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Anneaux et Corps Exercices
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Exercice 1.

Puisque nous considérons des sous-ensembles d’anneaux, les propriétés de compatibilité et de dis-
tributivité sont automatiquement vérifiées. Il s’agit seulement de vérifier si le sous-ensemble est
stable par addition et multiplication, et s’il contient I’élément neutre et le zéro.

1. Les matrices triangulaires supérieures forment un sous-anneau. Les vérifications sont aisées.
2. Ce sous-ensemble ne contient pas la matrice identité.

3. Les matrices diagonales forment un sous-anneau, et les vérifications sont aisées.

4. Cet ensemble (il s’agit de Z[i]) est un sous-anneau. Les vérifications sont aisées.

5. Cet ensemble (il s’agit de Z[v/3]) est un sous-anneau. Les vérifications sont aisées.

6. Ce sous-ensemble ne contient pas l'identité.

7. On vérifie par calculs directs que cet ensemble est un sous-anneau.

Exercice 2.

Notons G multiplicativement, et les éléments de Z[G]| comme des sommes ) . a(g)eg olt a(g) € Z.
Prenons g € G distinct de I'élément neutre € € G. Puisque G est fini et que g n’est pas I’élément
neutre, il existe n > 1 tel que g = €. On a alors :

O=ec—egn = (e —eg)(ect+egtep+- - +em)

. . , , <
et nl ec —egnl e +e5+---+egn-1 nest égal a zéro.

Exercice 3. 1. Si f: Z — 7Z est un homomorphisme, alors

Fn) = (Lt D)= )+ 4 f) =1+t L=n

n fois n fois n fois

donc f = Idyz.

2. Le méme raisonnement qu’au point précédent donne que, s’il existe un homomorphisme,
alors il est donné par Z — Z/nZ,s + [s],. On vérifie sans peine qu’il s’agit bien d’un
homomorphisme.

3. Si f: Z/nZ — Z est un homomorphisme, alors n - f([1]) = f([n]) = f([0]) = 0 d’une part,
et n- f([1]) = n-1 = n d’autre part, ce qui est une contradiction. Donc il n’existe pas
d’homomorphisme Z/nZ — 7.

4. Le méme raisonnement qu’au second point donne que, s’il existe un homomorphisme, alors il
est donné par f: Z/mZ — Z/nZ,[s|m — [s]n. Cependant, cette fonction n’est pas toujours
bien définie. Par exemple, si n = 2 et m = 3, alors on devrait avoir

[0]2 = f([0]3) = f([1]3) + f([1]3) + f([1]3 = [1]2 + [1]2 + [1]2 = [1]2,

ce qui est absurde.



On prétend que f est bien définie si et seulement si n divise m. Il s’agit d’abord d’une
condition nécessaire, puisque

[0)n = f([0]m) = f(m - [1m) = m - f([Um) = m - [1]n = [m]n.
Inversément, supposons que m = nk. Alors f est une fonction bien définie, puisque
f([s +1Im]m) = [s + Im]n = [s + Inkln = [s]n = f([s]m)
et I'on vérifie sans peine que f est bien un homomorphisme d’anneaux.

. Soit f: @ — R un homomorphisme. Puisque f(1) =1,ona0= f(0) = f(1—-1) =1+ f(-1)
et donc f(—1) = —1. Par additivité on obtient que f(n) = n pour tout n € Z. Pour n € Z*
on a

L= (1) = f(n-nY) =n- f(n)

et donc f(n~!') = n~!. Par multiplicativité on obtient f(x) = z pour tout z € Q. Donc f est
I’homomorphisme d’inclusion.

. Soit f: R — R un homomorphisme. Par le point précédent, la restriction f|g est I'inclusion.
Nous allons montrer qu’en fait f = Idg.

Prenons un nombre réel > 0. Alors il existe un nombre réel y tel que y?> = x. Ainsi
f(z) = f(v?®) = f(y)? > 0. En particulier si a > b, alors f(a) — f(b) = f(a —b) > 0. Donc f

préserve I'ordre usuel sur les réels.

