
EPFL - Printemps 2023 Prof. Zs. Patakfalvi

Anneaux et Corps Exercices

Série 1 27 Février 2023

Les exercices indiqués par une étoile ⋆ sont optionnels.
Si vous le souhaitez, vous pouvez rendre votre solution de l'exercice bonus sur la page Moodle du
cours avant le dimanche 12 mars, 18h.

Exercice 1.

Soit R un anneau. Lesquels des sous-ensembles suivants sont-ils des sous-anneaux ?

1. {A ∈ Mn(R) | aij = 0 si i > j} ⊂ Mn(R).

2. {A ∈ Mn(R) | aij = 0 si i ≤ j} ⊂ Mn(R).

3. {A ∈ Mn(R) | aij = 0 si i ̸= j} ⊂ Mn(R).

4. {a+ bi | a, b ∈ Z} ⊂ C.

5. {a+ b
√
3 | a, b ∈ Z} ⊂ R.

6.

{(
a b
a b

)
| a, b ∈ Z

}
⊂ M2(Z).

7.

{(
a b
b a+ b

)
| a, b ∈ Z/2Z

}
⊂ M2(Z/2Z).

Exercice 2.

Soit G un groupe �ni non-trivial. Montrez que l'algèbre de groupe Z[G] contient des diviseurs de
zéro.

Exercice 3.

Dans chacun des cas suivants, déterminez l'ensemble des homomorphismes d'anneaux A → B.

1. A = Z et B = Z.

2. A = Z et B = Z/nZ où n ∈ N.

3. A = Z/nZ et B = Z où n ∈ N.

4. A = Z/mZ et B = Z/nZ où m,n ∈ N.

5. A = Q et B = R.

6. A = R et B = R.

7. A = R et B = Q.

8. A = R[t] et B = R.

9. A = R et B = R[t].

Indication : Pour le point 6, montrez qu'un homomorphisme f : R → R envoie les réels positifs vers

les réels positifs, et déduisez que f préserve l'ordre usuel sur les réels.

Exercice 4.

Montrez qu'il existe au plus 4 homomorphismes d'anneaux Z[S3] → Z[Z/2Z].
Indication : si f : Z[S3] → Z[Z/2Z] est un homomorphisme, étudiez les images possibles des élé-

ments de S3.

Montrez qu'il existe exactement 4 morphismes Z[S3] → Z[Z/2Z].*

Exercice 5.

Soit n ≥ 1 un entier et (A,+, ·) un anneau tel que le groupe additif sous-jacent (A,+) est isomorphe
au groupe (Z/nZ,+). Fixons un élément a ∈ A qui génère le groupe cyclique (A,+).

1. Montrez que A est un anneau commutatif.

2. Montrez que, connaissant l'élément a2 ∈ A, il est possible de déterminer la valeur du produit
x · y pour tous éléments x, y ∈ A.



3. Montrez que a est un élément inversible.

4. Montrez que A ∼= Z/nZ en tant qu'anneaux.

Exercice 6.

Soient A un anneau commutatif et a ∈ A. Montrez que l'application

f : A[t] → A[t], p(t) 7→ p(t+ a)

est un isomorphisme d'anneaux.

Exercice 7.

Soit k un corps. Notons M(k) ⊂ {(aij)i,j∈N | ∀i, j : aij ∈ k} l'ensemble des matrices in�nies à
coe�cients dans k qui véri�ent la condition suivante : (aij) ∈ M(k) si et seulement si le support de
chaque colonne est �ni, c'est-à-dire que pour tout j0 ∈ N seulement un nombre �ni de coe�cients
aij0 sont non-nuls.

1. Montrez que l'addition et la multiplication usuelle de matrices induit une structure d'anneau
sur M(k).

2. Exhibez un élément de M(k) qui est inversible à gauche, mais pas à droite.

Exercice 8.

Prouvez les a�rmations suivantes.

1. Un anneau intègre et �ni est un corps.

2. Un anneau A dans lequel a = a2 pour tout a ∈ A, est commutatif.

L'exercice suivant était un exercice bonus de l'année 2021.

Exercice 9 (⋆).
Soit k un corps. Considérons l'anneau des séries formelles k[[t]].

1. Montrez que f(t) =
∑∞

i=0 ait
i est un élément inversible de k[[t]] si et seulement si a0 ̸= 0.

Indication : Construisez les inverses algorithmiquement. Le cas de f(t) = 1− t est instructif

pour comprendre la preuve générale.

2. Montrer que le corps des fractions de k[[t]] est donné par les séries de Laurent

k((t)) :=

{ ∞∑
i=n

ait
i | ai ∈ k, n ∈ Z

}
.

Exercice bonus 1.

Considérons l'anneau suivant pour un corps quelconque k :

A =

{(
a b
0 c

)
| a, b, c ∈ k

}
.

1. Démontrez que si I ̸= A est un idéal (bilatère/à gauche/à droite) de A, alors I est contenu
dans un des sous-ensembles suivants de A :

A1 =

{(
a b
0 0

)
| a, b ∈ k

}
et

A2 =

{(
0 b
0 c

)
| b, c ∈ k

}
.

2. Montrez que A1 et A2 sont des idéaux bilatères. Montrez que A1 et A2 avec l'addition et la
multiplication héritée de l'anneau A ne sont pas des anneaux.

3. Listez tous les idéaux (bilatères/à gauche/à droite) de A.
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Anneaux et Corps Exercices

Série 2 6 mars 2023

Les exercices indiqués par une étoile ⋆ sont optionnels.

Exercice 1.

Dans chacun des cas suivants, déterminer si l'ensemble B est un sous-anneau, un idéal à gauche,

un idéal à droite, un idéal bilatère de l'anneau A ou s'il ne possède aucune de ces propriétés:

(a) A = Z et B = 9Z;

(b) A = F11 et B = {[0], [2], [4], [6], [8], [10]};

(c) A = Z[t] et B = t2 · Z[t2];

(d) A = F2[t] et B = t2 · F2[t];

(e) A = Q et B = Z[
√
5];

(f) A = Q et B = Z[i];

(g) A = Z/15Z et B = {[0], [5], [10]};

(h) A = Mn(R), B = {M |mij = 0 si i < j};

(i) A = Z(p) =
{a

b
∈ Q | p ne divise pas b

}
et B = pnZ(p), où p est un premier et n ∈ N;

(j) A = M3(R) et B =


a b 0
c d 0
0 0 0

 | a, b, c, d ∈ R

;

(k) A = M3(R) et B =


a b 0
c d 0
0 0 e

 | a, b, c, d, e ∈ R

;

(l) A = M3(R) et B =


a a 0
b b 0
c c 0

 | a, b, c ∈ R

;

(m) A = C[S3] et B =

∑
g∈S3

λ · g | λ ∈ C

;

(n) A = C[S3] et B =

∑
g∈S3

(−1)sgn(g)λ · g | λ ∈ C

;

(o) A = C[S3] et B =
{
λ · Id+λε(123) + λε2(132) + µ(12) + µε(23) + µε2(13) | λ, µ ∈ C

}
, où ε

est une racine cubique primitive d'unité;

(p) A = C[S3] et B = {λ(123) + λ(132) | λ ∈ C}.

