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Anneaux et Corps Exercices

Solutions 1

Exercice 1.

Puisque nous considérons des sous-ensembles d'anneaux, les propriétés de compatibilité et de dis-

tributivité sont automatiquement véri�ées. Il s'agit seulement de véri�er si le sous-ensemble est

stable par addition et multiplication, et s'il contient l'élément neutre et le zéro.

1. Les matrices triangulaires supérieures forment un sous-anneau. Les véri�cations sont aisées.

2. Ce sous-ensemble ne contient pas la matrice identité.

3. Les matrices diagonales forment un sous-anneau, et les véri�cations sont aisées.

4. Cet ensemble (il s'agit de Z[i]) est un sous-anneau. Les véri�cations sont aisées.

5. Cet ensemble (il s'agit de Z[
√
3]) est un sous-anneau. Les véri�cations sont aisées.

6. Ce sous-ensemble ne contient pas l'identité.

7. On véri�e par calculs directs que cet ensemble est un sous-anneau.

Exercice 2.

Notons G multiplicativement, et les éléments de Z[G] comme des sommes
∑

g∈G a(g)eg où a(g) ∈ Z.
Prenons g ∈ G distinct de l'élément neutre ϵ ∈ G. Puisque G est �ni et que g n'est pas l'élément

neutre, il existe n > 1 tel que gn = ϵ. On a alors :

0 = eϵ − egn = (eϵ − eg)(eϵ + eg + eg2 + · · ·+ egn−1)

et ni eϵ − eg ni eϵ + eg + · · ·+ egn−1 n'est égal à zéro.

Exercice 3. 1. Si f : Z → Z est un homomorphisme, alors

f(n) = f(1 + · · ·+ 1︸ ︷︷ ︸
n fois

) = f(1) + · · ·+ f(1)︸ ︷︷ ︸
n fois

= 1 + · · ·+ 1︸ ︷︷ ︸
n fois

= n

donc f = IdZ.

2. Le même raisonnement qu'au point précédent donne que, s'il existe un homomorphisme,

alors il est donné par Z → Z/nZ, s 7→ [s]n. On véri�e sans peine qu'il s'agit bien d'un

homomorphisme.

3. Si f : Z/nZ → Z est un homomorphisme, alors n · f([1]) = f([n]) = f([0]) = 0 d'une part,

et n · f([1]) = n · 1 = n d'autre part, ce qui est une contradiction. Donc il n'existe pas

d'homomorphisme Z/nZ → Z.

4. Le même raisonnement qu'au second point donne que, s'il existe un homomorphisme, alors il

est donné par f : Z/mZ → Z/nZ, [s]m 7→ [s]n. Cependant, cette fonction n'est pas toujours

bien dé�nie. Par exemple, si n = 2 et m = 3, alors on devrait avoir

[0]2 = f([0]3) = f([1]3) + f([1]3) + f([1]3 = [1]2 + [1]2 + [1]2 = [1]2,

ce qui est absurde.



On prétend que f est bien dé�nie si et seulement si n divise m. Il s'agit d'abord d'une

condition nécessaire, puisque

[0]n = f([0]m) = f(m · [1]m) = m · f([1]m) = m · [1]n = [m]n.

Inversément, supposons que m = nk. Alors f est une fonction bien dé�nie, puisque

f([s+ lm]m) = [s+ lm]n = [s+ lnk]n = [s]n = f([s]m)

et l'on véri�e sans peine que f est bien un homomorphisme d'anneaux.

5. Soit f : Q → R un homomorphisme. Puisque f(1) = 1, on a 0 = f(0) = f(1− 1) = 1+ f(−1)
et donc f(−1) = −1. Par additivité on obtient que f(n) = n pour tout n ∈ Z. Pour n ∈ Z∗

on a

1 = f(1) = f(n · n−1) = n · f(n−1)

et donc f(n−1) = n−1. Par multiplicativité on obtient f(x) = x pour tout x ∈ Q. Donc f est

l'homomorphisme d'inclusion.

6. Soit f : R → R un homomorphisme. Par le point précédent, la restriction f |Q est l'inclusion.

Nous allons montrer qu'en fait f = IdR.

Prenons un nombre réel x > 0. Alors il existe un nombre réel y tel que y2 = x. Ainsi

f(x) = f(y2) = f(y)2 > 0. En particulier si a > b, alors f(a)− f(b) = f(a− b) > 0. Donc f
préserve l'ordre usuel sur les réels.

Prenons maintenant un nombre réel x, et choisissons deux suites de nombres rationnels (yi)
et (zj) tels que yi < x < zj pour tous i, j et limi yi = x = limj zj . Par les observations

précédentes, on a

yi = f(yi) < f(x) < f(zj) = zj

pour tous i, j. Les conditions sur les limites nous assurent alors, par un simple argument

d'analyse, que f(x) = x.

7. Il n'existe pas d'homomorphisme f : R → Q. En e�et, si un tel f existait, alors la composition

R f−→ Q ↪→ R

serait un homomorphisme d'anneaux non-surjectif, en particulier distinct de l'identité, ce qui

contredit le point précédent.

8. Par la propriété universelle des anneaux polynomiaux, un homomorphisme R[t] → R est

équivalent au choix d'un homomorphisme R → R et d'un élément a ∈ R (qui sera l'image de

t). En vertu de ce qui précède, on obtient que

R 1:1−→ Hom(R[t],R), a 7→ [p(t) 7→ p(a)].

9. De manière générale, un morphisme d'anneaux doit envoyer un élément inversible vers un

élément inversible (la preuve en est aisée). Donc si f : R → R[t] est un homomorphisme,

tout élément x ∈ R∗ étant inversible, son image f(x) ∈ R[t] est inversible. Or les polynômes

inversibles sont les constantes non-nulles. Ainsi f se co-restreint à un homomorphisme f : R →
R, qui est nécessairement l'identité par ce qui précède. Ceci établit que f : R → R[t] est
l'homomorphisme d'inclusion.



Exercice 4.

Par souci de clarté, si G est un groupe �ni nous écrirons les éléments de Z[G] sous la forme∑
g∈G a(g)eg, où a(g) ∈ Z.
Soit f : Z[S3] → Z[Z/2Z] un homomorphisme. Puisque (123)3 est l'élément neutre de S3, on

doit avoir

f(e(123))
3 = e0.

On peut écrire f(e(123)) = ne0 + me1 pour certains n,m ∈ Z. Puisque Z/2Z est un groupe

commutatif, son algèbre de groupe sur Z est un anneau commutatif. On calcule donc

(ne0 +me1)
3 = (n3 + 3nm2)e0 + (m3 + 3n2m)e1.

Ainsi m(m2+3n2) = 0 et n(n2+3m2) = 1. Si m = 0 alors n = 1 ; si m2+3n2 = 0 alors m = 0 = n,
ce qui n'est pas possible en vue de la seconde condition. On a donc montré que f(e(123)) = e0.

Faisons le même raisonemment pour e(12). Si f(e(12)) = ae0 + be1, alors on obtient

e0 = (a2 + b2)e0 + 2abe1

et donc (a, b) vaut (0, 1), (0,−1), (1, 0) ou (−1, 0).
Puisque (12) et (123) génèrent S3, la connaissance de f(e(123)) et de f(e(12)) permet de déter-

miner f entièrement. On voit donc qu'il existe au plus 4 possibilités pour f .
Pour montrer qu'il existe exactement 4 morphismes, on peut montrer à la main avec les formules

qu'envoyer les 2-cycles sur ae0+ be1 pour (a, b) ∈ {(1, 0), (−1, 0), (0, 1), (0,−1)} et les 3-cycles ainsi
que l'élément neutre sur e0 se prolonge en unique morphisme. Pour démontrer cela on peut passer

par l'argument suivant, qui met en situation ce "prolongement".

On remarque que Z[−] : Grp → Ring si Grp désigne la catégorie des groupes et Ring la

catégorie des anneaux (non nécessairement commutatifs) est adjoint à gauche de (A,+, ·) 7→ (A×, ·).
Notez également que l'abélianisé de S3 est Z /2Z. Dès lors, en utilisant l'adjonction ci-dessus et

l'adjonction abélianisé ⊣ oubli entre Ab et Grp on obtient

HomRing(Z[S3],Z[Z /2Z]) ∼= HomGrp(S3,Z[Z /2Z]×)
∼= HomAb(Z /2Z,Z[Z /2Z]×)

ce qui conclut car le calcul au-dessus démontre que les seuls éléments a ∈ Z[Z /2Z]× tel que a2 = 1
sont ae0 + be1 pour (a, b) ∈ {(1, 0), (−1, 0), (0, 1), (0,−1)}.

Exercice 5.

Par souci de clarté, notons nA l'élément 1A + · · ·+ 1A︸ ︷︷ ︸
n fois

∈ A.

1. Puisque a ∈ A génère le groupe additif, tout élément de A peut s'écrire comme une somme

a+ · · ·+ a. Par distributivité on a

(a+ · · ·+ a︸ ︷︷ ︸
n fois

) · (a+ · · ·+ a︸ ︷︷ ︸
m fois

) = a2 + · · ·+ a2︸ ︷︷ ︸
nm fois

= (a+ · · ·+ a︸ ︷︷ ︸
m fois

) · (a+ · · ·+ a︸ ︷︷ ︸
n fois

).

Donc A est commutatif.

2. Il découle du calcul précédent que la connaissance de a2 détermine la multiplication de A.

3. Puisque a génère A additivement, il existe s ≥ 1 tel que

sA · a = a+ · · ·+ a︸ ︷︷ ︸
s fois

= 1A

et donc sA est un inverse à gauche de a. Puisque A est commutatif, sA est aussi un inverse

à droite et ainsi a−1 = sA.



4. Il existe un t ≥ 1 tel que tA · a = a2. On a alors

a = a · a · a−1 = a2 · a−1 = tA · a · a−1 = tA · 1A.

En particulier 1A génère aussi le groupe additif (A,+). Puisque A est d'ordre n, on a néces-

sairement A = {0A, 1A, 2A, . . . , (n− 1)A}. Ceci permet de dé�nir

f : Z/nZ → A, [r]n 7→ rA

car rA + (nk)A = rA. Il est clair qu'il s'agit un homomorphisme bijectif, donc d'un isomor-

phisme.

Exercice 6.

Notons tout d'abord que l'application de la donnée est un morphisme d'anneau par la propriété

universelle des anneaux de polynômes appliquée à A → A[t] canonique et l'élément t+a. Maintenant

l'inverse est donné par

A[t] → A[t], p(t) 7→ p(t− a),

ce qui conclut.

Exercice 7.

On utilise la notation suivante (symbole delta de Kronecker) : δij = 0 si i ̸= j, et δii = 1.

1. Soient A = (aij), B = (bij) ∈ M(k). L'addition est donnée par

(aij) + (bij) := (aij + bij)

et la multiplication par

(aij) · (bij) :=

( ∞∑
k=1

aikbkj

)
i,j∈N

La multiplication est bien dé�nie, puisque la condition de �nitude assure que la série est en

fait une somme �nie. Pour montrer que chaque colonne du produit est à support �ni, prenons

un indice j quelconque. Soit N su�samment grand tel que pour tous les indices i ≥ N on a

bij = 0. Maintenant si M est su�samment grand pour que pour tout i ≥ M et tout les j ≤ N
on a aij = 0, on obtient que si i ≥ M que (A ·B)ij = 0. L'associativité, la distributivité et

autres propriétés des axiomes d'anneaux sont facilement. véri�ées, ce sont les même calculs

que dans le cas �ni. La matrice nulle est l'élément neutre additif et la matrice (aij = δij) est
l'élément neutre multiplicatif. Donc M(k) est un anneau.

2. Prenons

A :=
(
aij = δij+1

)
i,j

, B :=
(
bij = δi+1

j

)
i,j

,

ce sont des éléments de M(k). Visuellement, on peut se représenter A comme la matrice

identité dont on a décalé la diagonale d'une ligne vers le bas � et B comme la matrice

identité dont on a décalé la diagonale d'une colonne vers la droite.

On véri�e alors que BA = 1M(k) ̸= AB. Cela implique que A n'a pas d'inverse à droite : car

s'il existait B′ tel que AB′ = 1M(k), alors B = BAB′ = B′.

Remarque. On peut également remarquer que cet anneau de matrices est isomorphe à l'anneau

des endomorphismes k-linéaires de k⊕N. Dès lors si on représente les éléments de cet espace comme

des vecteurs à support �ni d'éléments de k écrits de gauche à droite la matrice A correspond au

décalage d'un cran vers la droite avec zéro en première composante et B au décalage d'un cran vers

la gauche.



Exercice 8. 1. Un anneau A intègre et �ni est un corps. En e�et, prenons a ̸= 0 et considérons

la fonction

A → A, x 7→ ax.

Puisque a ̸= 0 et que A est intègre, cette fonction est injective. Mais A est un ensemble

�ni, donc cette fonction est en fait bijective. Ainsi il existe un y ∈ A tel que ay = 1. Le

même raisonnement appliqué à la fonction x 7→ xa donne un y′ ∈ A tel que y′a = 1. Ainsi

y = y′ay = y′, et a−1 = y. Donc A est un corps.

On peut aussi montrer que si A est un anneau �ni sans diviseur de zéro, alors A est nécessaire-

ment un corps (commutatif), mais cela est bien moins facile � il s'agit du (petit) théorème

de Wedderburn.

2. Un anneau A dans lequel x = x2 pour tout x ∈ A, est commutatif. En e�et, prenons a, b ∈ A.
On a alors

a+ b = (a+ b)2 = a2 + ab+ ba+ b2 = a+ b+ ab+ ba

et ainsi ab = −ba. Or −1 = (−1)2 = 1, donc ab = −ba = ba, comme désiré.

Les anneaux qui véri�ent cette condition sont appelés algèbres booléennes. Elles ont des liens

surprenants avec la topologie et la logique mathématique. Voir dualité de Stone sur wikipedia

ou sur le n-lab.

Exercice 9. 1. Montrons que f(t) =
∑∞

i=0 ait
i est inversible si et seulement si a0 ̸= 0.

C'est une condition nécessaire : si g(t) =
∑∞

i=0 bit
i est tel que f(t)g(t) = 1, alors a0b0 = 1.

Inversément, supposons a0 ̸= 0. Nous allons dé�nir inductivement des coe�cients bi tels que
1− f(t) ·

∑n
i=0 bit

i ∈ (tn+1).

� b0 := a−1
0 .

� Supposons b0, . . . , bn−1 construits. On a

1− f(t) ·
n∑

i=0

bit
i = 1− f(t) ·

n−1∑
i=0

bit
i

︸ ︷︷ ︸
∈(tn)

−f(t) · bntn

et donc la condition 1− f(t) ·
∑n

i=0 bit
i ∈ (tn+1) est équivalente à

n−1∑
i=0

an−ibi = −a0bn.

On prend ainsi bn := −a−1
0

∑n−1
i=0 an−ibi.

Posons g(t) :=
∑∞

i=0 bit
i. Par construction, le terme constant du produit f(t)g(t) vaut 1. On

prétend qu'en fait f(t)g(t) = 1. Si ce n'est pas le cas, alors il existe un certain n ≥ 1 tel que

1− f(t)g(t) ∈ (tn), et on peut prendre un tel n maximal. Mais par construction

1− f(t)g(t) =

[
1− f(t) ·

n∑
i=0

bit
i

]
︸ ︷︷ ︸

∈(tn+1)

− tn+1

[
f(t) ·

∞∑
i=0

bi+n+1t
i

]
︸ ︷︷ ︸

∈(tn+1)

donc 1 − f(t)g(t) ∈ (tn+1), contradiction puisque n est maximal. Ceci prouve que g(t) =
f(t)−1.

https://en.wikipedia.org/wiki/Stone_duality
https://ncatlab.org/nlab/show/Stone+duality


Remarquez que même si f(t) est un polynôme, son inverse f(t)−1 sera seulement une série

formelle. Donc l'anneau k[t] est très di�érent de l'anneau k[[t]]. Cette di�érence est compa-

rable (dans un sens que nous n'élaborerons pas) à celle qui sépare les fonctions holomorphes

dé�nies sur C, de celles qui ne sont dé�nies que sur un voisinage de 0 ∈ C.

Voici un autre solution, qui s'inspire de la relation

(1− t) ·
∞∑
i=0

ti = 1.

Etant donné g(t) =
∑∞

i=0 ait
i, on peut être tenté de remplacer t par g(t) dans la relation

ci-dessus, et en déduire que
∑

i≥0 g(t)
i est l'inverse de 1−g(t). Puisque n'importe quelle série

formelle peut s'écrire sous la forme 1 − g(t), on aurait montré l'existence d'inverses � pour

tous les éléments de k[[t]], ce qui est bien sûr absurde. Le problème est que la somme in�nie∑
i≥0 g(t)

i n'est pas forcément bien dé�nie (par exemple si g(t) = λ ∈ k∗). En fait, on véri�e

aisément que cette somme in�nie n'a de sens que si g(t) n'a pas de terme constant, auquel

cas le terme de degré n de cette série se dé�nit comme le terme de degré n de la somme �nie

1 + g(t) + · · ·+ g(t)n.

Ceci étant dit, soit f(t) une série possédant un terme constant. Si λ ∈ k∗, alors il est équivalent
de trouver un inverse de f(t) et de trouver un inverse de λf(t). Donc on peut supposer que

le terme constant de f(t) vaut 1. Dans ce cas F (t) := 1− f(t) n'a pas de terme constant, la

somme in�nie
∑

i≥0 F (t)i peut être dé�nie, et nous allons véri�er qu'il s'agit bien d'un inverse

de f(t). La véri�cation est semblable à ce qui a été fait précédemment : le terme constant de

f(t) ·
∑∞

i=0 F (t)i vaut 1, donc si ce produit ne vaut pas 1 il existe un N > 0 maximal tel que

1− f(t) ·
∞∑
i=0

F (t)i ∈ (tN ).

Or

1− f(t) ·
∞∑
i=0

F (t)i = 1− (1− F (t)) ·
N∑
i=0

F (t)i + tN+1f(t)

∞∑
i=N+1

F (t)i

tN+1

= 1− (1− F (t)N+1) + tN+1f(t)
∞∑

i=N+1

F (t)i

tN+1

= F (t)N+1 + tN+1f(t)
∞∑

i=N+1

F (t)i

tN+1

∈ (tN+1)

ce qui est une contradiction. Donc f(t)−1 =
∑∞

i=0 F (t)i.

2. Montrons d'abord que k((t)) est un corps. Il est facile de véri�er qu'il s'agit d'un anneau

commutatif intègre (avec les opérations évidentes � la multiplication est dé�nie de la même

manière que dans k[[t]]), et que k[[t]] est un sous-anneau de k((t)). Prenons 0 ̸= f(t) =∑
i≥n ait

i ∈ k((t)), où l'on fait la convention que an ̸= 0. Alors t−nf(t) =
∑

i≥0 ai+nt
i ∈ k[[t]]

est un élément inversible par le premier point, donc il existe g(t) ∈ k[[t]] tel que t−nf(t)g(t) =
1. On en déduit que t−ng(t) ∈ k((t)) est l'inverse de f(t). Donc k((t)) est bien un corps.

Montrons maintenant que chaque élément de k((t)) peut s'écrire comme un ratio d'éléments

de k[[t]]. Considérons à nouveau 0 ̸= f(t) =
∑

i≥n ait
i. Si n ≥ 0 alors f(t) ∈ k[[t]]. Si n < 0,

alors t−nf(t) = h(t) ∈ k[[t]] et ainsi

f(t) =
h(t)

t−n

où le numérateur et le dénominateur appartiennent à k[[t]].
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Solutions 2

Exercice 1. (a) 1 /∈ B, therefore B is not a subring of A. On the other hand, B is a bilateral

ideal in A (De�nition 1.4.4).

(b) [1] /∈ B, hence B is not a subring of A and, as A is a �eld, B is neither an ideal in A.

(c) 1 /∈ B, therefore B is not a subring of A. For t ∈ A and t2 ∈ B we have that t · t2 = t3 /∈ B,

hence B is not a left ideal in A and moreover, as A is commutative, B is neither a right ideal.

(d) [1] /∈ B, therefore B is not a subring of A. Let f(t) ∈ A and let t2g(t) ∈ B, for some g(t) ∈ A.
Then f(t) · (t2g(t)) = t2(f(t)g(t)) ∈ B and thus B is a left ideal in A. Furthermore, as A is

commutative, B is a bilateral ideal.

(e) B ⊈ A.

(f) B ⊈ A.

(g) [1] /∈ B, therefore B is not a subring of A. Moreover, as B = ([5]), B is a bilateral ideal of A.

(h) B is the set of lower triangular matrices in Mn(R), hence it is a subgring of A. If n > 1 then

B is not an ideal of A. if n = 1 then B = A and we conclude that B is a bilateral ideal in A.

(i) If n = 0 then A = B and thus B is both a subring and a bilateral ideal of A. If n > 0, then
1 /∈ B,hence B is not a subring of A, but, on the other hand, as B = (pn), we have that B is

a bilateral ideal of A.

(j) I3 /∈ B, hence B not a subring. Since0 0 0
0 0 0
1 0 0

a b 0
c d 0
0 0 0

 =

0 0 0
0 0 0
a b 0

 /∈ B,

it follows that B is not a left ideal in A. Similarly, asa b 0
c d 0
0 0 0

0 0 0
0 0 1
0 0 0

 =

0 0 b
0 0 d
0 0 0

 /∈ B,

it follows that B is also not a right ideal in A.

(k) B is a subring of A: we have that I3 ∈ B, (B,+) is a subgroup of Mn(R) and B is stable

under matrix multiplication. As B ̸= A and I3 ∈ B, it follows that B is neither a left nor a

right ideal of A.

(l) I3 /∈ B, hence B is not a subring of A. We check to see if B is a left ideal in A. For this let
A = (aij) ∈ A and we have

A

a a 0
b b 0
c c 0

 =

a11a+ a12b+ a13c a11a+ a12b+ a13c 0
a21a+ a22b+ a23c a21a+ a22b+ a23c 0
a31a+ a32b+ a33c a31a+ a32b+ a33c 0

 ∈ B.

Therefore B is a left ideal of A. On the other hand, B is not a right ideal as1 1 0
2 2 0
3 3 0

0 0 0
1 0 0
0 0 0

 =

1 0 0
2 0 0
3 0 0

 /∈ B.



(m) B is not a subring of A as Id /∈ B. Let a = a0 Id+a1(12)+a2(13)+a3(23)+a4(123)+a5(132) ∈
A and let b = λ[Id+(12) + (13) + (23) + (123) + (132)] ∈ B. Then

a · b = b · a = λ(a0 + a1 + a2 + a3 + a4 + a5)
∑
g∈S3

g ∈ B

and we deduce that B is a bilateral ideal of A.

(n) Again, B is not a subring of A, as Id /∈ B. Let a = a0 Id+a1(12)+a2(13)+a3(23)+a4(123)+
a5(132) ∈ A and let b = λ Id−λ(12)−λ(13)−λ(23)+λ(123)+λ(132) ∈ B. One checks that

a · b = λ(a0 − a1 − a2 − a3 + a4 + a5) Id−λ(a0 − a1 − a2 − a3 + a4 + a5)(12)−
− λ(a0 − a1 − a2 − a3 + a4 + a5)(13)− λ(a0 − a1 − a2 − a3 + a4 + a5)(23)+

+ λ(a0 − a1 − a2 − a3 + a4 + a5)(123) + λ(a0 − a1 − a2 − a3 + a4 + a5)(132)

=
∑
g∈S3

(−1)sgn(g)µ · g,

where µ = λ(a0 − a1 − a2 − a3 + a4 + a5) ∈ C. Therefore B is a left ideal of A. Analogously,
one shows that:

b · a =
∑
g∈S3

(−1)sgn(g)µ · g,

where µ = λ(a0 − a1 − a2 − a3 + a4 + a5) ∈ C, and therefore B is a bilateral ideal of A.

(o) Again, B is not a subring of A, as Id /∈ B. Let a = a0 Id+a1(12) + a2(13) + a3(23) +
a4(123) + a5(132) ∈ A and let b = λ Id+λε(123) + λε2(132) + µ(12) + µε(23) + µε2(13) ∈ B.

We compute:

a · b = (λa0 + µa1 + µε2a2 + µεa3 + λε2a4 + λεa5) Id+(λεa0 + µεa1 + µa2 + µε2a3 + λa4+

+ λε2a5)(123) + (λε2a0 + µε2a1 + µεa2 + µa3 + λεa4 + λa5)(132) + (µa0 + λa1+

+ λεa2 + λε2a3 + µεa4 + µε2a5)(12) + (µεa0 + λεa1 + λε2a2 + λa3 + µε2a4 + µa5)(23)+

+ (µε2a0 + λε2a1 + λa2 + λεa3 + µa4 + µεa5)(13)

Set x = λa0+µa1+µε2a2+µεa3+λε2a4+λεa5 and y = µa0+λa1+λεa2+λε2a3+µεa4+µε2a5.
Then, x, y ∈ C and we see that

a · b = x Id+xε(123) + xε2(132) + y(12) + yε(23) + yε2(13) ∈ B

and conclude that B is a left ideal of A.

On the other hand, let a = a0 Id+a1(12) ∈ A and b = λ Id+λε(123) + λε2(132) + µ(12) +
µε(23) + µε2(13) ∈ B. Then:

b · a = (λa0 + µa1) Id+ε(λa0 + µεa1)(123) + ε2(λa0 + µε2a1)(132) + (µa0 + λa1)(12)+

+ ε(µa0 + λεa1)(23) + ε2(µa0 + λε2a1)(13) /∈ B.

Hence B is not a right ideal of A.

(p) Once more, B is not a subring of A, as Id /∈ B. One checks that:{
(12) · [λ(123) + λ(132)] = λ(23) + λ(13) /∈ B

[λ(123) + λ(132)] · (12) = λ(13) + λ(23) /∈ B
,

hence B is neither a left, nor a right ideal of A.



Exercice 2. 1. Let A = (aij) ∈ Mn(K) be a matrix which is concentrated in the jth column,

i.e. ars = 0 for all s ̸= j. For all 1 ≤ r ≤ n consider the matrix Br = arjeri ∈Mn(K). Then
Breij ∈ I, where

(Breij)kl =
n∑

m=1

(arjeri)km(eij)ml = arj

n∑
m=1

δrkδimδjl = arjδrkδjl =

{
arj , if k = r and l = j

0, otherwise
.

Lastly, as A =
n∑

r=1

(Breij), we conclude that A ∈ I.

2. Let S ⊆Mn(K) be the subset of matrices which are concentrated in the jth column. Clearly,

S is an additive subgroup of Mn(K). Now, let A = (ars) ∈ Mn(K) and let B = (brs) ∈ S.
As

(A ·B)rs =
n∑

m=1

armbms,

it follows that (A · B)rs = 0 for all s ̸= j, and we deduce that A · B ∈ S. Therefore, S is a

left ideal in Mn(K).

3. Let {0} ≠ I be a bilateral ideal in Mn(K). Let A be a non-zero matrix in I. Then A admits

a non-zero coe�cient aij . As I is an ideal and K is a �eld we have that 1
aij

In ·A ∈ I and so,

we can assume without loss of generality that aij = 1. Since I is a bilateral ideal, it follows

that for all 1 ≤ r, s ≤ n, the product eriAejs ∈ I. We compute

(eriAejs)kl =

n∑
q=1

(eriA)kq(ejs)ql =

n∑
q=1

[ n∑
p=1

(eri)kpapq
]
δjqδsl =

n∑
p=1

δrkδipapjδsl

= δrkaijδsl = δrkδsl = (ers)kl

and it follows that ers ∈ I for all 1 ≤ r, s ≤ n. Lastly, as I is an additive subgroup of Mn(K),
we conclude that I = Mn(K).

Exercice 3. (a) Let 0 ̸= x ∈ I and let 0 ̸= y ∈ J . Then xy ̸= 0, as A is integral, and xy ∈ I ∩ J ;

(b) Proposition 1.4.6;

(c) Exercice 2;

(d) Proposition 1.4.6.

Pour les points (e) et (f), l'argument suivant s'applique. Soit x ∈ K non-nul. Alors Kx = K.

En particulier, il existe y ∈ K tel que yx = 1. Comme Ky = K, il existe z ∈ K tel que

zy = 1. En multipliant par x à droite, on obtient, zyx = x, et donc z = x. Ainsi y est un

inverse à droite et à gauche de x.

Exercice 4. (a) Example 1.4.9;

(b) Recall the quotient homomorphism ξ : A→ A/I given by a
ξ→ [a] (Proposition 1.4.13). This

induces the surjective ring homomorphism f : Mn(A) → Mn(A/I) given by (aij)
f→ ([aij ]).

The kernel of f consists of those matrices in Mn(A) whose coe�cients are zero in A/I, hence
ker(f) = Mn(I). We conclude that Mn(A)/Mn(I) ∼= Mn(A/I).



