵ =M
π(Pϵ)
ϵ .

Exercise 6. Let f as in the exercise. Let 1P denote the characteristic function of P ⊂ N. The assumption
reads

G(x) :=
∑
n≤x

f(n) log(n)1P(n) = (ax+ b) log x+ cx+ r(x), (0.1)

2Recall we use P for the set of prime numbers.
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for some uniformly bounded function r(t). We apply next summation by parts to F (x) :=
∑

p≤x f(p) =∑
n≤x f(n)1P(n):

F (x) = f(2) +
∑

2<n≤x

f(n) log(n)

log(n)
1P(n)

= f(2) +
G(x)

log x
− G(2)

log 2
+

∫ x

2

G(t)

t log2 t
dt

=
G(x)

log x
+

∫ x

2

G(t)

t log2 t
dt.

Now we insert (0.1) into the integral∫ x

2

G(t)

log2 t
dt =

∫ x

2

(at+ b)

t log t
dt+ c

∫ x

2

1

log2 t
dt+

∫ x

2

r(t)

t log2 t
dt

First

a

∫ x

2

1

log t
dt = a

(
x

log x
− 2

log 2
+

∫ x

2

1

log2 t
dt

)
.

Second

b

∫ x

2

1

t log t
dt = b(log log x− log log 2).

Last

|
∫ x

2

r(t)

t log2 t
dt| ≤ C(

1

log 2
− 1

log x
),

for some constant C ≥ supt |r(t)|. In particular the integral

I :=

∫ ∞

2

r(t)

t log2 t
dt

converges and we have
∫ x

2
r(t)

t log2 t
dt = I +O

(
1

log x

)
. Hence

F (x) = ax+ b+ (a+ c)
x

log x
+ (a+ c)

∫ x

2

1

log2 t
dt+ (I − b log log 2− a

2

log 2
) +O(1/ log x),

which is in the desired form after setting B = I − b log log 2− a 2
log 2 .
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