
Analytic number theory

Solutions to Exercise Sheet 1

Exercise 1. By taking logarithms of all quantities, we see that we are left with to compare

(log x)3, ϵ log x,
√

log x,B log x, x and A log log x.

We clearly have
A log log x ≪

√
log x ≪ ϵ log x ≪ B log x ≪ (log x)3 ≪ x

for large enough x. and so

(log x)A ≪ e
√
log x ≪ xϵ ≪ xB ≪ e(log x)3 ≪ ex

Exercise 2. (a) We apply integration by parts and get∫ x

2

1

log t
dt =

x

log x
− 2

log 2
+

∫ x

2

t

t log2 t
dt

=
x

log(x)
+

∫ x

2

1

log2 t
dt+O(1).

To estimate the integral notice that the order of magnitude of log(x) (as x → ∞) is constant in the
interval [xη, x], with x ≥ 2 and 0 < η < 1 a fixed number, since log(xη) = η log(x). This motivates the
following manipulation (choose η = 1/2 for readability):∫ x

2

1

log2 t
dt =

∫ x1/2

2

1

log2 t
dt+

∫ x

x1/2

1

log2(t)
dt

≤ x1/2

log2 2
+ 2

x− x1/2

log2 x
.

The first summand is O(x/(log x)2) as x → ∞ since (log x)2 = O(x1/2) (x → ∞) and clearly the second
summand is O(x/ log2(x)) (x → ∞).

(b) Instead of estimatin the integral we continue applying integration by parts: we have that∫ x

2

1

log2(t)
dt =

x

log2 x
− 2

log2(2)
+ 2

∫ x

2

1

log3 t
dt.

Note the recurrence. In particular one can show by induction that∫ x

2

1

log(t)
dt = x

k∑
j=1

1

logj x
+ (k − 1)!

∫ x

2

1

logk t
dt− 2

k∑
j=1

1

logk 2
.

In the same way as before we can prove that∫ x

2

1

logk t
dt = O

(
x

logk(x)

)
.

In particular we notice that for fixed k the term
∑k

j=1
1

logk 2
is O(1).
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Exercise 3. Recall that ϵ(n) = n for all n ≥ 1. Also µ ∗ ϵ = e, where

e(n) =

{
1 n = 0

0 else.

Denote by ν the arithmetic function

ν(n) =


1 n = 1

(−1)r n = p1 · · · pr product of r distinct primes,

0 otherwise.

We show that ν ∗ ϵ = e. This will imply ν = µ We have

1 =
∑
d|1

ν(d) = ν(1).

Let now n =
∏

i=1 p
li
i for pairwise distinct prime numbers p1, . . . , pr and integers li ≥ 1, i = 1, . . . , r. Then

ν ∗ ϵ(n) =
∑
d|n

ν(d)

=

l1∑
j1=0

· · ·
lr∑

jr=0

ν(pj11 · · · pjrr )

=

1∑
j1=0

· · ·
1∑

jr=0

ν(pj11 · · · pjrr )

=

1∑
j1=0

· · ·
1∑

jr−1=0

(
(−1)j1+···+jr−1+1 + (−1)j1+···+jr−1

)
= 0.

Hence ν = µ.

Exercise 4. We equivalently show that

φ(n) =
∑
d|n

µ(d)
n

d
. (0.1)

If we denote by id the arithmetic function id(n) = n, then we have that the right hand side is µ ∗ id(n). The
arithmetic functions φ and µ ∗ id are multiplicative and hence to show (0.1) it suffices to show the equality
at prime powers pk. We have

φ(pk) = |(Z/pkZ)×|
= |{1 ≤ a ≤ pk, (a, pk) = 1}|
= |{1 ≤ a ≤ pk, (a, p) = 1}| = (p− 1)pk−1.

On the other hand

µ ∗ id(pk) =
∑
d|pk

µ(d)
pk

d

= µ(1)pk + µ(p)pk−1

= pk − pk−1 = pk−1(p− 1).