Prenons maintenant un nombre réel z, et choisissons deux suites de nombres rationnels (y;)
et (z;) tels que y; < = < z; pour tous 4,7 et lim;y; = « = lim; z;. Par les observations
précédentes, on a

yi = f(yi) < f(z) < f(z) = %

pour tous ¢,j. Les conditions sur les limites nous assurent alors, par un simple argument
d’analyse, que f(z) = =.

. Il n’existe pas d’homomorphisme f: R — Q. En effet, si un tel f existait, alors la composition
f
R—Q<—R

serait un homomorphisme d’anneaux non-surjectif, en particulier distinct de 'identité, ce qui
contredit le point précédent.

. Par la propriété universelle des anneaux polynomiaux, un homomorphisme R[t] — R est
équivalent au choix d’un homomorphisme R — R et d’un élément a € R (qui sera 'image de
t). En vertu de ce qui précede, on obtient que

R -5 Hom(R[],R), a+ [p(t) — p(a)].

. De maniére générale, un morphisme d’anneaux doit envoyer un élément inversible vers un
élément inversible (la preuve en est aisée). Donc si f: R — RJ[t] est un homomorphisme,
tout élement x € R* étant inversible, son image f(z) € R[t] est inversible. Or les polynomes
inversibles sont les constantes non-nulles. Ainsi f se co-restreint & un homomorphisme f: R —
R, qui est nécessairement 'identité par ce qui précéde. Ceci établit que f: R — R[t] est
I’homomorphisme d’inclusion.



Exercice 4.
Par souci de clarté, si G est un groupe fini nous écrirons les éléments de Z[G] sous la forme
3 ec alg)eg, ot alg) € Z.

Soit f: Z[S3] — Z[Z/27Z]) un homomorphisme. Puisque (123)3 est I’élément neutre de S3, on
doit avoir

f(€(123))3 = €o-

On peut écrire f(e(123)) = nep + mey pour certains n,m € Z. Puisque Z/2Z est un groupe
commutatif, son algébre de groupe sur Z est un anneau commutatif. On calcule donc

3

(neg +me1)® = (n® + 3nm?)eg + (m> + 3n’m)e;.

Ainsi m(m2+3n?) =0et n(n?+3m?) = 1. Sim=0alorsn = 1;si m?+3n? = 0 alors m = 0 = n,
ce qui n’est pas possible en vue de la seconde condition. On a donc montré que f(e(123)) = €o-
Faisons le méme raisonemment pour e(;9). Si f(e(12)) = aeo + be1, alors on obtient

eo = (a® 4 b?)eg + 2abe;

et donc (a,b) vaut (0,1),(0,—1),(1,0) ou (—1,0).

Puisque (12) et (123) générent S3, la connaissance de f(e(123)) et de f(e(12)) permet de déter-
miner f entiérement. On voit donc qu’il existe au plus 4 possibilités pour f.

Pour montrer qu’il existe exactement 4 morphismes, on peut montrer & la main avec les formules
qu’envoyer les 2-cycles sur aeg + bey pour (a,b) € {(1,0),(—1,0),(0,1),(0,—1)} et les 3-cycles ainsi
que 1’élément neutre sur ey se prolonge en unique morphisme. Pour démontrer cela on peut passer
par 'argument suivant, qui met en situation ce "prolongement".

On remarque que Z[—] : Grp — Ring si Grp désigne la catégorie des groupes et Ring la
catégorie des anneaux (non nécessairement commutatifs) est adjoint a gauche de (A, +,-) — (A%, ).
Notez également que ’abélianisé de S est Z /27. Deés lors, en utilisant ’adjonction ci-dessus et
I’adjonction abélianisé 4 oubli entre Ab et Grp on obtient

HomRing(Z[SQS]a Z[Z /2 Z]) = HomGrp(S37 Z[Z /2 Z] X)
> Homay(Z /27, Z|Z /2 7))

ce qui conclut car le calcul au-dessus démontre que les seuls éléments a € Z[Z /2 Z]* tel que a® = 1
sont aeg + bey pour (a,b) € {(1,0),(-1,0),(0,1),(0,—1)}.

