EPFL - Printemps 2023 Prof. Zs. Patakfalvi
Anneaux et Corps Exercices
Série 1 27 Février 2023

Les exercices indiqués par une étoile x sont optionnels.
Si vous le souhaitez, vous pouvez rendre votre solution de ’exercice bonus sur la page Moodle du
cours avant le dimanche 12 mars, 18h.

Exercice 1.
Soit R un anneau. Lesquels des sous-ensembles suivants sont-ils des sous-anneaux ?

1. {A€ My(R)|a;; =0sii>j}C My(R). 5 {a+bV3|a,beZ} CR.

2 AAC MR [0y =08 T3} MR [ ) b ea) c gz

3. {Ae My(R) | ai; =0sii#j} C My(R). !

4 {atbilabeZ) CC. 7. {<Z aib) la,be Z/QZ} C My(Z/27).

Exercice 2.
Soit G’ un groupe fini non-trivial. Montrez que 1’algébre de groupe Z[G] contient des diviseurs de
7€10.

Exercice 3.
Dans chacun des cas suivants, déterminez ’ensemble des homomorphismes d’anneaux A — B.

1. A=Z et B=17Z. 6. A=Ret B=R.
2. A=Zet B=Z/nZ ouneN. 7 A=Ret B=0Q.
3. A=Z/nZ et B=ZouneN.

4. A=17Z/mZ et B =7Z/nZ ot m,n € N. 8. A=Rl[t] et B=R.
5. A=Qet B=R. 9. A=Ret B=R[t].

Indication : Pour le point 6, montrez qu’un homomorphisme f: R — R envoie les réels positifs vers
les réels positifs, et déduisez que f préserve lordre usuel sur les réels.

Exercice 4.

Montrez qu'il existe au plus 4 homomorphismes d’anneaux Z[S3] — Z[Z/2Z).

Indication : si f: Z[Ss] — Z[Z/2Z] est un homomorphisme, étudiez les images possibles des élé-
ments de S3.

Montrez qu’il existe exactement 4 morphismes Z[Ss| — Z[Z/27Z].*

Exercice 5.
Soit m > 1 un entier et (A, 4+, ) un anneau tel que le groupe additif sous-jacent (A, +) est isomorphe
au groupe (Z/nZ,+). Fixons un élément a € A qui génére le groupe cyclique (A4, +).

1. Montrez que A est un anneau commutatif.

2. Montrez que, connaissant 1’élément a® € A, il est possible de déterminer la valeur du produit
x -y pour tous éléments x,y € A.



3. Montrez que a est un élément inversible.

4. Montrez que A = 7Z/nZ en tant qu’anneaux.

Exercice 6.
Soient A un anneau commutatif et a € A. Montrez que 'application

[ Aft] — Alt], p(t) — p(t+a)

est un isomorphisme d’anneaux.

Exercice 7.

Soit k un corps. Notons M (k) C {(aj)ijen | Vi,j : aij € k} I'ensemble des matrices infinies &
coefficients dans k qui vérifient la condition suivante : (a;;) € M (k) si et seulement si le support de
chaque colonne est fini, c’est-a-dire que pour tout jo € N seulement un nombre fini de coeflicients
a;j, sont non-nuls.

1. Montrez que 'addition et la multiplication usuelle de matrices induit une structure d’anneau
sur M (k).

2. Exhibez un élément de M (k) qui est inversible & gauche, mais pas a droite.

Exercice 8.
Prouvez les affirmations suivantes.

1. Un anneau intégre et fini est un corps.

2. Un anneau A dans lequel a = a? pour tout a € A, est commutatif.
L’exercice suivant était un exercice bonus de 'année 2021.

Exercice 9 (%).
Soit k un corps. Considérons 'anneau des séries formelles k[[¢]].

1. Montrez que f(t) = Y ;°,a;t' est un élément inversible de k[[t]] si et seulement si ag # 0.
Indication : Construisez les inverses algorithmiquement. Le cas de f(t) =1 —t est instructif
pour comprendre la preuve générale.

2. Montrer que le corps des fractions de k[[t]] est donné par les séries de Laurent
o .
k(1)) := {Zaitz la; € k,n € Z} :

Exercice bonus 1.
Considérons "anneau suivant pour un corps quelconque k :

a b
{2 Y anecr).

1. Démontrez que si I # A est un idéal (bilatére/a gauche/a droite) de A, alors I est contenu
dans un des sous-ensembles suivants de A :

w2l e
Agz{(g ﬁ) b,cek}.

2. Montrez que Ay et As sont des idéaux bilatéres. Montrez que Ay et Ao avec I'addition et la
multiplication héritée de 'anneau A ne sont pas des anneaux.

3. Listez tous les idéaux (bilatéres/a gauche/a droite) de A.



EPFL - Printemps 2023 Prof. Zs. Patakfalvi
Anneaux et Corps Exercices
Série 2 6 mars 2023

Les exercices indiqués par une étoile x sont optionnels.

Exercice 1.
Dans chacun des cas suivants, déterminer si ’ensemble B est un sous-anneau, un idéal a gauche,
un idéal a droite, un idéal bilatére de I’anneau A ou s’il ne posséde aucune de ces propriétés:

(a) A=7Zet B=97; () A=Q et B=7ZN5];

(b) A=TFu et B={[0],[2], [4],[6], 8], [10]}; (f) A=Qet B="1Z[i;

(c) A=Z[t] et B=1*-ZL[t’] (8) A=Z/15Z et B = {[0], [5], [10]}

(d) A=Tsft] et B =t Falt] (h) A=M,(R), B={M|m;; =0sii<j}

(i) A=Zp = {b € Q| p ne divise pas b} et B = p"Zy), ou p est un premier et n € N
a b 0
(j) A= M3(R) et B c d 0] |abec,deRy;
0 00
a b 0
(k) A= M;3(R) et B= c d 0] |ab,c,de€cRy;
0 0 e
a a 0
(1) A= M;3(R)et B= b b 0| |abceRy;
c 0

(m) A=C[Ss]et B=4¢ > A-g|[AeCy;

geSs

(n) A=C[Sslet B=1q Y (-1)*¥@X.g[XeCy;

geSs

(0) A =C[Ss] et B = {\-Id+Ae(123) + Ac?(132) + u(12) + pe(23) + pe*(13) | A\, p € C}, ot €
est une racine cubique primitive d’unité;

(p) A =C[S3] et B ={\(123) + A(132) | A € C).

Exercice 2.
Soit K un corps et M, (K) ’anneau des matrices carrées de taille n x n.

