

Exercise 1. We apply the Euler-Maclaurin formula as hinted:

$$\sum_{2 \leq n \leq x} \frac{1}{n \log n} = \int_{3/2}^x \frac{1}{t \log t} dt - \int_{3/2}^x \frac{\log t + 1}{t^2 \log^2 t} \psi(t) dt - \frac{1}{x \log x} \psi(x),$$

using $\psi(3/2) = 0$. The integral

$$C = \int_2^\infty \frac{\log t + 1}{t^2 \log^2 t} dt$$

converges and we can use this information to write

$$\begin{aligned} \left| \int_2^x \frac{\log t + 1}{t^2 \log^2 t} \psi(t) dt \right| &\leq \int_2^x \frac{\log t + 1}{t^2 \log^2 t} dt \\ &= - \int_x^\infty \frac{\log t + 1}{t^2 \log^2 t} dt + C = C - \frac{1}{x \log x}. \end{aligned}$$

Next notice that

$$\int_2^x \frac{1}{t \log t} dt = \log \log x - \log \log 2.$$

Also we have

$$|\psi(x) \frac{1}{x \log x}| = O\left(\frac{1}{x \log x}\right).$$

Summarizing, setting $C_1 = C - \log \log 2$ we get

$$\sum_{2 \leq n \leq x} \frac{1}{n \log n} = \log \log x + C_1 + O\left(\frac{1}{x \log x}\right).$$

Exercise 2. We have

$$\mu(n)^2 = \begin{cases} 1 & n \text{ square free} \\ 0 & \text{otherwise} \end{cases}$$

Recall also from last Exercise Sheet that $\mu(n)^2 = \sum_{d^2|n} \mu(d)$. We have

$$\begin{aligned} Q_2(x) &= \sum_{n \leq x} \mu(n)^2 \\ &= \sum_{n \leq x} \sum_{d^2|n} \mu(d) \\ &= \sum_{d \leq \sqrt{x}} \sum_{n \leq x/d^2} \mu(d) \\ &= \sum_{d \leq \sqrt{x}} \mu(d) \lfloor x/d^2 \rfloor \\ &= x \sum_{d \leq \sqrt{x}} \frac{\mu(d)}{d^2} + O(\sqrt{x}). \end{aligned}$$

The summation $\sum_{d=1}^\infty \frac{\mu(d)}{d^2}$ is absolutely convergent, in particular a number. Also we have by triangular inequality

$$\left| \sum_{\sqrt{x} < d} \frac{\mu(d)}{d^2} \right| \leq \int_{\sqrt{x}}^\infty \frac{1}{t^2} dt = \frac{1}{\sqrt{x}}.$$

Hence

$$Q_2(x) = x \left(\sum_{d=1}^\infty \frac{\mu(d)}{d^2} \right) + O(\sqrt{x}).$$

Exercise 3. Write $F(x) = \sum_{n \leq x} \log n$. We apply the summation by parts formula

$$\sum_{1 < n \leq x} \frac{\log n}{n} = \frac{F(x)}{x} + \int_1^x \frac{F(t)}{t^2} dt.$$

Recall that $\log 1 = 0$. We can estimate $F(x)$ using monotonicity:

$$\begin{aligned} F(x) &= \sum_{2 \leq n \leq x} \log n \\ &= \int_1^x \log t dt + O(\log x) \\ &= x \log x - x + 1 + O(\log x) = x \log x - x + O(\log x). \end{aligned}$$

Now we estimate the integral trying not to abuse of the O -notation.¹ Write $E(t) = F(t) - t \log t + t$. Then by the above $E(t) = O(\log t)$ as $t \rightarrow \infty$. In particular there exists $t_0 > 0$ and $C > 0$ such that for all $t > t_0$ it holds that

$$|E(t)| \leq C \log t.$$

Also since $F(t) \leq t \log t$ (this is true for all $t \geq 1$) we have that $|E(t)| \leq t_0$ for all $t < t_0$. In particular changing $C > 0$ above we can write $|E(t)| \leq C \log t$ for all $t > 0$. Now we compute:

$$\begin{aligned} \int_1^x \frac{F(t)}{t^2} dt &= \int_1^x \frac{t \log t}{t^2} dt - \int_1^x \frac{1}{t} dt + \int_1^x \frac{E(t)}{t^2} dt \\ &= \int_1^x \frac{\log t}{t} dt - \log x + \int_1^x \frac{E(t)}{t^2} dt. \end{aligned}$$

We estimate

$$\begin{aligned} \left| \int_1^x \frac{E(t)}{t^2} dt \right| &\leq C \int_1^x \frac{\log t}{t^2} dt \\ &= -\frac{C \log x}{x} + \int_C^x \frac{1}{t^2} dt \\ &= -\frac{C \log x}{x} - \frac{C}{x} + C = C + O(\log x/x) \end{aligned}$$

And we also have

$$\int_1^x \frac{\log t}{t} dt = \frac{1}{2} \log^2 x.$$

Putting all together we have

$$\begin{aligned} \sum_{n \geq 1} \frac{\log n}{n} &= \frac{F(x)}{x} + \int_1^x \frac{F(t)}{t^2} dt \\ &= \log x - 1 + O(\log x/x) + \frac{1}{2} \log^2 x - \log x + C + O(\log x/x) \\ &= \frac{1}{2} \log^2 x + (C - 1) + O(\log x/x). \end{aligned}$$

Exercise 4. Let $k \in \mathbb{N}$ and p_1, \dots, p_k the smallest k 'th primes. Order them so that $p_1 < \dots < p_k$. We have

$$\log(p_1 \cdots p_k) = \sum_{i=1}^k \log(p_i).$$

¹In future we will often do it.

