
EPFL- Section de Mathématiques Fall 2017

Rings and modules – Final

18.01.2018, 12:15-15:15

Your Name

This examination booklet contains 8 problems on 28 sheets of paper including the
front cover and the empty sheets.

Do all of your work in this booklet, if you need extra paper, ask the
proctors to give you yellow paper, show all your computations and jus-
tify/explain your answers. Calculators, books, notes, electronic devices
etc. are NOT allowed.

Problem Possible score Your score
1 10
2 12
3 10
4 5
5 18
6 20
7 15
8 10

Total 100

By k we always denote an arbitrary field.
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Question 1 [10]

Compute TorZi ((Z⊕ Z)/Z(4, 6),Z/mZ) for all i ≥ 0 and all m ∈ Z.

The functors TorZi (·,Z/mZ) are the derived functors of the functor · ⊗Z Z/mZ.
Hence,
TorZ0 ((Z⊕Z)/Z(4, 6),Z/mZ) = ((Z⊕Z)/Z(4, 6))⊗ZZ/mZ ∼= (Z/mZ⊕Z/mZ)/Z/mZ(4, 6).
The other deriver functors are computed via projective resolutions. A free resolution
of (Z⊕ Z)/Z(4, 6) is

0 −→ Z n 7→(4n,6n)−→ Z⊕ Z
Tensoring by Z/mZ over Z gives a complex

0 −→ Z/mZ n7→(4n,6n)−→ Z/mZ⊕ Z/mZ.

Thus,

TorZ1 ((Z⊕ Z)/Z(4, 6),Z/mZ) = ker(Z/mZ n7→(4n,6n)−→ Z/mZ⊕ Z/mZ)

= {n ∈ Z : 4n, 6n ∈ mZ}/mZ =

{
m
2
Z/mZ if 2 | m;

0 otherwise.

Also TorZi ((Z⊕ Z)/Z(4, 6),Z/mZ) = 0 for i ≥ 2.
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Question 2 [12]

Let R be a commutative ring which is an integral domain. Let M be a finitely
generated R-module. Let Tor(M) be the torsion submodule of M .

(a) Show that TorR1 (R/rR,M) is the r-torsion submodule of M for all r ∈ R.
[6]

(b) Show that if M is flat then Tor(M) = 0. [3]
(c) Show that if R is a PID, then M is flat if and only if Tor(M) = 0. [3]

(a) Since R is an integral domain, the sequence

0 // R
r· // R // R/rR // 0

is exact. Hence, the complex

0 // R
r· // R

is a free resolution of R/rR. Then

TorR1 (R/rR,M) = ker(R⊗RM
r·→ R⊗RM)/im(0⊗RM → R⊗RM) = ker(M

r·→M).

(b) If M is flat, then TorR1 (N,M) = 0 for every R-module N . Thus in particular
the r-torsion submodule Torr(M) of M is 0 for all r ∈ R. Then Tor(M) =⋃
r∈R Torr(M) = 0.

(c) If R is a PID, then M ∼= Rn ⊕ Tor(M) by the structure theorem for finitely
generated modules over a PID. Thus if Tor(M) = 0, thenM is a free module
and hence flat.
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Question 3 [10]

Let e1, e2, e3 be a basis of the free Z-module Z3. Consider the submodule N gener-
ated by 7e1 − 3e2, 3e1 − e2 + 4e3, 6e1 − 2e2 + 2e3. Compute the Smith normal form
of the following matrix with entries in Z:

A =

 7 3 6
−3 −1 −2
0 4 2


Then put the Z-moduleM = Z3/N into the form described by the structure theorem
for finitely generated modules over a PID.

We put the given matrix into Smith normal form using row and column operations:

 7 3 6
−3 −1 −2
0 4 2

→
 3 7 6
−1 −3 −2
4 0 2

→
−1 −3 −23 7 6

4 0 2

→
 1 −3 −2
−3 7 6
−4 0 2



→

1 −3 −2
0 −2 0
0 −12 −6

→
1 0 0
0 −2 0
0 −12 −6

→
1 0 0
0 −2 0
0 0 −6

→
1 0 0
0 2 0
0 0 6


Let f : Z3 → Z3 be the linear map given by A. The image of f is equal to the
kernel of the natural projection Z3 → M . By changing bases of the two copies of
Z3 so that the matrix of M is in Smith normal form, we have found generators of
the module M which exhibit it as

Z/2Z⊕ Z/6Z.
Since Z/6Z ∼= Z/2Z ⊕ Z/3Z by the Chinese reminder theorem, the canonical form
of M according to the structure theorem for finitely generated modules over a PID
is (up to reordering the summands)

M ∼= (Z/2Z)⊕2 ⊕ Z/3Z.
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Question 4 [5]

Let R be a commutative ring. Let T be a multiplicatively closed subset of R. Show
that if R is noetherian, then T−1R is noetherian.