1. Soit ¢,57 € {1,...,n} fixés. Soit I un idéal & gauche de M, (K) contenant la matrice e;;.
Montrer que I contient aussi toutes les matrices “concentrées dans la j-éme colonne”, i.e.
(brs) avec by = 0 si s # j.

2. Montrer que le sous-ensemble des matrices concentrées dans la j-éme colonne forme un idéal
a gauche de M, (K).

3. Montrer que les seuls idéaux bilatéres de M, (K) sont {0} et M, (K).



Exercice 3.
Dans chacun des cas suivants, déterminer si I'affirmation suivante est vraie ou fausse. Justifier la
réponse par un raisonnement ou un contre-exemple.

(a) Si A est un anneau intégre, et I et J sont deux idéaux non nuls de A, alors I N J est aussi
un idéal non nul de A.

(b) Si K est un corps, alors les deux seuls idéaux de K sont {0} et K.

(c) Si K est un anneau n’ayant que deux idéaux bilatéres, alors tout élément non-nul de K
posséde un inverse & gauche et a droite.

(d) Si K est un anneau commutatif n’ayant que deux idéaux, alors K est un corps.

(e) Si K est un anneau tel que les seuls idéaux a gauche sont {0} et K, alors tout élément non-nul
de K posseéde un inverse & gauche et a droite.

(f) Si K est un anneau tel que les seuls idéaux & droite sont {0} et K, alors tout élément non-nul
de K posséde un inverse & gauche et a droite.

Exercice 4.
Montrer les isomorphismes suivants:

(a) Kt]/(t —a) = K si K est un corps et a € K.
(b) My (A)/My(I) = M,(A/I) si I est un ideéal bilatére de A.

(¢) Z[V7)/(5 +2V/T) = Z/3Z (on pourra commencer par identifier le noyau de 1'unique homo-
morphisme d’anneaux o: Z — Z[\/7]/(5 + 2V/7)).

Exercice 5.
Soit A un anneau inteégre. Si f, g € Alt], alors deg(f - g) = deg(f) + deg(g).

Exercice 6.
Montrer que Z[e] = Z[t]/(t* + t + 1), ol € est une racine cubique primitive de 1'unité.

Exercice 7 (%).

Soit R un anneau commutatif. Déterminer (R][t])
Cet exercice peut étre mieur compris grice a la notion d’idéal premier qui sera vue dans quelques
semaines. On reproposera ainsi cel exercice comme exercice optionnel dans la série 4.

X

Exercice 8 (%).
The goal of this exercise is to show that Q can be exhibited as the fraction field of many subrings
other than Z. We begin by giving the following definitions.

Definition 1 (Valuation Function).
Let K be a field, a discrete valuation is a function v : K\ 0 — Z, such that

a) v(z-y)=v(r)+r(y)
b) v(z +y) > min(v(z),v(y))
We say that v is non-trivial if it is not the constant 0 function.

Definition 2 (Valuation Ring).
If v is a discrete valuation function on the field K, then the valuation ring R, is the subset
{z € K|v(z) >0} U{0} of K.

Show that for a discrete valuation function v on K we have:



1.
2.

3.

v(l)=0,v(-1)=0.
R, is a subring of K.

K is the fraction field of R,.

From now on, K = Q, that is the field of rational numbers. Show that

4.

For every = € Z we have v(x) > 0.

. If v(p) = 0 for all primes p, then v is trivial.
. v(p) # 0 can happen for at most one (positive) prime p.

. If v(p) # 0, then v is given by v(p‘a/b) =i - ¢, where a and b are prime to p and c is a fixed

positive integer. Conversely, show that the above formula is a discrete valuation (called the
p-adic valuation for ¢ = 1, which we denote by v,).

. Show that the valuation ring of v, is not equal to Z C Q.
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Anneaux et Corps Exercices
Série 3 13 mars 2023

Les exercices indiqués par une étoile x sont optionnels.
Si vous le souhaitez, vous pouvez rendre votre solution de ’exercice bonus sur la page Moodle du
cours avant le dimanche 26 mars, 18h.

Exercice 1.
Dans chacun des cas suivants, déterminer si I'affirmation suivante est vraie ou fausse. Justifier la
réponse par un raisonnement ou un contre-exemple.

1. L’image d’un idéal bilatére par un homomorphisme d’anneaux est encore un idéal bilatére.

2. La préimage d’un idéal bilatére par un homomorphisme d’anneaux est encore un idéal bilatére.

Exercice 2.
Considérons I’homomorphisme

I GRS O
P paitt = Y glalt!

qui envoye un polynéme & coefficients dans Z au polynéme obtenu par réduction des coefficients
mod p. Montrez que la préimage 517_1(1) d'un idéal I € Fp[t],I # 0,1 # F,[t] n’est pas principal.

Exercice 3.
Cet exercice revoit des notions déja connues dans le language des anneaux et des idéaux.
Soient m et n deux entiers naturels et (m) et (n) les deux idéaux principaux de Z correspondants.

1. Identité de Bézout. Soit d le pgdc de m et n. Montrer qu’il existe des entiers relatifs a, b
tels que am + bn = d.

2. Identifier les idéaux (m) - (n), (m) N (n) et (m) + (n).

Exercice 4.
Soit f: A — B un homomorphisme d’anneaux.

1. Montrer que car(B) divise car(A), mais qu’en général car(B) # car(A).
2. Montrer que si f est injectif alors car(B) = car(A).

3. Montrer que si A est commutatif et car(A) = p, un nombre premier, alors Iapplication
F: A — A définie par F(a) = aP est un homomorphisme d’anneaux.

4. Calculer la caracteristique de I"anneau Z[i]/(i — 2).

Exercice 5.
Soit A = 7Z/250Z.

1. Trouver tous les diviseurs de zéro et tous les éléments inversibles de A.



2. Trouver tous les idéaux de A qui contiennent I’élément [50]250. (Ce qu’on veut dire par cette
notation c’est I'image de 50 dans Z/250Z.)

Exercice 6.

Soit A le sous-anneau de My(Z) des matrices de la forme ol a,b,c € Z. Montrez que le

a c
(o}
sous-ensemble K des matrices pour lesquelles 5 | a et 11 | b est un idéal bilatére et construire un
isomorphisme (en deux temps) A/K — Z/5Z x Z/117Z.

Exercice 7. 1. Montrer que Clz,y]/(z) = Cly] (donner la forme explicite d’un isomorphisme).
2. Construire un homomorphisme d’anneaux C[z,y] — C[z] x C[y| dont le noyau est (zy).