(c) Let φ : Z → Z[
√
7]/I, where φ(n) = [n], for all n ∈ Z. Clearly, φ is a ring homomorphism

and ker(φ) = {n ∈ Z | n ∈ I}. Let n ∈ ker(φ). Then there exist a, b ∈ Z such that

n = (5+2
√
7)(a+ b

√
7). We make the computations and arrive at 2n = 3b. As gcd(2, 3) = 1,

we have n ∈ (3), hence ker(φ) ⊆ (3). Conversely, let n ∈ (3). Then n = 3m, for some m ∈ Z,
and φ(n) = φ(3)φ(m) = 0. We deduce that ker(φ) = (3).

The only thing left to prove is that φ is surjective. Before we proceed, we remark that√
7(5 + 2

√
7) = 14 + 5

√
7 ∈ I and (14 + 5

√
7) − 2(5 + 2

√
7) = 4 +

√
7 ∈ I. Now, let

[a+ b
√
7] ∈ Z[

√
7]/I. We have that

[a+ b
√
7] = [a] + [b

√
7] = [a] + [−4b] = φ(a) + φ(−4b) = φ(a− 4b).

We use the isomorphism theorem to conclude that Z/(3) ∼= Z[
√
7]/(5 + 2

√
7).

Exercice 5.

We recall that, by convention, the degree of the zero polynomial is −∞ and that −∞ + n = −∞

for all positive integers n. We can therefore assume that f, g ̸= 0. We write f(t) =

m∑
i=0

ait
i,

where am ̸= 0, hence deg(f) = m, and g(t) =

n∑
j=0

bjt
j , where bn ̸= 0, hence deg(g) = n. Now

f(t)g(t) =

m∑
i=0

n∑
j=0

aibjt
i+j and so deg(fg) = n+m, as the leading coe�cient of fg is ambn ̸= 0, by

integrity of A.

Exercice 6.

Consider the evaluation homomorphism evε : Z[t]→ Z[ε]. Clearly evε is surjective and so, the only

thing we need to show is that (t2 + t+ 1) = ker(evε).
Let f(t) ∈ (t2 + t+ 1). Then f(t) = (t2 + t+ 1)g(t) for some g(t) ∈ Z[t] and we have

evε(f(t)) = evε(t
2 + t+ 1) evε(g(t)) = 0.

Therefore (t2 + t+ 1) ⊆ ker(evε).
Conversely, let f(t) ∈ ker(evε). We will show that f(t) ∈ (t2 + t+ 1) by recurrence on deg(f).
If deg(f) = 0, then f(t) = a0 and as evε(f) = 0, it follows that f = 0.
If deg(f) = 1, then f(t) = a1t + a0, for some a1, a0 ∈ Z, and, as evε(f(t)) = 0, it follows that

a1 = a0 = 0, hence f(t) = 0.

We can now assume that deg(f) ≥ 2. We write f(t) =
m∑
i=0

ait
i, where deg(f) = m and ai ∈ Z.

Then, as f(t) ∈ ker(evε) and amtm−2(t2 + t+ 1) ∈ ker(evε), it follows that:

g(t) = f(t)− amtm−2(t2 + t+ 1) =

m−3∑
i=0

ait
i + (am−2 − am)tm−2 + (am−1 − am)tm−1 ∈ ker(evε).

Now deg(g(t)) ≤ m − 1 and so, by recurrence, we have g(t) ∈ (t2 + t + 1). Consequently, f(t) =
g(t) + amtm−2(t2 + t+ 1) ∈ (t2 + t+ 1) and so ker(evε) = (t2 + t+ 1).

We now apply the isomorphism theorem to conclude that Z[t]/(t2 + t+ 1) ∼= Z[ε].

Exercice 7.

On dit qu'un élément r ∈ R est nilpotent si rn = 0 pour un n ≥ 1.



On commence par démontrer le fait suivant valide dans n'importe quel anneau commutatif A :

si λ ∈ A× et n ∈ A nilpotent, alors λ− n est inversible. En e�et,

1

λ− n
=

1

λ

∞∑
i=0

(n/λ)i.

Ainsi, on voit que tout polynôme f(t) =
∑m

i=0 ait
i ∈ R[t] avec coe�cient constant inversible

et tout les autres coe�cients nilpotents est inversible. En e�et, dans ce cas on peut écrire f(t) =
f̃(t) − a0, avec f̃(t) un polynôme dont tout les coe�cients sont nilpotents. Comme il suit de la

formule du binôme qu'une somme d'éléments nilpotents est un élément nilpotent, on voit que f̃(t)
est nilpotent.

Dans ce qui suit, on montre qu'un polynôme inversible est forcément de cette forme.

Soit f(t) ∈ (R[t])×. Notons encore f(t) =
∑m

i=0 ait
i. On remarque tout d'abord avec ev0 :

R[t]→ R que a0 ∈ R×. On montre dans ce qui suit que ai est nilpotent pour i > 0. Pour montrer

cela, on suppose sans perte de généralité que a0 = 1. On note alors f(t) = 1− tg(t), et on cherche

à démontrer que tout les coe�cients du polynôme g(t) sont nilpotents.
On considère l'inclusion R[t] ⊂ R[[t]]. L'inverse de f(t) = 1−tg(t) dans R[[t]] est (voir remarque

après la preuve)
∞∑
i=0

ti(g(t))i.

En e�et,

(1− tg(t))

( ∞∑
i=0

ti(g(t))i

)
=

∞∑
i=0

ti(g(t))i −
∞∑
i=1

ti(g(t))i = 1.

Comme on suppose que f(t) est inversible dans R[t], cet élément est en fait un polynôme, i.e.

il existe I ∈ N tel que pour tout i ≥ I on a ti(g(t))i = 0. Comme t n'est pas un diviseur de

zéro, on a même (g(t))i = 0 pour tout i ≥ I. En particulier, on voit que le coe�cient dominant

am est nilpotent. Maintenant, on peut appliquer l'argument qu'on vient d'appliquer pour f(t) au
polynôme h(t) = f(t) − amtm pour conclure que am−1 est nilpotent. Par récurence descendante

avec le même procédé, on conclut que tout les coe�cients de g(t) sont nilpotents.
Remarque. Pour faire sens de toute somme in�nie avec g(t) un polynôme

∞∑
i=0

ti(g(t))i

on laisse le soin au lecteur de véri�er que l'application naturelle R[[t]] ∼= lim←−n≥1
R[t]/(tn) est un

isomorphisme, où le terme à droite est,

lim←−
n≥1

R[t]/(tn) = {(fn(t)) ∈
∏
n≥1

R[t]/(tn) | fn+1(t) ≡ fn(t) mod tn ∀n ≥ 1} ⊆
∏
n≥1

R[t]/(tn)

Ainsi, pour dé�nir un élément de R[[t]] il su�t de le faire de manière compatible dans R[t]/(tn)
pour n ≥ 1. En particulier la collection indicée par n ≥ 1,

fn(t) =

n−1∑
i=0

ti(g(t))i mod tn

dé�ni bel et bien un élément de R[[t]].

Exercice 8. 1. On a ν(1) = ν(12) = 2ν(1), donc ν(1) = 0. Comme 0 = ν(1) = ν(−12) =
2ν(−1), on a également ν(−1) = 0.

2. La stabilité de Rν par l'addition et la multiplication est assurée par a) et b).



3. Immédiat car si k ∈ K, soit k ou k−1 est dans Rν .

4. Comme ν(1) = ν(−1) = 0, cela suit par b) par récurrence.

5. Suit par la décomposition en nombres premiers et a).

6. Notons d'abord que pour tout n ∈ Z et q ∈ Q. Alors ν(nq) ≥ ν(q) par a) et le point 4. Si p et
q deux premiers distincts avec ν(p), ν(q) non-nuls, alors comme par Bézout il existe a, b ∈ Z
tel que ap+ bq = 1,

0 = ν(1) = ν(ap+ bq) ≥ min(ν(ab), ν(bq)) ≥ min(ν(p), ν(q)) > 0

une contradiction.

7. Cela suit par a) si on note c = ν(p) et le point précédent.

8. Si q est un premier distinct de p, alors q−1 ∈ Rνp .
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Solutions 3

Exercice 1. 1. Wrong, for example, one can see that for the inclusion Z ↪→ Q, the image of the

ideal (2) ⊆ Z is not an ideal in Q.

2. Correct according to Lemma 1.4.30.

Exercice 2.

Assume that ξ−1
p (I) is principal, meaning that ξ−1

p (I) = (f) for some f ∈ Z[t]. Since I is by

de�nition an additive group, it contains 0, and therefore p ∈ ξ−1
p (I) = Z[t] · f. It follows that

p = g · f for some g ∈ Z[t]. We recall that by Exercise 5 on Sheet 2, deg(f · g) = deg(f) + deg(g).
It follows that

0 = deg(p) = deg(f · g) = deg(f) + deg(g).

Therefore, deg(f) = 0 and deg(g) = 0 and so f, g ∈ Z. But then p = g · f. Since p is prime, it

follows that either f = ±1 or f = ±p. If f = ±1, then I = Fp[t]. If f = ±p, then I = {0}. Those
are contradictions to the assumption and therefore, ξ−1

p (I) is not principal.

Exercice 3. 1. Identité de Bézout. Let d be the biggest common divisor of m and n. De�ne
the set E := {cm + dn

∣∣c, d ∈ Z}. Let e = am + bn be the smallest non-zero positive integer

in E. Dividing n by e with rest, we get n = qe+ r for some q ∈ Z, 0 ≤ r < e. Then

r = n− qe = n− q(am+ bn) = (−qa)︸ ︷︷ ︸
∈Z

m+ (1− qb)︸ ︷︷ ︸
∈Z

n ∈ E.

But since r < e, it follows that r = 0, and therefore e
∣∣n. Similarly, we show that e

∣∣m. It
follows that e is a common divisor of m and n. It remains to show that e is indeed the biggest

common divisor. Since d
∣∣m and d

∣∣n, it holds that d∣∣(am+ bn) = e, and hence e = d.

2. We have

� (m)(n) = (mn) by Remarque 1.4.28.

� (m) + (n) = (m,n) by Remarque 1.4.28. According to Bézout, this is equal to (d).

� (m) ∩ (n) = (ppmc{m,n}). The inclusion ⊇ holds due the de�nition, which states that

(m) ∩ (n) contains elements that are simultaneously in (m) and (n), which means that

they are simultaneously multiples of (m) and of (n). For the other inclusion, let k be an

element contained in (m) ∩ (n). That means that k is a multiple of both (m) and (n).
Let p be the least common multiple of m and n. As in the �rst part of this exercise, we

can divide k by p with rest, from which it follows that k is a multiple of p, and therefore

k ∈ (ppmc{m,n}).

Exercice 4.

Let ιA : Z → A be the unique ring homomorphism with source Z. By de�nition, car(A) = n, where
ker(ιA) = (n).



1. Consider the composition ιB : Z ιA−→ A
f−→ B. Since the kernel of the �rst homomorphism

is contained in the kernel of the composition, it holds that (n) = ker(ιA) ⊆ ker(ιB) =: (m),
with m being car(B). Therefore, m

∣∣n, and so car(B)
∣∣ car(A).

In general, car(B) ̸= car(A), as one can see when considering the reductions modulo 2,

f : Z/6Z → Z/2Z.

2. If f is injective, then its kernel is trivial, meaning that ker(ιA) = ker(f ◦ ιA) = ker(ιB).

3. In order to show that F is a ring homomorphism, we show that ∀a, b ∈ A,

� F (1) = 1p = 1,

� F (ab) = (ab)p = apbp = F (a)F (b),

� lastly, F (a+ b) = (a+ b)p = ap + bp. This holds due to the fact that A is commutative,

and the fact that the binomial coe�cients that would appear for expressions of the form

aibj , i, j ̸= 0, i, j ̸= p are all divisible by p, and hence they are zero in A.

4. Denote by g the unique homomorphism g : Z → Z[i]/(i−2). The characteristic of Z[i]/(i−2)
is k ∈ Z, where (k) = ker(g). The kernel is ker(g) = {n ∈ Z

∣∣∃a, b ∈ Z s.t n = (a+ ib)(i− 2)}.
Let n ∈ Z be contained in the kernel. Then, with a, b ∈ Z,

n = (a+ ib)(i− 2) = (−2a− b) + i(a− 2b).

It follows that n = −5b, and so n ∈ (5). Conversely, for m ∈ (5), we have m = 5α for some

α ∈ Z and g(m) = g(5α) = g(5)g(α) = 0. This shows that ker(g) = (5).

Exercice 5.

Let A = Z/250Z.

1. The zero divisors are the divisors of 250 and their multiples, stictly bigger than 1. The divisors

of 250 (1 excluded) are 2, 5, 10, 25, 50, 125 and 250.

� For the divisor 2, we get 124 multiples, up to the last multiple 248.

� For the divisor 5, we get 49 multiples, up to the last multiple 245. However, as half of
these multiples are even, they have already been counted as multiples of 2. We get 25
new zero divisors.

� The remaining divisors 10, 25, 50 and 125 are multiples of 5 and have therefore already

been counted into those zero divisors.

Summing up, we get 124 + 25 = 149 zero divisors.

The remaining 100 elements are all invertible. Such an element x ∈ A is prime to 250, meaning

that x and 250 don't have any common divisors other than 1. With Bézout's identity there

are two a, b ∈ Z such that 1 = ax+ b · 250. With this, ax ≡ 1 mod 250.

2. By the correspondence described in Propositon 1.4.36, the ideals of A = Z/250Z correspond

to ideals of Z which contain (250). Ideals of Z are principal, of the form (n). With (250) ⊆
(n) we get that n

∣∣250 and so n = 1, 2, 5, 10, 25, 50, 125 and 250. Additionally, if the ideal

in A contains 50, then the ideals in Z need to contain the preimage of the class [50]. In
particular, they need to contain 50. Hence n is reduced to 1, 2, 5, 10, 25, 50. The ideals in A
are A, ([2]), ([5]), ([10]), ([25]) and ([50]).



Exercice 6.

Soit A le sous-anneau de M2(Z) des matrices de la forme

(
a c
0 b

)
où a, b, c ∈ Z. Montrer que le

sous-ensemble K des matrices pour lesquelles 5 | a et 11 | b est un idéal bilatère et construire un

isomorphisme (en deux temps) A/K → Z/5× Z/11.
One veri�es easily that the subset K is an additive subgroup, and that the product of a matrix

in A and a matrix in K is a matrix in K, with multiplication in both directions. Therefore, K is a

two-sided ideal.

To construct the isomorphism, we de�ne the ideal I as

I :=
{(

0 c
0 0

) ∣∣∣c ∈ Z
}
.

Again, verifying that this is an ideal is easy. Since I ⊂ K, we may apply the Proposition 1.4.39

(Quotient en deux temps). Let ξ : A → A/I. Then,

A/K ∼= (A/I)/ξ(K).

We have that

ξ(K) =
{(

a 0
0 b

) ∣∣∣a, b ∈ Z, 5 | a, 11 | b
}
.

Furthermore, we note that A/I can be described as classes of matrices with representatives of

the form

(
a 0
0 b

)
with a, b ∈ Z. This is isomorphic to Z× Z via the obvious isomorphism

ϕ :
A/I → Z× Z[(
a 0
0 b

)]
7→ (a, b)

.

With ϕ, ξ(K) is sent to (5) × (11), and therefore, (A/I)/ξ(K) ∼= (Z × Z)/((5) × (11)) ∼= Z/(5) ×
Z/(11).

Exercice 7. 1. We use Proposition 1.2.2. applied to the identity on C[y]. The proposition then

states that there exists a unique ring homomorphism ev0 : C[y][x] → C[y] s.t. idC[y] =
ι ◦ ev0, where ι denotes the inclusion ι : C[y] → C[y][x]. ev0 acts by sending a polynomial

p(x, y) ∈ C[y][x] ∼= C[x, y] to p(0, y) ∈ C[y]. One easily veri�es that ev0 is surjective, as the

identity on C[y] is surjective. The kernel of ev0 consists of all polynomials p(x, y) ∈ C[x, y]
for which p(0, y) = 0. These are exactly those polynomials that are multiples of x, and hence

ker(ev0) = (x). By the isomorphism theorem it follows that C[y] ∼= C[x, y]/(x).

2. As above, consider the two evaluations

ev0,x :=
C[x, y] → C[y]
p(x, y) 7→ p(0, y)

, ev0,y :=
C[x, y] → C[x]
p(x, y) 7→ p(x, 0)

.

It holds that ker(ev0,y) = (y). Using the universal property of products, Proposition 1.4.45,

we get a unique homomorphism

ϕ :
C[x, y] → C[x]× C[y]
p(x, y) 7→ (p(x, 0), p(0, y))

.

The kernel of ϕ is equal to ker(ev0,x) ∩ ker(ev0,y) = (x) ∩ (y) = (xy).



3. We note that for a polynomial p(x, y) ∈ C[x, y] the constant term of ev0,x(p) and of ev0,y(p) is
the same. This suggests that the image of ϕ is as stated. To show that every such element is in

the image of ϕ, we let p(x) ∈ C[x] and q(y) ∈ C[y]. Consider the pair (a+xp(x), a+ yq(y)) ∈
C[x]× C[y] with a ∈ C. Then

ϕ(a+ xp(x) + yq(y)) = (a+ xp(x), a+ yq(y)).

Therefore, the pair (a+ xpx(x), a+ ypy(y)) is contained in the image of ϕ. We conclude with

the isomorphism theorem.

Exercice 8. 1. By the de�nition of a valuation we have that νp(q
−1) = 0 too, because νp(q) +

νp(q
−1) = νp(1) = 0. Therefore q−1 ∈ R and q is invertible.

2. The zero ideal is trivially an ideal of R. Now, take a non-zero ideal I, and let n be the

smallest valuation that appears among the elements of I. Then there is an element of the

form y = pnq, where q is a unit. Take now any x ∈ I non-zero. Then νp(x/y) ≥ 0, again by

the properties of valuations and by the minimality of n, hence x/y ∈ R, and hence I = (y)

3. Consider the composition ϕ : Z → R → R/(pn). Where the �rst map is the inclusion and the

second one is the quotient map. Then we can apply the isomorphism theorem to Z, because

a) ϕ is surjective because let a/b ∈ R (with a, b ∈ Z and p ∤ b). Then we can write

cpn + db = 1 for some c, d ∈ Z. Hence [d][b] = [1] ∈ R/(pn). Hence, for every [ab−1] in
R/(pn) we have [a][b−1] = [a][b−1][b][d] = [a][d] = [ad] = ϕ(ad).

b) The kernel of ϕ is generated by pn as an ideal of Z, because if x is in the kernel, that

means that x = (a/b)pn ∈ R, where a and b are as in the previous point. That is,

bx = apn. Now, using that p ∤ b we obtain that pn divides x ∈ Z.

4. From the previous points we know all the non-trivial ideals of Rp are of the form (pn) for
some n ∈ N, and we know that their quotient is isomorphic to Z/(pn). If Rp and Rq were

isomorphic for two di�erent prime numbers p and q, there would be isomorphism between

their quotients. This is impossible because Z/pmZ and Z/qnZ are not isomorphic since their

size is di�erent (pm and qn respectively). Moreover, Rp is not isomorphic to Z. Indeed, if

we take q a prime number di�erent from p, then Z/qZ is a quotient of size q, and Rp has no

quotients of such size.
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Anneaux et Corps Exercices

Solutions 4

Exercice 1. 1. (0) ⊂ Z est premier car Z est intègre (Proposition 1.5.2), non maximal car

(0) ⊊ (2).

2. (t) ⊂ Z[t] est premier car le quotient Z est intègre, non maximal car (t) ⊊ (t, 2) ̸= Z[t].
3. (t) ⊂ R[t] est premier et maximal car le quotient est un corps.

4. (101) ⊂ Z[t] est premier. En e�et, considérons l'homomorphisme

ξ : Z[t] −→ (Z/101Z)[t],
∑
i

ait
i 7→

∑
i

[ai]101t
i.

Il est clair que f(t) =
∑

i ait
i ∈ ker ξ si et seulement si [ai]101 = 0 pour chaque i, donc si et

seulement si 101 divise chaque coe�cient, donc si et seulement 101 divise f(t). Cela prouve

que ker ξ = (101). Pour conclure, il su�t de montrer que (Z/101Z)[t] est un anneau intègre.

Puisque 101 est un nombre premier, Z/101Z est un anneau intègre. De manière générale, si

A est un anneau intègre alors A[t] est aussi intègre (la preuve est un bon exercice), ce qui

conclut.

5. (42) ⊂ Z[t] n'est pas premier car 6 · 7 = 42, donc non maximal.

6. (t2 − 2) ⊂ Z[t] est premier. En e�et, considérons l'homomorphisme d'évaluation

ev√2 : Z[t] −→ R, t 7→
√
2.

On montre comme dans l'Exemple 1.4.18 que ker ev√2 = (t2 − 2). Comme Z[t]/(t2 − 2) est

isomorphe à un sous-anneau de R, c'est un anneau intègre, et donc (t2 − 2) est premier.

Ce n'est pas un ideal maximal, puisque (t2− 2) ⊊ (t2− 2, 3) ̸= Z[t]. Alternativement, on peut

véri�er que im ev√2 = Z[
√
2] n'est pas un corps (par exemple 3 n'a pas d'inverse).

7. (t2 − 2) ⊂ R[t] n'est pas premier car t2 − 2 = (t−
√
2)(t+

√
2) dans R[t].

8. (t+ 5, 10) ⊂ Z[t] n'est pas premier car 10 = 2 · 5.
9. (t+ 5, 11) ⊂ Z[t] est maximal (donc premier) car le quotient est le corps Z/11Z.
10. (t2 + 1, 2) ⊂ Z[t] n'est pas premier car (t+ 1)2 = t2 + 1 + 2t ∈ (t2 + 1, 2).

Exercice 2. 1. Le premier système n'a pas de solutions. En e�et, si x = 7 + 12k, alors x =
1 + 3 · (2 + 4k), ce qui contredit x ≡ 2 (mod 3).

Le second système admet une in�nité de solutions. En e�et, si x = 8 + 12k, alors x =
2 + 3 · (2 + 4k). Donc le système est équivalent à x ≡ 8 (mod 12), qui admet une in�nité de

solutions.

2. Pour voir que Z/36Z ̸∼= Z/3Z × Z/12Z on peut par exemple utiliser le fait que le deuxième

anneau n'est pas cyclique en tant que groupe abélien : tout élément est d'ordre un diviseur

de 12.

Exercice 3. 1. Prenons x ∈ f−1(I). Alors f(x) ∈ I et, par dé�nition de I, on peut écrire

f(x) =
n∑

i=1

βibi, pour certains βi ∈ B.

Puisque f est surjective, on peut choisir des αi ∈ A tels que f(αi) = βi. Posons

x′ :=

n∑
i=1

αici.



Par construction f(x) = f(x′), et donc x− x′ ∈ ker f . Ainsi il existe des γi ∈ A tels que

x− x′ =
m∑
i=1

γiai

et cette égalité se réarrange en

x =
m∑
i=1

γiai +
n∑

i=1

αici ∈ (a1, . . . , am, c1, . . . , cn).

Comme x est arbitraire, cela montre que f−1(I) ⊆ (a1, . . . , am, c1, . . . , cn). L'inclusion inverse

est immédiate, puisque

f(ai), f(cj) ∈ I ∀i, j.

On a donc démontré l'égalité désirée.

2. L'Exemple 1.4.10.a montre que ker evb = (y − b) et ker eva = (x − a). Puisque ker ξ =
ev−1

b (ker eva) (l'égalité est facile à véri�er), par le point précédent on obtient que ker ξ =
(x− a, y − b).

Puisque ξ(λ) = λ pour tout λ ∈ k, on voit que ξ est surjective. Par le premier théorème

d'isomorphisme, on obtient k ∼= k[x, y]/ ker ξ. Par la Proposition 1.5.5, on obtient que ker ξ
est un idéal maximal.

Exercice 4.

Nota bene : la discussion des deux derniers points de cet exercice pourra être grandement simpli�ée

une fois à disposition les propriétés des polynômes irréductibles.

1. Par l'Exemple 1.4.18 on a Z[i] ∼= Z[t]/(t2 + 1). Par la Proposition 1.4.41 on a

Z[i]/(p) ∼=
Z[t]/(t2 + 1)

p · (Z[t]/(t2 + 1))
∼= Z[t]/(p, t2 + 1) ∼=

Z[t]/(p)
(t2 + [1]p) · (Z[t]/(p))

∼= Fp[t]/(t
2 + [1]p).

2. Dans le cas où p = 5, on remarque que [2]5 et [3]5 sont des racines de t2 + [1]5 ∈ F5[t]. En
particulier on a la factorisation

t2 + [1]5 = (t− [2]5) · (t− [3]5). (1)

Remarquez que (t− [2]5)−(t− [3]5) = [1]p. Donc les idéaux générés respectivement par t− [2]5
et par t−[3]5 sont premiers entre eux. Le théorème des restes chinois (Théorème 1.4.50) donne

alors
F5[t]

(t− [2]5) ∩ (t− [3]5)
∼=

F5[t]

(t− [2]5)
× F5[t]

(t− [3]5)
. (2)

L'évaluation en t = [2]5 induit un ismorphisme

F5
∼=

F5[t]

(t− [2]5)

et d'une manière similaire on a

F5
∼=

F5[t]

(t− [3]5)
.

On prétend pour �nir que (t− [2]5) ∩ (t− [3]5) = (t2 + [1]5). L'inclusion ⊇ est claire, en vue

de la factorisation (1). Inversément, prenons un élément f(t) appartenant à l'intersection des

deux idéaux. On peut écrire

(t− [2])g(t) = f(t) = (t− [3])h(t)



pour certains g(t), h(t) ∈ F5[t]. Considérons l'image de f(t) par l'évaluation ev[2] en t = [2].
On a

ev[2](f(t)) = ev[2]((t− [2])g(t)) = 0

d'une part, et

ev[2](f(t)) = ev[2]((t− [3])h(t)) = − ev[2](h(t))

d'autre part. Ainsi ev[2](h(t)) = 0, et puisque ker ev[2] = (t − [2]) on en déduit que h(t) =
(t− [2])j(t) pour un certain j(t) ∈ F5[t]. On peut ainsi écrire

f(t) = (t− [3])(t− [2])j(t) = (t2 + [1])j(t)

ce qui montre que f(t) ∈ (t2 + [1]).

En combinant tout cela dans (2), on obtient

F5[t]

(t2 + [1])
∼= F5 × F5,

ce qui implique que Z[i]/(5) ∼= F5 × F5 en vue du point précédent.

3. On prétend qu'il existe un isomorphisme Z[i]/(p) ∼= Fp × Fp si et seulement si −1 possède

deux racines carrées distinctes modulo p.

Supposons d'abord que l'on puisse écrire a2 = [−1]p = b2 dans Fp avec a ̸= b. Puisque
ker eva = (t− a), on peut écrire

t2 + [1]p = (t− a)(t− b′)

et on prétend que b′ = b. En e�et,

Fp ∋ 0 = b2 + [1] = evb(t
2 + [1]) = (b− a)︸ ︷︷ ︸

̸=0

(b− b′)

et comme Fp est intègre, on obtient que b − b′ = 0. De plus, (t − a) − (t − b) = b − a ̸= 0
est un élément inversible de Fp, donc les idéaux (t− a) et (t− b) sont premiers entre eux. En

appliquant le théorème des restes chinois comme dans la partie précédente, on trouve que

Fp[t]

(t− a) ∩ (t− b)
∼= Fp × Fp.

Puisque b − a ̸= 0 est inversible dans Fp, on obtient comme dans le point précédent que

(t − a) ∩ (t − b) = (t2 + [1]) (où l'on avait utilisé que [2]5 − [3]5 = −[1]5 est inversible dans

F5), et donc que

Z[i]/(p) ∼=
Fp[t]

(t2 + [1])
∼= Fp × Fp.

Remarquons si a ∈ Fp est une racine carrée de [−1]p, alors −a en est aussi une. Or si p ̸= 2
on a a ̸= −a. Il nous reste ainsi à traiter deux cas : celui de p = 2, et celui où [−1]p n'a pas

de racine carrée dans Fp.

Commençons avec le cas p = 2. Alors t2 + [1]2 = (t + [1]2)
2, et ainsi il existe un élément

0 ̸= x de F2[t]/(t
2 + [1]) tel que x2 = 0 (on dit que cet anneau quotient est non-réduit) : on

peut prendre x comme étant l'image de t+ [1]2 dans le quotient. Or il n'existe pas d'élément

non-nul dans F2 × F2 satisfaisant une telle propriété, donc il ne peut y avoir d'isomorphisme

entre ces deux anneaux.

Pour �nir, supposons qu'il n'existe pas de racine carrée de −1 dans Fp. On prétend que

Fp[t]/(t
2 + [1]) est un anneau intègre. Fixons une clotûre algébrique Fp de Fp, et choisissons

une racine carrée i ∈ Fp de −1. On considère l'homomorphisme d'évaluation

evi : Fp[t] −→ Fp, t 7→ i.



Puisque Fp[t]/ ker evi ∼= imevi ⊂ Fp et que Fp est intègre, on voit que Fp[t]/ ker evi est un
anneau intègre. On prétend que ker evi = (t2 + [1]p). L'argument est le similaire à celui de

l'Exemple 1.4.18. Pour �nir, on prétend que Fp[t]/(t
2 + [1]) n'est pas isomorphe à Fp × Fp :

en e�et, cet anneau produit n'est pas intègre.

