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This booklet contains 6 exercises, on 36 pages, for a total of 100 points. Please
use the space with the square grid for your answers. Do not write on the margins. Write all
your solutions under the corresponding exercise, except if you run out of space at a given exercise.
In that case, continue with your solution at the empty space left after your solution for another
exercise. In this case, mark clearly where the continuation of your solution is. If even this way the
booklet is not enough, then ask for additional papers from the proctors. Write your name and the
exercise number clearly on the top right corner of each additional sheet. At the end of your exam
put the additional papers into the exam booklet under the supervision of a proctor, and sign on
to the number of additional papers on the proctor’s form. We provide scratch paper. You are not
allowed to use your own scratch paper. Please write with a pen, NOT with a pencil.

Duration of the exam: | It is not allowed to read the inside of the booklet before the exam starts.
The length of the exam is 180 minutes. If you did not leave until the final 20 minutes, then please
stay seated until the end of the exam, even if you finish your exam during these 20 minutes. The
exams are collected by the proctors at the end of the exam, during which please remain seated.

Cheat sheet: | You can use a cheat sheet, that is, two sides of an A4 paper handwritten by yourself.
At the end, we collect the cheat sheets.

‘CAMIPRO & coats:‘ Please prepare your CAMIPRO card on your table. Your bag and coat
should be placed close to the walls of the room, NOT in the vicinity of your seat.

‘Results of the course: ‘ You can use all results seen during the lectures or in the exercise sessions
(that is, all results in the lectures notes or on the exercise sheets), except if the given question
asks exactly that result or a special case of it. If you are using such a result, please state explicitly
what you are using, and why the assumptions are satisfied.

‘Separate points can be solved separately: | You get maximum credit for solving any point of an

exercise assuming the statements of the previous points, even if you did not solve (all of) those
previous points.

All rings are commutative and with identity.
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Exercise 1 | 18 pts |

Let R be a ring and let A,C be R-modules. In this exercise you can freely use that a short
exact sequence of chain/cochain complexes gives rise to a long exact sequence in homol-

da d§
ogy/cohomology. Let P, —> A be a projective resolution of A and let R, —> C' be a projective
resolution of C. Let now
0>A—->B—->C->0

be a short exact sequence of R-modules. Recall that the Horseshoe lemma explicitly constructs

L. . g
a projective resolution Qo — B of B such that Q, = P, ® R, for everyn = 0 and the natural
morphisms P, — @, and Q, — R, given respectively by the first inclusion and the second
projection yield morphisms of chain complexes.

(1) Construct explicitly the zero’th differential df’: Py@®Ro — B and show that it is surjective.

(2) Suppose now that we have constructed morphisms dZB : Q; — Q;—1 such that (Q., d?) is
a complex and such that the natural maps (P,,d2) — (Q., d?) and (Q., d?) — (R,,d%)
explained before are morphisms of complexes. Show that (Q.,d?) is automatically a
(projective) resolution of B.

(3) Using the Horseshoe lemma, prove that for any R-module N we have a long exact sequence
involving the modules Ext'(A, N), Ext'(B, N) and Ext*(C, N) with ¢ > 0.

Solution:

(1) (6 pts total) To construct a morphism Py@ Ry — B, we need to find morphisms Py — B
and Ry — B. (1 pt) For the first map, simply consider the composition f: Py —» A — B.
(1 pt) For the second map, since Ry is projective and B — C' is a surjection, there exists
alift g: Ry — B of d§. (2 pts)

Hence, let déB = f@®g: Ph® Ry — B, and let us hsow that it is surjective. Let b € B, and
let ¢ € C be the image of b in C. Then there exists r € Ry such that d§(r) = ¢. In other
words, dg(O, r) — b is in the kernel of B — (| i.e. in A. But then, there exists p € Py such
that d%(p) = d(0,r) — b. Thus,

dg (=p.7) = —dg (p,0) + dj(0,7) = b — dg (0,7) + dg (0,7) = b.

In other words, df is surjective. (2 pts)

(2) (6 pts total) Since each P; and R; are projective modules, so are their direct sum @Q; (1
pt). Hence, we only have to show that the complex made of @, and B at the very end
is exact. (1 pt) Let @, denote this complex, and let P, (resp. R,) denote the analogous

complexes with A and C. Then we obtain a cochain of complexes

0—-P -Q,—> R, —0.

Let us show that it is exact (i.e. it is termwise exact). At the first degree, this is exactly
the assumption that
0->A->B->C—-0

is exact. For all the other degrees, the sequence is

where the maps are the ones explained in the exercise. It is immediate to see that these
sequences are exact.

27 January 2025 EPFL, Final exam, MATH-311, SCIPER: 42 2/36



Thus, we can apply the long exact sequence is homology to obtain a long exact sequence
- — H'(P)) - H'(Q,) — H'(R,) — ...