3. Identifier I'image de cet homomorphisme et en conclure que Clxz,y]/(zy) est isomorphe au
sous-anneau de C[z] x C[y] formé des couples de polynomes (p(z), q(y)) tels que p(0) = ¢(0).

Exercice 8 (x).
Let p € N be a prime number, v, be the p-adic valuation on Q, and let R be the valuation ring of
Vp. (See, Exercice 8, Série 2)

1. Show that every ¢ € Q\ {0} with 1,(¢) = 0 is an invertible element of R.

2. Show that (0) and (p™) for n € N is a complete list of ideals of R, and that all ideals in this
list are different.

3. Show that R/(p") = Z/(p")

4. Denote by R, the valuation ring we obtain for different choices of p. Show that the different
R,’s as well as Z are pairwise non-isomorphic rings (here we ask for isomorphism as abstract
rings, so not as subrings of Q).

Exercice bonus 2.
Définition. Un anneau commutatif A est dit conneze si pour tout a,b € A tel que

a+b=1 et ab=0
alors exactement 'un des deux éléments est nul.

1. Montrer qu’un anneau commutatif est connexe si et seulement si A posséde exactement deux
idempotents.

On dit que e € A un idempotent est un idempotent minimal si eA est un anneau connexe
non-nul avec I’addition et la multiplication venant de A avec e comme élément neutre. On
pose

mo(A) = {e € A | e est un idempotent minimal}

Remarquer que A est connexe si et seulement si mp(A) = {1}. Remarquer qu'un anneau
connexe est toujours non-nul.

2. Soit (A4;)!_, une collection finie d’anneaux connexes. Montrer que

n

mo([[ 401 = n.

3. Montrer que
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Anneaux et Corps Exercices

Série 4 20 mars 2023

Les exercices indiqués par une étoile x sont optionnels.

Exercice 1.
Dans chacun des cas suivants, déterminer si ’idéal proposé est premier ou maximal.

(a) (0) C Z. (f) (12 —2) C Z[t].
(b) (¢) C Z[t]. (8) (*—2) CR[t].
() (t) C R[t]. (h) (t+5,10) C Z[t].
(d) (101) C Z[t]. (i) (
) (42) C Z[t]. () (

t+5,11) C Z[t].

(e t2 4+ 1,2) C Z[t].

Indication : Pour prouver qu’un idéal bilatére I C A est premier, il suffit de montrer que le quotient
A/T est inteégre.

. . . . [z = 2 (mod 3) x = 2 (mod 3)
Exercice 2. 1. Discuter les systémes suivants : { z = 7 (mod 12) et { = 8 (mod 12)

2. Montrer que Z/367Z n’est pas isomorphe & Z/3Z x Z/12Z.

Exercice 3. 1. Soit f: A — B un homomorphisme d’anneaux surjectif tel que ker f = (a1, ..., an)
pour certains aj . .., a, € A. Soit aussi [ = (by,...,b,) C B unidéal a gauche. Sicy,..., ¢, €
A sont tels que f(¢;) = b; pour chaque 4, montrez que f~1(I) = (ai,...,am,C1,...,Cn).

2. Soit k un corps, a,b € k et considérons les homomorphismes d’anneaux k-linéaires

evy: k[z,y| = k[z], c—xz, y—b et evy: klz] = k, x—a

et
§:=evgoevy: klx,y] — k.
Montrez que ker{ = (z — a,y — b) et que ker{ est un idéal maximal de k[z, y].
On peut en fait montrer que si k est algébriguement clos, alors tous les idéauzr mazimauzx de
klx,y] sont de cette forme. C’est une conséquence du Nullstellensatz d’Hilbert.
Exercice 4.
Dans cet exercice, nous étudions les anneaux Z[i|/(p) pour p un nombre premier. Nous écrirons
= Z/pZ.
1. Montrez que Z[i]/(p) 2 F,[t]/(t* + 1).
Indication : Combinez Uexemple 2.4.19 et le quotient en deux temps.

2. Pour p = 5, montrez que Z[i]/(5) = F5 x Fs.
Indication : Le théoréme des restes chinois peut étre utile.

3. Sous quelles conditions sur p a-t-on un isomorphisme d’anneaux Z[i]/(p) = F, x F,, ?
Indication : Si besoin, vous pouvez admettre l'existence d’une cloture algébrique de F

Exercice 5.

Soient A et B deux anneaux commutatifs. Quels sont les idéaux de A x B 7 Quels sont les idéaux
premiers de A x B 7




Exercice 6 (x).
Soit R un anneau commutatif. Déterminer (R[t])*.
On pourra se ramener au cas intégre en quotientant par des idéauz premiers de R.

Exercice 7 (x Introduction aux opérateurs différentiels).

Soit, A un anneau commutatif. Notons que §’il existe un homomorphisme d’anneaux injectif K — A
ol K est un corps, alors A a la structure d'un K-espace vectoriel. D’ailleurs, pour V un K-espace
vectoriel,

Endg(V):={¢p:V = V| ¢ est K linéaire}

est un anneau, avec 'addition et la composition de fonctions comme opérations. On définit le
crochet de Lie sur Endg (V) de la maniére suivante :

EndK(V)><EDdK(V) — EndK(V)
(9, %) = ¢, Y] i=doy—tpog

Supposons maintenant que A est un anneau commutatif tel que K < A ou K est un corps.
Nous désignons par m, € Endg(A) la multiplication par un élément a € A,

A — A

Mg : .
T = ar

Nous définissons les opérateurs K-différentiels sur A de degré au plus n inductivement par :
e D<1(4) = {mo},
e Deo(A) = {ma | a € A},
e pour n > 0, posons D<,(A) = {¢ € Endg(A) | [¢, ma] € D<p—1(A) Va € A}.

Remarquez que D<,(A) C D<piq(A). On définit

D(A):= | D<n(4) CEndg(A).

n>—1

Montrer que D(A) est un sous-anneau de Endg (A). On remarque que K 5 A — my € D<o(A) est
le plongement de K dans D(A) qui donne la structure d’espace vectoriel sur K.
A partir de maintenant, nous considérons le cas A = K|z].

1. Montrer que le crochet de Lie

est K-bilinéaire.
2. Soit a% € Endg (K |[z]) défini par a%(wi) =i-20~D pour tout i € N. Montrez que [a%,mw] =
mi.

3. Prenons % comme au-dessus. Montrez que [%,mﬂ] = j-mgi-1 pour j € N.

4. Prenons 8% comme au-dessus. Montrez que a% € D« (K|[z)).
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Les exercices indiqués par une étoile x sont optionnels.
Si vous le souhaitez, vous pouvez rendre votre solution de ’exercice bonus sur la page Moodle du
cours avant le dimanche 9 avril, 18h.