Exercice 2.

Soit K un corps et Mn(K) l'anneau des matrices carrées de taille n× n.

1. Soit i, j ∈ {1, . . . , n} �xés. Soit I un idéal à gauche de Mn(K) contenant la matrice eij .
Montrer que I contient aussi toutes les matrices �concentrées dans la j-ème colonne�, i.e.

(brs) avec brs = 0 si s ̸= j.

2. Montrer que le sous-ensemble des matrices concentrées dans la j-ème colonne forme un idéal

à gauche de Mn(K).

3. Montrer que les seuls idéaux bilatères de Mn(K) sont {0} et Mn(K).



Exercice 3.

Dans chacun des cas suivants, déterminer si l'a�rmation suivante est vraie ou fausse. Justi�er la

réponse par un raisonnement ou un contre-exemple.

(a) Si A est un anneau intègre, et I et J sont deux idéaux non nuls de A, alors I ∩ J est aussi

un idéal non nul de A.

(b) Si K est un corps, alors les deux seuls idéaux de K sont {0} et K.

(c) Si K est un anneau n'ayant que deux idéaux bilatères, alors tout élément non-nul de K
possède un inverse à gauche et à droite.

(d) Si K est un anneau commutatif n'ayant que deux idéaux, alors K est un corps.

(e) Si K est un anneau tel que les seuls idéaux à gauche sont {0} et K, alors tout élément non-nul

de K possède un inverse à gauche et à droite.

(f) Si K est un anneau tel que les seuls idéaux à droite sont {0} et K, alors tout élément non-nul

de K possède un inverse à gauche et à droite.

Exercice 4.

Montrer les isomorphismes suivants:

(a) K[t]/(t− a) ∼= K si K est un corps et a ∈ K.

(b) Mn(A)/Mn(I) ∼= Mn(A/I) si I est un idéal bilatère de A.

(c) Z[
√
7]/(5 + 2

√
7) ∼= Z/3Z (on pourra commencer par identi�er le noyau de l'unique homo-

morphisme d'anneaux φ : Z → Z[
√
7]/(5 + 2

√
7)).

Exercice 5.

Soit A un anneau intègre. Si f, g ∈ A[t], alors deg(f · g) = deg(f) + deg(g).

Exercice 6.

Montrer que Z[ε] ∼= Z[t]/(t2 + t+ 1), où ε est une racine cubique primitive de l'unité.

Exercice 7 (⋆).
Soit R un anneau commutatif. Déterminer (R[t])×.
Cet exercice peut être mieux compris grâce à la notion d'idéal premier qui sera vue dans quelques

semaines. On reproposera ainsi cet exercice comme exercice optionnel dans la série 4.

Exercice 8 (⋆).
The goal of this exercise is to show that Q can be exhibited as the fraction �eld of many subrings

other than Z. We begin by giving the following de�nitions.

De�nition 1 (Valuation Function).

Let K be a �eld, a discrete valuation is a function ν : K \ 0 → Z, such that

a) ν(x · y) = ν(x) + ν(y)

b) ν(x+ y) ≥ min(ν(x), ν(y))

We say that ν is non-trivial if it is not the constant 0 function.

De�nition 2 (Valuation Ring).

If ν is a discrete valuation function on the �eld K, then the valuation ring Rν is the subset

{x ∈ K|ν(x) ≥ 0} ∪ {0} of K.

Show that for a discrete valuation function ν on K we have:



1. ν(1) = 0, ν(−1) = 0.

2. Rν is a subring of K.

3. K is the fraction �eld of Rν .

From now on, K = Q, that is the �eld of rational numbers. Show that

4. For every x ∈ Z we have ν(x) ≥ 0.

5. If ν(p) = 0 for all primes p, then ν is trivial.

6. ν(p) ̸= 0 can happen for at most one (positive) prime p.

7. If ν(p) ̸= 0, then ν is given by ν(pia/b) = i · c, where a and b are prime to p and c is a �xed

positive integer. Conversely, show that the above formula is a discrete valuation (called the

p-adic valuation for c = 1, which we denote by νp).

8. Show that the valuation ring of νp is not equal to Z ⊆ Q.
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Anneaux et Corps Exercices

Série 3 13 mars 2023

Les exercices indiqués par une étoile ⋆ sont optionnels.

Si vous le souhaitez, vous pouvez rendre votre solution de l'exercice bonus sur la page Moodle du

cours avant le dimanche 26 mars, 18h.

Exercice 1.

Dans chacun des cas suivants, déterminer si l'a�rmation suivante est vraie ou fausse. Justi�er la

réponse par un raisonnement ou un contre-exemple.

1. L'image d'un idéal bilatère par un homomorphisme d'anneaux est encore un idéal bilatère.

2. La préimage d'un idéal bilatère par un homomorphisme d'anneaux est encore un idéal bilatère.

Exercice 2.

Considérons l'homomorphisme

ξp :
Z[t] → Fp[t]∑n
i=0 ait

i 7→
∑n

i=0[ai]t
i

qui envoye un polynôme à coe�cients dans Z au polynôme obtenu par réduction des coe�cients

mod p. Montrez que la préimage ξ−1
p (I) d'un idéal I ∈ Fp[t], I ̸= 0, I ̸= Fp[t] n'est pas principal.

Exercice 3.

Cet exercice revoit des notions déjà connues dans le language des anneaux et des idéaux.

Soient m et n deux entiers naturels et (m) et (n) les deux idéaux principaux de Z correspondants.

1. Identité de Bézout. Soit d le pgdc de m et n. Montrer qu'il existe des entiers relatifs a, b
tels que am+ bn = d.

2. Identi�er les idéaux (m) · (n), (m) ∩ (n) et (m) + (n).

Exercice 4.

Soit f : A → B un homomorphisme d'anneaux.

1. Montrer que car(B) divise car(A), mais qu'en général car(B) ̸= car(A).

2. Montrer que si f est injectif alors car(B) = car(A).

3. Montrer que si A est commutatif et car(A) = p, un nombre premier, alors l'application

F : A → A dé�nie par F (a) = ap est un homomorphisme d'anneaux.

4. Calculer la caractéristique de l'anneau Z[i]/(i− 2).

Exercice 5.

Soit A = Z/250Z.

1. Trouver tous les diviseurs de zéro et tous les éléments inversibles de A.



2. Trouver tous les idéaux de A qui contiennent l'élément [50]250. (Ce qu'on veut dire par cette

notation c'est l'image de 50 dans Z/250Z.)

Exercice 6.

Soit A le sous-anneau de M2(Z) des matrices de la forme

(
a c
0 b

)
où a, b, c ∈ Z. Montrez que le

sous-ensemble K des matrices pour lesquelles 5 | a et 11 | b est un idéal bilatère et construire un

isomorphisme (en deux temps) A/K → Z/5Z× Z/11Z.

Exercice 7. 1. Montrer que C[x, y]/(x) ∼= C[y] (donner la forme explicite d'un isomorphisme).

2. Construire un homomorphisme d'anneaux C[x, y] → C[x]× C[y] dont le noyau est (xy).

3. Identi�er l'image de cet homomorphisme et en conclure que C[x, y]/(xy) est isomorphe au

sous-anneau de C[x]×C[y] formé des couples de polynômes (p(x), q(y)) tels que p(0) = q(0).