Exercice 5.

Soit J ≤ A × B un idéal. Noter que (0, 1)J ≤ {0} × B et (1, 0)J ≤ A × {0} sont des idéaux de

A× B inclus dans J . De plus, noter que J = (1, 0)J × (0, 1)J . On conclut donc que tout idéal du

produit est de la forme IA × IB pour IA et IB des idéaux quelconques de A et B respectivement.

En ce qui est des idéaux premiers, on voit en utilisant qu'un idéal est premier si et seulement

si le quotient par cet idéal est intègre que les idéaux premiers sont de la forme

pA ×B A× pB

pour pA et pB des idéaux premiers de A et B respectivement.

Exercice 6.

On suppose d'abord que R est intègre. Grâce à la formule du degré, on voit que R[t]× = R×, donc
les inversibles de R en degré zéro.

On traite maintenant le cas général. Soit p in idéal premier de R. Soit f(t) un élément inversible.

L'image dans (R/p)[t] est encore inversible. Ainsi, par le cas intègre, on voit que les coe�cients

en degré strictement positif de f(t) sont dans l'idéal p et le terme constant n'est pas dans l'idéal.

Ainsi, comme p est quelconque, *

R[t]× ⊆ t nil(R)[t] +R×.

L'inclusion inverse est également véri�ée. En e�et, si f(t) ∈ t nil(R)[t] + R×, alors f(t) − a0 est

nilpotent car c'est une somme d'éléments nilpotents. On conclut par le fait suivant valide dans

n'importe quel anneau commutatif A : si λ ∈ A× et n ∈ A nilpotent, alors λ− n est inversible. En

e�et,

1

λ− n
=

1

λ

∞∑
i=0

(n/λ)i.

Exercice 7.

To see that D(A) is a sub-ring of EndK(A) as

[φ ◦ ψ,ma] = φ ◦ [ψ,ma] + [φ,ma] ◦ ψ

a double induction on n and m if φ ∈ D≤n(A) and ψ ∈ D≤m(A) concludes.

1. Before we show that the Lie bracket is K-bilinear, we �rst mention the K-vector space struc-

ture of D(K[x]). As K ⊂ K[x], the scalar multiplication in K[x] is just de�ned by the usual

multiplication in K[x]. Elements of D(K[x]) are K-linear transformations K[x] → K[x].
Therefore, scalar multiplication can be de�ned for ϕ ∈ D([K[x]]) and λ ∈ K as

(λϕ)(p(x)) = λϕ̇(p(x)) ∈ K[x]

for p(x) ∈ K[x]. This is equivalent to λϕ = mλ ◦ ϕ.
We note that since ϕ is by de�nition K-linear, it holds that for all p(x) ∈ K[x], and for all

λ ∈ K
ϕ(λp(x)) = λϕ(p(x))

and therefore ϕ ◦mλ = mλ ◦ ϕ.
Now onto the exercise, let F, F1, F2, G ∈ D(K[x]) and λ ∈ K. To show K-bilinearity we show

that

*. Un élément dans l'intersection de tout les premiers est nilpotent. Un élément dans aucun idéal maximal est

inversible. Notons également que pour voir que le terme constant de f(t) est inversible on peut évaluer en zéro.



� [F1 + F2, G] = [F1, G] + [F2, G]. By the distributive property of a ring, we have

[F1 + F2, G] = (F1 + F2) ◦G−G ◦ (F1 + F2) = F1 ◦G+ F2 ◦G−G ◦ F1 −G ◦ F2

= F1 ◦G−G ◦ F1 + F2 ◦G−G ◦ F2 = [F1, G] + [F2, G]

� [λF,G] = λ[F,G]. Due to the remark above, for all λ ∈ K, we have G ◦mλ = mλ ◦ G.
Additionally, we use the associativity of the composition to get

[λF,G] = [mλ ◦ F,G] = (mλ ◦ F ) ◦G−G ◦ (mλ ◦ F ) = mλ ◦ (F ◦G)− (G ◦mλ) ◦ F
= mλ ◦ (F ◦G)− (mλ ◦G) ◦ F = mλ ◦ (F ◦G−G ◦ F ) = mλ ◦ [F,G] = λ[F,G]

The same properties for the second components are analogous.

2. Let p(x) =
∑n

i=0 aix
i ∈ K[x]. We exhibit how

[
∂
∂x ,mx

]
acts on this polynomial and compare

it to the action of m1. Using K-linearity of ∂
∂x , we get[

∂

∂x
,mx

]
(p(x)) =

[
∂

∂x
,mx

]( n∑
i=0

aix
i

)

=
∂

∂x

(
mx

(
n∑

i=0

aix
i

))
−mx

(
∂

∂x

(
n∑

i=0

aix
i

))

=
∂

∂x

(
n∑

i=0

aix
i · x

)
−mx

(
n∑

i=0

ai
∂

∂x

(
xi
))

=
∂

∂x

(
n∑

i=0

aix
i+1

)
−mx

(
n∑

i=1

ai · i · x(i−1))

)

=
n∑

i=0

ai
∂

∂x

(
xi+1

)
−

n∑
i=1

ai · i · x(i−1) · x

=
n∑

i=0

ai · (i+ 1)xi −
n∑

i=1

ai · i · xi

=
n∑

i=1

ai · i · xi +
n∑

i=0

aix
i −

n∑
i=1

ai · i · xi

=
n∑

i=0

aix
i = p(x) = m1(p(x)).

3. Let p(x) =
∑n

i=0 aix
i ∈ K[x].We exhibit how

[
∂
∂x ,mxj

]
acts on this polynomial and compare



it to the action of j ·mx(j−1) . Using K-linearity of ∂
∂x , we get[

∂

∂x
,mxj

]
(p(x)) =

[
∂

∂x
,mxj

]( n∑
i=0

aix
i

)

=
∂

∂x

(
mxj

(
n∑

i=0

aix
i

))
−mxj

(
∂

∂x

(
n∑

i=0

aix
i

))

=
∂

∂x

(
n∑

i=0

aix
i · xj

)
−mxj

(
n∑

i=0

ai
∂

∂x

(
xi
))

=
∂

∂x

(
n∑

i=0

aix
i+j

)
−mxj

(
n∑

i=1

ai · i · x(i−1)

)

=

n∑
i=0

ai
∂

∂x

(
xi+j

)
−

n∑
i=1

ai · i · x(i−1) · xj

=

n∑
i=0

ai · (i+ j)x(i+j−1) −
n∑

i=1

ai · i · x(i+j−1)

=

n∑
i=1

ai · i · x(i+j−1) +

n∑
i=0

ai · j · x(i+j−1) −
n∑

i=1

ai · i · x(i+j−1)

= j · x(j−1)
n∑

i=0

aix
(i) = j · x(j−1)p(x) = j ·mx(j−1)(p(x)).

4. By de�nition, a di�erential operator ϕ is of degree 1 if [ϕ,mp] is a di�erential operator of

degree 0 for all p ∈ K[x]. This means that [ϕ,mp] = mq for some q ∈ K[x].

Let p(x) =
∑n

i=0 aix
i ∈ K[x]. Note that mp(x) =

∑n
i=0 aimxi . Then, using the K-bilinearity

of the Lie brackets and the third part of the exercise, we get[
∂

∂x
,mp

]
=

[
∂

∂x
,

n∑
i=0

aimxi

]
=

n∑
i=0

ai

[
∂

∂x
,mxi

]

=

n∑
i=1

ai · i ·mxi−1 = m∑n
i=1 ai·i·xi−1 = m∑n−1

j=0 aj+1·(j+1)·xj .

We conclude with the fact that
∑n−1

j=0 aj+1 · (j+1) ·xj ∈ K[x]. Furthermore,
∑n−1

j=0 aj+1 · (j+
1) · xj = ∂

∂x(p(x)).
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Solutions 5

Exercice 1. (a) Notons tout d'abord qu'un élément de x ∈ k[t]/t2 s'écrit uniquement sous la

forme x = λ+ µt avec λ, µ ∈ k. Notons aussi qu'un élément est inversible si et seulement si

λ ̸= 0. En e�et si λ = 0, on a que x est nilpotent, et si λ ̸= 0, on a x−1 = λ−1(1 − µλ−1t).
Autrement dit on a (t) = (k[t]/t2) \ (k[t]/t2)×. Comme tout idéal propre est inclus dans

(k[t]/t2) \ (k[t]/t2)× = (t) (sinon l'idéal contient un inversible et n'est pas propre), on obtient

par le théorème de correspondance que les idéaux propres de k[t]/t2 sont en bijection avec les

idéaux J de k[t] tel que
(t2) ⊂ J ⊂ (t).

Mais comme (t)/(t2) est un k-espace vectoriel de dimension 1, on voit que J = (t2) ou J = (t).

On conclut que les idéaux sont : l'idéal impropre, l'idéal nul et l'unique idéal maximal (t).

(b) Let I ⊆M ⊆ A be two ideal in A. By Proposition 1.4.41 we have that:

A
/
M ∼= (A/I)

/
π(M).

Now M is a maximal ideal in A if and only if A
/
M is a �eld. Now, by the above, A

/
M is

a �eld if and only if (A/I)
/
π(M) is a �eld, hence if and only if π(M) is a maximal ideal in

A
/
I.

Exercice 2. (a) Let f(t), g(t) ∈ A[t]. We have that

ev(f + g)(a) = (f + g)(a) = f(a) + g(a) = ev(f)(a) + ev(g)(a) = (ev(f) + ev(g))(a)

for all a ∈ A. Therefore ev(f + g) = ev(f) + ev(g).

Similarly,

ev(fg)(a) = (fg)(a) = f(a)g(a) = ev(f)(a) ev(g)(a) = (ev(f) ev(g))(a)

for all a ∈ A. Therefore ev(fg) = ev(f) ev(g).

Lastly, we have that ev(1)(a) = 1 for all a ∈ A and thus ev(1) = 1, where the constant

polynomial function 1 is the unity of F(A).

(b) Let A = Z/pZ and let f(t) = tp − t ∈ A[t]. Then ev(f)(a) = f(a) = ap − a = 0 for all a ∈ A
and thus f ∈ ker(ev).

(c) Let A = R and let f(t) ∈ ker(ev). Then, for all a ∈ R we have that ev(f)(a) = f(a) = 0,
which implies that all elements of R are roots of f . As f can have at most deg(f) real roots,
we conclude that f = 0.

Exercice 3. 1. Soit f(x, y) ∈ k[x, y]/(x2y3) nilpotent. On écrit f(x, y) = xyh1(x, y) + xh2(x) +
yh2(y)+λ, avec λ ∈ k. Comme xy est nilpotent, il suit que xh2(x)+yh2(y)+λ est nilpotent.

Comme l'image dans le quotient par (x) et (y) dans k[y] et k[x] respectivement est encore

nilpotente et que ces anneaux sont intègres, il suit que h2(x) = h2(y) = λ = 0. Dès lors on

conclut que nil(A) = (xy).

On peut aussi utiliser que les éléments nilpotents sont l'intersection de tous les premiers

(Théorème 2.5.17). Comme (x) et (y) sont premiers, on a nil(A) ⊂ (x)∩ (y) = (xy). Comme

l'autre inclusion est également véri�ée, on a égalité.



2. Notons que (x) ∩ (y) = (xy). En e�et si f(x, y) ∈ (x) ∩ (y) alors f(x, y) = xh1(x, y) =
yh2(x, y). Comme (x) est un idéal premier, et que y ̸∈ (x) il suit que h2(x, y) ∈ (x), et donc
que f(x, y) ∈ (xy). Dès lors nil(A) = (x)∩ (y). Cette intersection est bien minimale, en e�et

sinon nil(A) serait premier. Mais x, y ̸∈ nil(A) et xy ∈ nil(A).

3. Si p est un premier qui contient x2y3, alors x ou y appartient à p comme cet idéal est premier.

Ainsi (x) ou (y) est inclus dans p. Comme ces idéaux sont premiers on conclut que ces

premiers sont minimaux. En e�et, en utilisant le raisonnement précédent si p ⊂ (x), alors
soit (y) ⊂ p ⊂ (x) ou (x)p ⊂ (x). Dans le deuxième cas, on a p = (x). Notez que le premier

cas est impossible car y /∈ (x). Ainsi (x) est minimal. Un raisonnement symétrique pour y
s'applique.

On avait d'abord pensé à cette preuve trop alambiquée.

On avait donné en indication,

Pour ce dernier point, on fait remarquer le fait suivant. Si A commutatif et I1, . . . Ir des

idéaux et p un idéal premier, alors si ∩r
i=1Ii ⊂ p, alors il existe j tel que Ij ⊂ p.

Pour prouver cela, notons que si par l'absurde ik ∈ Ik \ p pour tout les k, alors i1 · · · ir ∈ p.
Mais comme p est premier, on obtient une contradiction. En particulier si

nil(A) = p1 ∩ p2

comme dans le cas de l'exercice, en utilisant que nil(A) contient tout les premiers, si p est

minimal, on a p1 ∩ p2 ⊂ p et donc en utilisant le lemme et la minimalité pi = p pour i = 1 ou

i = 2. Ainsi on conclut dans le cas de l'exercice que l'ensemble des premiers minimaux (qui

est non-vide, voir remarque après la preuve) est contenu dans {(x), (y)}. Or comme nil(A)
n'est pas premier, il ne peut exister un unique premier minimal, et donc les idéaux premiers

minimaux sont (x) et (y).

Remarque. On note que tout idéal premier contient un premier minimal par le lemme de

Zorn. (On véri�e qu'une intersection emboîtée de premiers est encore un idéal premier.)

Exercice 4. (a) We �rst note that Fp[Z/pZ] is an Fp-algebra: Fp[Z/pZ] is a commutative ring

and ψ : Fp → Fp[Z/pZ] given by ψ(a) = a · [0], for a ∈ Fp, is a ring homomorphism with the

property that ψ(Fp) ⊆ Fp[Z/pZ]. In particular, we have that Fp[Z/pZ] is an Fp vector space

with basis {[0], [g], [2g], . . . , [(p− 1)g]}, where [g] is a �xed generator of Z/pZ.
We now consider the evaluation homomorphism

ev[g] : Fp[x] → Fp[Z/pZ]

ev[g](x) = 1 · [g].

We have that (xp − 1) ⊆ ker(ev[g]), as ev[g](x
p − 1) = 1 · [pg]− 1 · [0] = 0. On the other hand,

as Fp is a �eld, by Corollary 2.2.5, it follows that Fp[x] is a principal ring and thus there exists

f ∈ Fp[x] such that ker(ev[g]) = (f). Therefore, as xp − 1 ∈ (f), it follows that xp − 1 = f · g
for some g ∈ Fp[x] and by Lemma 2.1.1 we deduce that deg(f) ≤ p.

We write f(x) =

p∑
i=0

aix
i, where ai ∈ Fp. Then:

ev[g](f(x)) =

m∑
i=0

ai · [ig] = (a0 + ap) · [0] +
p−1∑
i=1

ai · [ig] = 0

and, as [0], [g], [2g], . . . , [(p−1)g] are linearly independent, we have a0 = −ap and ai = 0 for all
1 ≤ i ≤ p−1. We deduce that f(x) = ap(x

p−1), where ap ∈ Fp, and thus ker(ev[g]) = (xp−1).

In conclusion, we have shown that Fp[x]/(x
p − 1) ∼= Fp[Z/pZ].



(b) Recall that the characteristic is the natural number n such that nZ is the kernel of the

unique ring homomorphism from Z to Fp[Z/pZ]. Note the unique ring homomorphism from

Z to Fp[Z/pZ] sends x ∈ Z to [x]p ∈ Fp[Z/pZ]. Its kernel is pZ therefore Fp[Z/pZ] has
characteristic p.

(c) Let a =

p−1∑
i=0

a
′
i · ([g]− 1)i be an idempotent element of Fp[Z/pZ]. Then

a2 =
∑
i,j

aiaj · [(i+ j)g] =

p−1∑
k=0

ak · [kg] = a

and, as [0], [g], . . . , [(p − 1)g] are linearly independent, it follows that ak =
∑

i+j=k

aiaj for all

0 ≤ k ≤ p− 1. In particular, we have a0 = a20 and so a0 = 0 or a0 = 1. As a1 = a0a1 + a1a0
we see that in both cases we obtain a1 = 0. Recursively, we deduce that

ak+1 =
∑

i+j=k+1

aiaj = a0ak+1 +
( ∑
i+j=k+1
1≤i,j≤k

aiaj
)
+ a0ak+1 = a0ak+1 + ak+1a0

and therefore ak+1 = 0. Hence, if a0 = 0, it follows that a = 0 · [0], while, if a0 = 1, it follows
that a = 1 · [0]. We have shown that the only idempotents of Fp[Z/pZ] are 0 · [0] and 1 · [0].
By Proposition 2.4.55 and Remark 2.4.56 we conclude that Fp[Z/pZ] cannot be decomposed

as a product of non-zero rings.

On propose également une résolution qui évite tout calcul.

On montre le petit lemme suivant qui peut être utile.

Lemme. Soit A un anneau commutatif tel que A\A× est un idéal. Alors c'est l'unique idéal

maximal de A.

Preuve. Notons que tout idéal propre est contenu dans A \ A×. En e�et si un élément

inversible appartient à un idéal, celui-ci est forcément égal à A. Dès lors si m est maximal

(en particulier propre), on a m ⊂ A \A×. Mais comme on a supposé que A \A× est un idéal,

on a par maximalité m = A \A×.

Maintenant, notons qu'un produit d'anneaux A×B non-nuls contient toujours au-moins deux

idéaux maximaux : si mA et mB sont des idéaux maximaux de A et B respectivement, alors

mA ×B et A×mB sont maximaux.

Maintenant, dans l'anneau

A = Fp[t]/(t− 1)p,

notons que t− 1 est nilpotent. Si f(t) ∈ Fp[t], on peut écrire

f(t) = f(1) + (t− 1)g(t)

par division euclidienne. Ainsi l'image dans le quotient f(t) peut s'écrire f(t) = f(1) − n
avec n ∈ A nilpotent. Dès lors, on voit que* f(t) est inversible si et seulement si f(1) ̸= 0
ou autrement dit f(t) ̸∈ (t − 1) = ker(ev1). Ainsi on a A \ A× = (t − 1) qui est un idéal, et

donc l'unique idéal maximal. Dès lors, il suit que A ne peut être un produit de deux anneaux

non-nuls.

*si λ ∈ A× et n ∈ A nilpotent, alors λ− n est inversible. En e�et,

1

λ− n
=

1

λ

∞∑
i=0

(n/λ)i.



Exercice 5. 1. We de�ne a+ b
√
5 = a− b

√
5 and note that for all z ∈ Z[

√
5], the norm N(z) =

zz. The fact that N is a multiplicative function then follows from the fact that ∀y, z ∈ Z[
√
5],

it holds that yz = y z. With this, we get that N(yz) = yzyz = yzy z = yyzz = N(y)N(z).

Furthermore, if z ∈ Z[
√
5] is invertible, then N(z) = ±1 is necessary. If we denote its inverse

by z−1, then N(z)N(z−1) = N(1) = 1, and therefore, N(z) = ±1. On the other hand, if

N(z) = ±1 for some z ∈ Z[
√
5], then ±1 = N(z) = zz and hence ±z is the inverse of z.

2. We note that N(9 + 4
√
5) = 92 − 5 · 42 = 1, and so by the �rst point, 9 + 4

√
5 is invertible.

Furthermore, by the multiplicative property of the norm, the norm of (9+4
√
5)n is 1 as well,

for n ∈ N. This means that we have created in�nitely many invertible elements, and (Z[
√
5])×

is in�nite.

3. We �rst show that no elements of norm 2 exist. For this, we note that N(a+
√
5b) = a2−5b2,

which is equal to a2 modulo 5, a square. But all squares in Z/5Z are either 0,1 or 4, as one

checks by taking the square of all elements in Z/5Z.
Now let z ∈ Z[

√
5] be of norm 4, and we assume that z = v · w for v, w ∈ Z[

√
5]. Then

4 = N(z) = N(v)N(w). But as there are no elements of norm 2, we have that either N(v) =
±1, N(w) = ±4 or N(v) = ±4, N(w) = ±1. In either cases one of the two elements is of norm

±1, which means that that element is invertible. Hence z is irreducible.

4. We have

� 4 = 2 · 2 and N(2) = 4, hence by the previous part, 2 is irreducible

� 4 = (1 +
√
5)(−1 +

√
5) and N(1 +

√
5) = −4, N(−1 +

√
5) = −4, hence both 1 +√

5,−1 +
√
5 are irreducible.

� 4 = (3 +
√
5)(3−

√
5) and N(3 +

√
5) = 4, N(3−

√
5) = 4, hence both 3 +

√
5, 3−

√
5

are irreducible.

5. As we see from the previous point, 2 · 2 = 4 = (3 +
√
5)(3−

√
5), from which it follows that

2 · 2 ∈ (3 +
√
5). But as 2 /∈ (3 +

√
5), the ideal (3 +

√
5) is not prime.

We remark (all these notions will be de�ned later in the course) that irreducible does not

imply prime in a ring that is not factorial or principal.

Exercice 6. 1. Soit x = a+ bi
√
d ∈ A avec a2 + b2d ≤ d+ 1. Donc

a2 + (b2 − 1)d ≤ 1.

On voit dès lors que |b| ≤ 1. On distingue deux cas. Tout d'abord traitons le cas où b = ±1.
Alors on a nécessairement a = 0 ou a = ±1, c'est à dire

x = ±i
√
d x = ±(1− i

√
d) x = ±(1 + i

√
d).

Traitons maintenant le cas où b = 0. On alors x = a ∈ Z avec la condition que |a| ≤
√
1 + d.

2. On montre d'abord que i
√
d est irréductible. On a N(i

√
d) = d. Ainsi si x | i

√
d avec x ni

inversible ni associé, il faut que 1 < N(x) < d. Selon la liste établie au point 1, on a alors

x = a ∈ Z avec |a| <
√
d. Mais comme on a supposé que x | i

√
d, il existe e, f ∈ Z tel que

a(e+ fi
√
d) = i

√
d.

Donc e = 0 et fa = 1 ce qui contredit N(a) > 1.

On montre maintenant que 1 + i
√
d est irréductible. Comme la conjugaison complexe est

un automorphisme d'anneau qui envoie 1 + i
√
d sur 1 − i

√
d cela montrera que 1 − i

√
d est

également irréductible. Comme N(1 + i
√
d) = 1 + d, si x | 1 + i

√
d avec x ni irréductible ni

associé à 1+ i
√
d, alors 1 < N(x) < 1+ d. Comme il faut aussi que N(x) | 1+ d, on voit que

N(x) < d. Ainsi un argument similaire à celui au-dessus conclut.



3. Supposons que 1 + d n'est pas premier dans Z. Alors on a

1 + d = (1 + i
√
d)(1− i

√
d) = p1 · · · pr

pour p1, . . . , pr des premiers avec pi ≤ d comme on a supposé d + 1 pas premier. Comme

1 + i
√
d est irréductible, si 1 + d admet une factorisation unique en produit d'irréductibles

(en supposant par l'absurde que A est factoriel) cela impliquerait que 1 + i
√
d | pj pour un

indice j. Mais dès lors il existerait e, f ∈ Z avec

(1 + i
√
d)(e+ fi

√
d) = pj

Donc e + f = 0 et pj = e − df = (1 + d)e. Comme pj ≤ d, c'est une contradiction. Ainsi

on conclut que 1 + d n'admet pas de factorisation unique en produit d'irréductibles. En

particulier, on conclut que dans ce cas A n'est pas factoriel.

4. Supposons maintenant q := 1 + d premier dans Z. On a

1 + d = (1 + i
√
d)(1− i

√
d),

qui est une décomposition en irréductibles. On veut montrer que si x | 1+d et est ni inversible
ni associé à 1+d, alors x est associé à 1+ i

√
d ou 1− i

√
d. Comme N(1+d) = (1+d)2 = q2,

un tel diviseur x satisfait forcément N(x) = q = 1 + d. Selon la liste au-dessus on a dès lors

x = ±(1− i
√
d) x = ±(1 + i

√
d).

ou x ∈ Z avec x2 = q, mais cela n'est pas possible comme q est premier.

Exercice 7. (a) Let
∑
g∈G

ag · g ∈ Z(A) and let h ∈ G. Then 1 · h ∈ A is invertible with inverse

(1 · h)−1 = 1 · h−1 and we have

(1 · h)(
∑
g∈G

ag · g)(1 · h)−1 =
∑
g∈G

ag · hgh−1 =
∑
g′∈G

ah−1g′h · g
′
=

∑
g′∈G

ag′ · g
′
.

It follows that ah−1gh = ag for all h ∈ G and thus the map g → ag is constant over equivalence
classes.

Conversely, assume that g → ag is constant over equivalence classes. Let 1 · h ∈ A. Then:

(1 · h)(
∑
g∈G

ag · g)(1 · h)−1 =
∑
g′∈G

ah−1g′h · g
′
=

∑
g′∈G

ag′ · g
′

and thus

(1 · h)(
∑
g∈G

ag · g) = (
∑
g∈G

ag · g)(1 · h), for all h ∈ G.

Therefore

(
∑
h∈G

ah · h)(
∑
g∈G

ag · g) =
∑
h∈G

ah · h
∑
g∈G

ag · g =
∑
h∈G

ah(
∑
g∈G

agg)h = (
∑
g∈G

ag · g)(
∑
h∈G

ah · h)

and consequently
∑
g∈G

ag · g ∈ Z(A).

(b) Fix A = C[S3]. By (a) we have that e1, e2, e3 ∈ Z(A). We will now show that they are

idempotents. First,

e21 =
1

36
(
∑
g∈S3

g)(
∑
h∈S3

h)

=
1

36

[ ∑
g∈S3

g +
∑
g∈S3

g(12) +
∑
g∈S3

g(13) +
∑
g∈S3

g(23) +
∑
g∈S3

g(123) +
∑
g∈S3

g(132)

]
=

1

6

∑
g∈S3

g = e1.



In the above we have used the fact that for all x ∈ S3, the map S3 → S3 sending a → ax is

bijective. Hence
∑
g∈S3

gx =
∑
g∈S3

g for all x ∈ S3. Secondly,

e22 =
1

36
(
∑
g∈S3

sgn(g)g)(
∑
h∈S3

sgn(h)h)

=
1

36

[ ∑
g∈S3

sgn(g)g −
∑
g∈S3

sgn(g)g(12)−
∑
g∈S3

sgn(g)g(13)−
∑
g∈S3

sgn(g)g(23)+

+
∑
g∈S3

sgn(g)g(123) +
∑
g∈S3

sgn(g)g(132)

]

=
1

36

[ ∑
g∈S3

sgn(g)g −
∑
g∈S3

sgn(g(12))g −
∑
g∈S3

sgn(g(13))g −
∑
g∈S3

sgn(g(23))g+

+
∑
g∈S3

sgn(g(132))g +
∑
g∈S3

sgn(g(123))g

]
=

1

6

∑
g∈S3

sgn(g)g = e2.

In the above we have used the fact that sgn(στ) = sgn(σ) sgn(τ) for all σ, τ ∈ S3.

Lastly, we will show that f1 and f2 are idempotents and that f1f2 = f2f1 = 0. We have that:

f21 =
1

9

[
Id+ε(123) + ε2(132) + ε(123) + ε2(132) + Id+ε2(132) + Id+ε(123)

]
=

1

3

[
Id+ε(123) + ε2(132)

]
= f1.

Analogously one shows that f22 = f2. Keeping in mind that ε2 + ε = −1, we have

f1f2 =
1

9

[
Id+ε(123) + ε2(132) + ε2(123) + (132) + ε Id+ε(132) + ε2 Id+(123)

]
=

1

9
(1 + ε+ ε2)

[
Id+(123) + (132)

]
= 0.

Analogously one shows that f2f1 = 0. Therefore e23 = (f1 + f2)
2 = f21 + f1f2 + f2f1 + f22 =

f1 + f2 = e3.

We have shown that e1, e2, e3 are central idempotents. We will now show that they are

pairwise orthogonal. We have

e1e2 =
1

36

[∑
g∈G

g −
∑
g∈G

g(12)−
∑
g∈G

g(13)−
∑
g∈G

g(23) +
∑
g∈G

g(123) +
∑
g∈G

g(132)

]
= 0.

Analogously one shows that e2e1 = 0. We note that e3 =
1
3(2 Id−(123)− (132)). Then

e1e3 =
1

18

[
2
∑
g∈G

g −
∑
g∈G

g(123)−
∑
g∈G

g(132)

]
= 0

and

e2e3 =
1

18

[
2
∑
g∈G

sgn(g)g −
∑
g∈G

sgn(g)g(123)−
∑
g∈G

sgn(g)g(132)

]

=
1

18

[
2
∑
g∈G

sgn(g)g −
∑
h∈G

sgn(h(132))h−
∑
h∈G

sgn(h(123))h

]
= 0.