The ring T−1R is noetherian if and only if it is noetherian as T−1R-module, if and
only if all its submodules are finitely generated. The submodules of T−1R as T−1R-
module are the ideals of T−1R. Let I be an ideal of T−1R. We recall that I = Ice

under the morphism ι : R → T−1R given by the universal property of localization.
Since R is noetherian, the ideal Ic is finitely generated. Then Ice = ι(Ic)T−1R is
finitely generated as an ideal of T−1R.
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Question 5 [18]

Let k be a field. For each of the following rings R compute the nilpotent radical of
R, compute a minimal primary decomposition of (0), compute the prime ideals of
height 0 of R, compute the Krull dimension of R.

(a) R = k[x, y]/(x2y, xy2). [6]
(b) R = k[x, y, z]/(x4 + y4 + zy). [6]
(c) R = k[x]/(x2 + 1) (the answer should depend on the field). [6]

(a) Let J be the radical of the ideal I = (x2y, xy2) of k[x, y]. Then xy ∈ J ,
I ⊆ (xy) ⊆ J and rad(xy) = (xy) (the last holds because if xy | fn for
some f ∈ k[x, y], then xy | f using the fact that k[x, y] is a UFD and x, y
are irreducible elements of k[x, y]). So J = (xy), and the nilpotent radical
of R is the principal ideal xyR. We observe that I = (xy) ∩ (x2, y2) =
(x)∩ (y)∩ (x2, y2). The ideals (x) and (y) are prime and the ideal (x2, y2) is
primary because its radical is the maximal ideal (x, y). This decomposition is
minimal because (y) ∩ (x2, y2) = (x2y, y2) * (x), (x) ∩ (x2, y2) = (x2, xy2) *
(y) and (x) ∩ (y) = (xy) * (x2, y2). Thus (0) = (x) ∩ (y) ∩ (x2, y2) is a
minimal primary decomposition of (0) in R. Any prime ideal of R contains
the nilpotent radical of R. In particular it contains x or y. Thus the prime
ideals of height 0 in R are (x) and (y), and R has Krull dimension 1 as
(x) ⊆ (x, y) is a maximal chain of prime ideals.

(b) We observe that the polynomial x4 + y4 + zy = x4 + y(y3 + z) is irreducible
by the Eisenstein criterion applied k[y, z][x] with the prime y. Then R is an
integral domain, hence (0) is the nilpotent radical of R, it is the only prime
ideal of height 0, and (0) is also a minimal primary decomposition of (0).
The Krull dimension of R is computed by trdegkFrac(R). We observe that
Frac(R) = k(y, z)[x]/(x4 + y4 + zy) is an algebraic extension of k(x, y) and
hence has the same transcendence degree, which is 2. So dimR = 2.

(c) If k has characteristic 2, then x2+1 = (x+1)2 in k[x], so rad(x2+1) = (x+1)
and the nilpotent radical of R is (x+ 1), which is a maximal ideal of R. Then
(0) is a primary ideal of R and also the mimimal primary decomposition of
(0). Every prime ideal of R contains the nilpotent radical, hence (x+ 1) is
the only prime ideal of R, it has height 0, and dimR = 0.

If k has not characteristic 2, and does not contain a square root of −1,
then x2 + 1 is an irreducible polynomial in k[x], and R is a field. Then the
nilpotent radical of R is (0), it is also the minimal primary decomposition of
(0) and the only prime ideal of height 0. The Krull dimension of R is 0.

If k has not characteristic 2 and contains a square root ζ of −1, then
x2 + 1 = (x+ ζ)(x− ζ) is a decomposition in irreducible factors in k[x]. We
observe that the ideal (x2 + 1) = (x + ζ) ∩ (x− ζ) of k[x] equals its radical
because it is an intersection of prime ideals. Thus the nilpotent radical of R
is (0), a minimal primary decomposition of (0) is (0) = (x+ ζ)∩(x− ζ). The
prime ideals of height 0 are (x+ ζ) and (x− ζ), they are maximal ideals, so
dimR = 0.
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Question 6 [20]