Exercice 1. (a) Soit k un corps. Trouver tous les idéaux de I'anneau quotient kl[t] / (t?). Déter-

miner lesquels sont premiers et lesquels sont maximaux.

(b) Soit I ¢ M C A deux idéaux d’un anneau A et soit 7 : A — A/[ I’homomorphisme quotient.
Montrer que lidéal w(M) est maximal dans A /T si et seulement si M est maximal dans A.

Exercice 2 (Fonctions polynomiales.).

Soit A un anneau commutatif et F(A) 'anneau des fonctions ¢: A — A ou la somme et le pro-
duit sont définis dans I’ensemble d’arrivée (par exemple (¢ - ¢)(a) = p(a) - ¢(a)). On considére
I’évaluation comme application ev: Aft] — F(A). L’évaluation d’un polynome f est donc la fonc-
tion polynomiale ev(f) définie par ev(f)(a) = evy(f) = f(a).

(a) Montrer que I’évaluation est un homomorphisme d’anneaux.

(b) Soit p est un nombre premier. Montrer que 1’évaluation n’est pas injective lorsque A = F),.
[Indication: Petit Théoréme de Fermat.|

(¢) Montrer que I’évaluation est injective pour A = R.

Exercice 3.
Soit A un anneau commutatif. On note nil(A) pour les éléments nilpotents de A. Soit k£ un corps.

1. Déterminer nil(A), ou A = k[x,y]/($2y3),

2. Ecrire nil(4) comme Dintersection d’idéaux premiers p1,...,pm, nil(A) = N p;, pour m
minimal.

3. Déterminer les premiers minimaux de A.
Exercice 4. (a) Montrer que F,[Z/pZ] = Fp[z]/(2P — 1).
(b) Montrez que car(F,[Z/pZ]) = p. En particulier on a F,, — [F,[Z/pZ]
(c¢) Montrer que [F,[Z/pZ] n’est pas un produit des 2 anneaux non-nuls.

Exercice 5.
L’anneau Z[\/5].

1. Montrer que la norme N: Z[/5] — Z définie par N(a + bv/5) = a® — 5b? est une fonction
multiplicative (donc que N(xy) = N(x)N(y) — noter que si 'on définit a 4+ bv/5 = a — b\/5,
alors N(z) = 2%) et que a + b\/5 est inversible si et seulement si N(a + byv/5) = +1.

2. Montrer que 9 + 41/5 est inversible et en déduire que (Z[\/g])X est infini.

3. Montrer qu’il n’existe aucun élément de norme 2 ou —2, si bien que tout élément de norme 4
est irréductible.

4. Trouver deux décompositions de 4 en produit d’irréductibles dans Z[v/5].
5. L’idéal (3 + +/5) est-il premier?



Exercice 6.
Soit d > 1. On note A = Z[iv/d]. On note N(a + ivd) = a® + db®.

1.
2.
3.
4.

Lister les élements x € A tel que N(z) <d+ 1.
Montrer que i\/ﬁ, 1 +4v/d et 1 — iv/d sont irréductibles.
Si d+ 1 n’est pas premier dans Z, alors A n’est pas factoriel.

Si g = d+ 1 est premier dans Z alors celui-ci admet une factorisation unique en irréductibles
dans A.

Exercice 7 (%).
Soit A = F[G], ou F est un corps et G est un groupe.

(a)

(b)

()
(d)

Montrer que Z agg € Z(A) si et seulement si g — a4 est constant sur les classes de conju-

geG
gaison.

Fixons A = C[S3] et £ une racine primitive cubique d’unité. Soit

1 1
61:6 Zg, 62:6 ngn(g)get es = fi1+ fo € A,
gESs gEeS3

ou fi =

Montrer que A = Ae; x Aes x Aes.

I 12 2(132 I 2(12 132
d+e( 33)+a(3)et fo = d+e%( 33)+e(3).

Montrer que Ae; =2 C et Aes = C.

Montrer que Aeg = M»(C).

Exercice bonus 3. Soit p un nombre premier. On dit qu’un anneau commutatif est de caractéris-
tique p si le morphisme Z — A envoie p sur zéro et donc factorise par IF,, = A. Dans cet exercice,
on travaille uniquement avec des anneaux non-nuls commutatifs de caractéristique p.
On note F : A — A le morphisme de Frobenius a — aP. Voir Série 3, exercice 4.3.

1.

2.

Montrer que le morphisme F,, — A est injectif.

Montrer que AF := {a € A| F(a) = a} est un sous-anneau.

. Montrer que si A = AF alors nil(A) = 0.
. Montrer que si A est intégre et A = AL, alors F,, — A est un isomorphisme.
. Montrer que si A = A", alors tout idéal premier est maximal.

. Montrer que mo(A) = mo(AF). (Voir exercice bonus 2.)
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Les exercices indiqués par une étoile x sont optionnels.

Exercice 1.
Entiers de Gauss.

1. L’anneau Z[i] est euclidien avec N (a+ib) = |a+ib|?. (Exemple 3.7.4.(3)) Pour a,b € Z[i],a # 0
on appelle une égalité de la forme b = aq + r, avec q,r € Z[i] et N(r) < N(a) une division
avec reste. Effectuer la division avec reste de 5 + 5¢ par 4 + 2¢ et montrer que quotient et
reste de la division dans Z[i] ne sont pas uniques.

2. Les entiers de Gauss 2,3 et 5 sont-ils irréductibles dans Z[i]? Et 2i et 2 — 3i?

3. Montrer que le quotient Z[i]/(3) est un corps de cardinalité 9.

4. % Soit p un nombre premier. Montrer que les énoncés suivants sont équivalents.
(a) 1l existe a,b € Z avec p = a® + b>.

(b) p=2oualors p=1 mod 4.

Exercice 2. o
Entiers d’Eisenstein. Soit w = e3 et Z]w] 'anneau des entiers d’Eisenstein.

1. Montrer que N(a+bw) = a® — ab+ b? coincide avec le module au carré dans le plan complexe
de a + bw.

2. Montrer que N(a+ bw) = a? — ab+ b? munit Z[w] d’une fonction euclidienne. On pourra par
exemple montrer que le point milieu d’une maille du réseau (a + bw) se trouve a une distance
strictement plus petite que /N (a 4 bw) de chacun des quatre sommets de cette maille.

3. Trouver les éléments inversibles de Z[w] (quelle est leur norme?).

Exercice 3.
L’anneau Z[iv/5].