Now e1 + e2 =
1
3 [Id+(123) + (132)] is a central idempotent in A, as (e1 + e2)

2 = e21 + e1e2 +
e2e1 + e22 = e1 + e2. Furthermore, one checks that (e1 + e2)e3 = 0 and e1 + e2 + e3 = Id.
Thus, by Proposition 1.4.55, we have that A ∼= A(e1 + e2)×Ae3.

Similarly, e1 and e2 are central orthogonal idempotents in A(e1 + e2) and, as e1 + e2 is the

identity in A(e1+e2), we once more apply Proposition 1.4.55 to obtain A(e1+e2) ∼= Ae1×Ae2.
We have shown that:

A ∼= Ae1 ×Ae2 ×Ae3.

(c) Let x ∈ Ae1. Then x = ye1, where y = a0 Id+a1(12)+a2(13)+a3(23)+a4(123)+a5(132) ∈ A.
We compute

x = a0
∑
g∈G

g + a1
∑
g∈G

g(12) + a2
∑
g∈G

g(13) + a3
∑
g∈G

g(23) + a4
∑
g∈G

g(123) + a5
∑
g∈G

g(132)

= (a0 + a1 + a2 + a3 + a4 + a5)
∑
g∈G

g

= (
5∑

i=0

ai)e1.

Therefore if x ∈ Ae1 then x = cxe1, for some cx ∈ C. Analogously, one shows that if

x ∈ Ae2 then x = cxe2, for some cx ∈ C. (In this case, computations will show that

cx = a0 − a1 − a2 − a3 + a4 + a5.)

For i = 1, 2 consider the map φ : Aei → C given by φ(x) = cx. One checks that φ is a ring

isomorphism and concludes that Aei ∼= C, for i = 1, 2.

(d) Let x ∈ Ae3. Then x = ye3, where y = a0 Id+a1(12)+a2(13)+a3(23)+a4(123)+a5(132) ∈ A.
We compute

yf1 = (a0 + a5ε+ a4ε
2)f1 + (a1 + a2ε+ a3ε

2)(12)f1

and

yf2 = (a0 + a4ε+ a5ε
2)f2 + (a1 + a3ε+ a2ε

2)(12)f2

to determine that

x = (a0 + a5ε+ a4ε
2)f1 + (a1 + a2ε+ a3ε

2)(12)f1 + (a0 + a4ε+ a5ε
2)f2 + (a1 + a3ε+ a2ε

2)(12)f2

= x1f1 + x2(12)f1 + x3(12)f2 + x4f2,

where x1, x2, x3, x4 ∈ C.

De�ne the map φ : Ae3 → M2(C) by φ(x) =

(
x1 x3
x2 x4

)
. Clearly φ is a bijective map,

φ(x + y) = φ(x) + φ(y) for all x, y ∈ Ae3 and φ(e3) = I2. What remains to show is that

φ(xy) = φ(x)φ(y) for all x, y ∈ Ae3.

We �rst remark that

(12)f1 =
1

3
[(12) + ε(23) + ε2(13)] = f2(12)

and

f1(12) =
1

3
[(12) + ε(13) + ε2(23)] = (12)f2.

Now, keeping in mind that f21 = f1, f
2
2 = f2, f1f2 = f2f1 = 0, (12)f1 = f2(12) and



f1(12) = (12)f2, we have

xy = (x1f1 + x2(12)f1 + x3(12)f2 + x4f2)(y1f1 + y2(12)f1 + y3(12)f2 + y4f2)

= x1y1f
2
1 + x2y1(12)f1f1 + x3y1(12)f2f1 + x4y1f2f1 + x1y2f1(12)f1 + x2y2(12)f1(12)f1+

+ x3y2(12)f2(12)f1 + x4y2f2(12)f1 + x1y3f1(12)f2 + x2y3(12)f1(12)f2 + x3y3(12)f2(12)f2+

+ x4y3f2(12)f2 + x1y4f1f2 + x2y4(12)f1f2 + x3y4(12)f2f2 + x4y4f
2
2

= x1y1f1 + x2y1(12)f1 + x3y2f1 + x4y2(12)f1 + x1y3(12)f2 + x2y3f2 + x3y4(12)f2 + x4y4f2

= (x1y1 + x3y2)f1 + (x2y1 + x4y2)(12)f1 + (x1y3 + x3y4)(12)f2 + (x2y3 + x4y4)f2.

Thus φ(xy) =

(
x1y1 + x3y2 x1y3 + x3y4
x2y1 + x4y2 x2y3 + x4y4

)
=

(
x1 x3
x2 x4

)
·
(
y1 y3
y2 y4

)
= φ(x)φ(y). We con-

clude that φ is a ring isomorphism and thus Ae3 ∼=M2(C).
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Solutions 6

Exercice 1. 1. We �rst do this division in C. There, we obtain that

(5 + 5i)

(4 + 2i)
=

(5 + 5i)(−4 + 2i)

(4 + 2i)(−4 + 2i)
=

3

2
+

1

2
i.

By either rounding up or down both the real and imaginary part, we �nd the closest elements

in Z[i] to be the quotients 1, 2, 1 + i, 2 + i. The division by these with rest are

� (5 + 5i) = 1 · (4 + 2i) + (1 + 3i)

� (5 + 5i) = 2 · (4 + 2i) + (−3 + i)

� (5 + 5i) = (1 + i) · (4 + 2i) + (3− i)

� (5 + 5i) = (2 + i) · (4 + 2i) + (−1− 3i)

Remark that we need to take the closest elements in Z[i] to 3
2 +

1
2 i ∈ C as otherwise the norm

of the rest would exceed the norm of 4+2i, which is a contradiction. In all of the above cases,

this is satis�ed. This also shows that the quotent and rest of the euclidean division are not

unique.

2. We have

� 2 = (1 + i)(1− i) and since 1 + i, 1− i /∈ (Z[i])× it follows that 2 is not irreducible.

On note que en tant qu'idéaux (2) = (1 + i)2.

� Assume that 3 = x · y, with x, y ∈ Z[i]. Then by Proposition 3.4.8, it follows that both

N(x) and N(y) divide N(3) = 9. This is possible if N(x), N(y) ∈ {1, 3, 9}. If N(x) = 1,
then x is a unit. If N(x) = 9, then N(y) = 1 and y is a unit. If N(x) = 3, with x = a+ib
for a, b ∈ Z, then N(x) = a2 + b2, but for natural numbers a and b this is impossible.

So N(x) ̸= 3, and the only way to write 3 as a product of two elements x, y in Z[i] is if
either of them is a unit, which means that 3 is irreducible.

� 5 = (2 + i)(2− i) is not irreducible, as both factors are not units.

� 2i = (1 + i)2 is not irreducible, as 1 + i is not a unit.

� Since N(2 − 3i) = 13 is irreducible in Z, it follows by Proposition 3.4.8 that 2 − 3i is
irreducible in Z[i].
Remarque. Comme Z[i] est euclidien, donc principal, donc factoriel, un élément est

irréductible si et seulement si l'idéal associé est premier. Ainsi pour a + bi ∈ Z[i] le
quotient

Z[t]/(t2 + 1, a+ bt)

est intègre si et seulement si a+ bi est irréductible.

3. We note that Z[i] is Euclidean by Example 3.2.7, from which it follows by Proposition 3.3.3

that Z[i] is principal. The Proposition 3.4.13 then states that since 3 is irreducible in Z[i],
the ideal (3) is maximal in Z[i]. It follows that Z[i]/(3) is a �eld.

Comme

Z[i]/(3) ∼= F3[t](t
2 + 1)

c'est un F3 espace vectoriel de dimension 2, donc de cardinalité 9.



4. Le cas p = 2 étant clair, on suppose que p > 2 pour la suite. Notons que dans un anneau Eu-

clidien, un élément est irréductible si et seulement si l'idéal associé est maximal (Proposition

3.6.3).

(a) On montre que (a) =⇒ (b). Si p = a2 + b2, alors p = (a + bi)(a − bi), un produit de

deux éléments non-invesibles. Ainsi (p) n'est pas premier. Dès lors comme

Z[i]/(p) ∼= Fp[t]/(t
2 + 1),

on a que (t2 + 1) n'est pas premier dans Fp[t] et le polynôme t2 + 1 a donc une racine.

Cela signi�e donc qu'il existe un élément d'ordre 4 dans F×
p . Ainsi 4 | p− 1.

(b) On montre que (b) =⇒ (a). Si 4 | p − 1, cela implique qu'il existe un élément d'ordre

4 dans F×
p

∼= Z/(p − 1)Z. Ainsi t2 + 1 a une racine dans Fp[t] et donc p n'est pas

irréductible dans Z[i]. Cela signi�e qu'il existe un élément a + bi ∈ Z[i] avec a + bi | p
tel que 1 < N(a+ bi) = a2 + b2 < p2 = N(p) et N(a+ bi) | N(p). Ainsi on conclut que

a2 + b2 = p.

Exercice 2. 1. On one hand, we have | a + bω |2= (a + bω)(a + bω̄) = a2 + ab(ω + ω̄) + b2ωω̄.

On the other hand, we see that both ω = e
2πi
3 and its complex conjugate ω̄ = e−

2πi
3 are roots

of the polynomial z3 − 1 = 0. Since z3 − 1 = (z − 1)(z2 + z + 1), both ω and ω̄ are roots of

the polynomial (z2+ z+1) and therefore (z2+ z+1) = (z−ω)(z− ω̄) = z2− (ω+ ω̄)z+ωω̄,
from which it follows by comparing coe�cients that ω + ω̄ = −1 and ωω̄ = 1. Therefore,
| a+ bω |2= a2 − ab+ b2 = N(a+ bω).

2. La norme au carré étant toujours positive, la formule dé�nissant N montre que cette norme

prend des valeurs entières. Pour montrer qu'il s'agit d'une fonction euclidienne on procède

comme pour les entiers de Gauss. Soit a+bω un entier d'Eisenstein et (a+bω) l'idéal principal
correspondant. Cet idéal est un réseau dans Z[ω]. Voici une illustration tirée d Wikipedia de

Z[ω]:

La maille fondamentale de ce réseau est un losange de côté 1 dont les sommets sont par

exemples 0, 1, ω et 1 + ω, ce dernier étant aussi de norme 1 − 1 + 1 = 1. Ainsi la petite

diagonale est de longueur 1 et la grande est de longueur
√
3 =

√
N(1− ω).

L'idéal (a+ bω) est donc obtenu à partir du réseau ci-dessus par une dilatation d'un facteur√
N(a+ bω) et rotation d'angle l'argument de a + bω. Pour nos considérations il su�ra de

considérer la taille d'un losange de ce réseau homothétique, choisissons le losange de sommets

0, a+ bω, ω(a+ bω) et (1 + ω)(a+ bω) (que l'on pourra dessiner sur l'illustration précédente

pour 3 + 2ω par exemple.) La petite diagonale est de longueur | a + bω | et la grande de

longueur
√
3· | a+ bω |. Par conséquent le cercle dont le centre est le milieu du losange (point

d'intersection des diagonales) et dont le rayon vaut
√
3/2· | a+ bω | contient toute la maille.



Ceci démontre que tout point de Z[ω] se trouve à une distance d'au plus
√
3/2· | a+ bω | d'un

point de ce réseau (a+ bω).

Autrement dit, pour tout entier d'Eisenstein c + dω, il existe un entier q = q0 + q1ω tel que

r = c+ dω − q(a+ bω) est de norme plus petite ou égale à 3/4 ·N(a+ bω) < N(a+ bω). On
choisira alors q pour quotient et r comme reste de la division.

3. Let z ∈ Z[ω] be invertible, with inverse element denoted by z−1. Then by the multiplicative

properties of the norm, we have that 1 = N(1) = N(z) · N(z−1), and therefore, N(z) ∈ N
needs to be equal to 1. This is obtained for the elements z = ±1,±ω,±(1+ω). One checks that
these are indeed units: ±1 is clearly a unit, and by the �rst point, we have that ω+ ω̄ = −1.
From this, it follows with ω2 = ω̄ that ω(1 + ω) = ω + ω2 = ω + ω̄ = −1. Hence the inverse
of ±ω is ∓(1 + ω).

Exercice 3. 1. We calculate the complex roots of the polynomial 3+2t+2t2. They are
−2± i

√
20

4
=

−1± i
√
5

2
. The roots are elements in Q[i

√
5] and we have that 3+2t+2t2 = 2(t+

1 + i
√
5

2
)(t+

1− i
√
5

2
). This means that 3 + 2t+ 2t2 is not irreducible in Q[i

√
5], as we can express it as

the product of 2(t+
1 + i

√
5

2
) and (t+

1− i
√
5

2
), both of which are not units.

On the other hand, if we try to decompose 3 + 2t+ 2t2 into a product of two non-invertible

elements in Z[i
√
5], then we have two option: we assume that 3 + 2t + 2t2 = f(t)g(t) with

f, g polynomials in Z[i
√
5][t]. Now the sum of the degree of f plus the degree of g is equal to

2, which means that either f is of degree 2, and g of degree 0 (or vice versa), or the degree of

both is 1.

If g is of degree 0, then g is in Z[i
√
5], and it holds that g times the leading coe�cient of f is

equal to 2. But since 2 is irreducible in Z[i
√
5], (this can be seen by checking that N(2) = 4,

and verifying that not element in Z[i
√
5] exists with norm 2) it follows that either g = ±1 or

g = ±2. If g = ±1, then the decomposition of 3 + 2t + 2t2 is the decomposition into a unit

multiplied by a non-unit. The other decomposition with g = ±2 does not exist, since not all

coe�cients of 3 + 2t+ 2t2 are divisible by 2.

Therefore, our only possibility for a decomposition into a product of two non-invertible el-

ements is if both f and g are of degree 1. Let f(t) = (αt + β), g(t) = (γt + δ) with

α, . . . , δ ∈ Z[i
√
5]. Since the leading coe�cient of 3 + 2t + 2t2 is 2, which is irreducible

in Z, it follows that α = ±2, γ = ±1 (or vice versa). We now note that the ring C[t] is
integral by Proposition 3.2.3. Since furthermore, it is principal by Corollary 3.3.5, it holds

that every irreducible element is prime by Proposition 3.4.13. Then by Proposition 3.5.4,

if an element c(t) ∈ C[t] admits a decomposition into irreducible factors, then that decom-

position is unique (up to multiplication by units). This means that if a decomposition of

3+2t+2t2 in Z[i
√
5] exists, then it must agree with the decomposition in C[t] we have found

above. So if 3 + 2t + 2t2 = (2t + β)(t + δ) is a decomposition in Z[i
√
5][t], then it needs to

agree with the decomposition in C[t], which would force the decomposition to be of the form

3 + 2t + 2t2 = (2t + 1 +
√
5i)(t + 1−i

√
5

2 ) or 3 + 2t + 2t2 = (t + 1+
√
5i

2 )(2t + 1 − i
√
5). But

clearly one of the roots is not a root in Z[i
√
5], which is a contradiction. We conclude that in

Z[i
√
5], the polynomial can not be written as a product of non-invertible elements, making it

irreducible.

2. Généralisation. We calculate

(a+ ct)(b+ ct) = ab+ (cb+ ac)t+ c2t = cd+ (cb+ ac)t+ c2t = c(d+ (a+ b)t+ ct2)



which shows that the roots of d+ (a+ b)t+ ct2 are −a/c and −b/c in K. This shows that in

K, we can write the polynomial d+ (a+ b)t+ ct2 as the product c(t+ a
c )(t+

b
c), with both

terms c(t+ a
c ) and (t+ b

c), not units. Hence the polynomial is not irreducible in K.

On the other hand, over A, the polynomial is irreducible. This we prove as in the exercise

above. We assume that the polynomial decoposes into a product of two non-invertible poly-

nomials f and g. There are two options. Firstly, we suppose that g is of degree 0, and f
is of degree 2. Then, g multiplied with the leading coe�cient of f is equal to c. But since

c is irreducible in A, it follows that g = u, u ∈ A× or g = uc, u ∈ A× If g = u, then the

decomposition is the decomposition into a unit and non-unit. The other decomposition, with

g = uc does not exist, since c does not divide at least one coe�cient of our polynomial. In

fact, c does not divive d because they are irreducible and not associated.

So we now assume that the degree of f and g is 1. Then, f(t) = αt + β, g(t) = γt + δ,
with α, . . . , δ ∈ A. Since the leading coe�cient is c, which is irreducible in A, it follows that
α = uc, u ∈ A×. The argument above only uses the fact that C is a �eld to show that if an

element over C[t] admits a decomposition into irreducible factors, then it is unique. Hence we

apply the same propositions to the �eldK and see that the decomposition of d+(a+b)t+ct2 as
the product c(t+ a

c )(t+
b
c) is unique. From this, it follows that if there exists a decomposition

of the polynomial in A, then it must agree with the decomposition in K, which is of the form

d+ (a+ b)t+ ct2 = (ct+ a)(t+ b
c), or d+ (a+ b)t+ ct2 = (t+ a

c )(ct+ b). But clearly in both

cases, one of the roots is not a root in A, which is a contradiction. Hence the polynomial is

irreducible in A.

3. By divide −2 + i
√
5 by 1 + i

√
5 with rest, and then calculate the norm of the rest. If Z[i

√
5]

with the norm N(a+ i
√
5b) = a2 + 5b2 was Euclidean, then the norm of the rest would need

to be smaller than the norm of 1 + i
√
5, which is 6. We perform the division over C, and

obtain −2+i
√
5

1+i
√
5

= 1
2 + i12

√
5. The closest elements in Z[i

√
5] are 0, i

√
5, 1, 1+ i

√
5. It holds that

� −2 + i
√
5 = (1 + i

√
5) · 0 + (−2 + i

√
5) = 0 + (−2 + i

√
5) with N(−2 + i

√
5) = 9

� −2 + i
√
5 = (1 + i

√
5) · i

√
5 + 3 = (−5 + i

√
5) + 3 with N(3) = 9

� −2 + i
√
5 = (1 + i

√
5) · 1 + (−3) = (1 + i

√
5) + (−3) with N(−3) = 9

� −2+i
√
5 = (1+i

√
5) ·(1+i

√
5)+(2−

√
5) = (−4+i2

√
5)+(2−

√
5) with N(2−

√
5) = 9

As the norm of every rest is bigger than 6, we can not �nd q, r ∈ Z[i
√
5] such that −2+ i

√
5 =

q(1 + i
√
5) + r with N(r) < N(1 + i

√
5), which means that Z[i

√
5] equipped with N is not

Euclidean.

Note that we can also look at the calculations above in a geometric way. The four elements

0, 1 + i
√
5, −5 + i

√
5 et −4 + 2i

√
5 are the edges of the rectangle of the lattice spanned by

(1 + i
√
5) that contains −2 + i

√
5.

Exercice 4.

La technique de l'exemple 3.7.4.(3) s'applique texto car (en reprenant les notations de l'exemple)∣∣∣∣ℜe( b

a
− q

)∣∣∣∣ ≤ 1

2
et

∣∣∣∣ℑm(
b

a
− q

)∣∣∣∣ ≤ 1√
2

Ceci implique que ∣∣∣∣ ba − q

∣∣∣∣2 ≤ 1

22
+

1

2
=

3

4
< 1

et on conclut comme dans l'exemple.



Exercice 5.

For any �eld K, we know that by Corollary 3.3.5, K[t] is a principal ideal domain. By Proposition

3.4.13, in a PID, the following are equivalent, for q in the PID:

� q prime

� q irreducible

� (q) prime

� (q) maximal.

1. For C[t], we know by Example 2.3.7(c) that

f(t) ∈ C[t] irreducible ⇔ f(t) = ct+ d, c ∈ C \ {0}, d ∈ C.

Hence the prime=maximal ideals in C[t] are of the form (ct+ d).

For R[t], we know by Example 3.4.7 that the ideal (t − d) is prime=maximal for all d ∈ R.
Furtermore, by Example 3.4.7, we know that if f ∈ R[t], deg(f) ≤ 3, then

f(t) ∈ R[t] irreducible ⇔ ∀c ∈ R : f(c) ̸= 0

Let f(t) = at2 + bt + c = a
(
t2 + b

a t+
c
a

)
, with a ∈ R invertible. It su�ces therefore to

study f(t) = x2 + bx + c. The complex roots of f are −b±
√
b2−4c
2 . Both roots are not in R if

b2− 4c < 0. Hence f is irreducible if b2− 4c < 0. The ideals (x2+ bx+ c) are prime=maximal

for b2 − 4c < 0.

There are no irreducible polynomials of higher degree, since a polynomial in R[t] of degree 3
or higher has at least one root that is contained in R.

2. We consider the evaluation of K[s, t] at t = a, de�ned as

eva : K[s, t] → K[s], s 7→ s, t 7→ a.

Similar to Example 1.4.10, we show that ker(eva) = (t − a). With the �rst isomorphism

theorem (and eva being surjective), it follows that K[s, t]/(t − a) ∼= K[s]. With Proposition

3.2.3, it follows from K being a �eld, and hence in particular being integral, that K[s] is
integral as well. From Proposition 2.5.2 it follows that (t− a) is a prime ideal. On the other

hand, it holds that K[s] is not a �eld, and therefore, with Proposition 2.5.5 it follows that

(t− a) is not a maximal ideal.

3. Consider the evaluation of C[s, t] at s = t2 de�ned as

evs=t2 : C[s, t] → C[t], s 7→ t2, t 7→ t.

Again, by the usual argument, ker(evs=t2) = (s− t2). It follows with surjectivity by the �rst

isomorphism theorem that C[s, t]/(s− t2) ∼= C[t]. By Corollary 3.3.5, using that C is a �eld,

it follows that C[t] is a principal ideal domain.

4. We want to apply the Chinese remainder theorem to the ideals (t−ai) in K[t]. We may do so,

since from ai ̸= aj for all i, j it follows that (t− ai) is prime to (t− aj). With the remainder

theorem, we get that

K[t]/((t− a1) ∩ . . . ∩ (t− an)) ∼= K[t]/(t− a1)× . . .×K[t]/(t− an).

First, we remark that (t − a1) ∩ . . . ∩ (t − an) = ((t − a1) · . . . · (t − an)), and we denote

f(t) := (t − a1) · . . . · (t − an). Seondly, the K[t]/(t − ai) are isomorphic to K, using the

evaluation at ai. It follows that

K[t]/(f(t)) ∼= K × . . .×K ∼= Kn.



We now take (b1, . . . , bn) ∈ Kn. Via the isomorphism above, there exists g(t) ∈ K[t] modulo

f(t) that corresponds to (b1, . . . , bn) ∈ Kn. Since the isomorphism above is constructed using

the evaluations as ai, it follows that g(ai) = bi for all i = 1, . . . , n. Lastly, since f(t) is of
degree n, we may represent a class (modulo f) by a polynomial of degree strictly smaller than

n. Hence g(t) is of degree at most n− 1.

Exercice 6.

By Example 3.2.7, we have that Z[i] is euclidean. From Proposition 3.3.3 it follows that Z[i] is
principal. This means that every ideal in Z[i] is generated by a single element. So let a ∈ Z[i] such
that (5) ⊊ (a) ⊊ Z[i]. From Remark 3.4.5 it follows that a | 5 and then with Proposition 3.4.8 it

follows that N(a) | N(5) = 25. The only options for N(a) are 1,5, or 25. But since (a) is not equal
to both (5) and Z[i], it follows that N(a) ̸= 25 and N(a) ̸= 1. Hence N(a) = 5, and we let a = c+id
with c, d ∈ Z. In order for N(c+ id) = 5 to hold, we have that either c = ±1, d = ±2 or vice versa.

The possibilities for a are a = 1+2i, 1− 2i,−1+2i,−1− 2i and a = 2+ i, 2− i,−2+ i,−2− i. But
the elements −1− 2i, 1 + 2i and −2 + i are all associated to 2− i and the elements −1 + 2i, 1− 2i
and −2− i are all associated to 2 + i. We obtain two ideals (a) = (2− i) and (a) = (2 + i). Since
the elements 2− i and 2 + i are not associated, these ideals are distinct.

We now let b ∈ Z[i] such that (2) ⊊ (b) ⊊ Z[i]. As above, b | 2, from which it follows that

N(b) | N(2) = 4. The options for N(b) are 1,2 and 4, but since (b) is not equal to (2) or Z[i], it
follows that N(b) = 2. This is satis�ed for b of the form 1 + i, 1− i,−1 + i,−1− i. As all of these
elements are associated, the only ideal we obtain is (b) = (1 + i).

Exercice 7. 1. It holds that

� (S−1A,+) is a subgroup of (Frac(A),+), since 0
1 ∈ S−1A, as 0 ∈ A, 1 ∈ S. Furthermore,

∀a
b ,

c
d ∈ S−1A, we have that a

b + c
d = ad+cb

bd ∈ S−1A, since ad + cb ∈ A, and bc ∈ S for

b ∈ S, c ∈ S. Lastly, the additive inverse of a
b ∈ S−1A is −a

b , which is contained in S−1A
as well.

� Since 1A ∈ S, it holds that 1
1 ∈ S−1A.

� ∀a
b ,

c
d ∈ S−1A we have that a

b ·
c
d = ac

bd ∈ S−1A since ac ∈ A, and bd ∈ S for b ∈ S, d ∈ S.

This means that S−1A is a ring.

2. We show that S := A \ p = {a ∈ A | a /∈ p} is closed under multiplication.

� It holds that 1 ∈ S, since if 1 were contained in p, then p would be the whole ring A.

� For a, b ∈ S, it holds that a · b ∈ S, which means that a · b /∈ p. This holds because if

a · b were contained in p, then since p is prime, it would follow that either a ∈ p or b ∈ p,
which is not possible due to the assumption that both a and b are contained in S.

For the ring A = Z, you have seen the localization at a prime ideal in Example 2.1.7.

3. We note that the elements in the ring Z(2) are of the form

Z(2) = {a
b
∈ Frac(Z) | b ∈ Z \ (2)} = {a

b
∈ Q | 2 ∤ b}.

We remark that the elements a
b ∈ Z(2) with 2 ∤ a are the units of Z(2), since the inverse of

a
b

is b
a , which is contained in Z(2) due to the fact that 2 ∤ a.

We de�nem ⊆ Z(2) to bem := {a
b ∈ Z(2) | a ∈ (2)}. This is an ideal, since for a

b ∈ m, c
d ∈ Z(2),

it holds that a
b · c

d = ac
bd ∈ m, since a ∈ (2), c ∈ Z, and hence ac ∈ (2). Furthermore, it is

clearly an additive group. We show that this ideal is maximal. For this, we assume that there



exists an ideal I such that m ⊂ I and m ̸= I. So there must exist an element a
b ∈ I which

is not contained in m. This means that a /∈ (2), and hence 2 ∤ a. But as we remarked above,

then a
b is a unit in Z(2), and so I is equal to Z(2).

Other proper ideals in Z(2) are of the following form I = {a
b ∈ Z(2) | a ∈ (n)} where (n) is an

ideal such that (n) ⊆ (2) ⇔ 2 | n. These are clearly ideals. They are all ideals, since if there

was an ideal that contained an element a
b such that a is not a multiple of 2, then a

b is a unit

and hence the ideal is the whole ring.

Lastly, we remark that the only prime ideal is the maximal ideal. The other ideals of the

form I = {a
b ∈ Z(2) | a ∈ (n)} with (n) ⊆ (2) but n ̸= 2 are not prime, since we have that

n
1 ∈ I, and we may write n = 2m for some m ∈ Z,m < n. But then n

1 = 2
1 ·

m
1 and both 2

1 /∈ I
and m

1 /∈ I.

4. It holds that Z2 = {a
b ∈ Q | b ∈ {1, 2, 22, 23, . . .}} = { a

2i
∈ Q | i ∈ N}. Hence for i = 0, we

obtain elements a
20

= a ∈ Z, and for i > 0, we obtain elements of the form a
2i

with 2 ∤ a.
The units are elements that have an inverse in Z2. These are the elements of the form 2i ∈ Z,
since their inverse is of the form 1

2i
, which is contained in Z2, and elements of the form 1

2i
,

since their inverse is of the form 2i

1 , which is contained in Z2. The other elements are not

units, since seen as elements in Q they have an inverse, which is unique, but their inverse in

not contained in Z2 (i.e. the inverse of a
2i

with 2 ∤ a in Q is 2i

a , but since 2 ∤ a, this is not an
element of Z2.)

The irreducible elements are the elements of the form p
2i

and 2i · p with p ∈ Z prime. To

prove this, we let a
2i

∈ Z2. Then a ∈ Z has a prime decomposition of the following form,

a = pk11 · . . . · pkrr for some prime numbers pi ∈ Z, and r ≥ 1, ki ≥ 1. There are two cases.

� If all the prime numbers pi are odd, then we can write

a

2i
=

1

2i
· pk11 · . . . · pkrr ,

with 1
2i

a unit in Z2. It follows that a
2i

is irreducible if and only if r = 1 and k1 = 1.
This means that a

2i
is of the form p

2i
with p prime im Z.