(a) Let R be a commutative integral domain. Let T ⊆ R be a multiplicatively
closed subset. Prove that if R is integrally closed, then T−1R is integrally
closed. [5]

(b) Show that the following rings are integral domains and compute their integral
closure:
(i) R[x, y]/(xy − 1) [5]
(ii) Q[x, y, z]/((x+ y)2 − yz4) [10]

(a) Let α be an element of Frac(T−1R) = Frac(R) that satisfies an integral
relation

αn +
n−1∑
i=0

ai
ti
αi = 0

with ai ∈ R and ti ∈ T for all i = 0, . . . , n− 1. Let t =
∏n−1

i=0 ti. We multiply
the equation by tn to obtain

0 = tn

(
αn +

n−1∑
i=0

ai
ti
αi

)
= (tα)n +

n−1∑
i=0

bi(tα)
i

with bi = ait
n−1−i∏

0≤j≤n−1
j 6=i

ti ∈ R. Since R is integrally closed, we have

tα ∈ R. Then α = tα
t
∈ T−1R.

(b) (i) R[x, y]/(xy−1) ∼= R[x]x is an integral domain because it is a localization
of an integral domain. Since R[x] is a PID it is a UFD and hence
integrally closed. Then R[x, y]/(xy − 1) ∼= R[x]x is integrally closed
by previous exercise because it is a localization of R[x]. Alternatively,
R[x, y]/(xy − 1) is a PID because it is the localization of a PID. Hence
it is integrally closed.

(ii) Let R = Q[x, y, z]/((x+y)2−yz4). We observe that R = Q[y, z][x]/((x+
y)2−yz4) is an integral domain because Q[y, z] is a UFD and the polyno-
mial (x+y)2−yz4 = x2+2yx+y(y−z4) is irreducible by the Eisenstein
criterion with the prime y. We observe that t := x+y

z2
∈ Frac(R) sat-

isfies the integral relation t2 − y = 0 over R. Therefore the subring
S := Q[x, y, z, t] ⊆ Frac(R) is an integral extension of R. We observe
that S = Q[z, t] because y = t2 and x = z2t − t2 in S. Since R ⊆
S ⊆ Frac(R), we have Frac(S) = Frac(R). Since trdegQ Frac(R) ≥ 2,
the two elements t, y are algebraically independent over Q. Then S is
isomorphic to a polynomial ring in two variables over Q. In particular,
S is a UFD, and hence integrally closed in Frac(S) = Frac(R). So S
is the integral closure of R in Frac(R).
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Question 7 [15]

Let R be a commutative ring containing a multiplicatively closed subset T . Endow
the R-module R ⊕ R with the coordinatewise multiplication (r1, r2) · (r′1, r′2) :=
(r1r

′
1, r2r

′
2) for all r1, r′1, r2, r′2 ∈ R. Show that the subset T ⊕ T ⊆ R ⊕ R is a

multiplicatively closed subset of R ⊕ R. Then prove, using the universal property
of localisation, that there is an isomorphism of rings (T ⊕T )−1(R⊕R) ∼= (T−1R)⊕
(T−1R).

As a set T ⊕ T = {(t1, t2) ∈ R ⊕ R : t1, t2 ∈ T}. We observe that the neutral
element (1, 1) of the multiplication of R ⊕ R belongs to T ⊕ T because 1 ∈ T .
Moreover, if (t1, t2), (t′1, t′2) ∈ T ⊕ T , then (t1, t2) · (t′1, t′2) = (t1t

′
1, t2t

′
2) ∈ T ⊕ T ,

because t1t′1, t2t′2 ∈ T , as T is a multiplicatively closed subset of R.

Let ι : R → T−1R be the morphism associated to the localization T−1R. Let
ι⊕ ι : R⊕R→ (T−1R)⊕ (T−1R) be the induced morphism (i.e., the morphism that
sends (r1, r2) to (ι(r1), ι(r2)) for all r1, r2 ∈ R). We show that ((T−1R)⊕(T−1R), ι⊕ι)
satisfies the universal property that defines (T ⊕ T )−1(R⊕R).

Assume that f : R ⊕ R → S is a ring homomorphism such that f(T ⊕ T ) ⊆ S×.
Any morphism g : (T−1R)⊕ (T−1R)→ S such that g ◦ (ι⊕ ι) = f must satisfy

f((t1, t2))g

((
r1
t1
,
r2
t2

))
= g(ι(t1), ι(t2))g

((
r1
t1
,
r2
t2

))
= g((ι(r1), ι(r2)) = f((r1, r2))

for all r1, r2 ∈ R and all t1, t2 ∈ T . The equalities take place in S. Since f((t1, t2)) ∈
S× by assumption, we conclude that if g exists it is unique, because it must satisfy
g
((

r1
t1
, r2
t2

))
= f((t1, t2))

−1f((r1, r2)).