1. Montrer que le polynéme 3 + 2t + 2t? est irréductible sur Z[i\/g], mais pas sur le corps des
fractions de Z[iv/5]

2. Généralisation. Soient a,b,c,d des éléments irréductibles non associés d’'un anneau com-
mutatif et intégre A tels que ab = cd. Calculer (a + ct)(b + ct) et conclure que le polynome
d+ (a + b)t + ct? est irréductible sur A, mais pas sur son corps des fractions K.

3. Montrer que la norme n’est pas une fonction euclidienne sur Z[iv/5].

Exercice 4.
En s’inspirant de I’exemple 3.7.4.(3), montrer que Z[iv/2] est Euclidien.

Exercice 5.
Idéaux dans un anneau de polynémes.

1. Décrire tous les idéaux premiers et tous les idéaux maximaux de Ct] et de R[t]. (Without
proof, we note that irreducible polynomials of degree higher than 2 do not exist in R[¢].)

2. Soit K un corps et a € K. Montrer que (t — a) est un idéal premier de K]s,t|, mais non
maximal.



3.

Montrer que I'anneau quotient C|s,#]/(s — t2) est principal

4. Polyndéme d’interpolation de Lagrange. Soit K un corps, ai,...,a, des éléments de K

distincts et by, ..., b, € K. Montrer qu’il existe un polynoéme f € K[t] de degré au plus n — 1
tel que f(a;) = b; pour tout 1 <1i <mn.

Exercice 6.

Trouver tous les idéaux de Z[i] qui contiennent I'idéal (5) et tous les idéaux de Z[i] qui contiennent
Videéal (2).

Exercice 7.
Soit A un anneau intégre et soit S C A multiplicativement clos, ¢’est a dire 14 € S, et Va,b € S =
a-beS. On définit S™1A = {¢ € Frac(A) | b €}.

1.

2.

Montrer que S™!1A est un anneau (un sous-anneau de Frac(A)).

Montrer que si p est un idéal premier de A, alors S := A\ p est multiplicativement clos. Dans
ce cas, on dénote Ay := ST'A = {¢ € Frac(A) | b € S}, la localisation de A en p.

. Considerons l'idéal premier (2) de Z. Quels sont les idéaux maximaux et les ideaux premiers

de Z(2)7

. Soit f € A. Le sous-ensemble S := {1, f, f2, f3...} est multiplicativement clos. Dans ce cas,

on dénote Ay = St A = {¢ € Frac(A4) | b € S}. Quels sont les éléments irréductible de Zo?
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Les exercices indiqués par une étoile x sont optionnels.
Si vous le souhaitez, vous pouvez rendre votre solution de ’exercice bonus sur la page Moodle du
cours avant le dimanche 30 avril, 18h.

Exercice 1. 1. Soit A un anneau Euclidien. Prouvez que 'algorithme d’Euclide peut étre adapté
pour calculer les pgdc dans A.

2. Effectuez la division avec reste de 27 —23i par 8 +¢ dans Z[i], et montrez que ces deux entiers
de Gauss sont premiers entre eux.

3. Calculez un pgdc de 11 + 3i et de 1 + 8i dans Z[i]. Ce pgdc est-il unique ?

4. Ecrivez les idéaux (11 4 3i) et de (1 4 8i) comme un produit d’idéaux premiers de Z[i].

Exercice 2.
Notons C := CY(]0,1];R) I'anneau des fonctions réelles continues sur l'intervalle [0,1] (muni des
opérations d’addition et de multiplication de fonctions).

1. Pour z € [0, 1], écrivons I, := {f € C | f(x) = 0}. Montrez que I, est un idéal maximal.
2. Pour x # y, montrez que I, N I, n’est pas un idéal premier.

3. Soit I C C un idéal. Supposons que I n’est contenu dans aucun des I,,. Montrez que I = C.
Indication : la propriété de Heine—Borel sera utile.

4. Montrez que tout idéal maximal de C est égal a I, pour un certain = € [0, 1].

Exercice 3.
Considérons les polynomes f = 23 — 222 + x — 2 et g = 2* — 223 + 7z — 14 dans Z[z].

1. Montrez que le pgdc de f et de g dans Z[z] vaut z—2 en écrivant f = (z—2) fy et g = (x—2)go
dans Z[x].

2. Pour un premier p, notons f et g la réduction de f et g dans F,[z]. Calculez le pgdc de f et
de g pour chaque p.
Indication : Remarquez que les étapes de l'algorithme d’Euclide définissables dans Z|x] sont
des étapes de lalgorithme d’Euclide dans Fplz]| aprés réduction modulo p.

Exercice 4. 1. Soit d > 0 un entier positif. Montrez que Q[iv/d] est un corps de fractions de

ZliVd).

2. Montrez que x3 — 2i est irréductible dans (Z[4])[x].
Indication : Utilisez le lemme de Gauss, et gardez en téte qu’un élément de Q[i] peut s’écrire

comme %b’ avec a,b,n € 7.



Exercice 5.
Soit k£ un corps.

1. Montrez que le sous-anneau k[t2, 3] C k[t] n’est pas factoriel.
2. De méme, montrez que k[t2, 5] et k[t3,t7] ne sont pas factoriels.

3. Montrez que k[z,y]/(z% — y3) n’est pas factoriel.
Indication : Montrez que cet anneau est isomorphe & l'un des anneaux considérés précédem-
ment.

Exercice 6.
Considérons 'anneau de matrices

A::{(g §>|nEZ, z,ye@}
I::{<8 g>|x€Q}CA.

1. Montrez que I est un idéal bilatere, que A/I =2 Z x Q et que A/I est Noethérien.

ainsi que le sous-ensemble

2. Montrez que I est un idéal & droite minimal (c’est-a-dire qu’il n’existe pas d’idéal a droite J
tel que 0 C J C I).

3. Montrez que A est Noethérien a droite.
Indication : Etant donnée une chaine croissante d’idéauz, considérez son image par [’application
quotient A — A/I.

Exercice 7. 1. Montrez que 22 + y? est irréductible dans Q[z, y], mais pas dans C[z, y].
2. Montrez que x3 — (37 + 2y° + y3) est irréductible dans Q[z, y].

Exercice 8.
Soit (B, o) un anneau euclidien. Montrez que si b € B non-nul est tel que o(b) =0, alors b € B*.

Exercice bonus 4. Soit A = Z[iv/d] pour un d > 1. Pour un a + biv/d € Z[iv/d] on pose la norme
N(a+bivd) = a* + dv?