� If the prime number 2 appears in the decomposition of a, then we have the following:

We may assume that p1 = 2, and that i = 0 (since we assume that the fractions in Z2

are shortened). We can write

a

20
= a = 2k1 · pk22 · . . . · pkrr ,

with 2k1 a unit in Z2. It follows that a is irreducible if and only if r = 2 and k2 = 1.
This means that a

2i
is of the form 2j · p with p prime in Z.
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Exercice 1. 1. Soit A un anneau euclidien, avec une fonction euclidienne ν : A\{0} → N. Etant
donnés a0 ∈ A et 0 ̸= a1 ∈ A, on construit une suite d'éléments ai ∈ A de la manière récursive

suivante :

(a) a0, a1 sont donnés ;

(b) pour i ≥ 1, si ai ̸= 0, il existe une expression ai−1 = aiqi + ai+1 où ν(ai+1) < ν(ai).

La condition ν(ai+1) < ν(ai) implique que l'algorithme s'arrête, c'est-à-dire qu'il existe un n
tel que an+1 = 0. On prétend que

an est un pgdc de a0 et a1.

Prouvons cette assertion. On prétend d'abord que an divise tous les ai (i ≤ n). On procède

par induction descendante sur i. Puisque an+1 = 0, on a an|an−1. Si an divise ai, . . . , an,
alors comme

ai−1 = aiqi + ai+1

on voit que an divise ai−1.

On prétend ensuite que si b divise a0 et a1, alors b divise an. En e�et, comme a2 = a0− a1q1,
on voit que b divise a2 ; et par induction croissante sur i, on voit que b divise tous les ai, en
particulier an.

La combinaison de ces deux observations montre que an est un pgdc de a0 et de a1.

Faisons la remarque suivante, qui sera utile dans la suite : si une étape de l'algorithme fournit

une unité, c'est-à-dire si ai ∈ A× pour un certain i, alors a0 et a1 sont premiers entre eux.

En e�et, puisque ai est une unité, l'étape suivante sera

ai−1 = (ai−1a
−1
i )ai + 0

donc ai+1 = 0 et ainsi ai est un pgdc de a0 et a1. Par dé�nition cela implique que a0 et a1
sont premiers entre eux.

2. La division de 27 − 23i par 8 + i donne
193

65
− 211

65
i. On arrondit au nombre entier le plus

proche pour trouver q = 3 − 3i. Attention: on ne peut pas arrondir indi�éremment vers le

haut ou vers le bas, sans quoi le reste de la division aura une norme trop grande! On calcule

alors

27− 23i = (3− 3i)(8 + i) + (−2i)

Le reste vaut donc −2i. On poursuit la recherche du pgdc avec l'algorithme d'Euclide dans

cet anneau euclidien. Comme

8 + i = −4i2 + i = 4i · (−2i) + i

Le reste de cette division est i, un élément inversible de Z[i]. On conclut que ces deux nombres

sont premiers entre eux.

3. On calcule 11+3i = (1− i)(1+8i)+2− 4i. La division suivante
1 + 8i

2− 4i
=

(1 + 8i)(2 + 4i)

20
=

−3 + 2i

2
et nous retrouvons la possibilité de choisir deux quotients distincts: q = −1 + i ou



q′ = −2 + i. Les restes correspondants sont r = −1 + 2i et r′ = 1− 2i respectivement. Dans

les deux cas on constate que 2− 4i est un multiple de ce reste.

Ainsi le dernier reste non nul dans l'algorithme d'Euclide est −1 + 2i ou 1− 2i. Chacun est

un pgdc (de norme 5). Plus généralement, le pgdc est uniquement dé�ni dans un anneau

factoriel modulo la relation d'être associé.

4. Pour décomposer les idéaux premiers (11 + 3i) et (1 + 8i) on commence par décomposer leur

normes dans les entiers.

(11 + 3i)(11− 3i) = 130 = 13 · 5 · 2 (1 + 8i)(1− 8i) = 65 = 13 · 5.

Ensuite on décompose dans Z[i]

13 = (3 + 2i)(3− 2i) 5 = (1 + 2i)(1− 2i) 2 = (1 + i)(1− i).

Notons que comme ces éléments ont norme première, ils sont forcément irréductibles, donc

que leur idéal associé est un idéal premier (par factorialité de l'anneau.) Comme on sait

déjà que 1 − 2i divise 1 + 8i on voit avec une division par 1 − 2i que c'est 3 − 2i qui divise
également 1 + 8i. Ainsi, en termes de multiplication d'idéaux (noter qu'en termes d'idéaux

la décomposition est unique)

(1 + 8i) = (3− 2i)(1− 2i).

Comme on sait de plus que le pgcd de 11 + 3i et 1 + 8i est 3− 2i on conclut que

(11 + 3i) = (3 + 2i)(1− 2i)(1 + i).

Exercice 2. 1. Pour x ∈ [0, 1], considérons l'application d'évaluation

evx : C → R, f 7→ f(x).

Alors evx est surjective et ker evx = Ix. Donc C/Ix ∼= R par le premier théorème d'isomorphisme,

et ainsi Ix est maximal puisque R est un corps.

2. Il est facile de trouver f, g ∈ C tels que f(x) = 0 = g(y) et f(y) ̸= 0 ̸= g(x) (on peut

construire de telles fonctions linéaires par parties). Donc ni f ni g n'appartient à Ix ∩ Iy =
{h ∈ C | h(x) = 0 = h(y)}, tandis que fg ∈ Ix ∩ Iy.

3. Pour chaque x ∈ [0, 1], par hypothèse il existe 0 ̸= fx ∈ I tel que fx(x) ̸= 0. Puisque fx est

continue, l'ensemble Ux := {y ∈ [0, 1] | fx(y) ̸= 0} est ouvert (dans la topologie euclidienne

de [0, 1]) et contient x. Ainsi

[0, 1] =
⋃

x∈[0,1]

Ux.

Puisque la topologie euclidienne fait de [0, 1] un espace compact, la propriété de Heine�Borel

implique qu'il existe x1, . . . , xn ∈ [0, 1] tels que

[0, 1] =
n⋃

i=1

Uxi .

Considérons maintenant la fonction continue

F :=

n∑
i=1

f2
xi
.

Alors F ∈ I et par construction F est strictement positive sur [0, 1]. Ainsi 1/F ∈ C, et
1 = F · 1/F ∈ I. Donc I = C.



4. Soit I ⊂ C un idéal maximal. En vertu du point précédent, puisque I ̸= C il existe un Ix tel

que I ⊆ Ix. Puisque I est maximal, on en déduit que I = Ix.

Il est également possible de dé�nir une topologie sur l'ensemble {Ix | x ∈ [0, 1]} (la topologie la

moins �ne pour laquelle les sous-ensembles {Ix | f ∈ Ix} sont ouverts pour des f ∈ C quelconques),

pour laquelle la bijection

[0; 1] → {idéaux maximaux de C}, x 7→ Ix

devient un homéomorphisme. En d'autres termes, il est possible de reconstruire l'espace topologique

[0, 1] à partir de son anneau de fonctions réelles continues. C'est une forme de dualité entre [0, 1] et
C. Le même résultat est vrai plus généralement pour les espaces topologiques Hausdor� et compacts

(voir Gelfand-Kolomogorov duality sur le n-lab).

Exercice 3. 1. On véri�e que

f(x) = (x− 2)(x2 + 1) et g(x) = (x− 2)(x3 + 7),

et on prétend que x2 + 1 et x3 + 7 sont premiers entre eux. En fait, ceux deux polynômes

sont primitifs et ne se décomposent pas dans Q[x] (car −1 n'as pas de racine carrée dans

Q, et −7 n'a pas de racine cubique dans Q), donc en vertu de la Proposition 3.8.13 ils sont

irréductibles dans Z[x]. Ainsi x− 2 est un pgdc de f et de g.

2. Les décompositions f = (x − 2)(x2 + 1) et g = (x − 2)(x3 + 7) sont encore valables après la

réduction modulo p. Après cette réduction, le pgdc n'est plus égal à x− [2]p si et seulement

si x2 + [1]p et x3 + [7]p ne sont plus premiers entre eux dans Fp[x].

Notons qu'on peut écrire (en suivant la méthode de l'algorithme d'Euclide, même si Z[x] n'est
pas euclidien) :

x3 + 7 = x(x2 + 1) + (−x+ 7), x2 + 1 = (−x− 7)(−x+ 7) + 50

et ces égalités sont encore valables modulo p. En fait, comme Fp[x] est un anneau euclidien

dont la fonction euclidienne est donnée par le degré, la réduction modulo p de ces deux égalités
donne les deux premiers pas de l'algorithme d'Euclide pour x3+[7]p et x

2+[1]p (voir l'Exercice
1.1). Notons que le second reste est [50]p. Si [50]p = 0, alors l'algorithme est complet et

pgdc(x2 + [1]p, x
3 + [7]p) = −x+ [7]p et ainsi pgdc(f̄ , ḡ) = (x− [2]p)(−x+ [7]p).

Si [50]p ̸= 0, alors il s'agit d'une unité dans Fp[x], et donc la prochaine étape de l'algorithme

donne un reste nul. Ainsi le pgdc de x2 + [1]p et de x3 + [7]p est une unité, autrement dit ces

deux polynômes sont encore premiers entre eux.

Puisque 50 = 2 · 52, on a [50]p = 0 si et seulement si p ∈ {2, 5}. Ainsi :

(a) Si p /∈ {2, 5}, alors pgdc(f̄ , ḡ) = x− [2]p.

(b) Si p = 2, alors pgdc(f̄ , ḡ) = x(x+ [1]2).

(c) Si p = 5, alors pgdc(f̄ , ḡ) = (x− [2]5)(−x+ [2]5).

Exercice 4. 1. Montrons d'abord que Q[i
√
d] est un corps. Puisque (i

√
d)2 ∈ Q, on voit que

Q[i
√
d] = {a+ bi

√
d | a, b ∈ Q}.

Les inverses de ces éléments existent dans C, où ils sont donnés par

(a+ bi
√
d)−1 =

a− bi
√
d

|a+ bi
√
d|2

, où |a+ bi
√
d|2 = a2 + b2d ∈ Q.

https://ncatlab.org/nlab/show/Gelfand-Kolmogorov+theorem


Le côté droit appartient aussi à Q[i
√
d], on en déduit donc qu'il s'agit d'un corps.

On a l' inclusion évidente Z[i
√
d] ⊂ Q[i

√
d]. Pour chaque a+ bi

√
d ∈ Q[i

√
d], on peut écrire

a+ bi
√
d =

a′

n
+

b′

n
i
√
d

où n est le plus petit dénominateur commun de a et b, et a′, b′ ∈ Z. Ainsi Q[i
√
d] est un corps

de fractions pour Z[i
√
d].

2. Montrons que x3 − 2i est irréductible dans Z[i][x]. Puisque le coe�cient dominant est une

unité, ce polynôme est primitif. En vertu du lemme de Gauss (Proposition 3.8.13) et du

premier point, il est irréductible dans Z[i][x] si et seulement si il est irréductible dans Q[i][x].
Si x3 − 2i se décompose dans Q[i][x], l'un des facteurs doit être un polynôme linéaire. Donc

x3 − 2i est irréductible dans Q[i][x] si et seulement si il n'a pas de racines dans Q[i].

Supposons que 2i possède une racine cubique dans Q[i]. On peut écrire cette racine a+bi
n ,

avec n ∈ N et a, b ∈ Z. On a alors

n32i = (a+ bi)3

et en prenant les modules au carré, on obtient

4n6 = (a2 + b2)3.

C'est une égalité entre deux entiers, on peut donc compter les puissances de 2 dans chaque

membre et s'apercevoir qu'elles n'ont pas le même reste modulo 3. C'est une contradiction.

Ainsi 2i n'a pas de racine cubique dans Q[i].

On a donc montré que x3 − 2i est irréductible dans Z[i
√
d][x].

Remarque : Le critère d'Eisenstein ne peut être invoqué pour résoudre l'exercice. En e�et

la décomposition en facteurs irréductibles de 2i est

2i = (1 + i)2,

où 1 + i est irréductible en vertu de la Proposition 3.4.8

Exercice 5. 1. Notons A = k[t2, t3]. Puisque A ⊂ k[t], on a

A× ⊆ (k[t])× = k×

et l'inclusion inverse étant claire, on obtient A× = k×. On prétend ensuite que t2 et t3 sont

irréductibles dans A :

(a) Si on peut écrire t2 = fg dans A, alors cette décomposition est aussi valable dans k[t].
Donc soit f ou g est une unité dans k[t] et donc dans A, soit deg f = 1 = deg g. Or A
ne contient aucun polynôme linéaire en t (observez que A = k+ t2 · k[t] + t3 · k[t], et que
les éléments de t2 · k[t] et de t3 · k[t] n'ont pas de termes d'ordre 1). On voit donc que

t2 est irréductible dans A.

(b) Pour t3, on procède de la même manière : les seules décompositions non-triviales dans

k[t] sont données par t3 = t · t · t = t · t2, mais t /∈ A.

On peut ainsi a�rmer que

(t2)3 = (t3)2 dans A,

et que t2 et t3 sont des éléments irréductibles non associés de A, puisqu'il n'existe pas de

constante λ ∈ k× telle que λt2 = t3. Cela montre que A n'est pas factoriel.

2. On montre de la même manière que k[t2, t5] et k[t3, t7] ne sont pas factoriels.



3. On prétend que k[x, y]/(x2−y3) est isomorphe à k[t2, t3]. En e�et, considérons l'homomorphisme

d'évaluation k-linéaire

φ : k[x, y] → k[t2, t3], x 7→ t3, y 7→ t2.

Alors φ est surjective et k[x, y]/ kerφ ∼= k[t2, t3]. On prétend que kerφ = (x2−y3). L'inclusion
⊇ est claire. Pour montrer l'inclusion inverse, prenons f ∈ kerφ et faisons l'observation

suivante : il existe un polynôme g ∈ k[x, y] tel que degx[f − (x2 − y3) · g] < 2. En e�et,

puisque f − (x2 − y3) · g ∈ kerφ, cela se montre aisément par induction sur degx pour les

éléments de kerφ. Si nous montrons que f − (x2 − y3) · g ∈ (x2 − y3), nous aurons établi

l'inclusion désirée. Nous pouvons donc supposer que degx f < 2, et nous allons en fait montrer

que f = 0.

Si degx f = 0, alors f =
∑

i aiy
i et φ(f) =

∑
i ait

2i. Il est alors clair que φ(f) = 0 si et

seulement si f = 0.

Si degx f = 1, alors on peut écrire

f =
∑
i

aiy
i +

∑
j

bjxy
j

et ainsi

φ(f) =
∑
i

ait
2i +

∑
j

bjt
3+2j .

Les puissances de t dans la première somme sont paires, celles dans la seconde sont impaires

: il n'y a donc pas de simpli�cations possibles entre ces deux sommes, et on en déduit que

φ(f) = 0 si et seulement si f = 0.

On a donc montré que k[x, y]/(x2 − y3) ∼= k[t2, t3], ce qui conclut.

Pour démontrer l'inclusion ker(φ) ⊆ (x2 + y3) on mentionne le lemme suivant qui peut être

utile.

Lemme. Soit A un anneau factoriel, B un anneau intègre et A → B un morphisme injectif

d'anneau. Soit b ∈ B tel que ker(evb) est non-nul. Alors ker(evb) est principal, généré

par un élément irréductible. Plus encore, si p(t) est irréductible et p(t) ∈ ker(evb), alors

ker(evb) = (p(t)).

Preuve. On montre qu'il ne peut exister au plus qu'un unique élément irréductible (modulo

la relation d'être associé) dans ker(evb). Si deux éléments irréductibles non-associés p(t) et
q(t) sont dans ker(evb) alors on aurait un élément non-nul a ∈ A et m(t), g(t) ∈ A[t] tel que

p(t)m(t) + q(t)g(t) = a

en utilisant que p(t) et q(t) seraient premiers entre eux dans l'anneau Frac(A)[t]. En utilisant

que A → B est injectif et en évaluant en b on obtient a = 0, une contradiction.

Si on décompose un élément non-nul du noyau en produit d'irréductibles, comme B est

intègre, on voit qu'au moins un des facteurs irréductibles est dans ker(evb). Ainsi on a montré

l'existence d'un élément irréductible dans le noyau. Comme c'est en fait le seul (modulo la

relation d'être associé) on voit qu'en fait ker(evb) = (p(t)).

Ainsi en appliquant le lemme pour A = k[y] et B = k[t2, t3] et y 7→ t2, on voit qu'il su�t de

démontrer que x2 + y3 est irréductible. Cela peut se montrer exactement comme en 7.2.

Exercice 6. 1. Rappelons que (
a b
0 c

)
·
(
x y
0 z

)
=

(
ax ay + bz
0 cz

)



de quoi il s'ensuit immédiatement que la fonction

A → Z×Q,

(
a b
0 c

)
7→ (a, c)

est un homomorphisme surjectif dont le noyau est I.

Montrons maintenant que l'anneau commutatif Z×Q est Noethérien. Soit I ⊂ Z×Q un idéal.

Il est facile de véri�er que l'intersection I ′ := I∩({0}×Q) est un idéal de Q via l'identi�cation

évidente Q = {0} ×Q. Puisque Q est un corps, on a I ′ = {(0, 0)} ou I ′ = {0} ×Q.

(a) Supposons que I ′ = {(0, 0)}. Alors tous les éléments de I sont de la forme (x, 0). En

e�et, si (x, y) ∈ I, alors (0, 1) · (x, y) ∈ I et donc (0, y) ∈ I ′, d'où y = 0.

Dans ce cas, I s'identi�e à un idéal de Z via l'identi�cation évidente Z = Z × {0}.
L'anneau Z est principal puisqu'il est Euclidien (Proposition 3.3.3), donc on en déduit

que I est généré par un élément de la forme (n, 0).

(b) Supposons que I ′ = {0} × Q. Alors on prétend que I = I ′′ × Q pour un idéal I ′′

de Z. En e�et, soit (x, y) ∈ I. Puisque (0, z) ∈ I ′ pour tout z ∈ Q, on voit que

(x, y) + (0, z) = (x, y + z) ∈ I pour tout z ∈ Q. Puisque la translation par y dans Q est

bijective, on en déduit que (x, z) ∈ I pour tout z ∈ Q. Cela prouve qu'on peut écrire

I = I ′′ × Q pour un certain sous-ensemble I ′′ ⊂ Z. Puisque I est un idéal, on véri�e

aisément que I ′′ doit être un idéal de Z. Si I ′′ = (n), alors I est généré par (n, 1).

On a montré que tous les idéaux de Z × Q étaient �niment générés (en fait, ils sont tous

principaux), ce qui montre que cet anneau produit est Noethérien (et même principal).

2. Soit J un idéal à droite qui contient un élément de la forme(
0 b
0 0

)
, 0 ̸= b ∈ Q.

Le calcul au début du point précédent montre alors que J contient tous les éléments de la

forme (
0 bz
0 0

)
, z ∈ Q

et il s'ensuit que J ⊇ I. Cela montre que I est minimal comme idéal à droite.

Notons que I n'est pas minimal comme idéal à gauche, puisqu'il contient strictement le sous-

idéal à gauche {(
0 n
0 0

)
| n ∈ Z

}
.

3. Montrons �nalement que A est Noethérien à droite. Soit

J1 ⊆ J2 ⊆ . . .

une suite croissante d'idéaux à droite. Alors chaque Jk ∩ I est un sous-idéal à droite de I.
Par le point précédent, pour chaque k on a soit Jk ∩ I = I, soit Jk ∩ I = 0. Puisque la suite

est croissante, ces intersections sont toujours les mêmes pour k assez grand. Quitte à oublier

les premiers idéaux, on peut donc supposer que Jk ∩ I = 0 pour tous les k, ou que Jk ∩ I = I
pour tous les k.

Considérons l'application quotient π : A → A/I. Puisque π est surjective, les ensembles

images π(Jk) sont tous des idéaux (à droite) de A/I (la véri�cation est aisée), et on obtient

une suite croissante d'idéaux

π(J1) ⊆ π(J2) ⊆ . . .



dans A/I. Nous avons montré dans le premier point que A/I est Noethérien : donc π(Jk) =
π(Jk+1) pour tous les k assez grands.

On prétend que π(Jk) = π(Jk+1) entraîne Jk = Jk+1. Si ce n'est pas le cas, on peut trouver

x ∈ Jk+1 \ Jk. Puisque π(x) ∈ π(Jk+1) = π(Jk), il existe x′ ∈ Jk tel que x− x′ ∈ kerπ = I.

(a) Si Jk+1 ∩ I = 0, puisque x− x′ ∈ Jk+1 ∩ I on obtient x = x′ ∈ Jk, contradiction.

(b) Si Jk+1 ∩ I = I, alors par notre simpli�cation initiale on a aussi Jk ∩ I = I et donc

I ⊆ Jk. Alors x− x′ ∈ Jk et ainsi x = x′ + (x− x′) ∈ Jk, contradiction.

Ainsi Jk = Jk+1 pour tous les k assez grands, ce qui montre que la chaîne d'idéaux se stabilise.

Ainsi A est Noethérien à droite.

Exercice 7. 1. On a x2+y2 = (x+iy)(x−iy) dans C[x, y], donc le polynôme n'est pas irréductible

dans C[x, y].
Montrons qu'il est irréductible dans Q[x, y]. Posons A := Q[x], c'est un anneau factoriel en

vertu des Corollaires 3.3.5 et 3.7.2. On a Q[x, y] = A[y], et x2+y2 ∈ A[y] est primitif puisque

son coe�cient dominant est une unité. Donc par la Proposition 3.8.13, x2+y2 est irréductible
dans A[y] si et seulement si il est irréductible dans Frac(A)[y].

On a

Frac(A) = Q(x) =

{
f(x)

g(x)
| f(x), g(x) ∈ Q[x], g(x) ̸= 0

}
.

Puisque degy(y
2 + x2) = 2 et que les polynômes constants non-nuls de Frac(A)[y] sont des

unités, le polynôme y2 + x2 ∈ A[y] se scinde dans Frac(A)[y] si et seulement si y2 + x2

(vu comme un polynôme en y) admet une racine dans Frac(A) = Q(x), autrement dit si et

seulement si il existe f(x), g(x) ∈ Q[x] tels que(
f(x)

g(x)

)2

= −x2.

Cela impliquerait que

f(x)2 = −x2g(x)2 dans Q[x].

Regardons le coe�cient dominant de chaque côté : celui de f(x)2 est positif (il s'agit du carré

du coe�cient dominant de f(x)), celui de −x2g(x)2 est négatif (il s'agit de l'opposé du carré

du coe�cient dominant de g(x)), c'est une contradiction.

Donc y2 + x2 ∈ Frac(A)[y] est irréductible, et ainsi y2 + x2 ∈ Q[x, y] est irréductible.

2. Montrons que x3−(y7+2y5+y3) est irréductible dans Q[x, y]. Comme dans le point précédent

(en échangeant les rôles de x et y), il su�t de montrer qu'il n'existe pas de polynômes

f(y), g(y) ∈ Q[y] tels que (
f(y)

g(y)

)3

= y7 + 2y5 + y3 dans Q(y).

Cela impliquerait que

f(y)3 = (y7 + 2y5 + y3)g(y)3 dans Q[y].

Regardons le degré de chaque côté : celui de gauche est un multiple de 3, tandis que celui de
droite vaut 1 modulo 3. C'est une contradiction, et on en déduit que x3 − (y7 +2y5 + y3) est
irréductible dans Q[x, y].

Remarque : le critère d'Eisenstein ne peut être appliqué dans aucun des deux cas (remarquons

que le décomposition de y7 + 2y5 + y3 en facteurs premiers est (y2 + 1)2y3).



Exercice 8.

Comme b est supposé non-nul, on peut diviser 1 par b pour obtenir

1 = bq + r,

avec σ(r) < 0 ou r = 0. Cela force r = 0.
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Exercice 1. (a) Let ϕ : A → B be a ring homomorphism and let a ∈ A×. Then, there exists

b ∈ A× such that ab = 1. Then:

1 = ϕ(1) = ϕ(ab) = ϕ(a)ϕ(b).

Hence ϕ(a) is an invertible element of B with inverse ϕ(b).

(b) Let a, b ∈ A such that a ∼ b. Then there exists u ∈ A× such that a = ub and we have:

ϕ(a) = ϕ(ub) = ϕ(u)ϕ(b).

Now by point (a) we have that ϕ(u) ∈ B× and we conclude that ϕ(a) ∼ ϕ(b).

(c) Counterexample: Consider the ring homomorphism: ξ2 : Z[x] → F2[x] (Example 1.4.36).

Now x2 + 4x + 2 ∈ Z[x] is irreducible (one shows this using Eisenstein with p = 2), but
ξ2(x

2 + 4x+ 2) = x2 and x2 ∈ F2[x] is reducible.

Exercice 2. (a) Voir corrigé du bonus 3.

(b) Par le théorème des restes chinois

Z/pqZ = Z/pZ× Z/qZ.

Ainsi (1, 0), (0, 1), (0, 0) et (1, 1) sont des racines. Comme les polynômes en jeu sont moniques,

on peut voir avec le degré que le produit des (t− ai) ne peut diviser t
2 − t.

(c) As f |g in Q[t], there exists h ∈ Q[t] such that g(t) = f(t)h(t). Now, as h ∈ Q[t|, we can write

h(t) = c · h1(t), where h1(t) ∈ Z[t] is primitive and c ∈ Q. Then:

g(t) = c · f(t)h1(t).

By Lemma 3.8.9, we have that f(t)h1(t) is primitive and, since g(t) is also primitive, we use

Lemma 3.8.11 to determine that c ∈ Z×, i.e. c = ±1. Then

g(t) = ±f(t)h1(t) in Z[t], therefore f |g in Z[t].

(d) The roots of x4 + 1 over C are ei(
π
4
+ kπ

2
), where 0 ≤ k ≤ 3, and we have:

x4 + 1 =
3∏

k=0

(x− ei(
π
4
+ kπ

2
)).

We group the conjugate complex roots and obtain the decomposition over R[x]

x4 + 1 = (x2 −
√
2x+ 1)(x2 +

√
2x+ 1).

By Example 3.9.2 (4), it follows x4 + 1 does not admit roots in Q, as it does not admit

roots in R. If x4 + 1 = f(x)g(x), where f(x), g(x) ∈ Q[x] are polynomials of degree 2, then

f(x) = (x−a1)(x−a2) and g(x) = (x−a3)(x−a4), where a1, a2, a3, a4 ∈ {ei(
π
4
+ kπ

2
)| 0 ≤ k ≤ 3}

are distinct. One checks that for every choice of ai aj the polynomial (x − ai)(x − aj) does



not have coe�cients in Q. We conclude that x4 + 1 is irreducible in Q[x]. Lastly, we note

that, as it is primitive., by Lemma 3.8.13, it is also irreducible in Z[x].
In F2[x] we have x4 + [1]2 = (x+ [1]2)

4.

The squares in F11 are [0]11, [1]11, [3]11, [4]11, [5]11 and [9]11 and we deduce that x4+[1]11 does
not admit roots in F11. Assume that x4 + [1]11 admits a decomposition into a product of two

polynomials of degree 2. As F11 is a �eld, we can assume that these polynomials are unitary.

We have:

x4 + [1]11 = (x2 + ax+ b)(x2 + cx+ d) = x4 + (a+ c)x3 + (b+ ac+ d)x2 + (bc+ ad)x+ bd

and so d = b−1 and c = −a. We substitute and obtain:

x4 + [1]11 = x4 + (b− a2 + b−1)x2 + a(b−1 − b)x+ [1]11

and so a(b−1 − b) = 0.

� if a = 0, then b− a2 + b−1 = b+ b−1 = 0, which is impossible as [−1]11 is not a square

in F11.

� if b = b−1, then b2 = [1]11 and so b ∈ {[1]11, [10]11}.
� If b = [1]11, then b− a2 + b−1 = [2]11 − a2 = 0, which is impossible as [2]11 is not a
square in F11.

� If b = [10]11, then b− a2 + b−1 = [9]11 − a2 = 0 and so a ∈ {[3]11, [8]11}.

We conclude that

x4 + [1]11 = (x2 + [3]11 · x+ [10]11)(x
2 + [8]11 · x+ [10]11) in F11[x].

Since x8 − 1 = (x4 + 1)(x4 − 1) it su�ces to factor x4 − 1:

� in C[x] we have: x4 − 1 = (x+ i)(x− i)(x+ 1)(x− 1).

� in R[x], Q[x] and Z[x] we have: x4 − 1 = (x2 + 1)(x+ 1)(x− 1).

� in F2[x] we have: x
4 − [1]2 = x4 + [1]2 = (x+ [1]2)

4.

� in F11[x] we have: x4 − [1]11 = (x2 + [1]11)(x + [1]11)(x + [10]11), where we have seen

earlier that x2 + [1]11 is irreducible.

Exercice 3. (a) We write 2
9x

5 + 5
3x

4 + x3 + 1
3 = 1

9(2x
5 + 15x4 + 9x3 + 3) ∈ Q[x].

Now 1
9 ∈ Q[x]×, as 1

9 ∈ Q×. Therefore 2
9x

5 + 5
3x

4 + x3 + 1
3 is irreducible in Q[x] if and only if

2x5+15x4+9x3+3 is. As gcd(2, 15, 9, 3) = 1, we have that 2x5+15x4+9x3+3 is primitive,

hence it is irreducible in Q[x] if and only if it is irreducible in Z[x] (Lemma 3.8.13). Using

Eisenstein for p = 3, where 3 ∈ Z is irreducible, we deduce that 2x5 + 15x4 + 9x3 + 3 is

irreducible in Z[x].