Exercice 5.
Par souci de clarté, notons ng 'élément 14 +---+ 14 € A.
N———

n fois

1. Puisque a € A génére le groupe additif, tout élément de A peut s’écrire comme une somme
a+ ---+ a. Par distributivité on a

(a+-4a)-(a+-+a)=a>+ - +ai=(a+-+a) (a+ - +a).

~~

n fois m fois nm fois m fois n fois

Donc A est commutatif.
2. 11 découle du calcul précédent que la connaissance de a? détermine la multiplication de A.

3. Puisque a génére A additivement, il existe s > 1 tel que

spara=a+---+a=1
A 4+ A

s fois

et donc s4 est un inverse & gauche de a. Puisque A est commutatif, s4 est aussi un inverse

a droite et ainsi a~ ! = s4.



4. Il existe un t > 1 tel que t4 -a = a®. On a alors

a:a-a‘afl:a2-a*1:tA‘a-a*1:tA-1A.
En particulier 14 génére aussi le groupe additif (A, +). Puisque A est d’ordre n, on a néces-
sairement A ={04,14,24,...,(n—1)4}. Ceci permet de définir

f2Z/nZ — A, rln—ra

car ra + (nk)a = ra. Il est clair qu'’il s’agit un homomorphisme bijectif, donc d’un isomor-
phisme.

Exercice 6.
Notons tout d’abord que P'application de la donnée est un morphisme d’anneau par la propriété
universelle des anneaux de polynomes appliquée & A — A[t] canonique et ’élément t+a. Maintenant
I'inverse est donné par

Alt] = Aft],  p(t) = p(t —a),

ce qui conclut.

Exercice 7.
On utilise la notation suivante (symbole delta de Kronecker) : (5;- =0sii#j etd =1

1. Soient A = (ai;), B = (bij) € M(k). L’addition est donnée par
(aij) + (bij) := (ai; + bij)
et la multiplication par

(aiz) - (bij) = (Z aikbkj>
k=1

La multiplication est bien définie, puisque la condition de finitude assure que la série est en
fait une somme finie. Pour montrer que chaque colonne du produit est & support fini, prenons
un indice j quelconque. Soit N suffisamment grand tel que pour tous les indices ¢ > N on a
b;j = 0. Maintenant si M est suffisamment grand pour que pour tout i > M et tout les j < N
on a a;; = 0, on obtient que si i > M que (A - B)ij = 0. L’associativité, la distributivité et
autres propriétés des axiomes d’anneaux sont facilement. vérifiées, ce sont les méme calculs
que dans le cas fini. La matrice nulle est I’élément neutre additif et la matrice (a;; = (5;) est
I’élément neutre multiplicatif. Donc M (k) est un anneau.

4,7EN

2. Prenons
— _ 5t - _ s+l
A= (aij _6§+1)i,j’ B = (bU —5; )ij,
ce sont des éléments de M (k). Visuellement, on peut se représenter A comme la matrice
identité dont on a décalé la diagonale d’une ligne vers le bas — et B comme la matrice
identité dont on a décalé la diagonale d'une colonne vers la droite.

On vérifie alors que BA = 1,(;) # AB. Cela implique que A n’a pas d’inverse a droite : car
s'il existait B’ tel que AB’ = 1y, alors B = BAB' = B’

Remarque. On peut également remarquer que cet anneau de matrices est isomorphe a I’anneau
des endomorphismes k-linéaires de k®N. Dés lors si on représente les éléments de cet espace comme
des vecteurs & support fini d’éléments de k écrits de gauche a droite la matrice A correspond au
décalage d’un cran vers la droite avec zéro en premiére composante et B au décalage d’un cran vers
la gauche.



Exercice 8. 1. Un anneau A intégre et fini est un corps. En effet, prenons a # 0 et considérons
la fonction
A— A x> ax.