1. Soit z € A non-nul. Montrer que
|A/(z)| = N ().
(C’est a dire que la cardinalité du quotient est égale a la norme de x.)

Remarquer que A est un groupe abélien libre de rang 2 el que le quotient A/(x) est égal au
quotient de A par U'image de Uapplication linéaire -x : A — A, et utiliser la forme normale de
Smith pour conclure.

Dans le point 2. on considére (B, o) un anneau euclidien quelconque qui n’est pas un corps.

2. Montrer qu’il existe un b € B non-nul et non inversible tel que

1B/ () < [B*| + 1.

3. Montrer que si d > 3, alors A n’est pas Euclidien. (Il ne s’agit pas de montrer que N n’est
pas une fonction Euclidienne pour A, mais qu’il n’en existe aucune.)
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Les exercices indiqués par une étoile x sont optionnels.

Exercice 1 (Echauffement).
Soit ¢ : A — B un homomorphisme d’anneaux. Montrer que:

(a) Sia € A inversible, alors ¢(a) est inversible.
(b) Sia,be A tel que a ~ b, alors ¢(a) ~ ¢(b).
(c) Sia € A irréductible, déterminer si ¢(a) est irréductible ou non.

Exercice 2. (a) Soit A un anneau intégre. Si aq,...,a, € A sont des racines distinctes de f(z) €
n

Alz], montrer que H(w —a;) divise f(x).
i=1

(b) Soient p et ¢ deux nombres premiers distincts dans Z. Montrer que le polynéme t? — ¢ de
(Z/pqZ)[t] posséde quatre racines distinctes a1, ag,as,as € Z/pqZ, mais que (t — a1)(t —
az)(t — a3)(t — a4) ne divise pas > — t.

(¢) Soient f,g € Z[t] des polyndmes primitifs. Montrer que si f divise g dans Q[t], alors f divise
g dans Z][t].

(d) Décomposer les polynémes t* + 1 et t8 — 1 en facteurs irréductibles dans les anneaux C[t],
R[t]a @[ﬂv Z[t]a FQ[t] et IE‘11[750]'

Exercice 3 (Polynomes irréductibles I). (a) Montrer que 2°+ 22%+2%+ 1 est un polynome
irréductible de Q|x].

(b) Montrer que z* + [2]5 est un polynéme irréductible de F5[xz] et conclure que x* + 1523 4 7 est
un polynoéme irréductible de Qlx].

¢) Montrer que 2 + y? + 1 est un polynome irréductible de R[z, y].

d) Montrer que 22 + y? + [1]o n’est pas un polynome irréductible de Fa[z, y].

(
(
(e
(

Montrer que y* + 2% + 229? + 2y + 222 — z + 1 est un polynéme irréductible de Q[z, y].

=

Montrer que 423 + 12022 + 82 — 12 est un polynome irréductible de Q[z].
(g) Montrer que t5 + 3 + 1 est un polynome irréductible de Q[t].

)
)
)
)
)
(h) Montrer que y* + xy> + zy? + 2%y + 322 — 22 est un polyndéme irréductible de Q[z, y].

Exercice 4 (Polynomes irréductibles II).
Soit f(t) = t* + 4¢3 + 3t + 7t — 4 dans Z[t].

(a) Montrer que ma(f), la réduction modulo 2, n’est pas irréductible.
(b) Montrer que 73(f), la réduction modulo 3, n’est pas irréductible.

(¢) Utiliser les décompositions des parties précédentes pour conclure néanmoins que f est irré-
ductible.
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Les exercices indiqués par une étoile x sont optionnels.
Si vous le souhaitez, vous pouvez rendre votre solution de ’exercice bonus sur la page Moodle du
cours avant le dimanche 14 mai, 18h.

Exercice 1.
Soit K un corps et L une extension quadratique, i.e. [L: K] = 2.

1.
2.

Montrez que toute extension de K de degré 1 est égale & K.

Montrez qu'il existe un élément o € L tel que L = K(a).

Soit K de caractéristique différente de 2. Montrez qu’il existe un élément § € L avec §% =

d € K tel que L = K(6) = K(\/d).

une extension quadratique de K.

Exercice 2.
Soient a,b € Z.

. Soit M une extension de K et 6 € M \ K un élément avec 62> € K. Montrez que K (J) est

1. Quand est-ce que les corps Q(y/a) et Q(v/b) sont isomorphes en tant que Q-espaces vectoriels?

2. Quand est-ce que les corps Q(y/a) et Q(v/b) sont isomorphes en tant que corps?

Exercice 3.

pour tout « € L\ K.

1. Soit L une extension de K avec [L : K| impair. Montrer que K(a) = K(a?)

2. Soient p,q € Z deux nombres premiers distincts. Montrez que /p ¢ Q(1/q) et /¢ ¢ Q(/).

3.

Calculez [Q(y/p, /q) : Q].

Soit L une extension de K et soient o, 3 € L des éléments tels que [K(a) :

[K(B) : K] = n sont premiers entre eux. Montrer que [K(a, ) : K] = mn.

Exercice 4.
Soit K = Q(\/§+ \ﬁ) Montrez que [K : Q] = 4.

Exercice 5.
Dans tous les cas suivants, calculez le degré de I’extension.

1.
2.

R(e%7/P) : R] pour p un nombre premier:

[R( pour p p ;

[Q(c) : Q] pour « une racine de 42 + ¢4 + ... 2 4 ¢ 4+ 15
[Q(i, V13) : Q];

K] = m et

[F3(a) : F3] ot a est une racine de t* — 3 — 2 —t — [1]3 € F3[t] (disons que « vit dans le
corps de décomposition de ce polynéme sur F3 pour fixer les idées) La réponse peut changer

en fonction de la racine considérée.

. [Q(v/14 + 64/5,4/3) : Q] (on pourra calculer (3 + /5)? pour commencer);




6. [Q(VT) : QUVT?);

7. [Fa(a) : Fo(a?)] ot a est une racine de t3 +t + [1] € Fat].

Exercice 6.
Soit f = 27 — y® € C[z,y]. Le but de cet exercice est de démontrer que f est irréductible dans
Clz,y]. Soit K = C(y) et L le corps de décomposition de f sur K. Soit o une racine de f dans L,

et 8= Z—;
1. Montrez que [K(5) : K| = 7. Indication: Trouvez un polynéme sur K dont 5 est une racine.
2. Montrez que K () = K(«).
3. Déduisez que f est irréductible dans Clz, y].