Since both P! and R/, are exact by assumption, each groups H*(P!) and H*(R.) vanish

by assumption. Hence, so do each H*(Q"), i.e. Q. is a projective resolution. (4 pts)

(3) (6 pts total) Let P,, Q. and R, denote projective resolutions as in the Horseshoe lemma.
Applying Hom(—, N) gives us a cochain complex

0 - Hom(R., N) - Hom(Q., N) - Hom(P,, N) — 0.

If we knew that this was exact, then we would automatically conclude by the associated
long exact sequence in cohomology. (4 pts) Thus, we are left to show that it is exact.

In other words, we have to show that this sequence is termwise exact. Since Hom(—, N)
is left exact, it is enough to show that for all ¢ > 0, the map Hom(Q;, N) — Hom(P;, N)
is surjective. This is immediate, as for any map f: P;@ N, we can extend it to f®0: P;®
Rz’ — N. (2 ptS)
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Exercise 2 | 18 pts |

Let R be a ring. Throughout this exercise, you can use without proof that if R < S is integral
extension of domains, then R is a field if and only if S is a field.

(1) Let F be any field. Use Noether normalization to show that if F[zy,---,x,]/I is a field,
then it is an algebraic extension of F.

(2) Let now K be an algebraically closed field. State the weak Hilbert Nullstellensatz and
prove it using the previous point.

(3) Use the weak Nullstellensatz to prove the full Nullstellensatz: for any ideal I < K[z1,...,Z,],
we have an equality I(V(I)) = +/I. (Hint: for any ring R and any g € R, the localization
R, is zero if and only if ¢ is nilpotent).

Solution:

(1) (5 pts total) Let R := F|zi,...,2,]/I. By Noether normalization, there exists an
integral extension F[ti,...,t,] < R (the left term is really a polynomial algebra). (2
pts) Thus, if R is a field, then we know that F'[t1,...,t,] is a field too. This forces r = 0
(otherwise t; does not have an inverse), so we have an integral extension of field F — R.
This is the same as saying that the extension R/F is algebraic. (3 pts)

(2) (5 pts total) The Weak Nullstellensatz states that if m is a maximal ideal of K[z, ..., zy,],
then we have that m = (x1 —ay,..., 2, — ap). (1 pt)

Now, let us show it, so let m € K|[z1,...,x,] be amaximal ideal. Then K[z1,...,z,]/mis
a field, so by the previous point, it is an algebraic extension of K. Since K is algebraically
closed, we deduce that the natural morphism §: K — K[zy,...,z,]/m is an isomorphism.
(2 pts) Let a; = 6~1(x;), and let us show that m = 1 —ay, ..., =, —a,). For a fixed i, we
have that x; — a; € K[x1,...,2y] is sent to zero via K[x1,...,z,] = K[x1,...,z,]/m =
K, so each x; — a; are in m. Thus, m 2 (x1 — a1,...,x, — a,). Since this latter
ideal is maximal (the quotient of K[zi,...,x,] by it is a field), we deduce that m =

(‘Tl —at,-..,Tp — an)‘ (2 ptS)

(3) (8 pts total) If f € v/I, say f™ € I, the f*(a) = 0 for all a € V(I) by definition. But
then, this shows that f(a) =0 for all a € V(I), so f e I(V(I)). (1 pt)

Let us show the converse now, so let f € I(V(I)), and let R = K|[z1,...,x,]. Our goal is
to show that f € +/I, or equivalently that f is nilpotent in R/I. To do so, we will actually
show that the localization (R/I)s is zero. (2 pts) Since (R/I); = (R/I)[t]/(tf — 1) =
R[t]/(tf —1,I), we want to show that (tf —1,1) = R[t]. (2 pts) If this was not the case,
then (tf — 1,I) would belong to a maximal ideal, so there would exist ay,...,a,,b € K
such that for all h e (tf —1,1), h(a1,...,an,b) =0. (1 pt)

Combining the following two cases gives rise to a contradiction.
e If (ay,...,ay,) € V(I), then evaluatiing tf — 1 at (aq,...,an,b) gives —1 # 0.

o If (ay,...,an) ¢ V(I) (say h € I < R such that h(ay,...,a,) # 0), then the same
element h e (tf —1,1) € R[t] sends (ai,...,an,b) to h(ai,...,a,) # 0. (2 pts)
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Exercise 3 | 12 pts |

(1) Recall the definition of an Artinian ring.

(2) Prove that every Artinian ring has Krull dimension zero.
(3) Compute the Krull dimension of Z[z]/(6, 2?).

(4) Compute the length of Z[x]/(6,2?%) as a Z[x]-module.
Solution:

(1) (2 pts total) A ring is said to be Artinian if any descending chain of ideals
il -,

stabilizes (i.e. I; = Ij4; for j » 0).