Let us define g by g
((

r1
t1
, r2
t2

))
:= f((t1, t2))

−1f((r1, r2)) for all r1, r2 ∈ R and
t1, t2 ∈ T . It remains to show that g is well defined and a ring homomorphism.
If
(
r1
t1
, r2
t2

)
=
(
r′1
t′1
,
r′2
t′2

)
∈ (T−1R) ⊕ (T−1R), then there exist u1, u′2 ∈ T such that

u1(t
′
1r1 − t1r′1) = u2(t2r

′
2 − t′2r2) = 0. Then

f((t1, t2))
−1f((r1, r2)) = f((r1, r2))f((t

′
1u1, t

′
2u2))f((t1t

′
1u1, t2t

′
2u2))

−1

= f((r′1, r
′
2))f((t1u1, t2u2))f((t1t

′
1u1, t2t

′
2u2))

−1 = f((t′1, t
′
2))
−1f((r′1, r

′
2)).

So g is well defined. Also g
((

r1
t1
, r2
t2

)(
r′1
t′1
,
r′2
t′2

))
= g

((
r1
t1
, r2
t2

))
g
((

r′1
t′1
,
r′2
t′2

))
and

g
((

r1
t1
, r2
t2

)
+
(
r′1
t′1
,
r′2
t′2

))
= g

((
r1
t1
, r2
t2

))
+ g

((
r′1
t′1
,
r′2
t′2

))
for all

(
r1
t1
, r2
t2

)
,
(
r′1
t′1
,
r′2
t′2

)
∈

(T−1R)⊕(T−1R), because f((t1t′1, t2t′2))−1f((r1r′1, r2r′2)) = f((t1, t2))
−1f((r1, r2))f((t

′
1, t
′
2))
−1f((r′1, r

′
2))

and f((t1t′1, t2t′2))−1f((t′1r1+t1r′1, t′2r2+t2r′2)) = f((t1, t2))
−1f((r1, r2))+f((t

′
1, t
′
2))
−1f((r′1, r

′
2))

as f is a ring homomorphism.
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Question 8 [10]

State and prove the Going-Up Theorem. You can use without proof all the prelim-
inary lemmas and propositions we proved before the actual proof of the Going-Up
Theorem.

Statement.

Let S → R be an integral extension.

(1) If p ⊆ S is a prime ideal, then there is a prime ideal q ⊆ R, such that
q ∩ S = p.

Addendum: if there are prime ideal p′ ( p ⊆ S and q′ ⊆ R, such that
q′ ∩ S = p′, then we may choose q such that q′ ⊆ q.

(2) Let q ( q′ ⊆ R be prime ideals. Then q ∩ S 6= q′ ∩ S.

Proof.

(1) Choose p ⊆ S prime. Then
(a) Sp → Rp is an integral extension.
(b) Sp is a local ring with maximal ideal m := pSp.
Choose now, any maximal ideal n of Rp. Then n ∩ Sp is a maximal ideal
because Sp → Rp is an integral extension, hence n ∩ Sp is necessarily m.
Define q then to be the contraction of n along R → Rp. We have the
following commutative diagram:

S �
� ι //

jS
��

R

jR
��

Sp
� � ιp // Rp

Using the notations of the diagram:
q ∩ S = ι−1q = ι−1j−1R n = j−1S ι−1p n = j−1S m = p,

where we used the correspondence between prime ideals under localization
in the last step.

For the addendum, just note that q′Rp is a proper ideal such that j−1R (q′Rp) =
q′ (we are using that q′ ∩ S = p′ ⊆ p and hence q′ ∩ (S \ p) = ∅). Hence, we
may pick n to contain q′Rp, and hence, q := j−1R (n) contains q′.

(2) Assume the contrary, that is, p := q ∩ S = q′ ∩ S. Perform then the same
localization construction as in the diagram. As above, qRp ( q′Rp are proper
prime ideals, as they avoid S \ p, and hence their contraction in R is q and
q′ respectively. Also, their contraction in Sp are prime ideals that contract
to p. Hence, these two contractions are equal:

pSp = Sp ∩ q = Sp ∩ q′.
Hence, using that pSp is maximal and Sp → Rp is an integral extension, both
qRp and q′Rp are maximal, which is a contradiction.
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