(b) Let f(x) = x4+[2]5 ∈ F5[x]. Note that for all a ∈ F5 we have a
2 ∈ {[0]5, [1]5, [4]5}. Therefore

f does not admit roots in F5. We will now show that f is not a product of two polynomials

of degree 2. As F5 is a �eld, we can assume that these polynomials are unitary and so assume

there exist a, b, c, d ∈ F5 such that

f(x) = x4+[2]5 = (x2+ax+b)(x2+cx+d) = x4+(a+c)x3+(b+ac+d)x2+(bc+ad)x+bd.

Then c = −a and d = [2]5b
−1 and substituting in the above gives:

x4 + [2]5 = x4 + (b− a2 + [2]5 · b−1)x2 + (−ab+ [2]5 · ab−1)x+ [2]5.

Thus −ab+ [2]5 · ab−1 = a(−b+ [2]5 · b−1) = 0 and



� if a = 0, then b2 = −[2]5, a contradiction.

� if −b+ [2]5b
−1 = 0, then b2 = [2]5, a contradiction.

We conclude that f is irreducible in F5[x].

Lastly, let x4+15x3+7 ∈ Q[x]. As the dominant coe�cient is 1, this polynomial is primitive,

hence it is irreducible in Q[x] if and only if it is irreducible in Z[x] (Lemma 3.8.13). Let

ϕ5 : Z → F5 be the quotient homomorphism and let π5 : Z[x] → F5[x] be its induced

homomorphism. We have that:

π5(x
4 + 15x3 + 7) = x4 + [2]5

and, as x4+[2]5 is irreducible in F5[x], we use Proposition 3.9.1 to conclude that x4+15x3+7
is irreducible in Z[x].

(c) First we note that x2+ y2+1 ∈ R[x, y] is primitive as its dominant coe�cient is 1. Secondly,
y2 + 1 ∈ R[y] is irreducible. We now apply Eisenstein with p = y2 + 1 to conclude that

x2 + y2 + 1 is irreducible in R[x, y].

(d) We have x2 + y2 + [1]2 = (x+ y + [1]2)
2 in F2[x, y].

(e) The evaluation homomorphism ev0 : Q[y] → Q, ev0(y) = 0, induces the homomorphism

ξ : Q[y][x] → Q[x] with ξ(y) = 0 and ξ(x) = x. We have that:

ξ(y4 + x3 + x2y2 + xy + 2x2 − x+ 1) = x3 + 2x2 − x+ 1

and, by Proposition 3.9.1, y4 + x3 + x2y2 + xy + 2x2 − x + 1 is irreducible in Q[x, y] if
x3+2x2−x+1 is irreducible in Q[x]. Now deg(x3+2x2−x+1) = 3 and thus x3+2x2−x+1
is irreducible in Q[x] if and only if it does not admit roots in Q. Assume p

r ∈ Q, where p, r ∈ Z
and gcd(p, r) = 1, is a root of x3 + 2x2 − x+ 1. Then(

p

r

)3

+ 2

(
p

r

)2

−
(
p

r

)
+ 1 = 0.

As gcd(p, r) = 1, it follows that p|1, r|1 and so p
r ∈ {−1, 1}. One checks that neither −1, nor

1 is a root of x3 + 2x2 − x+ 1 and thus x3 + 2x2 − x+ 1 is irreducible in Q[x].

(f) We have 4x3 + 120x2 + 8x − 12 = 4(x3 + 30x2 + 2x − 3) ∈ Q[x]. Now 4 ∈ Q[x]× and

so 4x3 + 120x2 + 8x − 12 is irreducible in Q[x] if and only if x3 + 30x2 + 2x − 3 is. As

deg(x3+30x2+2x−3) = 3 it follows that x3+30x2+2x−3 is irreducible in Q[x] if and only

if it does not admit roots in Q. Assume there exist p
r ∈ Q, where p, r ∈ Z and gcd(p, r) = 1,

such that: (
p

r

)3

+ 30

(
p

r

)2

+ 2

(
p

r

)
− 3 = 0.

As gcd(p, r) = 1, it follows that p|3 and r|1. Therefore p
r ∈ {−3,−1, 1, 3}. One checks that

none of the elements in {−3,−1, 1, 3} is a root of x3 + 30x2 + 2x − 3. We conclude that

x3 + 30x2 + 2x− 3 is irreducible in Q[x]. .

(g) As the polynomial t6+t3+1 is primitive, it follows that it is irreducible in Q[t] if and only if it

is irreducible in Z[x] (Lemma 3.8.13). We consider the quotient homomorphism ϕ2 : Z → F2

and its induced homomorphism π2 : Z[t] → F2[t] under which

π2(t
6 + t3 + 1) = t6 + t3 + [1]2.

By Proposition 3.9.1, t6 + t3 + 1 is irreducible in Z[t] if t6 + t3 + [1]2 is irreducible in F2[t].

Now, one checks that t6+t3+[1]2 does not admit roots in F2[t]. Secondly, the only irreducible
polynomial of degree 2 in F2[t] is t2 + t + [1]2 and one checks that this does not divide



t6 + t3 + [1]2. Lastly, we assume that t6 + t3 + [1]2 is a product of two polynomials of degree

3. As F2 is a �eld, we can assume that these polynomials are unitary and we have:

t6 + t3 + [1]2 = (t3 + a2t
2 + a1t+ a0)(t

3 + b2t
2 + b1t+ b0)

= t6 + (a2 + b2)t
5 + (a1 + a2b2 + b1)t

4 + (a0 + a1b2 + a2b1 + b0)t
3+

+ (a0b2 + a1b1 + a2b0)t
2 + (a0b1 + a1b0)t+ a0b0.

Then a0 = b0 = [1]2, a2 = b2 and
a0b1 + a1b0 = [0]2

a0b2 + a1b1 + a2b0 = [0]2

a0 + a1b2 + a2b1 + b0 = [1]2

a1 + a2b2 + b1 = [0]2

→


b1 + a1 = [0]2

a1b1 = [0]2

b2(a1 + b1) = [1]2

a2b2 = [0]2

→ [1]2 = [0]2.

We conclude that t6 + t3 + [1]2 is irreducible in F2[t].

(h) We �rst note that the ring Q[x] is factorial, as Q is (Theorem 3.8.1), and that x ∈ Q[x] is
irreducible. Secondly the polynomial y4 + xy3 + xy2 + x2y + 3x2 − 2x ∈ Q[x, y] is primitive,

as its dominant coe�cient is 1. We now apply Eisenstein with p = x to conclude that

y4 + xy3 + xy2 + x2y + 3x2 − 2x is irreducible in Q[x, y].

Exercice 4.

Let f(t) = t4 + 4t3 + 3t2 + 7t− 4 ∈ Z[t].

(a) We have π2(f(t)) = t4+ t2+ t = t(t3+ t+[1]2) ∈ F2[t]. Moreover, we remark that t3+ t+[1]2
is irreducible in F2[t], as it does not admit roots in F2.

(b) We have π3(f(t)) = t4 + t3 + t− [1]3 = (t2 + [1]3)(t
2 + t− [1]3) ∈ F3[t].

(c) Assume that f(t) is reducible in Z[t]. Then either f(t) = (t − a)g(t), where a ∈ Z and

g(t) ∈ Z[t] is a polynomial of degree 3, or f(t) = f1(t)f2(t), where f1(t), f2(t) ∈ Z[t] are two
polynomials of degree 2.

In the �rst case, a|4 but none of the elements of {±1,±2,±4} are roots of f . Hence, we only
need to consider the case when f(t) = f1(t)f2(t), where deg(f1(t)) = deg(f2(t)) = 2, and we

have:

π2(f(t)) = π2(f1(t)f2(t)) = π2(f1(t))π2(f2(t).

Now, as deg(π2(f(t))) = 4 and as deg(π2(f1(t))) = deg(π2(f2(t))) ≤ 2, it follows that

deg(π2(f1(t))) = 2 and deg(π2(f2(t))) = 2.

On the other hand, we have π2(f(t)) = t4+t2+t = t(t3+t+[1]2), where t
3+t+[1]2 ∈ F2[t] is

irreducible. We have arrived at a contradiction. We conclude that f(t) ∈ Z[t] is irreducible.
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Exercice 1. 1. Let L′ denote the �eld extension of K of degree 1. This means that L′ is a �eld

that contains K, and that has a K- vector space structure such that the dimension of L′ as
a K-vector space is 1.The K-subspace of L′ generated by 1 is equal to K, and equal to L′ as
well, due to the dimension of L′ over K being 1. Hence K and L′ coincide.

2. We take any α ∈ L \K. Then we have the following �eld extensions, K ⊆ K(α) ⊆ L. From
this, it follows using Proposition 4.2.15 that

[L : K]︸ ︷︷ ︸
=2

= [L : K(α)] · [K(α) : K].

Since we take α /∈ K, it holds that K ̸= K(α), and hence by the �rst point, [K(α) : K] ̸= 1.
From this, it follows using the equation above that [K(α) : K] = 2. But that means that

[L : K(α)] = 1, from which it follows by the �rst point that L = K(α).

3. Since L = K(α), and [L : K] = 2, it holds that {1, α} forms a K-linear basis of K(α). This
means in particular that α2 is a K-linear combination of 1 and α. There exists a, b ∈ K such

that α2 = b ·1+a ·α ⇔ α2−aα−b = 0. We de�ne d to be d = a2+4b, the discriminant of the

quadratic equation. We now show that d is a square in K(α). We do so by multiplying the

quadratic equation by 4 (note that the characteristic of K is not equal to 2), and completing

the square, to �nd:

4α2 − 4aα− 4b = 0 ⇔ (2α− a)2 − a2 − 4b = 0 ⇔ (2α− a)2 = a2 + 4b = d.

Hence d is a square in K(α), and we let δ = 2α− a ∈ K(α) \K, with δ2 = d. By the second

part of this exercise, it holds that L = K(δ) = K(
√
d).

Let us give an alternative proof that illuminates the role of the discriminant. Since the

characteristic of K is di�erent from 2, the well-known theory of quadratic equations with

coe�cients in C can be carried over verbatim to K to obtain the following: if p(x) = ax2 +
bx+ c ∈ K[x] is a degree 2 polynomial, then the roots ξ1, ξ2 of p(x) in any extension F of K
can be written

ξ1 =
−2b+

√
∆(p)

2a
, ξ2 =

−2b−
√

∆(p)

2a

where ∆(p) = b2 − 4ac and
√

∆(p) ∈ F denotes a square root of ∆(p). Now observe that:

(a) K(ξi) = K(ξ1, ξ2) for any i = 1, 2. We can write in K(ξ1)[x] that

p(x) = (x− ξ1)q(x)

where necessarily deg q(x) = 1. Thus q(x) = x− ξ2, and so ξ2 ∈ K(ξ1). Hence K(ξ1) =
K(ξ1, ξ2), and by exchanging the roles of ξ1 and ξ2 we also obtain K(ξ2) = K(ξ1, ξ2).

(b) K(ξ1, ξ2) = K
(√

∆(p)
)
. Indeed

√
∆(p) = 2a(ξ1 − ξ2) so the inclusion ⊇ holds. Also it

follows from the formulae for ξ1 and ξ2 that ⊆ holds.

So we obtain that K(ξ1) = K(ξ2) = K(ξ1, ξ2) = K
(√

∆(p)
)
as sub�elds of F . Taking F = L

and p(x) = mα,K , we obtain an alternative proof of the exercise.

4. From the de�nition of δ, it immediately follows that {1, δ} forms a K-linear basis of K(δ) as
a K-vector space. By de�nition, [K(δ) : K] is the dimension of K(δ) as a K-vector space,

which is 2.



Exercice 2. 1. There are two options for Q(
√
a). If a is a square in Q, then it holds that

√
a

is contained in Q, and hence Q(
√
a) = Q, and so [Q(

√
a) : Q] = 1. If a is no square, then

Q ⊊ Q(
√
a), and the degree of this �eld extension is equal to 2, since the polynomial x2 − a

is zero for
√
a, and the polynomial is irreducible (since a is no square). The same holds for

Q(
√
b). We now use the fact (seen in Linear Algebra) that any two vector spaces over the

same �eld are isomorphic if and only if they are of the same dimension. In our case, both

Q(
√
a) and Q(

√
b) can be of dimension 1 or 2 over Q, depending on whether or not a resp.

b is a square. We conclude that Q(
√
a) is of the same dimension over Q as Q(

√
b), and

hence isomorphic, if and only if both a and b are simultaneously squares in Q, or both are

simultaneously not squares.

2. We now assume that Q(
√
a) and Q(

√
b) are isomorphic as �elds. We claim that this holds

if and only if they are equal as sub�elds of C. This means that there exists c ∈ Q such that√
a = c

√
b.

First, we assume that
√
a = c

√
b. Then,

√
a and

√
b generate the same �eld extension of Q,

and hence clearly the two �elds are isomorphic.

Secondly, assume that the �elds Q(
√
a) and Q(

√
b) are isomorphic. Denote the isomorphism

φ : Q(
√
a) → Q(

√
b). We note that from φ(1) = 1, it follows that φ acts as the identity on Z,

and furthermore on Q. On one hand, we have that φ(
√
a) = u+

√
bv for some u, v ∈ Q. On

the other hand, with a ∈ Q, it holds that

a = φ(a) = φ(
√
a
2
) = φ(

√
a)2 = (u+

√
bv)2 = (u2 + bv2) +

√
b(2uv).

We now distinguish between two cases.

� If
√
b ∈ Q, then φ(

√
a) ∈ Q, and hence

√
a ∈ Q. (If

√
a was not contained in Q, then

φ would be an isomorphism from Q(
√
a) ̸= Q to Q. This is a contradiction to φ being

injective.) Then,
√
a =

√
a√
b
·
√
b,

and
√
a = c

√
b with c :=

√
a√
b
∈ Q.

� If
√
b /∈ Q, then

a = (u2 + bv2) +
√
b(2uv),

with
√
b /∈ Q. Since a ∈ Q, it follows that 2uv = 0, and hence either u = 0 or v = 0. If

u = 0, then a = bv2 ⇒
√
a =

√
bv, and hence the property is satis�ed. If v = 0, then

φ(
√
a) = u ∈ Q. It then follows that the image of φ is contained in Q, which means that

φ can not be an isomorphism. Hence this case does not occur.

Exercice 3. 1. We have the following �eld extensions,

K ⊂ K(α2) ⊂ K(α) ⊂ L.

By proposition 4.2.15, it follows that

[L : K] = [L : K(α)] · [K(α) : K(α2)] · [K(α2) : K].

Since the degree of the �eld extension L over K is odd, it follows that the degrees on the right

hand side of the equality above are odd as well. We now look at the extension K(α) over
K(α2). The degree of this extension is at most 2, since the polynomial x2 − α2 ∈ K(α2)[x]
vanishes at α. But since the degree needs to be odd, it follows that it is 1. Hence K(α) =
K(α2).



2. We �rst show that
√
p /∈ Q(

√
q). If

√
p is contained in Q(

√
q), then there are r, s ∈ Q such

that
√
p = r + s

√
q. From this, it follows that

p = (r + s
√
q)2 = (r2 + s2q) + (2rs)

√
q.

Using the fact that p ∈ Q, we compare the right hand side and left hand side, and note that

2rs = 0. If r = 0, then p = s2q which is a contradiction with p, q prime and distinct.

If s = 0, then
√
p = r ⇒ p = r2, which is a contradiction to p prime.

It follows that
√
p /∈ Q(

√
q). The same argument, with the roles of p and q reversed shows

that
√
q /∈ Q(

√
p).

We now compute the degree of the �eld extension Q(
√
p,
√
q) over Q. We have the following

extensions of �elds,

Q ⊂ Q(
√
p) ⊂ Q(

√
p,
√
q).

From proposition 4.2.15 it follows that

[Q(
√
p,
√
q) : Q] = [Q(

√
p,
√
q) : Q(

√
p)] · [Q(

√
p) : Q].

We calculate both degrees on the right hand side separately. Firstly, [Q(
√
p) : Q] = 2. This

holds because
√
p /∈ Q. The polynomial x2 − p ∈ Q[x] vanishes at

√
p, and combining Gauss

III with Eisenstein for the prime p, it follows that the polynomial is irreducible over Q. Hence
it is the minimal polynomial, and the degree is 2.

Secondly, [Q(
√
p,
√
q) : Q(

√
p)] = 2. This holds because

√
q /∈ Q(

√
p). Therefore, the degree

of the extension is not equal to 1. Furthermore, the degree of the extension is at most 2,

since
√
q2 = q ∈ Q, and hence

√
q2 ∈ Q(

√
p). Combining these restrictions, the degree of

the extension is equal to 2, and hence the product of the two extensions is 4, meaning that

[Q(
√
p,
√
q) : Q] = 4.

3. We have the following extension of �elds, K ⊂ K(α) ⊂ K(α, β). Using proposition 4.2.15, it

follows that

[K(α, β) : K] = [K(α, β) : K(α)] · [K(α) : K].

From this, it follows that m = [K(α) : K] divides [K(α, β) : K]. The same argument for

the extension of �elds K ⊂ K(β) ⊂ K(α, β) shows that n divides [K(α, β) : K]. Using the

fact that m and n are coprime, it follows that mn divides [K(α, β) : K]. This means that

the degree of the �eld extension is a multiple of mn. We show that it is equal to mn by

considering the �rst �eld extension again, K ⊂ K(α) ⊂ K(α, β). Since [K(β) : K] = n, it
holds in particular that the degree of the �eld extension K(α, β) over K(α) is at most n.
Hence [K(α, β) : K] is at most nm. On the other hand, as we have seen above, it is at least

mn, from which we conclude that it is exactly mn.

The two �eld extensions are illustrated below.

K

K(α) K(β)

K(α, β)

⊇ ⊆

⊆ ⊇

Exercice 4.

It holds that Q(
√
3 +

√
7) ⊆ Q(

√
3,
√
7). We show that indeed it holds that Q(

√
3 +

√
7) =



Q(
√
3,
√
7). For this, it is enough to show that

√
3 ∈ Q(

√
3 +

√
7) and

√
7 ∈ Q(

√
3 +

√
7). We

denote K = Q(
√
3+

√
7). It holds that (

√
3+

√
7)3 = 24

√
3+16

√
7 ∈ K. With this, and using that

−16
√
3− 16

√
7 ∈ K, it follows that their sum is contained in K as well,

(24
√
3 + 16

√
7) + (−16

√
3− 16

√
7) = 8

√
3.

Now using that 1
8 ∈ K, and 8

√
3 ∈ K we deduce that their product

√
3 ∈ K. From

√
3 ∈ K, it

immediately follows that
√
7 ∈ K as well, since

√
7 = (

√
3 +

√
7) −

√
3. This shows that indeed

K = Q(
√
3,
√
7).

The degree of the �eld extension [Q(
√
3,
√
7) : Q] is by de�nition the dimension of Q(

√
3,
√
7)

as a Q-vector space. Using exercise 3.2, it follows that the degree is 4. {1,
√
3,
√
7,
√
3
√
7} forms a

basis of this vector space.

Exercice 5. 1. If p = 2, then e2iπ/2 = −1, which is contained in R, and hence R(e2iπ/p) = R.
From this, it follows that the degree of the extension is equal to 1.

For p ̸= 2, it holds that e2iπ/p is a complex number, and not contained in R. By example

4.2.14 (a), we know that [C : R] = 2. Using exercise 1.2, it follows that R(e2iπ/p) = C, and
hence [R(e2iπ/p) : R] = [C : R] = 2.

2. By de�nition, α vanishes over t42 + t41 + · · ·+ t2 + t+ 1. Furthermore, using the fact that 43
is prime, and Example 3.9.4(b), it follows that t42 + t41 + · · ·+ t2 + t+ 1 is irreducible over

Q. Hence we get that mα,Q = t42 + t41 + · · ·+ t2 + t+ 1, and so [Q(α) : Q] = 42.

3. We follow the same steps as example 4.2.16(a). First, we note that we have the following �eld

extensions, Q ⊆ Q( 5
√
13) ⊆ Q( 5

√
13, i). We can calculate the degree of the extension Q( 5

√
13, i)

over Q using proposition 4.2.15. It holds that

[Q(
5
√
13, i) : Q] = [Q(

5
√
13, i) : Q(

5
√
13)] · [Q(

5
√
13) : Q].

First, we calculate [Q( 5
√
13) : Q]. The polynomial x5 − 13 vanishes at 5

√
13. Furthermore, the

polynomial is irreducible over Q : By Gauss III, it is equivalent to showing that the polynomial

is irreducible over Z.We can apply Eisensteins criterion with p = 13, form which irreducibility

over Z follow. Therefore, m 5√13,Q = x5 − 13, and the degree of the �eld extension is 5.

Secondly, we calculate [Q( 5
√
13, i) : Q( 5

√
13)]. Since Q ⊆ R, and 5

√
13 ∈ R, it follows that

Q( 5
√
13) ⊆ R. Hence i /∈ Q( 5

√
13). Using that i is a root of x2 + 1, we get that the degree of i

over Q( 5
√
13) is 2, and hence [Q( 5

√
13, i) : Q( 5

√
13)] = 2.

By the formula above, it follows that

[Q(
5
√
13, i) : Q] = [Q(

5
√
13, i) : Q(

5
√
13)] · [Q(

5
√
13) : Q] = 2 · 5 = 10.

4. There are two possibilities. The �rst possibility is that α is the root α = [1]3. In that case,

F3(α) = F3, and hence [F3(α) : F3] = 1. We can therefore write the polynomial t4 − t3 − t2 −
t− [1]3 = (t− [1]3)(t

3−t+[1]3). If α ̸= [1]3, then α is a root of the polynomial t3−t+[1]3. But
this polynomial is irreducible over F3, since neither [0]3, [1]3 or [2]3 is a root of t3 − t + [1]3.
We conclude with the fact that mα,F3 = t3 − t+ [1]3, and hence [F3(α) : F3] = 3.

5. We note that (3+
√
5)2 = 14+6

√
5 ⇒ 3+

√
5 =

√
14 + 6

√
5. Therefore, Q(

√
14 + 6

√
5,
√
3) =

Q(3 +
√
5,
√
3) = Q(

√
5,
√
3). It follows that [Q(

√
5,
√
3) : Q] = 4. {1,

√
3,
√
5,
√
3
√
5} forms

a basis of Q(
√
5,
√
3) as a Q-vector space.



6. We calculate the degree of the extension using proposition 4.2.15 for the extension Q ⊆
Q(( 6

√
7)2) ⊆ Q( 6

√
7), from which it follows that

[Q(
6
√
7) : Q] = [Q(

6
√
7) : Q((

6
√
7)2)] · [Q((

6
√
7)2) : Q].

We �rst calculate [Q( 6
√
7) : Q]. The polynomial x6 − 7 ∈ Q[x] is zero for 6

√
7. Furthermore,

by Gauss III, it is irreducible if it is irreducible over Z. Applying Eisenstein with p = 7, this
holds. Hence m 6√7,Q = x6 − 7, and the degree of the �eld extension is 6.

Secondly, we calculate [Q(( 6
√
7)2) : Q]. It holds that ( 6

√
7)2 = 3

√
7. The polynomial x3−7 ∈ Q[x]

is zero for 3
√
7. Furthermore, by Gauss III, it is irreducible if it is irreducible over Z. Applying

Eisenstein with p = 7, this holds. Hence m 3√7,Q = x3−7, and the degree of the �eld extension

is 3.

Using the formula above, we get that [Q( 6
√
7) : Q(( 6

√
7)2)] = 2.

7. We apply the same technique as in the exercise above, noting that we have an extension as

follows, F2 ⊆ F2(α
2) ⊆ F2(α), and hence

[F2(α) : F2] = [F2(α) : F2(α
2)] · [F2(α

2) : F2].

On the left hand side, the degree is equal to 3, since mα,F2 = t3 + t + [1]2. Hence on the

right hand side, one of the factors is 1, and the other one is three. We note that [F2(α
2) : F2]

can not be 1, since α2 /∈ F2. If α
2 was contained in F2, then the polynomial t2 − α2 ∈ F2[t]

vanishes at α, which contradicts the fact that [F2(α) : F2] = 3. Therefore, [F2(α
2) : F2] = 3,

and so [F2(α) : F2(α
2)] = 1.

Exercice 6. 1. We show that the minimal polynomial mβ,K = x7 − y ∈ K[x]. It holds that the
polynomial vanishes at β, since

β7 − y =

(
α3

y2

)7

− y =
(α7)

3

y14
− y

∗
=

(y5)
3

y14
− y = y − y = 0,

where in the equation ∗, we use the fact that α is a root of f in L, and hence α7 = y5.
Furthermore, the polynomial is irreducible in K[x] : We use Gauss III to deduce that f is

irreducible in K[x] = (C(y))[x] if and only if f is irreducible in (C[y])[x]. Since y is irreducible

in C[y], we may use Eisenstein with p = y to deduce that x7−y is irreducible in (C[y])[x], and
hence in K[x]. This proves that the minimal polynomial mβ,K = x7 − y ∈ K[x]. We conclude

that [K(β) : K] = 7.

2. To show that K(α) = K(β), we show that K(α) ⊆ K(β) and K(β) ⊆ K(α).

We note that

β5 =

(
α3

y2

)5

=
α15

(y5)2
=

α15

(α7)2
= α.

From this, it follows that α = β5 ∈ K(β), and hence K(α) ⊆ K(β). On the other hand,

β = α3

y2
∈ K(α), and hence K(β) ⊆ K(α).

3. We �rst remark that by Gauss III, f is irreducible in C[x, y] = (C[y])[y] if and only if f is

irreducible in (C(y))[x] = K[x]. By the �rst and second part of this exercise, it holds that

[K(α) : K] = 7. From this, it follows that the degree of the minimal polynomial mα,K is 7.

Now since α is a root of x7−y5 ∈ K[x], it follows that x7−y5 | mα,K . Since both polynomials

are of degree 7, it follows that mα,K ∼ x7 − y5, and from mα,K being irreducible in K[x] it
follows that x7 − y5 is irreducible in K[x] as well. Applying Gauss III, with x7 − y5 being

primitive, it follows that x7 − y5 is irreducible in C[x, y].



Exercice 7.

Par le point 3 de l'exercice bonus, pour tout k ≥ 1, le polynôme Φk(t) est irréductible. En particulier

tn − 1 =
∏
d|n

Φd(t)

est une décomposition en irréductibles dans Q[t]. Dès lors,

Q[Z/nZ] ∼= Q[t]/(tn − 1) ∼=
∏
d|n

Q(ξd).

On a désigné par ξd une racine primitive d-ième de l'unité. Si µ(n) désigne le nombre de diviseurs

de n, on obtient alors

π0(Q[Z/nZ]) = µ(n).
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Exercice 1.

Soient K ⊂ L ⊂ F comme dans l'énoncé. Pour montrer que F est algébrique sur K, il su�t

de montrer que chaque a ∈ F est algébrique sur K. Puisque a est algébrique sur L, il existe
b0, . . . , bn ∈ L tels que ma,L(t) =

∑n
i=0 bit

i. En particulier, a est algébrique sur le sous-corps

K(b0, . . . , bn).
Nous allons comparer les deux chaînes d'extensions suivantes :

K(a)

K K(a, b0, . . . , bn)

K(b0, . . . , bn)

On prétend que les degrés

[K(a, b0, . . . , bn) : K(b0, . . . , bn)] et [K(b0, . . . , bn) : K]

sont �nis. C'est le cas du premier par construction (cf la Proposition 4.2.7 et le Corollaire 4.2.13).

Pour le second, par la formule de multiplication des degrés on se réduit à montrer que chaque

[K(b0, . . . , bi+1) : K(b0, . . . , bi)]

est �ni. C'est le cas par le Corollaire 4.2.13, puisque bi+1 est algébrique sur K, donc a fortiori sur

K(b0, . . . , bi). On peut ainsi appliquer la Proposition 4.2.15 pour obtenir

[K(a, b0, . . . , bn) : K] = [K(a, b0, . . . , bn) : K(b0, . . . , bn)] · [K(b0, . . . , bn) : K] < ∞.

On en déduit que l'extension intermédiaire K ⊂ K(a) ⊂ K(a, b0, . . . , bn) est de degré �ni sur K (il

s'agit simplement d'algèbre linéaire : un sous-espace vectoriel d'un espace de dimension �nie, est

également de dimension �nie). Donc a est algébrique sur K par le Corollaire 4.2.13.

Exercice 2.

Comme

cos(2π/n) =
e2πi/n + e−2πi/n

2
sin(2π/n) =

e2πi/n − e−2πi/n

2i

on voit que cos(2π/n), sin(2π/n) ∈ Q(ξn, i) si ξn désigne une racine primitive n-ième de l'unité, ce

qui conclut.

On peut aussi tirer partie des polynômes de Chebyshev {Tn(x)}n, qui ont la propriété que

cos(nθ) = Tn(cos(θ)) ∀θ ∈ R n ≥ 0.