Exercice bonus 5. Soit n > 1 un entier. On dit qu’une racine n-iéme de l'unité £ € C est
primitive si n est le plus petit entier tel que " = 1. On pose,

o)~ [ (- ecCl.
£ racine
prir{litive
n-iéme
de l'unité

1. Montrer que ¢" — 1 =[], Pa(t) et que @y (1) € Z[t].

2. Soit p un nombre premier et n > 1. En utilisant le critére d’Eisenstein et le changement de
variable ¢ — ¢ + 1, montrer que ®,n(t) est irréductible dans Z[t]. (c.f. exemple 3.9.4.(2))

3. Soit n > 1 un entier et p un premier qui est premier avec n. On note &, une racine primitive
n-ieme de l'unité. Soit m(t) € Q[t] le polynéme minimal de &,. Montrer que m(t) € Z[t].
Montrer que si £ est une racine de m(t), alors P est une racine de m(t). En déduire que
m(t) = D, ().

Indication: on pourra montrer par 'absurde que si P n’est pas une racine de m(t) alors t™ —1
a une racine double modulo p, ce qui est absurde comme (n,p) = 1 (Voir Proposition 4.4.10).

4. Montrer qu'’il existe une infinité de premiers p tel que ®,(t) a une racine dans F,[t]. En
déduire qu’il existe une infinité de premiers p tel que p =1 mod n.
Indication: pour tout m suffisamment grand si un nombre premier p divise ®,(m!) alors

p>m.

Exercice 7 (x).
Calculer my(Q[Z/nZ]).
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Exercice 1.

Soient K C L C F des extensions de corps. Si K C L et L C F sont algébriques, montrez qu’il en
est de méme pour K C F.

Exercice 2.
Soit n > 0 un entier positif. Montrez que cos(27/n) et sin(27/n) sont des nombres algébriques sur

Q.

Exercice 3.
Soit Q(x) le corps de fractions de ’anneau polynomial Q[z], et considérons

. 3 42
si=—— € Q(z).

On a les extensions successives Q C Q(s) C Q(xz).

1. Montrez que Q(x) est une extension algébrique de Q(s).
2. Calculez [Q(s) : Q] et [Q(z) : Q(s)].

Exercice 4.
Soit & = e » pour un entier n > 2. Démontrez que les corps de décomposition de z" — 2 et de
22" — 32™ + 2 sur Q sont les mémes, et ils sont les mémes aussi que le sous-corps de C engendré

par £ et /2.
Exercice 5. 1. Montrez qu’il existe que 2 polynémes irréductibles de degré 3 sur Fs.

2. Soit f et g ces deux polyndémes. Montrez que tous les deux f et g obtient 3 racines distinctes
dans K = Fo[z]/(f) .

3. Montrez que les corps de décomposition de ces 2 polynomes sont les mémes, et il est isomorphe

a K = Falz]/(f).
Exercice 6. 1. Considérons la situation suivante:

e ¢: K — K’ est un isomorphisme des corps,
e K C Let K'CLsont deux extensions de corps

e L=K(a)et L'’ = K(d/) avec a et o’ algébriques sur K et K’ respectivement

si ¢ : K[z] — K'[z] est 'homomorphisme induit par ¢, alors {(ma, k) = M K

Démontrez qu’il existe une extension unique de ¢ a un isomorphisme 1 : L — L’ tel que
n(e) = o

2. Démontrez que K(z)[vz + 1] =2 K(z)[vz + 2]
3. Démontrez que K(z,y)[\/zy] = K(z,y)[\/z(z + y)]
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Exercice 1.

Soit @ € F, un élément différent de 1 et —1. Montrer que soit a, soit —c, est un générateur du
groupe cyclique FJ,.

Exercice 2.
Fixons un nombre premier p.

1. Pour 7 > 0, énumérez les sous-corps de Fyr. Si s divise r, énumérez les corps intermédiaires
Fps C L CFpr.

2. Montrez que l'ensemble {0 # a € Fig | Fo(a) = Fig et (a) # Fis} posseéde 4 éléments. Ici (a)
désigne le sous-groupe de Fyy généré par 'élément a # 0.
Indication : Etudiez la structure du groupe F7.

3. Plus généralement, montrez que I'ensemble {0 # a € Fu | Fy(a) = Fpu et (a) # IF;4} posséde

p* —p? — p(p* — 1) éléments, ot ¢ est la fonction de comptage d’Euler.

Exercice 3 (Corps de décomposition sur [Fp).
Fixons un nombre premier p > 0 et un polynéme f(z) € Fp[z] irréductible de degré d.

1. Montrez que f divise 27" — z dans Fplx].
Indication : A Uaide du Théoréme 3.4.17, montrez que F,a contienl une racine de f.

2. Montrez que f(z) se scinde sur F .
3. Montrez que f n’a pas de racines multiples.

4. Soit g € Fp[z] un polynome irréductible de degré d qui n’est pas associé & f. Montrez que f
et g n’ont pas de racines en commun.

5. Montrez que

h unitaire irréd.
dans Fp[z]

deg h divise d

Exercice 4 (Polynomes irréductibles sur IF,,).

Fixons un nombre premier p > 0. Nous allons calculer le nombre Ny de polynémes irréductibles
unitaires d’un degré fixé sur F,,. (Rappelons qu’un polynéme est unitaire si son coefficient dominant
vaut 1).

1. Montrez que
d-Ng=Fa\ |J L
LGF

ou L parcourt l’ensemble des sous-corps strictement inclus dans F 4.
Indication : Utilisez les résultats de I’Exercice 8 et le Théoréeme fondamental des corps finis.



2. Montrez que

=Py
. .

N2: ) N3: ) N4: ) N5: ) N6

Pour établir une formule générale, il sera utile d’introduire la fonction de Moébius. Il s’agit de la
fonction
w: I\I>0 — {_1707 1}

définie par

0 si n est divisible par p? pour un premier p,
pn) =<1 sin =1 ou si n est le produit d'un nombre pair de premiers distincts,

—1 sin est le produit d’'un nombre impair de premiers distincts.

Ceci étant, passons au cas général :
3. Sin,m divisent d et sont premiers entre eux, montrez que F a/n NF a/m = F a/mm dans Fa.

4. Montrez que
1 d
Ng=— E —|p".
d=7 K (r) p
rld

Indication : Soit d = slf -5t la décomposition en produit de nombres premiers. Montrez
d’abord que

n
dNg = [Fpa \ | JF 05,
j=1

puis développez le terme de droite grice a la formule d’inclusion-exclusion.

Exercice 5. A
Fixons un entier premier p. Soit n; = p™ ou m; = [[/_; 4 pour chaque entier j > 1, et soit
K; =T,,.

