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This examination booklet contains 6 problems on 20 pages of paper including the
front cover and the empty pages.

First sign the booklet above! Do all of your work in this booklet, if you
need extra paper, ask the proctors to give you yellow paper, show all
relevant computations and justify/explain your answers. The exercises
do not require any involved computations or elaborate discussions – try
being to the point. Calculators, books, notes, electronic devices etc. are
NOT allowed. In particular, please mute the ringer and leave the phone
in you bag. You might unstaple the booklet, we are prepared to staple
it back. However, it is your responsibility to put the papers in the right
order.

Problem Possible score Your score
1 13
2 15
3 20
4 20
5 20
6 12

Total 100
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Question 1 [13]

Let R be an integral domain, and let K be its fraction field. Prove the following
statements:

(1) if f ∈ R is a non-zero element, then Ext1R(R/(f), K) = 0, [7]
(2) more generally if f1, . . . , fn is a sequence of elements such that for every

1 ≤ i ≤ n the multiplication by fi is injective on R/(f1, . . . , fi−1) then

Ext1R(R/(f1, . . . , fn), K) = 0.

[6]

Proof. (1) Since f is a non-zero and R is an integral domain the sequence (not
exact at the right spot):

P • : 0→ R
f ·−→ R→ 0

is the projective resolution ofR/(f). Consequently, we compute Ext1(R/(f), K)
by taking Hom(−, K) functor of the P • and computing cohomology at the
first spot – note that the arrows get reversed. Identifying Hom(R,K) with K
(by an isomorphism given by evaluation at 1 ∈ R) we see that Ext1(R/(f), K)
is isomorphic to the cokernel of multiplication by f on K. This is clearly
zero, because f is invertible in K, that is, x = f · f−1x ∈ K. In terms of
homomorphisms every φ ∈ Hom(R,K) is f -divisible – consider post multi-
plication by f−1 ∈ K.

(2) We reason by induction. The case n = 1 is (1). Since fn ∈ R/(f1, . . . , fn−1)
is a non-zero divisor we obtain a short exact sequence:

0→ R/(f1, . . . , fn−1)
fn·−→ R/(f1, . . . , fn−1)→ R/(f1, . . . , fn−1, fn)→ 0.

By considering corresponding long exact sequence of Ext groups (note that
the arrows get reversed) we obtain:

. . . → Hom(R/(f1, . . . , fn−1),K) → Ext1(R/(f1, . . . , fn),K) → Ext1(R/(f1, . . . , fn−1),K) → . . .

The right term in the sequence is zero by induction. The left one is zero
because R/(f1, . . . , fn−1) is f1-torsion and K is f1-divisible (every element is
divisible by f1). Consequently, we see that

Ext1(R/(f1, . . . , fn), K) = 0,

because it fits between to zeroes in a long exact sequence.

�
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Question 2 [15]

Let k be a field. We set
R = k[x, y, z, u]/(xyzu− 1).

Recalling the proof of Noether’s normalization find an integral extension S ⊂ R
such that S is a polynomial ring in n variables. What is n equal to? [8]

Next, state the going up theorem and use it for the proof of the fact that Krull
dimension dimR = n (you are required to use going up for this). [7]

Proof. As in the proof of Noether’s normalization, we change variables by setting
x′ = x−u, y = y−u and z = z−u. It is clear that R is then equal toK[x, y, z, u]/(x+
u)(y + u)(z + u) − 1. However, the polynomial (x + u)(y + u)(z + u) − 1 is monic
in u and therefore the R is integral over K[x, y, z] = K[x − u, y − u, z − u]. The
variables x, y, z are algebraically independent (the only generating relation contains
u) and therefore n = 3.