Exercice 8 (⋆).
Let p ∈ N be a prime number, νp be the p-adic valuation on Q, and let R be the valuation ring of

νp. (See, Exercice 8, Série 2)

1. Show that every q ∈ Q \ {0} with νp(q) = 0 is an invertible element of R.

2. Show that (0) and (pn) for n ∈ N is a complete list of ideals of R, and that all ideals in this

list are di�erent.

3. Show that R/(pn) ∼= Z/(pn)

4. Denote by Rp the valuation ring we obtain for di�erent choices of p. Show that the di�erent

Rp's as well as Z are pairwise non-isomorphic rings (here we ask for isomorphism as abstract

rings, so not as subrings of Q).

Exercice bonus 2.

Dé�nition. Un anneau commutatif A est dit connexe si pour tout a, b ∈ A tel que

a+ b = 1 et ab = 0

alors exactement l'un des deux éléments est nul.

1. Montrer qu'un anneau commutatif est connexe si et seulement si A possède exactement deux

idempotents.

On dit que e ∈ A un idempotent est un idempotent minimal si eA est un anneau connexe

non-nul avec l'addition et la multiplication venant de A avec e comme élément neutre. On

pose

π0(A) = {e ∈ A | e est un idempotent minimal}

Remarquer que A est connexe si et seulement si π0(A) = {1}. Remarquer qu'un anneau

connexe est toujours non-nul.

2. Soit (Ai)
n
i=1 une collection �nie d'anneaux connexes. Montrer que

|π0(
n∏

i=1

Ai)| = n.

3. Montrer que

|π0(Q[Z/4Z])| = 3.
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Anneaux et Corps Exercices

Série 4 20 mars 2023

Les exercices indiqués par une étoile ⋆ sont optionnels.

Exercice 1.

Dans chacun des cas suivants, déterminer si l'idéal proposé est premier ou maximal.

(a) (0) ⊂ Z.

(b) (t) ⊂ Z[t].

(c) (t) ⊂ R[t].

(d) (101) ⊂ Z[t].

(e) (42) ⊂ Z[t].

(f) (t2 − 2) ⊂ Z[t].

(g) (t2 − 2) ⊂ R[t].

(h) (t+ 5, 10) ⊂ Z[t].

(i) (t+ 5, 11) ⊂ Z[t].

(j) (t2 + 1, 2) ⊂ Z[t].

Indication : Pour prouver qu'un idéal bilatère I ⊂ A est premier, il su�t de montrer que le quotient

A/I est intègre.

Exercice 2. 1. Discuter les systèmes suivants :

{
x ≡ 2 (mod 3)
x ≡ 7 (mod 12)

et

{
x ≡ 2 (mod 3)
x ≡ 8 (mod 12)

2. Montrer que Z/36Z n'est pas isomorphe à Z/3Z× Z/12Z.

Exercice 3. 1. Soit f : A↠ B un homomorphisme d'anneaux surjectif tel que ker f = (a1, . . . , am)
pour certains a1 . . . , am ∈ A. Soit aussi I = (b1, . . . , bn) ⊆ B un idéal à gauche. Si c1, . . . , cn ∈
A sont tels que f(ci) = bi pour chaque i, montrez que f−1(I) = (a1, . . . , am, c1, . . . , cn).

2. Soit k un corps, a, b ∈ k et considérons les homomorphismes d'anneaux k-linéaires

evb : k[x, y] → k[x], x 7→ x, y 7→ b et eva : k[x] → k, x 7→ a

et

ξ := eva ◦ evb : k[x, y] −→ k.

Montrez que ker ξ = (x− a, y − b) et que ker ξ est un idéal maximal de k[x, y].

On peut en fait montrer que si k est algébriquement clos, alors tous les idéaux maximaux de

k[x, y] sont de cette forme. C'est une conséquence du Nullstellensatz d'Hilbert.

Exercice 4.

Dans cet exercice, nous étudions les anneaux Z[i]/(p) pour p un nombre premier. Nous écrirons

Fp = Z/pZ.

1. Montrez que Z[i]/(p) ∼= Fp[t]/(t
2 + 1).

Indication : Combinez l'exemple 2.4.19 et le quotient en deux temps.

2. Pour p = 5, montrez que Z[i]/(5) ∼= F5 × F5.

Indication : Le théorème des restes chinois peut être utile.

3. Sous quelles conditions sur p a-t-on un isomorphisme d'anneaux Z[i]/(p) ∼= Fp × Fp ?

Indication : Si besoin, vous pouvez admettre l'existence d'une clôture algébrique de Fp.

Exercice 5.

Soient A et B deux anneaux commutatifs. Quels sont les idéaux de A×B ? Quels sont les idéaux

premiers de A×B ?



Exercice 6 (⋆).
Soit R un anneau commutatif. Déterminer (R[t])×.
On pourra se ramener au cas intègre en quotientant par des idéaux premiers de R.

Exercice 7 (⋆ Introduction aux opérateurs di�érentiels).

Soit A un anneau commutatif. Notons que s'il existe un homomorphisme d'anneaux injectif K ↪→ A
où K est un corps, alors A a la structure d'un K-espace vectoriel. D'ailleurs, pour V un K-espace

vectoriel,

EndK(V ) := {ϕ : V → V | ϕ est K linéaire}

est un anneau, avec l'addition et la composition de fonctions comme opérations. On dé�nit le

crochet de Lie sur EndK(V ) de la manière suivante :

EndK(V )× EndK(V ) → EndK(V )
(ϕ, ψ) 7→ [ϕ, ψ] := ϕ ◦ ψ − ψ ◦ ϕ

Supposons maintenant que A est un anneau commutatif tel que K ↪→ A où K est un corps.

Nous désignons par ma ∈ EndK(A) la multiplication par un élément a ∈ A,

ma :
A → A
x 7→ ax

.

Nous dé�nissons les opérateurs K-di�érentiels sur A de degré au plus n inductivement par :

� D≤−1(A) = {m0},

� D≤0(A) = {ma | a ∈ A},

� pour n > 0, posons D≤n(A) = {ψ ∈ EndK(A) | [ψ,ma] ∈ D≤n−1(A) ∀a ∈ A}.

Remarquez que D≤n(A) ⊆ D≤n+1(A). On dé�nit

D(A) :=
⋃

n≥−1

D≤n(A) ⊂ EndK(A).

Montrer que D(A) est un sous-anneau de EndK(A). On remarque que K ∋ λ 7→ mλ ∈ D≤0(A) est
le plongement de K dans D(A) qui donne la structure d'espace vectoriel sur K.

A partir de maintenant, nous considérons le cas A = K[x].

1. Montrer que le crochet de Lie

D(K[x])×D(K[x]) → D(K[x])
(F,G) 7→ [F,G]

est K-bilinéaire.

2. Soit ∂
∂x ∈ EndK(K[x]) dé�ni par ∂

∂x(x
i) = i · x(i−1) pour tout i ∈ N. Montrez que

[
∂
∂x ,mx

]
=

m1.