This concludes the proof.
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Exercise 5. We proceed as hinted: the first prime number is 2 and the assertion is trivially verified. Suppose
that the assertion holds for the first n prime numbers. Euclid’s argument shows that any of p1, . . . , pn do
not divide p1 · · · pn + 1. In particular we infer that pn+1 ≤ p1 · · · pn + 1, since the latter is divided by some
prime number. By induction hypothesis we have then

pn+1 ≤
n∏

i=1

22
i−1

+ 1 = 2
∑n−1

i=0 2i + 1 = 22
n−1 + 1 < 22

n

.

This concludes the induction proof.
Using pn < ee

n−1

, and the monotonicity of log we get that log(log(pn)) < n − 1. Let x > 0 and let
n = π(x). In particular pn+1 > x. By what we said before we have

π(x) = n > log(log(pn+1)) > log log x

and so π(x) > log log x.

Exercise 6. For this exercise recall that τ(n) =
∑

d|n 1 is multiplicative.

(a) The arithmetic function N ∋ n 7→ τ(n2) is then also multiplicative. The right hand side corresponds to
µ ∗ τ2(n). This arithmetic function is also multiplicative as both µ and τ2 are. In particular it suffices
to check the equality at prime powers pk:

τ(p2k) = 2k + 1

µ ∗ τ2(pk) =
k∑

l=0

µ(pl)τ2(pk−l)

= τ2(pk)− τ2(pk−1) = (k + 1)2 − k2 = 2k + 1.

(b) The arithmetic function µ(n) and

θ(n) =
∑
d2|n

µ(d)

are both multiplicative. As before it suffices to check the equality at prime powers pk. Clearly θ(1) = 1.
Moreover

θ(p) =
∑
d2|p

µ(d) = µ(1) = 1 = µ(p)2

and for k ≥ 2
θ(pk) =

∑
d2|pk

µ(d) =
∑

0≤i≤k/2

µ(pi) = µ(1) + µ(p) = 0.

(c) We would like to get rid of the coprime conditions in the sum. For this we use the fact that µ ∗ ϵ = e,
or in formulas that

∑
d|n

µ(d) =

{
1 n = 1

0 n ≥ 2
.
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In particular we have

∑
1≤a≤n
(a,n)=1

e2πia/n =

n∑
a=1

∑
d|(a,n)

µ(d)e2πia/n

=
∑
d|n

µ(d)

n/d∑
a=1

e2πi(ad)/n

=
∑
d|n

µ(d)

n/d∑
a=1

e2πia/(n/d).

The inner sum is 0 unless n/d = 1, in that case it is 1. Hence the sum above is µ(n).

Exercise 7. Suppose f−1 is completely multiplicative. Let p be a prime and l ≥ 2 and integer. Then

0 =
∑
d|pl

f(d)f−1

(
pl

d

)

=

2∑
d=0

f(pd)f−1(pl−d)

=

l∑
d=0

f(pd)f−1(p)l−d

= f−1(p)

l−1∑
d=0

f(pd)f−1(p)l−1−d + f(pl) = f−1(p)(f ∗ f−1)(pl−1) + f(pl)

Since f ∗ f−1(pl−1) = 0 we see that f(pl) = 0.
Conversely suppose that f(pl) = 0 for all l ≥ 2 and all prime p. We already know that f−1 is multiplicative

from the class. Hence to show that f−1 is completely multiplicative it suffices to show that f−1(pk) =
f−1(p)f−1(pk−1) for all k ≥ 2. We have

0 = f ∗ f−1(pk)

=

k∑
d=0

f(pd)f−1(pk−d)

= f−1(pk) + f(p)f−1(pk−1)).

We also have
0 = f ∗ f−1(p) = f(p) + f−1(p).

Substituting the latter equation into the former we get f−1(pk) = f−1(p)f−1(pk−1).
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