For the rest take a look in the lecture notes. �
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Question 3 [20]

Let R be a noetherian local ring with maximal ideal m. Formulate Nakayama’s
lemma for R, and then show that every finitely generated flat module F over R is
free by proving the following statements. [5]

(1) A homomorphism M → N of finitely generated R-modules is surjective if
and only if the induced map of R/m vector spaces M/mM → N/mN is
surjective, [5]

(2) Let f1, . . . , fn be elements of F such that their images f1, . . . , fn under the
natural map F → F/mF form a basis. Prove that the map g : Rn → F
defined by the associations ei 7→ fi is surjective. [5]

(3) Prove that the kernel K = {x ∈ Rn : g(x) = 0} is zero, and hence g is an
isomorphism, by considering the exact sequence:

0→ K → Rn → F → 0

and the associated long exact sequence of ToriR(−, R/m) modules. You may
use Nakayama’s lemma and the fact that an R-module M is flat if and only
if Tor1R(M,P ) = 0 for every R-module P . [5]

Proof. For the statement of Nakayama’s lemma, see the lecture.

(1) We consider the homomorphism f : M → N . If f is surjective then f ⊗
R/m : M/mM → N/mN is surjective because

f(z mod mM) = x mod mN

where f(z) = x. For the other direction, we consider the cokernel Q of
the morphism f . We need to prove that Q = 0. By Nakayama’s lemma is
suffices to show that Q/mQ = 0, note that the module Q is a quotient of
N and is therefore finitely generated. However, using right exactness of the
tensor product ⊗R/m and identification P ⊗R/m = P/mP we see that the
sequence

M/mM → N/mN → Q/mQ→ 0

is exact which gives the desired claim because the first map is surjective by
assumption.

(2) By the choice of elements fi we see that g mod m : (R/m)n → F/mF is
surjective and hence (1) applies.

(3) We take a long exact sequence of Tor(−, R/m) groups associated with
0→ K → Rn → F → 0.

We obtain (note that we use the identification P ⊗R/m = P/mP again):

. . .→ Tor1(F,R/m)→ K/mK → Rn/mRn → F/mF → 0.

Since F is flat, by the result from the exercise session we see that Tor1(F,R/m) =
0. Since Rn/mRn → F/mF is an isomorphism (by construction), we there-
fore see that K/mK = 0 and hence K = 0 by Nakayama’s lemma. This
implies that g yields a desired isomorphism.

�
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1. Question 4 [20]

Let A be a noetherian ring, and let I =
√
0 be its nilpotent radical.

(1) Recall the definition of the Krull dimension, and then prove that the Krull
dimensions of the rings A and A/I are equal. In particular, for every ideal
J in k[x1, . . . , xn] the dimension of k[x1, . . . , xn]/J equals the dimension of
k[x1, . . . , xn]/

√
J . [4]

Let k be a field. For each of the following rings R: compute the nilpotent radical of
R, compute the prime ideals of height zero of R, compute the Krull dimension of R.

(2) R = k[x, y, z]/(xz3, yz2). [8]
(3) R = k[x, y, z]/(x6 + y6 + z6) (this depends on the characteristic of k). [8]

For (2) you may use the fact that a prime ideal p contains an intersection of ideals
I ∩ J if and only if it contains either I or J .

Recall that the characteristic of the field k is either zero or the smallest prime
number p such that p = 0 in k. Note that if characteristic is equal to p > 0 then
ap + bp = (a+ b)p for every a, b ∈ k.

Proof. (1) If p ⊂ R is a prime ideal then the height ht(p) is defined as the length
of the longest strictly descending chain of prime ideals starting with p. The
dimension is the supremum of heights of all prime ideals. For the statement
concerning dimensions, we observe that the nil radical is an intersection of all
prime ideals, and therefore it is contained in every prime ideal. We conclude
using the correspondence between prime ideals in A/I and prime ideals of
A containing I. We finish by observing that

√
0 ∈ k[x1, . . . , xn] is exactly√

J/J .
(2) We easily observe, by taking third powers, that xz and yz are in the nil

radical. Consequently the ideal (xz, yz) ⊂
√

(xz3, yz2). However the ideal
(xz, yz) is an intersection of prime ideals (z) and (x, y), and is therefore rad-
ical (fn ∈ pi ∩ . . . ∩ pj implies that fn ∈ pj for every j, but pj is prime so
f ∈ pj). We computed the nil radical. The minimal primes are exactly (z)
and (x, y) because xz ∈ p and yz ∈ p implies that either z ∈ p or x, y ∈ p. To
compute the dimension we see that the longest chain of prime ideals needs
to contain at least one minimal one – see the hint, and therefore we need
to compute longest chains containing (z) or (x, y). Via standard correspon-
dence those are equivalent to longest chains in k[x, y, z]/(z) = k[x, y] and
k[x, y, z]/(x, y) = k[z] respectively. The dimension of k[x, y] is larger and
equal to two, and hence this is the dimension of our ring.