3. Prenons ∂
∂x comme au-dessus. Montrez que

[
∂
∂x ,mxj

]
= j ·mx(j−1) pour j ∈ N.

4. Prenons ∂
∂x comme au-dessus. Montrez que ∂

∂x ∈ D≤1(K[x]).



EPFL - Printemps 2023 Prof. Zs. Patakfalvi

Anneaux et Corps Exercices

Série 5 27 mars 2023

Les exercices indiqués par une étoile ⋆ sont optionnels.
Si vous le souhaitez, vous pouvez rendre votre solution de l'exercice bonus sur la page Moodle du
cours avant le dimanche 9 avril, 18h.

Exercice 1. (a) Soit k un corps. Trouver tous les idéaux de l'anneau quotient k[t]
/
(t2). Déter-

miner lesquels sont premiers et lesquels sont maximaux.

(b) Soit I ⊂ M ⊂ A deux idéaux d'un anneau A et soit π : A → A
/
I l'homomorphisme quotient.

Montrer que l'idéal π(M) est maximal dans A
/
I si et seulement si M est maximal dans A.

Exercice 2 (Fonctions polynomiales.).
Soit A un anneau commutatif et F(A) l'anneau des fonctions φ : A → A où la somme et le pro-
duit sont dé�nis dans l'ensemble d'arrivée (par exemple (φ · ϕ)(a) = φ(a) · ϕ(a)). On considère
l'évaluation comme application ev : A[t] → F(A). L'évaluation d'un polynôme f est donc la fonc-
tion polynomiale ev(f) dé�nie par ev(f)(a) = eva(f) = f(a).

(a) Montrer que l'évaluation est un homomorphisme d'anneaux.

(b) Soit p est un nombre premier. Montrer que l'évaluation n'est pas injective lorsque A = Fp.
[Indication: Petit Théorème de Fermat.]

(c) Montrer que l'évaluation est injective pour A = R.

Exercice 3.

Soit A un anneau commutatif. On note nil(A) pour les éléments nilpotents de A. Soit k un corps.

1. Déterminer nil(A), où A = k[x, y]
/
(x2y3).

2. Écrire nil(A) comme l'intersection d'idéaux premiers p1, . . . , pm, nil(A) = ∩m
i=1pi, pour m

minimal.

3. Déterminer les premiers minimaux de A.

Exercice 4. (a) Montrer que Fp[Z/pZ] ∼= Fp[x]/(x
p − 1).

(b) Montrez que car(Fp[Z/pZ]) = p. En particulier on a Fp ↪→ Fp[Z/pZ]

(c) Montrer que Fp[Z/pZ] n'est pas un produit des 2 anneaux non-nuls.

Exercice 5.

L'anneau Z[
√
5].

1. Montrer que la norme N : Z[
√
5] → Z dé�nie par N(a + b

√
5) = a2 − 5b2 est une fonction

multiplicative (donc que N(xy) = N(x)N(y) � noter que si l'on dé�nit a+ b
√
5 = a − b

√
5,

alors N(x) = xx) et que a+ b
√
5 est inversible si et seulement si N(a+ b

√
5) = ±1.

2. Montrer que 9 + 4
√
5 est inversible et en déduire que (Z[

√
5])× est in�ni.

3. Montrer qu'il n'existe aucun élément de norme 2 ou −2, si bien que tout élément de norme 4
est irréductible.

4. Trouver deux décompositions de 4 en produit d'irréductibles dans Z[
√
5].

5. L'idéal (3 +
√
5) est-il premier?



Exercice 6.

Soit d > 1. On note A = Z[i
√
d]. On note N(a+ i

√
d) = a2 + db2.

1. Lister les éléments x ∈ A tel que N(x) ≤ d+ 1.

2. Montrer que i
√
d, 1 + i

√
d et 1− i

√
d sont irréductibles.

3. Si d+ 1 n'est pas premier dans Z, alors A n'est pas factoriel.

4. Si q = d+1 est premier dans Z alors celui-ci admet une factorisation unique en irréductibles
dans A.

Exercice 7 (⋆).
Soit A = F [G], où F est un corps et G est un groupe.

(a) Montrer que
∑
g∈G

agg ∈ Z(A) si et seulement si g → ag est constant sur les classes de conju-

gaison.

(b) Fixons A = C[S3] et ε une racine primitive cubique d'unité. Soit

e1 =
1

6

∑
g∈S3

g, e2 =
1

6

∑
g∈S3

sgn(g)g et e3 = f1 + f2 ∈ A,

où f1 =
Id+ε(123)+ε2(132)

3 et f2 =
Id+ε2(123)+ε(132)

3 .

Montrer que A ∼= Ae1 ×Ae2 ×Ae3.

(c) Montrer que Ae1 ∼= C et Ae2 ∼= C.

(d) Montrer que Ae3 ∼= M2(C).

Exercice bonus 3. Soit p un nombre premier. On dit qu'un anneau commutatif est de caractéris-

tique p si le morphisme Z → A envoie p sur zéro et donc factorise par Fp → A. Dans cet exercice,

on travaille uniquement avec des anneaux non-nuls commutatifs de caractéristique p.
On note F : A → A le morphisme de Frobenius a 7→ ap. Voir Série 3, exercice 4.3.

1. Montrer que le morphisme Fp → A est injectif.

2. Montrer que AF := {a ∈ A | F (a) = a} est un sous-anneau.

3. Montrer que si A = AF alors nil(A) = 0.

4. Montrer que si A est intègre et A = AF , alors Fp → A est un isomorphisme.

5. Montrer que si A = AF , alors tout idéal premier est maximal.

6. Montrer que π0(A) = π0(A
F ). (Voir exercice bonus 2.)
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Les exercices indiqués par une étoile ⋆ sont optionnels.

Exercice 1.

Entiers de Gauss.

1. L'anneau Z[i] est euclidien avecN(a+ib) = |a+ib|2. (Exemple 3.7.4.(3)) Pour a, b ∈ Z[i], a ̸= 0
on appelle une égalité de la forme b = aq + r, avec q, r ∈ Z[i] et N(r) < N(a) une division

avec reste. E�ectuer la division avec reste de 5 + 5i par 4 + 2i et montrer que quotient et

reste de la division dans Z[i] ne sont pas uniques.

2. Les entiers de Gauss 2, 3 et 5 sont-ils irréductibles dans Z[i]? Et 2i et 2− 3i?

3. Montrer que le quotient Z[i]/(3) est un corps de cardinalité 9.

4. ⋆ Soit p un nombre premier. Montrer que les énoncés suivants sont équivalents.

(a) Il existe a, b ∈ Z avec p = a2 + b2.

(b) p = 2 ou alors p ≡ 1 mod 4.

Exercice 2.

Entiers d'Eisenstein. Soit ω = e
2πi
3 et Z[ω] l'anneau des entiers d'Eisenstein.

1. Montrer que N(a+ bω) = a2−ab+ b2 coïncide avec le module au carré dans le plan complexe

de a+ bω.

2. Montrer que N(a+ bω) = a2 − ab+ b2 munit Z[ω] d'une fonction euclidienne. On pourra par

exemple montrer que le point milieu d'une maille du réseau (a+ bω) se trouve à une distance

strictement plus petite que
√
N(a+ bω) de chacun des quatre sommets de cette maille.