(2) (3 pts total) We have to show that any prime ideal is maximal. By quotienting, this is
equivalent to showing that any Artinian domain is a field.

Let R be an Artinian domain, and let r # 0 be an element. Considering the descending
chain ‘ A
.. C (’l‘j) c (rj—l) c..-C (7«)7

we obtain in particular that (/) € (r/*!) for some j > 0. Hence, we can write r/ = ri*ls
for some s € R, or equivalently
(1 —rs) = 0.

Since R is a domain, we deduce that rs = 1, so R is indeed a field.

(3) (2 pts total) Note that
Z[x]/(6,2%) = (Z/6Z)[x]/(z?),

which is a free Z/6Z-module of rank 2. In particular, this is a finite ring, so it is certainly
Artinian. We conclude by the previous point that its Krull dimension is zero.

(4) (5 pts total) Consider the canonical short exact sequence
0 (6,2)/(6,2%) — Z[x]/(6,2%) > Z[x]/(6,z) — 0.

(1 pt)

Let us show that the natural map 0: Z[x] — (6, x)/(6,2?) sending 1 to x gives an isomor-
phism
Z[x]/(6,z) = (6,2)/(6,x?).

The morphism 6 is surely surjective, so we only have to show that ker(f) = (6,z). The
inclusion (6, x) < ker(f) is immediate. For the other inclusion, let f € ker(#). Then we
can write

zf = 6a + zb

for some a, b € Z|x|. We can rewrite this as
6a = z(f — bx),

so given that 6 and x are coprime as Z[x] is a UFD, we deduce that 6 divides f — bx. In
other words, f € (6,z). (2 pts)
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Hence, we have a short exact sequence
0 — Z[2]/(6,2) — Z[2]/(6,2%) — Z[z]/(6,2) — 0,

length(Z[z]/(6,2%)) = 2length(Z[z]/(6,z)).

By the Chinese Remainder theorem, the natural map of Z[z]-modules
Zlz]/(6,x) — Zx]/(2,2) ® Z[z]/(3, z)

is an isomorphism. Furthermore, the modules Z|z]/(2, z) and Z|z]/(3, z) have cardinality
2 and 3, which are prime numbers. Hence, they must automatically be simple, so we
deduce that length(Z|x]/(6,x)) = 2. In other words,

length(Z[z]/(6,2%)) = 4.

(2 pts)
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Exercise 4 [ 14 pts ]
Let R be a ring.

(1) Let I ¢ R be anideal, and let M be a finitely generated R-module. Show that if IM = M,
then there exists x € I such that (1 4+ x)M = 0. Hint: Use adjugate matrices.

(2) Deduce Nakayama’s lemma for local rings: if R is local with maximal ideal m and M is
a finitely generated R-module such that mM = M, then M = 0.

Solution:
(1) (10 pts total) Let my,...,m, € M be generators of M. Then for all 7, we can write
m; = > aijm;, with a;; € I. Let m = (mq,...,m,)T, and A = (a;;) € I"*™. Then
Am = m,
or equivalently (A — Id)m = 0 (3 pts). We then obtain that
det(A — Id)m = adj(A — Id)(A — Id)m = 0,

so it is enough to show that det(A — Id) e 1 + 1. (4 pts)

By definition,
det(A—1Id) = ) sgu(o) | [(A = Id)iq).

oeSn i

If o # id, then one of the (A — Id);s(;) terms is in I, and hence so is the whole product.
On the other hand, if o = id, then each term (A — Id);; = a;; — 1 isin 1 + I, and hence
so it their product. Thus, we conclude that det(A — Id) € 1 + 1. (3 pts)

(2) (4 points total) By the previous point, we deduce that for some z € 1 +m (say x = 1+
with r € m), then zM = 0. Hence, it is enough to show that x is a unit. (2 pts) If not,
then x € m since m is the only maximal ideal, so 1 4+ r € m. Since r € m, we deduce that
1 € m, which is a contradiction. (2 pts)
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Exercise 5 | 18 pts |
Let R < S be an integral extension of Noetherian rings.

(1) State the Going-up theorem and explain why the map Spec(S) — Spec(R) induced by
the contraction of ideals is surjective.

(2) Let p R be a prime ideal. Show that there is a one-to-one correspondence

{ prime ideals ¢ = S| ¢° = p} «— Spec((S/p°)p)-

Remark: The notation on the right—hand side of the bijection denotes the localization of
the R—module S/p® at p, which we see as a ring itself.

(3) Deduce that there are only finitely many prime ideals ¢ — S such that ¢° = p for a given
p € R. (Hint: you can use without proof that a Noetherian ring has only finitely many
minimal prime ideals).

