Exercise 1. We apply the Euler-Maclaurin formula as hinted:
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Next notice that
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Summarizing, setting C; = C' — loglog 2 we get
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Exercise 2. We have
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Recall also from last Exercise Sheet that pu(n)? = Zd2|n u(d). We have
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Exercise 3. Write F'(z) = anz logn. We apply the summation by parts formula

Z logn: F

1<n<zx

Recall that log1 = 0. We can estimate F(z) using monotonicity:
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Now we estimate the integral trying not to abuse of the O-notation.! Write E(t) = F(t) — tlogt + t. Then
by the above E(t) = O(logt) as t — co. In particular there exists to > 0 and C' > 0 such that for all ¢ > ¢
it holds that

|E(t)] < Clogt.

Also since F(t) < tlogt (this is true for all ¢ > 1) we have that |E(t)| < to for all ¢ < #p. In particular
changing C' > 0 above we can write |E(t)| < C'logt for all t > 0. Now we compute:

$30) tlogt 1 T B(t)
= /1 - dt— /1tdt+/1 o dt
E(t)

*logt r
= —— dt —1 dt.
/1 P ogx+/1 2

‘<c/ LCLPY

Clogx 1
c

:_CIng _%_'_C:C'f'O(lng/x)

T

logt
/ o8t dt = log2 T.
1

We estimate
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And we also have
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Putting all together we have
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Exercise 4. Let k € N and pq, ..., ps the smallest k’th primes. Order them so that p; < --- < pr. We have

log(p Z log(pi).

1In future we will often do it.



On the other hand 7(p; - - - px) = 2F. Recall from the first exercise sheet that log(p;) < log 227" = 2i-11pg 2.
Then

Zlogpl<log2221 F_1)log2 < 2F

since log2 < 1. We have seen that
T(p1---pr) > log(pr -~ pr).-

In order to deal with A > 0 we need to exploit powers. Let n = (p1---pr)”, with 7 > 0 to be chosen
later, then

(logn)? Zlogpz and 7(n) = (r+ 1)

In particular if we choose k > 2A4 and r > (Zizl logp;)? (ex. r > 2F4), we see that
7(n) > (r+1)%4 > (logn)*.
Exercise 5. Fix ¢ > 0. First notice that for any prime number p we have p > 2 and so
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Let M, be so that M.2% > k + 1. This can be chosen independently of k since the real function
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is decreasing for = > 10g2 (compute the derivative) and is continuous, hence it attains a global maximum.
Call it M. We have shown that for any prime number p we have
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For big prime number p we can do way better, in particular for p > e'/¢ we have for any k > 0
log(k + 1) < kelogp,

i.e. after taking the exponential 7(p¥) < pFe.
Now let n € N and write n = HpG'P p?» (") where vp(n) = 0 for all but finitely many p € P.? Then
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where 7(P,) is the number of prime numbers smaller or equal than P.. Set C. = M/ (Pe)
Exercise 6. Let f as in the exercise. Let 1p denote the characteristic function of P C N. The assumption
reads

Z f(n)log(n)lp(n) = (ax + b)logz + cx + r(z), (0.1)

n<z

2Recall we use P for the set of prime numbers.



for some uniformly bounded function r(¢). We apply next summation by parts to F(z) = Zpgx flp) =
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which is in the desired form after setting B = I — bloglog2 — a@.