3. Trouver les éléments inversibles de Z[ω] (quelle est leur norme?).

Exercice 3.

L'anneau Z[i
√
5].

1. Montrer que le polynôme 3 + 2t + 2t2 est irréductible sur Z[i
√
5], mais pas sur le corps des

fractions de Z[i
√
5]

2. Généralisation. Soient a, b, c, d des éléments irréductibles non associés d'un anneau com-

mutatif et intègre A tels que ab = cd. Calculer (a + ct)(b + ct) et conclure que le polynôme

d+ (a+ b)t+ ct2 est irréductible sur A, mais pas sur son corps des fractions K.

3. Montrer que la norme n'est pas une fonction euclidienne sur Z[i
√
5].

Exercice 4.

En s'inspirant de l'exemple 3.7.4.(3), montrer que Z[i
√
2] est Euclidien.

Exercice 5.

Idéaux dans un anneau de polynômes.

1. Décrire tous les idéaux premiers et tous les idéaux maximaux de C[t] et de R[t]. (Without

proof, we note that irreducible polynomials of degree higher than 2 do not exist in R[t].)

2. Soit K un corps et a ∈ K. Montrer que (t − a) est un idéal premier de K[s, t], mais non

maximal.



3. Montrer que l'anneau quotient C[s, t]/(s− t2) est principal

4. Polynôme d'interpolation de Lagrange. Soit K un corps, a1, . . . , an des éléments de K
distincts et b1, . . . , bn ∈ K. Montrer qu'il existe un polynôme f ∈ K[t] de degré au plus n− 1
tel que f(ai) = bi pour tout 1 ≤ i ≤ n.

Exercice 6.

Trouver tous les idéaux de Z[i] qui contiennent l'idéal (5) et tous les idéaux de Z[i] qui contiennent
l'idéal (2).

Exercice 7.

Soit A un anneau intègre et soit S ⊆ A multiplicativement clos, c'est a dire 1A ∈ S, et ∀a, b ∈ S ⇒
a · b ∈ S. On dé�nit S−1A := {a

b ∈ Frac(A) | b ∈}.

1. Montrer que S−1A est un anneau (un sous-anneau de Frac(A)).

2. Montrer que si p est un idéal premier de A, alors S := A\p est multiplicativement clos. Dans

ce cas, on dénote Ap := S−1A = {a
b ∈ Frac(A) | b ∈ S}, la localisation de A en p.

3. Considerons l'idéal premier (2) de Z. Quels sont les idéaux maximaux et les ideaux premiers

de Z(2)?

4. Soit f ∈ A. Le sous-ensemble S := {1, f, f2, f3 . . .} est multiplicativement clos. Dans ce cas,

on dénote Af = S−1A = {a
b ∈ Frac(A) | b ∈ S}. Quels sont les éléments irréductible de Z2?
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Les exercices indiqués par une étoile ⋆ sont optionnels.
Si vous le souhaitez, vous pouvez rendre votre solution de l'exercice bonus sur la page Moodle du
cours avant le dimanche 30 avril, 18h.

Exercice 1. 1. Soit A un anneau Euclidien. Prouvez que l'algorithme d'Euclide peut être adapté
pour calculer les pgdc dans A.

2. E�ectuez la division avec reste de 27−23i par 8+ i dans Z[i], et montrez que ces deux entiers
de Gauss sont premiers entre eux.

3. Calculez un pgdc de 11 + 3i et de 1 + 8i dans Z[i]. Ce pgdc est-il unique ?

4. Écrivez les idéaux (11 + 3i) et de (1 + 8i) comme un produit d'idéaux premiers de Z[i].

Exercice 2.

Notons C := C0([0, 1];R) l'anneau des fonctions réelles continues sur l'intervalle [0, 1] (muni des
opérations d'addition et de multiplication de fonctions).

1. Pour x ∈ [0, 1], écrivons Ix := {f ∈ C | f(x) = 0}. Montrez que Ix est un idéal maximal.

2. Pour x ̸= y, montrez que Ix ∩ Iy n'est pas un idéal premier.

3. Soit I ⊂ C un idéal. Supposons que I n'est contenu dans aucun des Ix. Montrez que I = C.
Indication : la propriété de Heine�Borel sera utile.

4. Montrez que tout idéal maximal de C est égal à Ix pour un certain x ∈ [0, 1].

Exercice 3.

Considérons les polynômes f = x3 − 2x2 + x− 2 et g = x4 − 2x3 + 7x− 14 dans Z[x].

1. Montrez que le pgdc de f et de g dans Z[x] vaut x−2 en écrivant f = (x−2)f0 et g = (x−2)g0
dans Z[x].

2. Pour un premier p, notons f̄ et ḡ la réduction de f et g dans Fp[x]. Calculez le pgdc de f̄ et
de ḡ pour chaque p.
Indication : Remarquez que les étapes de l'algorithme d'Euclide dé�nissables dans Z[x] sont
des étapes de l'algorithme d'Euclide dans Fp[x] après réduction modulo p.

Exercice 4. 1. Soit d > 0 un entier positif. Montrez que Q[i
√
d] est un corps de fractions de

Z[i
√
d].

2. Montrez que x3 − 2i est irréductible dans (Z[i])[x].
Indication : Utilisez le lemme de Gauss, et gardez en tête qu'un élément de Q[i] peut s'écrire
comme a+bi

n avec a, b, n ∈ Z.



Exercice 5.

Soit k un corps.

1. Montrez que le sous-anneau k[t2, t3] ⊂ k[t] n'est pas factoriel.

2. De même, montrez que k[t2, t5] et k[t3, t7] ne sont pas factoriels.

3. Montrez que k[x, y]/(x2 − y3) n'est pas factoriel.
Indication : Montrez que cet anneau est isomorphe à l'un des anneaux considérés précédem-

ment.

Exercice 6.

Considérons l'anneau de matrices

A :=

{(
n x
0 y

)
| n ∈ Z, x, y ∈ Q

}
ainsi que le sous-ensemble

I :=

{(
0 x
0 0

)
| x ∈ Q

}
⊂ A.

1. Montrez que I est un idéal bilatère, que A/I ∼= Z×Q et que A/I est Noethérien.

2. Montrez que I est un idéal à droite minimal (c'est-à-dire qu'il n'existe pas d'idéal à droite J
tel que 0 ⊊ J ⊊ I).

3. Montrez que A est Noethérien à droite.
Indication : Etant donnée une chaîne croissante d'idéaux, considérez son image par l'application

quotient A → A/I.

Exercice 7. 1. Montrez que x2 + y2 est irréductible dans Q[x, y], mais pas dans C[x, y].

2. Montrez que x3 − (y7 + 2y5 + y3) est irréductible dans Q[x, y].

Exercice 8.

Soit (B, σ) un anneau euclidien. Montrez que si b ∈ B non-nul est tel que σ(b) = 0, alors b ∈ B×.

Exercice bonus 4. Soit A = Z[i
√
d] pour un d ≥ 1. Pour un a+ bi

√
d ∈ Z[i

√
d] on pose la norme

N(a+ bi
√
d) = a2 + db2

1. Soit x ∈ A non-nul. Montrer que
|A/(x)| = N(x).

(C'est à dire que la cardinalité du quotient est égale à la norme de x.)