Puisque a # 0 et que A est intégre, cette fonction est injective. Mais A est un ensemble
fini, donc cette fonction est en fait bijective. Ainsi il existe un y € A tel que ay = 1. Le
meéme raisonnement appliqué a la fonction z — za donne un 3’ € A tel que y'a = 1. Ainsi
y=vy'ay =1, et a~' =y. Donc A est un corps.

On peut aussi montrer que si A est un anneau fini sans diviseur de zéro, alors A est nécessaire-
ment un corps (commutatif), mais cela est bien moins facile — il s’agit du (petit) théoréme
de Wedderburn.

2. Un anneau A dans lequel z = 22 pour tout = € A, est commutatif. En effet, prenons a,b € A.
On a alors
a+b=(a+b*=a*+ab+ba+b>=a+b+ab+ba

et ainsi ab = —ba. Or —1 = (—1)? = 1, donc ab = —ba = ba, comme désiré.
Les anneaux qui vérifient cette condition sont appelés algébres booléennes. Elles ont des liens
surprenants avec la topologie et la logique mathématique. Voir dualité de Stone sur|wikipedia
ou sur le n-labl
Exercice 9. 1. Montrons que f(t) = > ;o a;t’ est inversible si et seulement si ag # 0.

C’est une condition nécessaire : si g(t) = > oo bit" est tel que f(t)g(t) = 1, alors agby = 1.
Inversément, supposons ag # 0. Nous allons définir inductivement des coefficients b; tels que
L f(1)- Xy bt € (7).

® by :=agy L

e Supposons by, ..., b,_1 construits. On a

n n—1
L= f(t)- ) bt' =1 = f(t)- > bit' —f(t) - but"
i=0 1=0

e(tn)

et donc la condition 1 — f(¢) - Y bit’ € (") est équivalente a

n—1
E an,ibi = —aobn.
1=0

. _ -1
On prend ainsi b, := —aq 1 Yoty an—ib;.

Posons g(t) := >0, b;t". Par construction, le terme constant du produit f(¢)g(¢) vaut 1. On
prétend qu’en fait f(¢)g(t) = 1. Si ce n’est pas le cas, alors il existe un certain n > 1 tel que
1 — f(t)g(t) € (t"), et on peut prendre un tel n maximal. Mais par construction

L— f(t)g(t) = [1 — - biti] — [f(t) > bmﬂti]
=0 =0

e(tntl) e(tntD

donc 1 — f(t)g(t) € (1), contradiction puisque n est maximal. Ceci prouve que g(t) =

fO~


https://en.wikipedia.org/wiki/Stone_duality
https://ncatlab.org/nlab/show/Stone+duality

Remarquez que méme si f(¢) est un polynome, son inverse f(t)~! sera seulement une série
formelle. Donc Panneau k[t] est trés différent de I’anneau k[[t]]. Cette différence est compa-
rable (dans un sens que nous n’élaborerons pas) a celle qui sépare les fonctions holomorphes
définies sur C, de celles qui ne sont définies que sur un voisinage de 0 € C.

Voici un autre solution, qui s’inspire de la relation

@4¢y§3#21
=0

Etant donné g(t) = Y22, a;t’, on peut étre tenté de remplacer ¢ par g(t) dans la relation
ci-dessus, et en déduire que Y. g(t)" est Uinverse de 1 —g(¢). Puisque n’importe quelle série
formelle peut s’écrire sous la forme 1 — g(¢), on aurait montré I'existence d’inverses — pour
tous les éléments de k[[t]], ce qui est bien sfir absurde. Le probléme est que la somme infinie
Y50 9(t)" nest pas forcément bien définie (par exemple si g(t) = A € k*). En fait, on vérifie
aisément que cette somme infinie n’a de sens que si g(t) n’a pas de terme constant, auquel
cas le terme de degré n de cette série se définit comme le terme de degré n de la somme finie
L glt) + - + gl