Les polynômes Tn(x) sont dé�nis par la relation de récurrence

T0(x) = 1, T1(x) = x, Tn+1(x) = 2xTn(x)− Tn−1(x).

et il s'ensuit que les coe�cients de Tn(x) sont rationnels (et même entiers) pour tous les n.
On voit ainsi que cos(θ) est algébrique sur Q(cos(nθ)) pour tout n ≥ 1. En prenant θ = 2π/m

et n = m, on obtient ainsi que cos(2π/n) est algébrique sur Q(cos(2π)) = Q.
Pour �nir, la relation bien connue cos2(θ) + sin2(θ) = 1 entraîne que sin(2π/n) est algébrique

sur Q(cos(2π/n)), et donc sur Q par l'Exercice 1.



Exercice 3.

Dans Q(x) on a la relation x3 − sx + 2 = 0, ce qui montre que x est une racine du polynôme

t3 − st+ 2 ∈ Q(s)[t]. Ainsi Q(x) = Q(s, x) est une extension algébrique de Q(s). On prétend que

Q(s) est une extension transcendante de Q. Si ce n'était pas le cas, alors par l'Exercice 1 l'extension
Q ⊂ Q(x) serait également algébrique, ce qui est absurde. Donc [Q(s) : Q] = ∞.

Calculons ensuite le degré de Q(x) sur Q(s). On prétend que t3 − st + 2 est irréductible dans

Q(s)[t], et il s'ensuivra que [Q(x) : Q(s)] = 3. Si ce polynôme n'est pas irréductible, puisqu'il est de

degré 3 il doit admettre une racine dans Q(s). Puisque s est transcendant sur Q, on peut traiter s
comme une variable indépendante et oublier qu'elle a été dé�nie en fonction de x. Supposons donc
qu'il existe p(s), q(s) ∈ Q[s] tels que

p3

q3
− s

p

q
+ 2 = 0.

On obtient donc

p
[
p2 − sq2

]
= −2q3 dans Q[s].

Distinguons deux cas :

1. p est un polynôme constant, qu'on peut sans perte de généralité prendre égal à 1. Dans ce

cas 1− sq2 = −2q3. Le terme constant de 1− sq2 vaut 1, tandis que celui de −2q3 vaut −2b3

où b est le coe�cient constant de q. Donc b ∈ Q est une racine cubique de −1/2, ce qui est

impossible. Donc p ne peut être constant.

2. p n'est pas constant. Puisque p divise le membre de gauche, il doit aussi diviser −2q3, et donc
q3. En particulier p et q ne sont pas premiers entre eux. Or on peut sans perte de généralité

les supposer premiers entre eux, on a donc une contradiction.

On obtient ainsi que t3 − st+ 2 est irréductible dans Q(s), ce qui conclut.
Voici une autre méthode pour montrer que t3 − st+ 2 ∈ Q(s)[t] est irréductible. Par le lemme

de Gauss III, il su�t de montrer que ce polynôme est irréductible dans Q[s][t]. Par la Proposition

3.9.1, il su�t de montrer que la réduction modulo s, à savoir t3 + 2 ∈ Q[t], est irréducible. Par

Gauss III encore, il su�t de montrer que t3+2 ∈ Z[t] est irréductible, et cela se véri�e en appliquant

le critère d'Eisenstein.

Exercice 4.

Note that the complex roots of x2 − 2 are of the form e
2πik
n

√
2 for 0 ≤ k < n. Moreover, note that

x2n − 3xn +2 can be factorized as x2n − 3xn +2 = (xn − 2)(xn − 1). One can conclude for Lemma

4.3.3 point (1) that the splitting �elds are the same and they are given by Q(ξ, n
√
2) .

Exercice 5. 1. : These two polynomials are x3 + x+ 1 and x3 + x2 + 1, because we know that

a degree 3 polynomial is irreducible if and only if it does not have a root. If we plug in 0,
this means that we have to have a constant term, and if we plug in 1, this means that there

has to be an odd number of terms. These two conditions together leave only the above two

polynomials.

2. In both cases if α denotes the class of x in the quotient, then α2 and α4 are also roots of

f .* This follows from f(α2) = f(α)2 = 0 and f(α4) = f(α)4 = 0. Note that they are indeed

di�ferent elements because they are represented by the classes of the polynominals x, x2 and

x2 + x and x3 + x respectively in the cases f = x3 + x+ 1 and f = x3 + x2 + 1.

Remarque. C'est un fait général qui suit du fait que tous les corps �nis sont des corps de

décomposition que si f(x) ∈ Fq[x] est irréductible, alors il scinde sur Fq[x]/f(x) et les racines

dans le quotient sont données par les classes xq
i
pour i = 0,deg(f)− 1.

*This is also well understood using Galois theory.



3. Note that f and g are irreducible and that K is a �eld such that L = F2[x]/f ∼= F2(α), where
α is a roots of f . Since L is a extension of degree 3 of K = F2[x], it is a �nite �eld. Then by

theorem 4.4.17, L is a splitting �eld of x8 − x over K. To see that it is also the splitting �eld

of g, we know from the previous point that K contains all the roots of g and is an extension

of degree 3. Using this one can conclude that K satis�es the de�nition of being the splitting

�eld of g.

Exercice 6. 1. Use the following isomorphisms to de�ne η : K(α) → K ′(α′)

K(α) ∼= K[x]/(mα,K) ∼= K ′[x]/(ξ(mα,K)) ∼= K ′[x]/(mα′,K′) ∼= K ′(α′)

This shows that L ∼= L′, and moreover by the universal property of polynomial rings and of

fraction �elds we have that η is the unique extension of ϕ such that η(α) = α′.

2. Use point (1) with the automorphism K(x) → K(x) given by x 7→ x+ 1. This isomorphism

is induced by the universal property of polynomial rings and of fraction �elds, and also that

it is an isomorphism because it has an inverse given by x 7→ x− 1

3. Use point (1) with the automorphism K(x, y) → K(x, y) given by x 7→ x and y 7→ x+y, here
the inverse is x 7→ x and y 7→ y − x.
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Exercice 1.

We note that F×
27

∼= Z/26Z, see Theorem 4.4.17 (7). Let α ∈ F×
27. Then ord(α) ∈ {1, 2, 13, 26}.

As α ̸= 1,−1, it follows that ord(α) ∈ {13, 26}. If ord(α) = 13, then (−α)13 = −1 and so
ord(−α) = 26.

Exercice 2. 1. Par le Corollaire 4.4.22, Fpr contient un et un seul sous-corps isomorphe à Fpn

pour n divisant r. Si Fps est l'un d'eux, alors les corps intermédiaires de l'extension Fps ⊂ Fpr

sont les Fpn où s divise n et n divise r.

2. Les sous-corps de F16, en vertu du premier point, sont F2 et F4, et ils forment une chaîne.
Donc F2(a) = F16 si et seulement si a /∈ F4. Par le Théorème 4.2.17 on a

F×
16

∼= Z/15Z, F×
4
∼= Z/3Z

et F×
4 ⊂ F×

16 est un sous-groupe. Un élément 0 ̸= a ∈ F16 véri�e F2(a) = F16 si et seulement si
son image dans F×

16 n'est pas contenue dans ce sous-groupe. D'un autre côté, il y a φ(15) = 8
éléments qui générent F×

16, où φ est la fonction de comptage d'Euler. Remarquons aussi qu'un
élément contenu dans le sous-groupe F×

4 ne saurait générer le groupe F×
16. Il y a ainsi

|F×
16| − |F×

4 | − φ(15) = 15− 3− 8 = 4

éléments 0 ̸= a ∈ F16 tels que F2(a) = F16 et ⟨a⟩ ≠ F×
16.

3. L'argument est semblable à celui du point précédent. Les sous-corps de Fp4 sont Fp ⊂ Fp2 , et
on a Fp(a) = Fp4 si et seulement si a /∈ Fp2 . Par le Théorème 4.2.17 on a

F×
p4

∼= Z/(p4 − 1)Z, Fp2
∼= Z/(p2 − 1)Z.

Notons E := {0 ̸= a ∈ F16 | ⟨a⟩ = F×
16}. Alors |E| = φ(p4 − 1). Remarquons aussi que E et

F×
p2

sont des sous-ensembles disjoints de F×
p4
. Ainsi

|{0 ̸= a ∈ Fp4 | Fp(a) = Fp4 et ⟨a⟩ ≠ F×
p4
}| = |Z/(p4 − 1)Z \ (E ⊔ F×

p2
)|

= p4 − 1− (p2 − 1)− φ(p4 − 1)

= p4 − p2 − φ(p4 − 1).

Exercice 3. 1. Notons q := pgdc(f, xp
d − x). Comme f est irréductible, on a q = 1 ou q = f .

On va montrer que q = 1 n'est pas possible. Puisque f est irréductible de degré d, le quotient
Fp[t]/(f(t)) est un corps de degré d sur Fp. En particulier il contient pd éléments. Par le
Théorème 3.4.17, on obtient un isomorphisme

ϕ : Fp[t]/(f(t)) ∼= Fpd

qui se restreint à l'égalité sur Fp (puisqu'il envoie 1 vers 1). Ainsi l'isomorphisme

Φ:
(
Fp[t]/(f)

)
[x] ∼= Fpd [x]



induit par ϕ fait commuter le diagramme(
Fp[t]/(f)

)
[x] Fpd [x]

Fp[x]

Φ

On en conclut que l'extension Fp ⊂ Fpd contient une racine de Φ(f) = f ∈ Fp[x]. Notons α ∈
Fpd cette racine. Par le Théorème 4.2.17 à nouveau, α est aussi une racine de xp

d −x ∈ Fp[x].

Donc x−α divise à la fois f et xp
d − x dans Fpd [x]. Cela implique que (f, xp

d − x) ⊆ (x−α)
dans l'anneau Fpd [x].

Si q = 1, alors par Bézout il existerait a, b ∈ Fp[x] tels que af + b(xp
d −x) = 1. Cette relation

serait encore vraie dans le plus gros anneau Fpd [x]. Or on vient d'établir que (f, xp
d − x) ⊆

(x− α) dans Fpd [x], c'est donc une contradiction. Ainsi q = f , d'où f divise xp
d − x.

2. Le Théorème 4.2.17 nous indique que xp
d − x se scinde sur Fpd . Or f divise xp

d − x, donc
(par unicité de la décomposition en facteurs premiers) le polynôme f se scinde sur Fpd .

3. Puisque f se scinde sur Fpd et divise xp
d − x dans Fpd [x], il su�t de montrer que xp

d − x n'a
pas de racines multiples dans Fpd . Or le Théorème 4.2.17 implique que

xp
d − x est divisible par

∏
α∈F

pd

(x− α) dans Fpd [x].

En comparant les degrés et les coe�cients dominants, on voit qu'il y a en fait égalité entre
ces deux polynômes. Donc xp

d − x n'a pas de racine multiple.

4. Par le second point, f et g se scindent sur Fpd . S'ils ont une racine β en commun dans Fpd ,
alors l'idéal (f, g) ⊆ (x− β) n'est pas égal à Fpd [x]. Mais si pgdc(f, g) = 1 dans Fp[x], alors
par Bézout on obtient comme dans le premier point que (f, g) = Fpd [x]. Donc pgdc(f, g) ̸= 1.
Comme f et g sont irréductibles, on en déduit que f = g modulo une unité (c'est-à-dire
modulo multiplication par un scalaire de F×

p ).

5. Le premier point montre que xp
d − x est divisible par tous les polynômes irréductibles de

degré d. La preuve du Corollaire 4.4.22 montre que xp
s − x divise xp

d − x pour tous les s
divisant d. Donc ∏

h unitaire irréd.

dans Fp[x]
deg h divise d

h divise xp
d − x.

Il reste à montrer qu'il n'existe pas d'autre polynôme irréductible divisant xp
d − x. Soit g un

polynôme irréductible dont le degré ne divise pas d. Si g divise xp
d − x, alors g se scinde sur

Fpd , et donc Fp[x]/(g) s'identi�e à un sous-corps de Fpd , c'est-à-dire à un Fps où s divise d.
Mais dans ce cas

deg g = [Fp[x]/(g) : Fp] = [Fps : Fp] = s

divise d, ce qui est une contradiction. On a donc l'égalité désirée.

Exercice 4.

Cette solution est adaptée de l'article Counting Irreducible Polynomials over Finite Fields Using the

Inclusion-Exclusion Principle de S.K.Chebolu et J. Minác, dans Math. Mag. 84 (2011) 369-371.



1. On a vu dans l'Exercice 3 que tout polynôme f irréductible de degré d se scinde sur Fpd .
On a vu dans le même exercice que f n'a pas de racines doubles, et que deux polynômes
unitaires irréductibles de même degré n'ont pas de racines en commun. Si f1, . . . , fNd

sont
les polynômes unitaires irréductibles de degré d et Rfi ⊂ Fpd les ensembles de racines, on a
donc montré que

|Rfi | = d et Rfi ∩Rfj = ∅ si i ̸= j.

Ainsi on obtient
dNd = |Rf1 ⊔ · · · ⊔RfNd

|.

Il reste à déterminer quels éléments de Fpd sont des racines de polynômes irréductibles de
degré d. Remarquons que si a ∈ Fpd est une racine de fi, alors

Fp(a) ∼= Fp[t]/(fi(t))

et en prenant les degrés sur Fp on obtient [Fp(a) : Fp] = d. Donc Fp(a) = Fpd . Ainsi si a est
une racine de fi, il n'appartient à aucun sous-corps strict L ⊊ Fpd . Inversément, supposons
que a ∈ Fpd n'appartienne à aucun sous-corps strict. Par le Théorème 4.2.17, a est racine de

xp
d − x ∈ Fp[x], donc de l'un de ses facteurs irréductibles de degré e. Alors [Fp(a) : F] = e,

et si e < d on obtient Fp(a) ⊊ Fpd , ce qui est une contradiction avec le choix de de a. En
dé�nitive nous avons montré que

Rf1 ⊔ · · · ⊔RfNd
= Fpd \

⋃
L⊊F

pd

L

où L parcourt les sous-corps stricts de Fpd .

2. Le problème pour tirer une formule générale du point précédent est que les sous-corps L
ne sont pas tous inclus les uns dans les autres, et que leurs intersections sont non-triviales.
Pour les petites valeurs de d, il est cependant facile passer en revue les sous-corps et leurs
intersections. Nous utilisons sans plus y faire référence le Corollaire 4.4.22.

(a) d = 2. Le seul sous-corps strict de Fp2 est Fp. Donc

N2 =
p2 − p

2
.

(b) d = 3. Le seul sous-corps strict de Fp3 est Fp. Donc

N3 =
p3 − p

3
.

(c) d = 4. Les sous-corps stricts de Fp4 sont Fp ⊂ Fp2 . Donc

N4 =
p4 − p2

4
.

(d) d = 5. Le seul sous-corps strict de Fp5 est Fp. Donc

N5 =
p5 − p

5
.

(e) d = 6. Le premier cas non-trivial. Les sous-corps stricts sont

Fp2 ⊃ Fp ⊂ Fp3 .

Ainsi
|Fp6 \ (Fp2 ∪ Fp3)| = |Fp6 | − |Fp2 | − |Fp3 |+ |Fp2 ∩ Fp3 |.



L'intersection Fp2 ∩ Fp3 est un corps �ni de caractéristique p, donc un corps de la forme
Fps où s divise à la fois 2 et 3. Donc s = 1 et le cardinal de l'intersection vaut p. Il
s'ensuit que

N6 =
p6 − p3 − p2 + p

6
.

3. Observez que le Corollaire 4.4.22 permet d'écrire explicitement le réseau de sous-corps de
n'importe quel corps �ni. Puisque Fpd/n ∩Fpd/m est un sous-corps à la fois de Fpd/n , de Fpd/m

et de Fpd , on utilise le Corollaire 4.4.22 pour indenti�er cette intersection. Elle est donnée
par Fps , où s est le plus grand entier qui divise à la fois d/n et d/m. Puisque n et m sont
premiers entre eux, en considérant la décomposition de d en facteurs premiers on voit que
s = d/nm.

4. Passons au cas général. Dans la formule établie au premier point, on peut évidemment prendre
l'union sur l'ensemble des sous-corps stricts L qui sont maximaux. Par le Corollaire 4.4.22,
ces sous-corps sont donnés par

Fj := F
pd/sj

avec d =

n∏
j=1

s
ij
j la décomposition en nombres premiers.

Ecrivons Fj1...jr := Fi1 ∩ · · · ∩Fjr . En utilisant le point précédent par induction sur t, on voit
que |Fj1...jt | = pd/sj1 ···sjt . La formule d'inclusion-exclusion nous donne alors

dNd =
∣∣Fpd

∣∣−
∣∣∣∣∣∣

n⋃
j=1

Fj

∣∣∣∣∣∣
= pd −

n∑
t=1

(−1)t+1
∑

j1<···<jt

|Fj1...jt |

= pd −
n∑

t=1

(−1)t+1
∑

j1<···<jt

pd/sj1 ···sjt

=
n∑

t=0

(−1)t
∑

j1<···<jt

pd/sj1 ···sjt

où on pose pd/sj1 ···sjt = pd pour t = 0. Considérons maintenant un entier r divisant d. On a

r =

n∏
j=1

s
kj
j avec 0 ≤ kj ≤ ij , donc

d

r
=

n∏
j=1

s
ij−kj
j .

Par la dé�nition de la fonction de Möbius, on obtient

µ

(
d

r

)
=


0 si kj ≤ ij − 2 pour au moins un j,

1 si ∀j : kj ≥ ij − 1 avec inégalité pour un nombre pair de j,

−1 si ∀j : kj ≥ ij − 1 avec inégalité pour un nombre impair de j.

Il s'ensuit que
n∑

t=0

(−1)t
∑

j1<···<jt

pd/sj1 ···sjt =
∑
r|d

µ

(
d

r

)
pr

ce qui conclut l'exercice.

Exercice 5. 1. By corollary 4.4.22 we know that for every j Kj+1 contains a sub�eld isomorphic
to Kj . We can then considered the induced inclusion homomorphism ιj : Kj → Kj+1 for
every j ≥ 1.



2. Recall that if K0
ι0
↪→ K1

ι1
↪→ K2

ι2
↪→ . . . is an in�nite sequence of �elds with injectiv homomor-

phisms between each Kj and Kj+1. Then the direct limit is given by

lim−→
i

Ki =

⊔
i∈NKi/- x ≡ ιs−1 ◦ . . . ◦ ιr(x) et ιs−1 ◦ . . . ◦ ιr(x) ≡ x pour chaque entier

s > r, et x ∈ Kr

- x ≡ x pour chaque x ∈ Kr

is a �eld with sum given by [x] + [y] and product given by [x] · [y] for x ∈ Kr and y ∈ Ks are
de�ned as follows: if s > r, then [x] = [ιs−1 ◦ . . . ◦ ιr(x)] which means that we can suppose
s = r, and thus we de�ne

(a) [x] + [y] = [x+ y]

(b) [x] · [y] = [x · y]

It is clear that the unit and zero element are given by the inclusion of each the zero and unit
element in each �eld. And since each Ki is a �eld the sum and multiplication de�ned as above
endow the direct limit with a ring structure. It is also not di�cult to see that each element
[x] ∈

⊔
i∈NKi has an inverse, since x ∈ Kn for some n ∈ N

Moreover the inclusion K0 ↪→
⊔

i∈NKi gives us an embedding K0 ↪→ lim−→
i

Ki.

3. Note that Fp ⊂ K. Moreover each extension Kj ⊂ Kj+1 is a �nite extension therefore it is
an algebraic extension. Thus we have that each Kj is algebraic over Fp. We then have that
K is algebraic over Fp because each of its element lives in one of the Kj .

4. Let g be a polynomial in K[t]. Since g has a �nite sum of coe�cients, then there exists n ∈ N
such that g ∈ Kn[t]. Let α be a root of g, then Kn ⊂ Kn(α) is a �nite extension of degree r,
for some r ∈ N. Therefore Kn(α) is a �eld with prn elements. Hence Kn(α) is also a �nite
�eld containing Fp. Then we have that Kn(α) = Krn. So the root α is also an element of K
since α ∈ Krn ⊂ K. Thus K is the algebraic closure of Fp.
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Exercice 1. (a) As α /∈ Kp it follows that for all β ∈ K we have βp ̸= α and thus xp − α ∈ K[x]
does not admit roots in K. Let F be a decomposition �eld of xp − α over K and let β ∈ F
be a root of this polynomial. We have that:

xp − α = xp − βp = (x− β)p in F [x].

Let mβ,K(x) ∈ K[x] denote the minimal polynomial of β over K. As β is a root of xp − α, it
follows that mβ,K(x)|xp − α = (x− β)p. Therefore there exists some i, 1 ≤ i ≤ p, such that
mβ,K(x) = (x− β)i. Now, as mβ,K(x) ∈ K[x] we have that:

(x− β)i =

i∑
j=0

(−1)j
(
i

j

)
xi−jβj = xi − iβxi−1 + · · ·+ (−1)iβi ∈ K[x].

It follows that −iβ = 0 and so i = p. Therefore mβ,K(x) = (x−β)p = xp−α and we conclude
that xp − α ∈ K[x] is irreducible.

(b) To show that L is a �eld, we will show that the polynomial y2 − x(x− 1)(x+ 1) ∈ (Fp(x))[y]
is irreducible. As y2−x(x−1)(x+1) is a unitary polynomial, it is primitive and so, by Gauss
III, it is irreducible in (Fp(x))[y] if and only if it is irreducible in (Fp[x])[y]. Now, x ∈ Fp[x] is
irreducible and we use Eisenstein with "p = x" (here p denotes the irreducible in Eisenstein
criterion) to deduce that y2 − x(x− 1)(x+ 1) is irreducible in (Fp[x])[y].

(c) By Proposition 4.5.7, as char(L) = p, we have that L is perfect if and only if Lp = L. We
will show that x /∈ Lp.

Assume by contradiction that x ∈ Lp. Then, there exists f ∈ L such that x = fp. It follows
that f ∈ L is a root of the polynomial tp − x ∈ Fp(x)[t]. As x ∈ Fp(x) is not a pth power,
see Exercice 3, it follows that the polynomial tp − x is irreducible in (Fp(x))[t], see item (a).
This shows that mf,Fp(x)(t) ∼ tp − x ∈ (Fp(x))[t].

Consider the chain of extensions:

Fp(x) ⊆ (Fp(x))(f) ⊆ L

and we have [(Fp(x))(f) : Fp(x)]|[L : Fp(x)]. But [L : Fp(x)] = 2 and [(Fp(x))(f) : Fp(x)] = p,
where p ̸= 2. We have arrived at a contradiction.

(d) We have that L = (F2(x))[y]/(y
2 + x(x + 1)2). Note that the polynomial y2 + x(x + 1)2 ∈

(F2(x))[y] admits
√
x(x + 1) as a double root and so it is irreducible in (F2(x))[y]. Now,

by Proposition 4.2.25, it follows that L = (F2(x))(
√
x(x + 1)) = (F2(x))(

√
x) = F2(

√
x).

For the last equality, note that F2(
√
x) ⊆ (F2(x))(

√
x) and, as F2(x) ⊆ F2(

√
x), we have

(F2(x))(
√
x) ⊆ (F2(

√
x))(

√
x) = F2(

√
x).

As char(L) = 2, it follows that L is perfect if and only if L2 = L, see Proposition 4.5.7. But

L2 = {f(
√
x)2| f(

√
x) ∈ L} =

{(
f1(

√
x)

f2(
√
x)

)2

| f1(
√
x), f2(

√
x) ∈ F2[

√
x], f2(

√
x) ̸= 0

}
=

{
f1(x)

f2(x)
| f1(x), f2(x) ∈ F2[x], f2(x) ̸= 0

}
= F2(x)

and clearly
√
x /∈ L2.



Exercice 2.(a)(i) Let α ∈ L\K. As α2 ∈ K, it follows that α is a root of the polynomial x2+α2 ∈
K[x] and thus [K(α) : K] ≤ 2. On the other hand, we have that [K(α) : K] ≥ 2, as α /∈ K,
and we conclude that [K(α) : K] = 2 and K(α) = L.

(ii) The polynomial x2 + α2 ∈ K[x], where α ∈ L\K, admits α as a double root, hence it is
irreducible in K[x]. Now, as this is a unitary irreducible polynomial of degree 2 and as
α /∈ K, it follows that mα,K(x) = x2 + α2 and so we conclude that α ∈ L\K is inseparable.

(b)(i) Let α ∈ L\K be such that α2 /∈ K. First, we have that [K(α) : K] ≥ 2 and, as K(α) ⊆ L, it
follows that [K(α) : K] ≤ [L : K] = 2, and so [K(α) : K] = 2, hence K(α) = L.

Secondly, as α2 ∈ K(α) and α2 /∈ K, there exist a, b ∈ K, a ̸= 0, such that α2 = aα + b.
Then: (

α

a

)2

=

(
α

a

)
+

b

a2
.

Set β = α
a ∈ K(α) and c = b

a2
∈ K. We have that K(α) = K(αa ) = K(β) and so L = K(β).

Moreover, β is a root of the unitary polynomial x2+x+ c ∈ K[x] and, as [K(β) : K] = 2, we
conclude that mβ,K(x) = x2 + x+ c.

(ii) Note that a polynomial of the form x2+x+c is always separable as the derivative is 1 ̸= 0. So,
β is automatically separable. Now β+1 ∈ K(β) is a root ofmβ,K(x), as (β+1)2+(β+1)+c =
β2 + β + c = 0, and we conclude that τ : K(β) → K(β) given by τ(β) = β + 1 is an
automorphism of K(β). Then, by Proposition 4.6.3.4 we have that |Gal(K(β)/K)| = 2.

(iii) Note that K(β)⟨τ⟩ = K by theorem 4.6.13. If γ ∈ L \K then τ(γ) ̸= γ and by proposition
4.6.3.(3), we get that the minimal polynomial of γ is (t − γ)(t − τ(γ)). Therefore K ⊂ L is
separable.

Exercice 3.

We use the same techniques as in Example 4.6.5, and denote G = Gal(K/Q) = AutQ(K).

� Let K = Q(i). The irreducible polynomial x2 + 1 ∈ Q[x] has two distinct roots in Q(i), and
they are i and −i. From Prop 4.6.3(1), it follows that every element in G sends i to i or to −i.
By Prop 4.6.3(2), there is at most one element in G for each possibility. By Prop 4.6.3(4), it
holds that | Gal(K/Q) |= [Q(i) : Q] = 2, hence Gal(K/Q) = {idQ(i), σ} ∼= Z/2Z, where (the
identity sends i to i, and) σ sends i to −i. As σ is Q-linear, we have that σ(a+ ib) = a− ib,
the conjugation.

� Let K = Q(
√
7). Using the same steps as above, considering the irreducible polynomial

x2 − 7 ∈ Q[x], we get that Gal(K/Q) = {idQ(
√
7), σ} ∼= Z/2Z, where (the identity sends

√
7

to
√
7, and) σ sends

√
7 to −

√
7. As σ is Q-linear, we have that σ(a+

√
7b) = a−

√
7b.

� Let K = Q( 3
√
2). The irreducible polynomial x3 − 2 ∈ Q[x] has only one root in Q( 3

√
2). As

by Prop 4.6.3(1), every root of this polynomial gets sent to a root of the same polynomial
by an element in G, and for each such possibility there is at most one element in G by Prop
4.6.3(2), we conclude that G = {idQ( 3√2)} is trivial.

� Let K = Q(ω2), where ω = e2iπ/3. The irreducible polynomial x2 + x + 1 ∈ Q[x] has two
roots in Q(ω), which are ω and ω2. As for the �rst and second example, it follows that G is
cyclic of order two, consisting of the identity and σ, which sends ω to ω2. We have in fact
K = Q(i

√
3), and one can argue as in the �rst two points.

Exercice 4.

We have the following extension tower:

Q ⊆ Q(
√
2) ⊆ Q(

√
1 +

√
2).



The extension Q ⊆ Q(
√
2) is Galois, as Q is a perfect �eld and Q(

√
2) is the decomposition

�eld of the polynomial x2 − 2 ∈ Q[x], see Theorem 4.6.15. Similarly, the extension Q(
√
2) ⊆

Q(
√
1 +

√
2) is Galois, as Q(

√
2) is perfect and Q(

√
1 +

√
2) is the decomposition �eld of the

polynomial x2 − 1−
√
2 ∈ Q(

√
2)[x].

We now consider the extension Q ⊆ Q(
√
1 +

√
2). We note that this extension is of degree 4.

We also note by develloping
(x2 − (1 +

√
2))(x2 − (1−

√
2))

that
√

1 +
√
2 is a root of the polynomial x4−2x2−1 ∈ Q[x], hence m√

1+
√
2,Q

(x) = x4−2x2−1 by

the degree because [Q(
√

1 +
√
2) : Q] = 4. Moreover, the other roots of x4−2x2−1 are −

√
1 +

√
2

and ±
√

1−
√
2. Now, we remark that Q(

√
1 +

√
2) ⊆ R, therefore ±

√
1−

√
2 /∈ Q(

√
1 +

√
2).