Remarquer que A est un groupe abélien libre de rang 2 et que le quotient A/(x) est égal au

quotient de A par l'image de l'application linéaire ·x : A → A, et utiliser la forme normale de

Smith pour conclure.

Dans le point 2. on considère (B, σ) un anneau euclidien quelconque qui n'est pas un corps.

2. Montrer qu'il existe un b ∈ B non-nul et non inversible tel que

|B/(b)| ≤ |B×|+ 1.

3. Montrer que si d > 3, alors A n'est pas Euclidien. (Il ne s'agit pas de montrer que N n'est
pas une fonction Euclidienne pour A, mais qu'il n'en existe aucune.)



EPFL - Printemps 2023 Prof. Zs. Patakfalvi

Anneaux et Corps Exercices

Série 8 24 avril 2023

Les exercices indiqués par une étoile ⋆ sont optionnels.

Exercice 1 (Échau�ement).
Soit ϕ : A → B un homomorphisme d'anneaux. Montrer que:

(a) Si a ∈ A inversible, alors ϕ(a) est inversible.

(b) Si a, b ∈ A tel que a ∼ b, alors ϕ(a) ∼ ϕ(b).

(c) Si a ∈ A irréductible, déterminer si ϕ(a) est irréductible ou non.

Exercice 2. (a) Soit A un anneau intègre. Si a1, . . . , an ∈ A sont des racines distinctes de f(x) ∈

A[x], montrer que
n∏

i=1

(x− ai) divise f(x).

(b) Soient p et q deux nombres premiers distincts dans Z. Montrer que le polynôme t2 − t de
(Z/pqZ)[t] possède quatre racines distinctes a1, a2, a3, a4 ∈ Z/pqZ, mais que (t − a1)(t −
a2)(t− a3)(t− a4) ne divise pas t2 − t.

(c) Soient f, g ∈ Z[t] des polynômes primitifs. Montrer que si f divise g dans Q[t], alors f divise
g dans Z[t].

(d) Décomposer les polynômes t4 + 1 et t8 − 1 en facteurs irréductibles dans les anneaux C[t],
R[t], Q[t], Z[t], F2[t] et F11[t0].

Exercice 3 (Polynômes irréductibles I). (a) Montrer que 2
9x

5+ 5
3x

4+x3+ 1
3 est un polynôme

irréductible de Q[x].

(b) Montrer que x4+ [2]5 est un polynôme irréductible de F5[x] et conclure que x4+15x3+7 est
un polynôme irréductible de Q[x].

(c) Montrer que x2 + y2 + 1 est un polynôme irréductible de R[x, y].

(d) Montrer que x2 + y2 + [1]2 n'est pas un polynôme irréductible de F2[x, y].

(e) Montrer que y4 + x3 + x2y2 + xy + 2x2 − x+ 1 est un polynôme irréductible de Q[x, y].

(f) Montrer que 4x3 + 120x2 + 8x− 12 est un polynôme irréductible de Q[x].

(g) Montrer que t6 + t3 + 1 est un polynôme irréductible de Q[t].

(h) Montrer que y4 + xy3 + xy2 + x2y + 3x2 − 2x est un polynôme irréductible de Q[x, y].

Exercice 4 (Polynômes irréductibles II).

Soit f(t) = t4 + 4t3 + 3t2 + 7t− 4 dans Z[t].

(a) Montrer que π2(f), la réduction modulo 2, n'est pas irréductible.

(b) Montrer que π3(f), la réduction modulo 3, n'est pas irréductible.

(c) Utiliser les décompositions des parties précédentes pour conclure néanmoins que f est irré-
ductible.
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Les exercices indiqués par une étoile ⋆ sont optionnels.

Si vous le souhaitez, vous pouvez rendre votre solution de l'exercice bonus sur la page Moodle du

cours avant le dimanche 14 mai, 18h.

Exercice 1.

Soit K un corps et L une extension quadratique, i.e. [L : K] = 2.

1. Montrez que toute extension de K de degré 1 est égale à K.

2. Montrez qu'il existe un élément α ∈ L tel que L = K(α).

3. Soit K de caractéristique di�érente de 2. Montrez qu'il existe un élément δ ∈ L avec δ2 =
d ∈ K tel que L = K(δ) = K(

√
d).

4. Soit M une extension de K et δ ∈ M \ K un élément avec δ2 ∈ K. Montrez que K(δ) est

une extension quadratique de K.

Exercice 2.

Soient a, b ∈ Z.

1. Quand est-ce que les corps Q(
√
a) et Q(

√
b) sont isomorphes en tant que Q-espaces vectoriels?

2. Quand est-ce que les corps Q(
√
a) et Q(

√
b) sont isomorphes en tant que corps?

Exercice 3. 1. Soit L une extension de K avec [L : K] impair. Montrer que K(α) = K(α2)
pour tout α ∈ L \K.

2. Soient p, q ∈ Z deux nombres premiers distincts. Montrez que
√
p /∈ Q(

√
q) et

√
q /∈ Q(

√
p).

Calculez [Q(
√
p,
√
q) : Q].

3. Soit L une extension de K et soient α, β ∈ L des éléments tels que [K(α) : K] = m et

[K(β) : K] = n sont premiers entre eux. Montrer que [K(α, β) : K] = mn.

Exercice 4.

Soit K = Q(
√
3 +

√
7). Montrez que [K : Q] = 4.

Exercice 5.

Dans tous les cas suivants, calculez le degré de l'extension.

1. [R(e2iπ/p) : R] pour p un nombre premier;

2. [Q(α) : Q] pour α une racine de t42 + t41 + · · ·+ t2 + t+ 1;

3. [Q(i, 5
√
13) : Q];

4. [F3(α) : F3] où α est une racine de t4 − t3 − t2 − t − [1]3 ∈ F3[t] (disons que α vit dans le

corps de décomposition de ce polynôme sur F3 pour �xer les idées) La réponse peut changer

en fonction de la racine considérée.

5. [Q(
√

14 + 6
√
5,
√
3) : Q] (on pourra calculer (3 +

√
5)2 pour commencer);



6. [Q( 6
√
7) : Q(( 6

√
7)2) ];

7. [F2(α) : F2(α
2) ] où α est une racine de t3 + t+ [1]2 ∈ F2[t].

Exercice 6.

Soit f = x7 − y5 ∈ C[x, y]. Le but de cet exercice est de démontrer que f est irréductible dans

C[x, y]. Soit K = C(y) et L le corps de décomposition de f sur K. Soit α une racine de f dans L,

et β = α3

y2
.

1. Montrez que [K(β) : K] = 7. Indication: Trouvez un polynôme sur K dont β est une racine.

2. Montrez que K(β) = K(α).

3. Déduisez que f est irréductible dans C[x, y].

Exercice bonus 5. Soit n ≥ 1 un entier. On dit qu'une racine n-ième de l'unité ξ ∈ C est

primitive si n est le plus petit entier tel que ξn = 1. On pose,

Φn(t) =
∏

ξ racine
primitive
n-ième

de l'unité

(t− ξ) ∈ C[t].