(3) First assume that characteristic of k is neither 2 nor 3. Then the polynomial
y6+z6 have no irreducible factors of degree greater then one (over an algebraic
closure y+iz is such factor), and hence by Eisenstein’s criterion x6+y6+z6 is
irreducible and consequently (x6+y6+z6) is prime, and hence R is an integral
domain. Since R is an integral domain the minimal prime ideal is zero which
is also the nil radical. By the theorem from the lecture, the dimension is
equal to the transcendence degree of Frac(R) which is clearly equal to two
– there is a single relations involving all variables and therefore y and z are
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algebraically independent. The case of characteristic 2 and 3 is very similar
except from relations x6+ y6+ z6 = (x3+ y3+ z3)2 in characteristic two and
x6 + y6 + z6 = (x2 + y2 + z2)3 in characteristic three. The nil radicals are
given by (x3 + y3 + z3) and (x2 + y2 + z2) respectively. Dimensions can be
computed using (1) and the same arguments as before.

�
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Question 5 [20]

Prove the following statements.

(1) Let A ⊂ B be an inclusion of commutative integral domains, and let C be
the integral closure of A inside B. Let S be a multiplicately closed set in A.
Prove that S−1C is the integral closure of S−1A inside S−1B. [6]

(2) Deduce that if A is an integrally closed domain then S−1A is also integrally
closed. [4]

(3) Prove that the ring

R = k[x, y, z]/
(
(x+ 1)4 − z(y + z2019)4

)
.

is a domain. Compute its integral closure, and then find an element u ∈ R
such that the localization Ru is integrally closed. [10]

Proof. (1) First we prove that S−1A ⊂ S−1C is integral, that is, S−1C is con-
tained in the integral closure of S−1A in S−1B. However, this is clear by
the localization statement in the lecture. To see the other inclusion, we take
an element b/s, for b ∈ B and s ∈ S, integral over S−1A. By definition b/s
satisfies a relation: (

b

s

)n

+
∑

0≤i≤n−1

ai
si

(
b

s

)i

= 0

Multiplying by sn(s1 · · · sn−1)n we see that

(s1 · · · sn−1b)n +
∑

0≤i≤n−1

Ai (s1 · · · sn−1b)i = 0

where Ai ∈ A (the denominators are cleared). Consequently, since C is the
integral closure, we see that s1 · · · sn−1b is in C and hence b/s is in S−1C.

(2) Clear by the previous item, because C = A by assumptions.
(3) First, we change variables v = x + 1 and u = y + z2019. Then k[x, y, z] =

k[u, v, z] and (x+1)4−z(y+z2019)4 = v4−zu4. In this coordinated, we clearly
see that (v/u)4 = z in the fraction field of k[u, v, z]/(v4− zu4). We therefore
consider the ring S = k[v/u, u] generated by v/u and u. It is clearly an
integral extension of R, since u = v/u·u and z = (v/u)4. It is also isomorphic
to a polynomial ring and hence is the integral closure, because otherwise the
transcendent degree of Frac(R) would be smaller than two, which is not
the case. In coordinates u, v, z we see that Ru = (k[u, v, z]/(v4 − zu4))u =
k[u, 1/u, v, z]/((v/u)4 − z) = k[u, 1/u, v]. The last ring is a localization of
the polynomial ring and is hence integrally closed. This means we need to
localize in u to get an integrally closed ring. To finished the proof we just
express everything in terms of old variables:
S = k[v/u, u] = k[(x+ 1)/(y + z2019), y + z2019] u = y + z2019.

�
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Question 6 [12]

State and prove Hilbert’s Basis Theorem.

Proof. See the lecture notes. �
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