Let σ ∈ Gal(Q(
√

1 +
√
2)/Q). Then σ(

√
1+

√
2) ∈ Q(

√
1 +

√
2) is a root ofm√

1+
√
2,Q

(x) and thus

σ(
√
1 +

√
2) = ±

√
1 +

√
2, see Proposition 4.6.3 (c). It follows that |Gal(Q(

√
1 +

√
2)/Q)| = 2

and we conclude, using Corollary 4.6.13, that the extension Q ⊆ Q(
√
1 +

√
2) is not Galois.

Exercice 5.

In the following solutions, we use the same technique to �nd the minimal polynomials as in Example
4.6.11. With Proposition 4.6.10, it holds that for an element z ∈ Q(α, β), the minimal polynomial
is mz,Q =

∏
z′
(x− z′), where z′ is a Galois conjugate of z.

1. As in Example 4.6.4 (3), we see that G ∼= Z/2Z× Z/2Z. The elements in G are the identity,
σ, with σ(

√
3) =

√
3 and σ(

√
7) = −

√
7, τ with τ(

√
3) = −

√
3 and τ(

√
7) =

√
7, and τσ,

with τσ(
√
3) = −

√
3 and τσ(

√
7) = −

√
7.

The elements {1,
√
3,
√
7,
√
3
√
7} form a basis of Q(

√
3,
√
7) over Q. Now let z ∈ Q(α, β),

with z = a+ b
√
3 + c

√
7 + d

√
3
√
7. The conjugates of z are

z, a+ b
√
3− c

√
7− d

√
3
√
7, a− b

√
3 + c

√
7− d

√
3
√
7, a− b

√
3− c

√
7 + d

√
3
√
7.

As noted above, the minimal polynomial is

mz,Q = (x−z)(x−(a+b
√
3−c

√
7−d

√
3
√
7))(x−(a−b

√
3+c

√
7−d

√
3
√
7))(x−(a−b

√
3−c

√
7+d

√
3
√
7)),

if all factors are di�erent. Hence the minimal polynomials of the elements
√
3,
√
3 +

√
7,
√
3 ·√

7,
√
3
−1

are

m√
3,Q = x2 − 3

m√
3+

√
7,Q = (x−

√
3−

√
7)(x−

√
3 +

√
7)(x+

√
3−

√
7)(x+

√
3 +

√
7)

m√
3·
√
7,Q = (x−

√
3
√
7)(x+

√
3
√
7)

m√
3
−1

,Q = x2 − 1

3
.

2. We note that since β = −1 ∈ Q, it holds that Q(α, β) = Q(α). α is a root of the polynomial
x3 + 1. The other two roots are −1, and e−2iπ/3 = α. Since one of the roots is contained in
Q, over which every element of the Galois group acts as the identity we get by Prop 4.6.3 (1)
that every element of the Galois group G either sends α to α, or to α. By (b), there exists at
most one element for each possibility. Hence |G| ≤ 2. There are exactly two automorphisms,
one being the identity, and the other acting on α by sending α to α. Therefore, G ∼= Z/2Z.
Again, we calculate the minimal polynomial of an element z = (a+ bα) ∈ Q(α) as above. Its



minimal polynomial is mz,Q = (x− a− bα)(x− a− bα), if the factors are di�erent. We get

mα,Q = (x− α)(x− α) = x2 − x+ 1

mα+β,Q = x2 + x+ 1

mα·β,Q = x2 + x+ 1

mα−1,Q = x2 − x+ 1

3. Let α = e(πi/3) and β = i. Since α = cos(π/3) + i sin(π/3) = 1
2 + 1

2 i
√
3, it follows that

α ∈ Q(i
√
3), and Q(α) ⊆ Q(i

√
3). With i

√
3 = 2α − 1, it follows that i

√
3 ∈ Q(α),

and Q(i
√
3) ⊆ Q(α). With this, it follows that Q(α) = Q(i

√
3). Furthermore, Q(α, β) =

Q(i
√
3, i) = Q(

√
3, i). As in Example 4.6.4 (c), we see that Gal(Q(

√
3, i)/Q) contains 4 ele-

ments, the identity, σ, τ and στ, where σ(i) = i, σ(
√
3) = −

√
3, τ(i) = −i, τ(

√
3) =

√
3 and

στ(i) = −i, στ(
√
3) = −

√
3, and that Gal(Q(

√
3, i)/Q) ∼= Z/2Z × Z/2Z. On the elements α

and β, those four elements act as follows:

σ(α) = e−(iπ/3), σ(β) = β, τ(α) = e−(iπ/3), σ(β) = −β, στ(α) = α, στ(β) = −β.

As for the �rst example, we remark that the elements {1, i,
√
3, i

√
3} form a basis of Q(

√
3, i)

over Q. Let z ∈ Q(
√
3, i) with z = a+ bi+ c

√
3 + d

√
3i. Then, as stated above, the minimal

polynomial of z is of the following form, if all factors are di�erent

mz,Q = (x− z)(x− σ(z))(x− τ(z))(x− στ(z))

= (x− z)(x− (a+ bi− c
√
3− d

√
3i))(x− (a− bi+ c

√
3− d

√
3i))(x− (a− bi− c

√
3 + d

√
3i)).

We note that the element α is of the form α = 1
2 +

1
2(i

√
3) in the basis {1, i,

√
3, i

√
3}. Then,

the minimal polynomials are of the form

mα,Q = (x− (0.5 + 0.5i
√
3))(x− (0.5− 0.5i

√
3)) = (x− α)(x− e(−iπ/3))

mα+β,Q = (x− (0.5 + i+ 0.5i
√
3))(x− (0.5 + i− 0.5

√
3i))(x− (0.5− i− 0.5

√
3i))(x− (0.5− i+ 0.5

√
3i))

mα·β,Q = (x− (0.5i− 0.5
√
3))(x− (0.5i+ 0.5

√
3))(x− (−0.5i− 0.5

√
3))(x− (−0.5i+ 0.5

√
3))

mα−1,Q = me(−iπ/3),Q = m0.5−0.5i
√
3,Q = (x− (0.5− 0.5i

√
3))(x− (0.5 + 0.5i

√
3))

4. Let α = e(iπ/6) and β = i. We �rst calculate G = Gal(Q(α, β)/Q). We remark that β =
α3, and hence Q(α, β) = Q(α). Furthermore, α is a root of the polynomial x6 + 1, which
decomposes as x6 + 1 = (x2 + 1)(x4 − x2 + 1). The polynomial x2 + 1 has two complex
roots ±i. The polynomial x4−x2+1 has four complex roots α, α5, α7, α11. Furthermore, this
polynomial is irreducible over Q.
Hence the minimal polynomial of α is mα,Q = x4−x2+1. Since by adjoining α to Q, all roots
of mα,Q are adjoined as well, we remark that Q(α) is the splitting �eld of the polynomial
x4 − x2 + 1 over Q. By Proposition 4.6.3 (4), we get that |G| = [Q(α) : Q] = degmα,Q = 4.
The elements in G are the identity, τ, σ, η, where the root α gets sent to a root of x4 − x2 +1
by every element of G. We let τ(α) = α5, σ(α) = α7, η(α) = α11.

The minimal polynomials are calculated as stated above by observing the action of the ele-



ments id, τ, σ, η. It follows that

mα,Q = (x− α)(x− τ(α))(x− σ(α))(x− η(α)) = (x− α)(x− α5)(x− α7)(x− α11) = x4 − x2 + 1

mα+β,Q = mα+α3,Q = (x− (α+ α3))(x− τ(α+ α3))(x− σ(α+ α3))(x− η(α+ α3))

= (x− (α+ α3))(x− (α5 + α3))(x− (α7 + α9))(x− (α11 + α9)) = x4 + 3x2 + 9

mα·β,Q = mα4,Q = m−0.5+0.5i
√
3,Q = (x− α4)(x− τ(α4))(x− σ(α4))(x− η(α4))

= (x− α4)(x− α8)�����
(x− α4)�����

(x− α8) = x2 + x+ 1

mα−1,Q = mα11,Q = (x− α11)(x− τ(α11))(x− σ(α11))(x− η(α11))

= (x− α11)(x− α7)(x− α7)(x− α) = x4 − x2 + 1

Exercice 6. 1. As deg f = 3 one just has to verify that f does not have a root over Q. So, we
need to show that if a and b are non-zero relatively prime integers, then

(a/b)3 + (a/b) + 1 ̸= 0,

or equivalently
a3 + ab2 + b3 ̸= 0.

Suppose the contrary. Then b divides a3 and a divides b3. Using the relative prime assumption
we obtain both a and b are plus-minus 1, but one cannot add together three numbers, each
plus or minus 1 to get 0.

2. Let α, β and γ be the three roots of f in its splitting �eld. Assume that they are all real.
Then we have

f = (x− α)(x− β)(x− γ)

and hence

α+ β + γ = 0

and

αβ + αγ + βγ = a

From the �rst equation we have γ = −α − β. Plugging this into the left side of the second
equation yields

αβ + α(−α− β) + β(−α− β) = −α2 − β2 − αβ = −1

2
(α+ β)2 − α2

2
− β2

2
≤ 0

However, we assumed that a > 0. This is a contradiction.

3. As deg f = 3, and complex roots of a real polynomial come in complex conjugate pairs, f
has to have a real root. Let this real root be α. Then, Q ⊆ Q(α) is a degree 3 extension and
additionally Q(α) ⊆ R. Hence, the other two roots of f , say β and γ, cannot be contained
in Q(α). So, every element g ∈ Gal(Q(α)/Q) can send α only to α. However, as α generated
Q(α) this means that g = id.



4. Let α, β and γ be as in the previous point. Then both β and γ are roots of h = f
x−α ∈ Q(α)[x].

As this polynomial has degree 2, and β and γ are not in Q[x], h = mβ,Q(α) = mγ,Q(α). So,
Q(α, β, γ) has degree 2 over Q(α). So, by the multiplicativity of the degrees of �eld extensions,
L = Q(α, β, γ) has degree 6 over Q. Let G be the Galois group of L over Q. Then, G acts
faithfully on α, β and γ, which yields an embedding G ↪→ S3. As both have 6 elements, this
is in fact an isomorphism.

Exercice 7. 1. Let β be a root of f. It holds that βp − β + α = 0. Let γ ∈ Fp ⊆ K. Then,
using Fermat's little theorem, which states that γp = γ modulo p, it holds that over a �eld
of characteristic p, we have

(β + γ)p − (β + γ) + α = βp + γp − β − γ + α = βp + γ − β − γ + α = βp − β + α = 0.

Hence all β + γ, where γ ∈ Fp are roots of f. We get p distinct roots, and as Fp ⊆ K, by
adjoining β to K, all roots are contained in K(β) and hence L = K(β).

Moreover, we have thatmβ,K = f . Letmβ,K =
∏

γ∈I(x−(β+γ) in L[x] with I ⊂ Fp[x]. Then

the coe�cients in front of x|I|−1 are exactly −
∑

γ∈I(β+γ) = |I|β +
∑

γ∈I γ. If we suppose
that |I| < p, one contradicts the fact that β /∈ K. Therefore mβ,K = f .

We use Proposition 4.6.3 and get the following: by (a), G acts on the roots of f. By (b), since
L = K(β), there is at most one element in G that sends the root β to the root β + γ, for
γ ∈ Fp. Therefore, |G| ≤ p. There are indeed p elements in G, which are of the form σγ , with
σγ(β) = β + γ for all k ∈ Fp. We get p automorphisms, and hence G ∼= Z/pZ.

2. The fact that f is irreducible over K follows from Prop 4.6.3 (d), which states that |G| =
[L : K], where L = K(β) is the splitting �eld of f. By the previous point, |G| = p, and hence
[K(β) : K] = degmβ,K = p. Since β is a root of f, and since its minimal polynomial is of
degree p, it follows that f ∼ mβ,K , and hence, f is irreducible over K.

3. Let g
h ∈ Fp(t) a root of xp − x+ t. Then, g, h ∈ Fp[t], h ̸= 0 and it holds that(g

h

)p
−
(g
h

)
+ t = 0 ⇔ gp − ghp−1 + thp = 0.

Denote the degree of g by dg, and the degree of h by dh. Then, the degree of the following
polynomials are

deg(gp) = pdg, deg(ghp−1) = dg + (p− 1)dh, deg(thp) = 1 + pdh.

In order for the sum gp − ghp−1 + thp to be zero, the degrees of each of the summands needs
to be canceled out.

If dh ≥ dg, then the degree of thp, being 1+pdh, is strictly bigger than pdg and dg+(p−1)dh
and hence thp can't be canceled out, and the sum of polynomials can only be zero if h = 0,
but this is a contradiction to the choice of g, h.

On the other hand, if dg > dh, then nothing can cancel out gp, which one sees by a degree
comparison, and hence the sum gp − ghp−1 + thp can only be zero if g = 0 and h = 0, which
is a contradiction.

4. Let u be a root of f : up − u + t = 0 ⇐ up − u = −t, and hence F(t) ⊆ Fp(u). With u
being transcendental over Fp, it follows that the splitting �eld is Fp(u). We remark that by
the second part of the exercise, all roots are of the form u + γ, where γ ∈ Fp, and hence all
roots are contained in Fp(u).

Exercice 8 (Galois correspondence). 1. Let L = Q(
√
7). We have that [L : Q] = 2, as

√
7 /∈ Q

is a root of the irreducible polynomial x2 − 7 ∈ Q[x]. Now, Q is a perfect �eld and L is the
splitting �eld of x2 − 7 ∈ Q[x] over Q, hence the extension Q ⊆ L is Galois. By Proposition



4.6.3(d), it follows that |Gal(L/Q)| = 2 and so Gal(L/Q) ∼= Z/2Z. The only subgroups of
Gal(L/Q) are Gal(L/Q) and {IdL}, therefore the only sub-extensions of L are Q = LGal(L/Q)

and L = L{IdL}.

2. Let L = Q(
√
2,
√
3). We have seen in Series 9, Exercise 5.2 that [L : Q] = 4. Now, Q is a

perfect �eld and L is the decomposition �eld of (x2 − 2)(x2 − 3) ∈ Q[x] over Q, hence the
extension Q ⊆ L is Galois. By Proposition 4.6.3(d), it follows that |Gal(L/Q)| = 4. Now,
let σ, τ ∈ Gal(L/Q) be such that σ(

√
2) = −

√
2 and σ(

√
3) =

√
3, respectively τ(

√
2) =

√
2

and τ(
√
3) = −

√
3. We see that σ2 = τ2 = IdL and that στ = τσ. Therefore Gal(L/Q) =<

σ, τ >∼= Z/2Z × Z/2Z. Now, Gal(L/Q) admits 3 non-trivial proper subgroups: < σ >,
< τ > and < στ >, each isomorphic to Z/2Z. Let H be one of these subgroups. By
applying Theorem 4.6.18, we determine that LH ⊆ L is Galois and [L : LH ] = |H| = 2.
Therefore, [LH : Q] = 2. One checks that Q(

√
3) ⊆ L<σ>, as σ(

√
3) =

√
3, and, similarly,

that Q(
√
2) ⊆ L<τ> and Q(

√
6) ⊆ L<στ>, respectively. We conclude that

L<σ> = Q(
√
3), L<τ> = Q(

√
2) and L<στ> = Q(

√
6).

3. Let L = Q(
√
2,
√
3,
√
5) and consider the extension chain:

Q ⊆ Q(
√
2,
√
3) ⊆ L

We have that [L : Q] = [L : Q(
√
2,
√
3)][Q(

√
2,
√
3) : Q] = 8, as

√
5 /∈ Q(

√
2,
√
3) is a root of

the polynomial x2− 5 ∈ Q(
√
2,
√
3)[x]. Now, Q is a perfect �eld and L is the splitting �eld of

(x2 − 2)(x2 − 3)(x2 − 5) ∈ Q[x] over Q, hence the extension Q ⊆ L is Galois. By Proposition
4.6.3(d), it follows that |Gal(L/Q)| = 8. Let σ1, σ2, σ3 ∈ Gal(L/Q) be such that:

σ1(
√
2) = −

√
2, σ1(

√
3) =

√
3 and σ1(

√
5) =

√
5

σ2(
√
2) =

√
2, σ2(

√
3) = −

√
3 and σ2(

√
5) =

√
5

σ3(
√
2) =

√
2, σ3(

√
3) =

√
3 and σ3(

√
5) = −

√
5

One shows that σ2
i = IdL for all i = 1, 2, 3 and that σiσj = σjσi for all i ̸= j, therefore

determining that Gal(L/Q) =< σ1, σ2, σ3 >∼= Z/2Z × Z/2Z × Z/2Z. We �rst consider the
subgroups of order 2 of Gal(L/Q). There are 7 of them and each of these is cyclic and
generated by an element of Gal(L/Q). Let H be one of these subgroups. We apply Theorem
4.6.18 to determine that LH ⊆ L is Galois with [L : LH ] = |H| = 2. Therefore we have
[LH : Q] = 4.

Let H =< σ1 >. One checks that Q(
√
3,
√
5) ⊆ LH , as σ1(

√
3) =

√
3 and σ1(

√
5) =

√
5.

Therefore, Q ⊆ Q(
√
3,
√
5) ⊆ LH , where [Q(

√
3,
√
5) : Q] = 4 and [LH : Q] = 4. We conclude

that LH = Q(
√
3,
√
5). Similarly, one shows that:

L<σ2> = Q(
√
2,
√
5), L<σ3> = Q(

√
2,
√
3), L<σ1σ2> = Q(

√
6,
√
5)

L<σ1σ3> = Q(
√
3,
√
10), L<σ2σ3> = Q(

√
2,
√
15), L<σ1σ2σ3> = Q(

√
6,
√
10,

√
15) = Q(

√
6,
√
10)

We now consider the subgroups of order 4 of Gal(L/Q). Again, there are 7 of them and each
of these is generated by two distinct elements of order 2 of Gal(L/Q) and is isomorphic to
Z/2Z×Z/2Z. Let H be one of these subgroups. We apply Theorem 4.6.18 to determine that
LH ⊆ L is Galois with [L : LH ] = |H| = 4. Therefore we have [LH : Q] = 2. One shows that:

L<σ1,σ2> = Q(
√
5), L<σ1,σ3> = Q(

√
3), L<σ1,σ2σ3> = Q(

√
15), L<σ2,σ3> = Q(

√
2)

L<σ2,σ1σ3> = Q(
√
10), L<σ3,σ1σ2> = Q(

√
6), L<σ1σ2,σ1σ3> = Q(

√
30).



4. First, we note that the extension Q ⊆ E is Galois, as Q is a perfect �eld and E is the splitting
�eld of the polynomial t4 − 2t2 − 1 ∈ Q[t] over Q. By Proposition 4.6.3(d), it follows that

|Gal(E/Q)| = [E : Q]. We see that t4−2t2−1 = (t2−1−
√
2)(t2−1+

√
2) = (t−

√
1 +

√
2)(t+√

1 +
√
2)(t −

√
1−

√
2)(t +

√
1−

√
2). Therefore E = Q(

√
1 +

√
2,
√
1−

√
2). Now, we

have that i =
√

1 +
√
2 ·

√
1−

√
2 ∈ E and thus Q(

√
1 +

√
2, i) ⊆ E. Conversely, we have√

1−
√
2 = i · (

√
1 +

√
2)−1 ∈ Q(

√
1 +

√
2, i) and we deduce that E = Q(

√
1 +

√
2, i). We

now consider the extension chain:

Q ⊆ Q(

√
1 +

√
2) ⊆ E.

Since
√
1 +

√
2 is a root of t4−2t2−1 ∈ Q[t], it follows that [Q(

√
1 +

√
2) : Q] ≤ 4. We have

already seen that the polynomial t4−2t2−1 does not admit roots in Q. We now assume that
there exist a, b, c, d ∈ Q such that:

t4 − 2t2 − 1 = (t2 + at+ b)(t2 + ct+ d).

Then


a+ c = 0

b+ ac+ d = −2

ad+ bc = 0

bd = −1

and so c = −a, d = −1
b and −a(1b + b) = 0.

� If a = 0, then c = 0 and b + d = −2. Keeping in mind that d = −1
b , it follows that

(b+ 1)2 = 2, hence
√
2 ∈ Q, which is a contradiction.

� If 1
b + b = 0, then b2 + 1 = 0 and so i ∈ Q, which is a contradiction.

We have thus shown that t4−2t2−1 ∈ Q[t] is irreducible and therefore [Q(
√

1 +
√
2) : Q] = 4.

We remark that Q(
√
1 +

√
2) ⊆ R and so [E : Q(

√
1 +

√
2)] = 2, as i /∈ Q(

√
1 +

√
2) is a

root of t2 + 1 ∈ Q(
√

1 +
√
2)[t]. In conclusion, [E : Q] = 8, hence |Gal(E/Q)| = 8.

Let σ, τ ∈ Gal(E/Q) be such that σ(
√
1 +

√
2) =

√
1−

√
2 and σ(i) = −i, respectively

τ(
√

1 +
√
2) =

√
1 +

√
2 and τ(i) = −i. One checks that:

σ2(

√
1 +

√
2) = −

√
1 +

√
2, σ2(i) = i

σ3(

√
1 +

√
2) = −

√
1−

√
2, σ3(i) = −i

σ4(

√
1 +

√
2) =

√
1 +

√
2, σ4(i) = i

and thus deduces that σ4 = τ2 = IdE . Now < σ > is a subgroup of order 4 in Gal(E/Q)
and τ /∈< σ >. We deduce that Gal(E/Q) =< σ, τ > and, moreover, as στ ̸= τσ, Gal(E/Q)
is non-commutative. Lastly, Gal(E/Q) admits two elements of order 2: σ2 and τ , and we
conclude that Gal(E/Q) ∼= D8.

We now determine the subgroups of Gal(E/Q). There are 5 elements of order 2 in Gal(E/Q):
τ ,σ2, τσ2, τσ and στ , each generating a cyclic group of order 2. Let H be one of these
subgroups. By applying Theorem 4.6.18, we determine that EH ⊆ E is Galois and [E :
EH ] = |H| = 2. Therefore, [EH : Q] = 4. One checks that:

τσ2(

√
1 +

√
2) = τ(−

√
1 +

√
2) = −

√
1 +

√
2 and τσ2(i) = −i

τσ(

√
1 +

√
2) = τ(

√
1−

√
2) = τ(i(

√
1 +

√
2)−1) = −

√
1−

√
2 and τσ(i) = i



στ(

√
1 +

√
2) = σ(

√
1 +

√
2) =

√
1−

√
2 and στ(i) = i

and therefore

τσ2(
√
2) = τσ2((

√
1 +

√
2)2 − 1) = (τσ2((

√
1 +

√
2))2 − 1 = (−

√
1 +

√
2)2 − 1 =

√
2

τσ(

√
1 +

√
2−

√
1−

√
2) = τσ(

√
1 +

√
2)− τσ(i(

√
1 +

√
2)−1) = −

√
1−

√
2− τ(−i(

√
1−

√
2)−1)

= −
√
1−

√
2− τ(−

√
1 +

√
2) =

√
1 +

√
2−

√
1−

√
2

στ(

√
1 +

√
2 +

√
1−

√
2) =

√
1−

√
2 + στ(i(

√
1 +

√
2)−1) =

√
1−

√
2 + σ(−i(

√
1 +

√
2)−1)

=

√
1−

√
2 + i(

√
1−

√
2)−1 =

√
1−

√
2 +

√
1 +

√
2

The corresponding sub-extensions are

E<τ> = Q(

√
1 +

√
2), E<σ2> = Q(

√
1−

√
2), E<τσ2> = Q(

√
2, i)

E<τσ> = Q(

√
1 +

√
2−

√
1−

√
2) and E<στ> = Q(

√
1 +

√
2 +

√
1−

√
2).

Lastly, Gal(E/Q) admits 3 subgroups of order 4, one of which is cyclic, < σ >, and the
other two are isomorphic to Z/2Z × Z/2Z, < τ, σ2 > and < τσ, σ2 >.Let H be one of
these subgroups. By applying Theorem 4.6.18, we determine that EH ⊆ E is Galois and
[E : EH ] = |H| = 4. Therefore, [EH : Q] = 2. One checks that:

σ(i
√
2) = −iσ(

√
2) = −iσ((

√
1 +

√
2)2 − 1) = −i(

√
1−

√
2)2 − 1) = i

√
2{

τ(
√
2) = τ(

√
1 +

√
2)2 − 1)(=

√
1 +

√
2)2 − 1 =

√
2

σ2(
√
2) = σ2((

√
1 +

√
2)2 − 1) = (−

√
1 +

√
2)2 − 1 =

√
2

τσ(i) = τ(−i) = i and σ2(i) = i

The corresponding sub-extensions are:

E<σ> = Q(i
√
2), E<τ,σ2> = Q(

√
2) and E<τσ,σ2> = Q(i).

Exercice 9.

Let G be a �nite group and let |G| = n. By Cayley's Theorem, we know that we can embed G as
a subgroup of Sn.

Now, consider the ring F = Q[x1, . . . , xn] and for each σ ∈ G de�ne:

ϕσ : F → F by ϕσ(xi) = xσ(i) for all1 ≤ i ≤ n.

One shows that ϕσ is a ring homomorphism for all σ ∈ G. Moreover, we have that ϕσ ◦ ϕσ−1 =
ϕσ−1 ◦ ϕσ = IdF , hence ϕσ is invertible for all σ ∈ G with inverse ϕ−1

σ = ϕσ−1 .
Let E = Q(x1, . . . , xn) be the �eld of fractions of F . Then ϕσ : F → E is an injective ring

homomorhism, as it is the composition of two injective ring homomorphisms.We now apply the
universal property of the fraction �eld, to determine that:

ϕσ : E → E, where ϕσ(xi) = xσ(i) for all 1 ≤ i ≤ n

is a �eld homomorphism. Now, one checks that, in fact, ϕσ is a Q-automorphism of E.
Let H = {ϕσ| σ ∈ G} be a subset of AutQ(E). Since ϕσ1 ◦ ϕσ2 = ϕσ1σ2 for all σ1, σ2 ∈ G,

it follows that H is a subgroup of AutQ(E). Moreover, we have that H ∼= G, hence H is a �nite
group. We now apply Theorem 4.6.12 to E and H to deduce that [E : EH ] = |H| = |Gal(E/EH)|,
hence EH ⊆ E is Galois, see Corollary 4.6.13. We conclude that Gal(E/EH) = H ∼= G.
Remarque. En utilisant des techniques de géométrie algébrique et de topologie algébrique on peut
montrer que tout groupe �ni est réalisé comme un groupe de Galois d'une extension de C(t).



1. Avec de la géométrie algébrique, on voit que les extensions �nies de C(t) correspondent à des
morphismes de courbes algébriques X → P1

C tel que si ont enlève un nombre �ni de points à
P1
C, le morphisme devient un revêtement au sens topologique.

2. P1
C privé d'un nombre �ni de points est le plan complexe C privé d'un nombre �ni de points.

Par la topologie algébrique, on sait que π1(C \ {p1, . . . , pn}) ∼= Fn le groupe libre sur n-
générateurs. On sait également par la théorie des revêtements, comme tout groupe �ni G
admet une surjection Fn → G pour un certain n, qu'il existe un revêtement �ni de C \
{p1, . . . , pn} avec groupe de Galois égal à G.

3. En retournant à la géométrie algébrique, on obtient alors un morphisme de courbes algébriques

X → P1
C avec groupe de Galois G et donc une extension de C(t) avec groupe de Galois G.

Si ce genre de choses vous intrigue, le rédacteur vous encourage à suivre des cours de géométrie
algébrique et de topologie algébrique, et/ou à faire des projets dans ces domaines.

Exercice 10.

Remarquons que(
Xn −

(√
t+ 1√
t− 1

))(
Xn −

(√
t− 1√
t+ 1

))
= X2n − 2

(
t+ 1

t− 1

)
Xn + 1.

Notons que C(
√
t) → C(

√
t) qui envoie

√
t 7→

√
t+1√
t−1

et
√
t 7→

√
t−1√
t+1

sont des automorphismes.

Comme Xn−
√
t est irréductible par Einsenstein, il suit que les deux polynômes en facteur ci-dessus

sont irréductibles. On voit alors que l'extension

C(t) ⊂ C(
√
t) ⊂ C

 n

√√
t+ 1√
t− 1


est de degré 2n. Notons x := n

√√
t+1√
t−1

. Les racines de X2n − 2
(
t+1
t−1

)
Xn + 1 sont

x, ξnx, . . . , ξ
n−1
n x,

1

x
, ξn

1

x
, . . . , ξn−1

n

1

x
,

où ξn est une racine primitive n-ième de l'unité. Dès lors C
(

n

√√
t+1√
t−1

)
est le corps de décomposition

X2n − 2
(
t+1
t−1

)
Xn + 1.

Notons σ ∈ Gal(Ln/C(t)) l'automorphisme tel que σ(x) = ξnx pour ξn. Notons τ pour

l'automorphisme tel que τ(x) = 1
x . Comme les racines de X2n − 2

(
t+1
t−1

)
Xn + 1 sont de la forme

xϵξjn pour ϵ = 1,−1 et j = 0, . . . , n − 1, on voit que tout élément du groupe de Galois est de la
forme τ ϵσj . Comme σn = id, τ2 = id et τστσ = id on a dès lors un morphisme surjectif

D2n → Gal(Ln/C(t))

qui est un isomorphisme par cardinalité.