1. Montrer que tn − 1 =
∏

d|nΦd(t) et que Φn(t) ∈ Z[t].

2. Soit p un nombre premier et n ≥ 1. En utilisant le critère d'Eisenstein et le changement de

variable t 7→ t+ 1, montrer que Φpn(t) est irréductible dans Z[t]. (c.f. exemple 3.9.4.(2))

3. Soit n ≥ 1 un entier et p un premier qui est premier avec n. On note ξn une racine primitive

n-ième de l'unité. Soit m(t) ∈ Q[t] le polynôme minimal de ξn. Montrer que m(t) ∈ Z[t].
Montrer que si ξ est une racine de m(t), alors ξp est une racine de m(t). En déduire que

m(t) = Φn(t).

Indication: on pourra montrer par l'absurde que si ξp n'est pas une racine de m(t) alors tn−1
a une racine double modulo p, ce qui est absurde comme (n, p) = 1 (Voir Proposition 4.4.10).

4. Montrer qu'il existe une in�nité de premiers p tel que Φn(t) a une racine dans Fp[t]. En

déduire qu'il existe une in�nité de premiers p tel que p ≡ 1 mod n.

Indication: pour tout m su�samment grand si un nombre premier p divise Φn(m!) alors

p > m.

Exercice 7 (⋆).
Calculer π0(Q[Z/nZ]).
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Exercice 1.

Soient K ⊂ L ⊂ F des extensions de corps. Si K ⊂ L et L ⊂ F sont algébriques, montrez qu'il en

est de même pour K ⊂ F .

Exercice 2.

Soit n > 0 un entier positif. Montrez que cos(2π/n) et sin(2π/n) sont des nombres algébriques sur

Q.

Exercice 3.

Soit Q(x) le corps de fractions de l'anneau polynomial Q[x], et considérons

s :=
x3 + 2

x
∈ Q(x).

On a les extensions successives Q ⊂ Q(s) ⊂ Q(x).

1. Montrez que Q(x) est une extension algébrique de Q(s).

2. Calculez [Q(s) : Q] et [Q(x) : Q(s)].

Exercice 4.

Soit ξ = e
2πi
n pour un entier n > 2. Démontrez que les corps de décomposition de xn − 2 et de

x2n − 3xn + 2 sur Q sont les mêmes, et ils sont les mêmes aussi que le sous-corps de C engendré

par ξ et
n
√
2.

Exercice 5. 1. Montrez qu'il existe que 2 polynômes irréductibles de degré 3 sur F2.

2. Soit f et g ces deux polynômes. Montrez que tous les deux f et g obtient 3 racines distinctes

dans K = F2[x]/(f) .

3. Montrez que les corps de décomposition de ces 2 polynômes sont les mêmes, et il est isomorphe

à K = F2[x]/(f).

Exercice 6. 1. Considérons la situation suivante:

� ϕ : K → K ′ est un isomorphisme des corps,

� K ⊆ L et K ′ ⊆ L′ sont deux extensions de corps

� L = K(α) et L′ = K(α′) avec α et α′ algébriques sur K et K ′ respectivement

� si ξ : K[x] → K ′[x] est l'homomorphisme induit par ϕ, alors ξ(mα,K) = mα′,K′

Démontrez qu'il existe une extension unique de ϕ à un isomorphisme η : L → L′ tel que
η(α) = α′

2. Démontrez que K(x)[
√
x+ 1] ∼= K(x)[

√
x+ 2]

3. Démontrez que K(x, y)[
√
xy] ∼= K(x, y)[

√
x(x+ y)]
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Exercice 1.

Soit α ∈ F×
27 un élément di�érent de 1 et −1. Montrer que soit α, soit −α, est un générateur du

groupe cyclique F×
27.

Exercice 2.

Fixons un nombre premier p.

1. Pour r > 0, énumérez les sous-corps de Fpr . Si s divise r, énumérez les corps intermédiaires

Fps ⊆ L ⊆ Fpr .

2. Montrez que l'ensemble {0 ̸= a ∈ F16 | F2(a) = F16 et ⟨a⟩ ̸= F×
16} possède 4 éléments. Ici ⟨a⟩

désigne le sous-groupe de F×
16 généré par l'élément a ̸= 0.

Indication : Etudiez la structure du groupe F×
16.

3. Plus généralement, montrez que l'ensemble {0 ̸= a ∈ Fp4 | Fp(a) = Fp4 et ⟨a⟩ ̸= F×
p4
} possède

p4 − p2 − φ(p4 − 1) éléments, où φ est la fonction de comptage d'Euler.

Exercice 3 (Corps de décomposition sur Fp).

Fixons un nombre premier p > 0 et un polynôme f(x) ∈ Fp[x] irréductible de degré d.

1. Montrez que f divise xp
d − x dans Fp[x].

Indication : A l'aide du Théorème 3.4.17, montrez que Fpd contient une racine de f .

2. Montrez que f(x) se scinde sur Fpd .

3. Montrez que f n'a pas de racines multiples.

4. Soit g ∈ Fp[x] un polynôme irréductible de degré d qui n'est pas associé à f . Montrez que f
et g n'ont pas de racines en commun.

5. Montrez que

xp
d − x =

∏
h unitaire irréd.

dans Fp[x]
deg h divise d

h.

Exercice 4 (Polynômes irréductibles sur Fp).

Fixons un nombre premier p > 0. Nous allons calculer le nombre Nd de polynômes irréductibles

unitaires d'un degré �xé sur Fp. (Rappelons qu'un polynôme est unitaire si son coe�cient dominant

vaut 1).

1. Montrez que

d ·Nd =

∣∣∣∣∣∣∣Fpd \
⋃

L ⫋ F
pd

L

∣∣∣∣∣∣∣
où L parcourt l'ensemble des sous-corps strictement inclus dans Fpd .

Indication : Utilisez les résultats de l'Exercice 3 et le Théorème fondamental des corps �nis.



2. Montrez que

N2 =
p2 − p

2
, N3 =

p3 − p

3
, N4 =

p4 − p2

4
, N5 =

p5 − p

5
, N6 =

p6 − p3 − p2 + p

6
.

Pour établir une formule générale, il sera utile d'introduire la fonction de Möbius. Il s'agit de la

fonction

µ : N>0 −→ {−1, 0, 1}

dé�nie par

µ(n) =


0 si n est divisible par p2 pour un premier p,

1 si n = 1 ou si n est le produit d'un nombre pair de premiers distincts,

−1 si n est le produit d'un nombre impair de premiers distincts.

Ceci étant, passons au cas général :

3. Si n,m divisent d et sont premiers entre eux, montrez que Fpd/n ∩ Fpd/m = Fpd/nm dans Fpd .

4. Montrez que

Nd =
1

d

∑
r|d

µ

(
d

r

)
pr.

Indication : Soit d = si11 · · · sinn la décomposition en produit de nombres premiers. Montrez

d'abord que

dNd =

∣∣∣∣∣∣Fpd \
n⋃

j=1

F
pd/sj

∣∣∣∣∣∣
puis développez le terme de droite grâce à la formule d'inclusion-exclusion.

Exercice 5.