Solution:

(1) (3 pts total) The Going-up theorem states that for any prime ideal p in R, there exists
a prime ideal ¢ in S such that ¢ n R = p. (2 pts)

Since the map Spec(S) — Spec(R) is precisely the map given by sending a prime ¢ in S
to ¢¢ = ¢ n R, saying that the contraction of ideals is surjective is precisely the Going-up
theorem. (1 pt)

(2) (7 pts total) If a prime ideal ¢ € S satisfies that ¢¢ = p, then surely ¢ contains p®. Thus,
by the correspondence theorem, prime ideals of S contracting to p correspond to prime
ideals of S/p° satisfying some condition. (2 pts)

Let us show that this condition is exactly that ¢ n R\p = (. If this is the case, then we
can conclude by the correspondence theorem for localization. (3 pts)

If ¢ is a prime ideal containing p® such that ¢ n R\p = J, then surely the inclusion
p € ¢ n R must be an equality. Conversely, if ¢ n R = p, then ¢ n (R\p) = &J, so we are
done. (2 pts)

(3) (8 pts total) By the previous point, we have to show that (S/p®), only has finitely many
prime ideals. Since it is Noetherian, it is enough to show by the hint that any prime ideal
in this ring is minimal, or in other words that its Krull dimension is zero. (3 pts)

Since we have an integral extension of rings R € S, the induced extension R/p € S/p° is
also integral (note that p® n R = p, because if ¢ is a prime such that ¢ n R = p, then we
have inclusions p S p° " RS g¢n R =p). (1 pt)

Since localization preserves injections (it is an exact functor), we obtain an extension
(R/p)p < (S/p°)p. Let us show that it is integral. Since the subset of integral elements
is a (R/p)p-module and that (S/p®), is general as a R,-module by elements of the form
L with t € S/p°, then it is enough to show that each element ¢ is integral over (R/p)p.
However, if ¢ satisfies a certain monic equation over R/p, then % satisfies the same monic

equation, so we deduce that, indeed, the extension (R/p), < (S/p®), is integral. (2 pts)

Now, note that by definition, (R/p), = Frac(R/p), so it is a field. In particular, it has
Krull dimension zero. Since the Krull dimension is invariant under integral extension, we
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deduce that (S/p®), also has Krull dimension zero. (2 pts)

Alternative proof (found by some students!): As already mentioned, it is enough to show
that every prime is minimal, or in other words there no inclusion ¢} < ¢4 of primes in
(S/p°)p. Assume by contradiction that there is such an inclusion, and let ¢; € S be the
prime corresponding to ¢, (so that we still have that ¢; & g2 by the two correspondence
theorems). Since g1 "R = g2 R, this contradicts the addendum of the Going-up theorem.
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Exercise 6 | 20 pts |

Let R be a Noetherian ring and let M be a finitely generated module over R. In this exercise
you can use without proof that localization is exact. We say that M is locally free if for every
prime ideal p © R, the localization M, of M at R\ p is a free R,-module.

(1) Show that if for some prime p © R we have M, = 0 then there exists f € R\ p such that
My =0.

(2) Show that if M), is a free R,-module for some prime ideal p, then there is f € R\ p such
that My is a free Ap-module.

(3) Show that if M is locally free, then there exist fi,--- fs € R such that (f1,---,fs) = R
and My, is free over Ay, for all 1 <i < s.

Solution:
(1) (6 pts total) Let my,..., m, be generators of M. By definition, for all i, we have that

my;

T:OEMP,

or equivalently there exists a; € R\p such that a;m; = 0. (3 pts) Let f =a;1...a, € R\p.
Then by definition, fm; = 0 for all 4, so

—0e My
1
for all i. (3 pts)
(2) (8 pts total) Let “t,.... "= denote free generators of M), over R,. Since each s; €

Mn 3lso denote free

R\p, they become unit in R,. In other words, the elements "%, ..., ™

generators of M, over R,. (2 pts)

Now, consider the morphism #: R™ — M defined by sending e; to M;. Then we have an
exact sequence

0 — ker(6) - R" LAY VN coker(6) — 0.

By the choice of the elements m;, the localization of 6 at p is an isomorphism. Since
localization is exact, we deduce that ker(6), = coker(#), = 0. (3 pts) By the previous
point, there exists a,b € R\p such that ker(f), = 0 and coker(f), = 0. But then, if we
write f = ab, then

ker(0) s = coker(f)s = 0,

so again by exactness of localization, we deduce that 6: R — My is an isomorphism.
(3 pts)

(3) (6 pts total) By the previous point, we deduce that for all prime p in R, there exists
f ¢ p such that M;y is free as an Rg-module. But then, the ideal (fy),cr is not contained
in any prime ideal, so

R = (fp)pgR-

(3 pts) In particular, we can write 1 = ay fp,, +-- - +ay fp, for some primes p; and elements
a; € R. In other words, we deduce that R = (f,,,..., fp.). (3 pts)
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