1. Démontrez que les K; peuvent étre mis dans un systéme direct. Autrement dit, il existe des
homomorphismes injectives ¢; : K; — Kj;1 pour chaque entier j > 1.

2. Fixons ¢; comme dans le point précédent. Montrez que la limite directe K, comme définie
dans le Lemme 4.8.7, est un corps, et de plus il existe un plongement [, — K

3. Démontrez que K est algébrique sur [,

4. Démontrez que chaque polynéme f € F, scinde sur K. (Autrement dit K est la cloture
algébrique de I, et on le dénote d’habitude par Fp. Dans une maniére similaire, le corps de
nombres algébriques Cy4 0, en utilisant la notation du Cor 4.2.21, est la cloture algébrique
de Q. Aussi, C est la cloture algébrique de R. On étudiera plus des clotiire algébriques a la
fin du semestre.)
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Les exercices indiqués par une étoile x sont optionnels.

Exercice 1 (Corps imparfaits). (a) Soit K un corps de caractéristique p > 0 et soit a € K\ KP.
Montrer que 2P — a € K|x] est irréductible.

Soit. L = (Fy(2))[y]/ (42 — 2(z — 1)(z + 1)).
(b) Montrer que L est un corps.
(¢) Sip+# 2, montrer que L n’est pas parfait.
(d) Si p =2, montrer que L n’est pas parfait.

Exercice 2 (Extension quadratique pour car(k) = 2.).
Soit K un corps de caractéristique 2 et soit K C L une extension de degré 2.

(a) Supposons que pour tous @ € L\ K nous avons que a? € K. Montrer que:

(i) L=K(a),on a € L\K.
(ii) tout @ € L\K est inséparable.

(b) Supposons qu'il existe a € L\K tel que o ¢ K. Montrer que:

(i) L= K(B), ot B € L\K est tel que mg g (x) = 2> + 2 + c € K[z].

(ii) 7: K(B) — K(f) donné par 7|k = Idg et 7(8) = B+ 1 est un automorphisme de K (j3).
Conclure que Gal(K (8)/K) = Z/2Z.

(iii) tout o € L\K est séparable, c’est & dire que K C L est une extension séparable.

Exercice 3.
Décrivez le groupe Gal(K/Q) dans les cas suivants: K = Q(i), Q(v/7), Q(V/2), Q(w?) ou w = *7/3,

Exercice 4.
Soit K C L C FE une extension algébrique tel que K C L et L C F sont Galois. Montrer que
K C E n’est pas forcément Galois.

Indication. Envisager les extensions Q C Q(v/2) € Q(V1 + v2)

Exercice 5.
Dans les cas suivants, calculez G = Gal(Q(«, 5)/Q), et calculez le polynome minimal de o, a+ 3, -8
et a1, Pour calculer les polynémes minimaux, on s’inspirera de 'exemple 4.6.12.

Loa=V3,8=VT7
2. a:e(i“/i)’),ﬁ:—l
3. a=el"/3) g =4
4. o= elim/6) 3 — .

Exercice 6.
Let f = 2% 4+ ax + 1 € Q[x] such that a > 0, a € Z.

1. Show that f is irreducible over Q.

2. Show that f does not have 3 real roots in its splitting field (the splitting field (corps de
décomposition) is isomorphic to the subfield of C generated by the complex roots of f, and
hence it makes sense to talk about its element being real).



3. Let K = Q[x]/(f). Show that K is a degree 3 extension of Q, which is not Galois.
4. Let L be the decomposition field of f over Q. Show that Gal(L/Q) = S3

Exercice 7.
Soit K un corps de caractéristique p > 0, et @ # 0 € K tel que le polynome f(z) = 2P —z+a € K|z]
n’a pas de racines dans K. Soit L le corps de decomposition de f, et G = Gal(L/K).

1. Montrez que G = Z/pZ. Indication: Si B est une racine de f, alors B + v lest aussi, pour
tout v € IFp.

2. Montrez que le polynome f est irréductible sur K.

3. Considérons K = [F,(t). Montrez que le pélynome f(z) = 2P —z+t € K[z] n’a pas de racines
dans K.

4. Soit K et f comme dans le point précédent. Donnez le corps de décomposition de f sur K.

Exercice 8 (Correspondance de Galois).
Dans chacun des cas suivantes déterminer le groupe de Galois de 'extension donnée, déterminer
tous ses sous-groupes et tous les sous-corps de points fixes correspondants.

1. QC Q7).

2. Q C Q(v2,V3).

3. Q C Q(V2,v3,V5).

4. Q C E ol E est le corps de décomposition de t* — 22 — 1 € Q[t].

Indication. Ce corps de décomposition est de degré 8 et on montrera qu’il s’agit de Q(v/1 + v/2,1).
On explicitera alors un automorphisme d’ordre 2 et un autre d’ordre 4 qui ne commutent pas entre
eux, si bien que le groupe de Galois est le groupe dihédral d’ordre 8.

Exercice 9 (x).

Montrer que tous les groupes finis sont des groupes de Galois. Indication: on pourra trouver un
corps K, o Sy agit fidélement.

Remarque. En utilisant des techniques de géométrie algébrique et de topologie algébrique on peut
montrer que tout groupe fini est réalisé comme un groupe de Galois d’une extension de C(t).

1. Avec de la géométrie algébrique, on voit que les extensions finies de C(¢) correspondent & des
morphismes de courbes algébriques X — I% tel que si ont enléve un nombre fini de points &
]P’(lc, le morphisme devient un revétement au sens topologique.

2. IP’}C privé d’un nombre fini de points est le plan complexe C privé d’un nombre fini de points.
Par la topologie algébrique, on sait que 71 (C \ {p1,...,pn}) = F, le groupe libre sur n-
générateurs. Dés lors par la théorie des revétements, comme tout groupe fini G admet une
surjection F,, — G pour un certain n, il existe un revétement fini de C\ {p1,...,pn} avec
groupe de Galois égal a G.

3. En retournant a la géométrie algébrique, on obtient alors un morphisme de courbes algébriques
X — P{ avec groupe de Galois G et donc une extension de C(t) avec groupe de Galois G.

Si ce genre de choses vous intrigue, le rédacteur vous encourage & suivre des cours de géométrie
algébrique et de topologie algébrique, et/ou a faire des projets dans ces domaines.

Exercice 10 (x).
Soit n > 1. Calculez le groupe de Galois Gal(L,,/C(t)) ou est L,, est le corps de décomposition de

t+1
X2 _ 9 (tfl) X4 1.