Fixons un entier premier p. Soit nj = pmj où mj =
∏j

i=1 i pour chaque entier j ≥ 1, et soit

Kj = Fnj .

1. Démontrez que les Kj peuvent être mis dans un système direct. Autrement dit, il existe des

homomorphismes injectives ιj : Kj → Kj+1 pour chaque entier j ≥ 1.

2. Fixons ιj comme dans le point précédent. Montrez que la limite directe K, comme dé�nie

dans le Lemme 4.8.7, est un corps, et de plus il existe un plongement Fp → K

3. Démontrez que K est algébrique sur Fp

4. Démontrez que chaque polynôme f ∈ Fp scinde sur K. (Autrement dit K est la clôture

algébrique de Fp, et on le dénote d'habitude par Fp. Dans une manière similaire, le corps de

nombres algébriques Calg,Q, en utilisant la notation du Cor 4.2.21, est la clôture algébrique

de Q. Aussi, C est la clôture algébrique de R. On étudiera plus des clotûre algébriques à la

�n du semestre.)
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Les exercices indiqués par une étoile ⋆ sont optionnels.

Exercice 1 (Corps imparfaits). (a) Soit K un corps de caractéristique p > 0 et soit α ∈ K\Kp.
Montrer que xp − α ∈ K[x] est irréductible.

Soit L = (Fp(x))[y]/(y
2 − x(x− 1)(x+ 1)).

(b) Montrer que L est un corps.

(c) Si p ̸= 2, montrer que L n'est pas parfait.

(d) Si p = 2, montrer que L n'est pas parfait.

Exercice 2 (Extension quadratique pour car(k) = 2.).
Soit K un corps de caractéristique 2 et soit K ⊆ L une extension de degré 2.

(a) Supposons que pour tous α ∈ L\K nous avons que α2 ∈ K. Montrer que:

(i) L = K(α), où α ∈ L\K.

(ii) tout α ∈ L\K est inséparable.

(b) Supposons qu'il existe α ∈ L\K tel que α2 /∈ K. Montrer que:

(i) L = K(β), où β ∈ L\K est tel que mβ,K(x) = x2 + x+ c ∈ K[x].

(ii) τ : K(β) → K(β) donné par τ |K = IdK et τ(β) = β+1 est un automorphisme de K(β).
Conclure que Gal(K(β)/K) ∼= Z/2Z.

(iii) tout α ∈ L\K est séparable, c'est à dire que K ⊂ L est une extension séparable.

Exercice 3.

Décrivez le groupe Gal(K/Q) dans les cas suivants: K = Q(i),Q(
√
7),Q( 3

√
2),Q(ω2) où ω = e2iπ/3.

Exercice 4.

Soit K ⊆ L ⊆ E une extension algébrique tel que K ⊆ L et L ⊆ E sont Galois. Montrer que
K ⊆ E n'est pas forcément Galois.

Indication. Envisager les extensions Q ⊆ Q(
√
2) ⊆ Q(

√
1 +

√
2)

Exercice 5.

Dans les cas suivants, calculezG = Gal(Q(α, β)/Q), et calculez le pôlynome minimal de α, α+β, α·β
et α−1. Pour calculer les polynômes minimaux, on s'inspirera de l'exemple 4.6.12.

1. α =
√
3, β =

√
7

2. α = e(iπ/3), β = −1

3. α = e(iπ/3), β = i

4. α = e(iπ/6), β = i.

Exercice 6.

Let f = x3 + ax+ 1 ∈ Q[x] such that a > 0, a ∈ Z.

1. Show that f is irreducible over Q.

2. Show that f does not have 3 real roots in its splitting �eld (the splitting �eld (corps de
décomposition) is isomorphic to the sub�eld of C generated by the complex roots of f , and
hence it makes sense to talk about its element being real).



3. Let K = Q[x]/(f). Show that K is a degree 3 extension of Q, which is not Galois.

4. Let L be the decomposition �eld of f over Q. Show that Gal(L/Q) ∼= S3

Exercice 7.

SoitK un corps de caractéristique p > 0, et α ̸= 0 ∈ K tel que le pôlynome f(x) = xp−x+α ∈ K[x]
n'a pas de racines dans K. Soit L le corps de decomposition de f, et G = Gal(L/K).

1. Montrez que G ∼= Z/pZ. Indication: Si β est une racine de f, alors β + γ l'est aussi, pour

tout γ ∈ Fp.

2. Montrez que le pôlynome f est irréductible sur K.

3. Considérons K = Fp(t). Montrez que le pôlynome f(x) = xp−x+ t ∈ K[x] n'a pas de racines
dans K.

4. Soit K et f comme dans le point précédent. Donnez le corps de décomposition de f sur K.

Exercice 8 (Correspondance de Galois).
Dans chacun des cas suivantes déterminer le groupe de Galois de l'extension donnée, déterminer
tous ses sous-groupes et tous les sous-corps de points �xes correspondants.

1. Q ⊂ Q(
√
7).

2. Q ⊂ Q(
√
2,
√
3).

3. Q ⊂ Q(
√
2,
√
3,
√
5).

4. Q ⊂ E où E est le corps de décomposition de t4 − 2t2 − 1 ∈ Q[t].

Indication. Ce corps de décomposition est de degré 8 et on montrera qu'il s'agit de Q(
√

1 +
√
2, i).

On explicitera alors un automorphisme d'ordre 2 et un autre d'ordre 4 qui ne commutent pas entre
eux, si bien que le groupe de Galois est le groupe dihédral d'ordre 8.

Exercice 9 (⋆).
Montrer que tous les groupes �nis sont des groupes de Galois. Indication: on pourra trouver un

corps Kn où Sn agit �dèlement.

Remarque. En utilisant des techniques de géométrie algébrique et de topologie algébrique on peut
montrer que tout groupe �ni est réalisé comme un groupe de Galois d'une extension de C(t).

1. Avec de la géométrie algébrique, on voit que les extensions �nies de C(t) correspondent à des
morphismes de courbes algébriques X → P1

C tel que si ont enlève un nombre �ni de points à
P1
C, le morphisme devient un revêtement au sens topologique.

2. P1
C privé d'un nombre �ni de points est le plan complexe C privé d'un nombre �ni de points.

Par la topologie algébrique, on sait que π1(C \ {p1, . . . , pn}) ∼= Fn le groupe libre sur n-
générateurs. Dès lors par la théorie des revêtements, comme tout groupe �ni G admet une
surjection Fn → G pour un certain n, il existe un revêtement �ni de C \ {p1, . . . , pn} avec
groupe de Galois égal à G.

3. En retournant à la géométrie algébrique, on obtient alors un morphisme de courbes algébriques

X → P1
C avec groupe de Galois G et donc une extension de C(t) avec groupe de Galois G.

Si ce genre de choses vous intrigue, le rédacteur vous encourage à suivre des cours de géométrie
algébrique et de topologie algébrique, et/ou à faire des projets dans ces domaines.

Exercice 10 (⋆).
Soit n ≥ 1. Calculez le groupe de Galois Gal(Ln/C(t)) où est Ln est le corps de décomposition de

X2n − 2

(
t+ 1

t− 1

)
Xn + 1.