On the other hand $\tau(p_1 \cdots p_k) = 2^k$. Recall from the first exercise sheet that $\log(p_i) \leq \log 2^{2^{i-1}} = 2^{i-1} \log 2$. Then

$$\sum_{i=1}^k \log p_i \leq \log 2 \sum_{i=0}^{k-1} 2^i = (2^k - 1) \log 2 < 2^k$$

since $\log 2 < 1$. We have seen that

$$\tau(p_1 \cdots p_k) > \log(p_1 \cdots p_k).$$

In order to deal with $A > 0$ we need to exploit powers. Let $n = (p_1 \cdots p_k)^r$, with $r > 0$ to be chosen later, then

$$(\log n)^A = r^A (\sum_{i=1}^k \log p_i)^A \quad \text{and} \quad \tau(n) = (r+1)^k.$$

In particular if we choose $k > 2A$ and $r > (\sum_{i=1}^k \log p_i)^A$ (ex. $r \geq 2^{kA}$), we see that

$$\tau(n) > (r+1)^{2A} > (\log n)^A.$$

Exercise 5. Fix $\epsilon > 0$. First notice that for any prime number p we have $p \geq 2$ and so

$$\tau(p^k) = k+1, \quad p^{k\epsilon} \geq 2^{k\epsilon}.$$

Let M_ϵ be so that $M_\epsilon 2^{k\epsilon} \geq k+1$. This can be chosen independently of k since the real function

$$[0, \infty) \ni x \mapsto \frac{x+1}{2^{x\epsilon}}$$

is decreasing for $x > \frac{1}{\epsilon \log 2}$ (compute the derivative) and is continuous, hence it attains a *global* maximum. Call it M_ϵ . We have shown that for any prime number p we have

$$\frac{\tau(p^k)}{p^{k\epsilon}} \leq \frac{k+1}{2^{k\epsilon}} \leq M_\epsilon.$$

For big prime number p we can do way better, in particular for $p > e^{1/\epsilon}$ we have for any $k \geq 0$

$$\log(k+1) \leq k\epsilon \log p,$$

i.e. after taking the exponential $\tau(p^k) \leq p^{k\epsilon}$.

Now let $n \in \mathbb{N}$ and write $n = \prod_{p \in \mathcal{P}} p^{v_p(n)}$, where $v_p(n) = 0$ for all but finitely many $p \in \mathcal{P}$.² Then

$$\begin{aligned} \frac{\tau(n)}{n^\epsilon} &= \prod_{p \in \mathcal{P}} \frac{\tau(p^{v_p(n)})}{p^{v_p(n)\epsilon}} \\ &\leq \prod_{p \leq P_\epsilon} M_\epsilon \\ &= M_\epsilon^{\pi(P_\epsilon)}, \end{aligned}$$

where $\pi(P_\epsilon)$ is the number of prime numbers smaller or equal than P_ϵ . Set $C_\epsilon = M_\epsilon^{\pi(P_\epsilon)}$.

Exercise 6. Let f as in the exercise. Let $\mathbb{1}_{\mathcal{P}}$ denote the characteristic function of $\mathcal{P} \subset \mathbb{N}$. The assumption reads

$$G(x) := \sum_{n \leq x} f(n) \log(n) \mathbb{1}_{\mathcal{P}}(n) = (ax + b) \log x + cx + r(x), \quad (0.1)$$

²Recall we use \mathcal{P} for the set of prime numbers.

for some uniformly bounded function $r(t)$. We apply next summation by parts to $F(x) := \sum_{p \leq x} f(p) = \sum_{n \leq x} f(n) \mathbb{1}_{\mathcal{P}}(n)$:

$$\begin{aligned} F(x) &= f(2) + \sum_{2 < n \leq x} \frac{f(n) \log(n)}{\log(n)} \mathbb{1}_{\mathcal{P}}(n) \\ &= f(2) + \frac{G(x)}{\log x} - \frac{G(2)}{\log 2} + \int_2^x \frac{G(t)}{t \log^2 t} dt \\ &= \frac{G(x)}{\log x} + \int_2^x \frac{G(t)}{t \log^2 t} dt. \end{aligned}$$

Now we insert (0.1) into the integral

$$\int_2^x \frac{G(t)}{\log^2 t} dt = \int_2^x \frac{(at + b)}{t \log t} dt + c \int_2^x \frac{1}{\log^2 t} dt + \int_2^x \frac{r(t)}{t \log^2 t} dt$$

First

$$a \int_2^x \frac{1}{\log t} dt = a \left(\frac{x}{\log x} - \frac{2}{\log 2} + \int_2^x \frac{1}{\log^2 t} dt \right).$$

Second

$$b \int_2^x \frac{1}{t \log t} dt = b(\log \log x - \log \log 2).$$

Last

$$|\int_2^x \frac{r(t)}{t \log^2 t} dt| \leq C \left(\frac{1}{\log 2} - \frac{1}{\log x} \right),$$

for some constant $C \geq \sup_t |r(t)|$. In particular the integral

$$I := \int_2^\infty \frac{r(t)}{t \log^2 t} dt$$

converges and we have $\int_2^x \frac{r(t)}{t \log^2 t} dt = I + O\left(\frac{1}{\log x}\right)$. Hence

$$F(x) = ax + b + (a + c) \frac{x}{\log x} + (a + c) \int_2^x \frac{1}{\log^2 t} dt + (I - b \log \log 2 - a \frac{2}{\log 2}) + O(1/\log x),$$

which is in the desired form after setting $B = I - b \log \log 2 - a \frac{2}{\log 2}$.