Ceci étant dit, soit f(t) une série possédant un terme constant. Si A € k*, alors il est équivalent
de trouver un inverse de f(t) et de trouver un inverse de Af(¢). Donc on peut supposer que
le terme constant de f(¢) vaut 1. Dans ce cas F'(t) := 1 — f(t) n’a pas de terme constant, la
somme infinie Y, F(¢)* peut étre définie, et nous allons vérifier qu’il s’agit bien d’un inverse
de f(t). La vérification est semblable & ce qui a été fait précédemment : le terme constant de
f) 372 F(t)? vaut 1, donc si ce produit ne vaut pas 1 il existe un N > 0 maximal tel que

L—f(t)- ) F@) e ().
=0

Or
ST S i Ny S PO
1—f(t)‘ZF(t) = 1—(1—F(’5))‘ZF(75) +T () Z INTT
- - RO+ Y DO
i=N+1
= F(t)
— F(t)N+1+tN+1f(t) Z t]\£+)1

i=N+1
c (tN+1)

ce qui est une contradiction. Donc f(t)71 = Y00, F(t).

. Montrons d’abord que k((t)) est un corps. Il est facile de vérifier qu’il s’agit d’un anneau
commutatif intégre (avec les opérations évidentes — la multiplication est définie de la méme
maniére que dans k[[t]]), et que k[[t]] est un sous-anneau de k((t)). Prenons 0 # f(t) =
> isn @it € k((t)), ot Uon fait la convention que a,, # 0. Alors t ™" f(t) = >_.oq aitnt’ € k[[t]
est un élément inversible par le premier point, donc il existe g(t) € k[[t]] tel que =" f(t)g(t) =
1. On en déduit que t~"g(t) € k((t)) est I'inverse de f(t). Donc k((t)) est bien un corps.

Montrons maintenant que chaque élément de k((¢)) peut s’écrire comme un ratio d’éléments
de E[[t]]. Considérons a nouveau 0 # f(t) = 3,5, a;it’. Sin >0 alors f(t) € k[[t]. Sin <0,
alors t™" f(t) = h(t) € k[[t]] et ainsi
h(t
s =1

ou le numérateur et le dénominateur appartiennent a k[[t]].
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Exercice 1. (a) 1 ¢ B, therefore B is not a subring of A. On the other hand, B is a bilateral
ideal in A (Definition 1.4.4).

(b) [1] ¢ B, hence B is not a subring of A and, as A is a field, B is neither an ideal in A.

(c) 1 ¢ B, therefore B is not a subring of A. For t € A and > € B we have that t - t* =3 ¢ B,
hence B is not a left ideal in A and moreover, as A is commutative, B is neither a right ideal.

(d) [1] ¢ B, therefore B is not a subring of A. Let f(t) € A and let t?g(t) € B, for some g(t) € A.
Then f(t) - (t2g(t)) = t*(f(t)g(t)) € B and thus B is a left ideal in A. Furthermore, as A is
commutative, B is a bilateral ideal.

(e) BE A.
(f) B¢ A.
(g) [1] ¢ B, therefore B is not a subring of A. Moreover, as B = ([5]), B is a bilateral ideal of A.
(h) B is the set of lower triangular matrices in M, (R), hence it is a subgring of A. If n > 1 then

B is not an ideal of A. if n =1 then B = A and we conclude that B is a bilateral ideal in A.

(i) If n =0 then A = B and thus B is both a subring and a bilateral ideal of A. If n > 0, then
1 ¢ B,hence B is not a subring of A, but, on the other hand, as B = (p"), we have that B is
a bilateral ideal of A.

(j) Iz ¢ B, hence B not a subring. Since

0 00 a b 0 0 00
0 00 c d 0]=10 0 0] ¢B,
100 0 00 a b 0

it follows that B is not a left ideal in A. Similarly, as
a b 0 0 00 0 0 b
c d 0 00 1]=10 0 d]| ¢B,
0 00 0 00 0 00

I

it follows that B is also not a right ideal in

(k) B is a subring of A: we have that I3 € B, (B,+) is a subgroup of M, (R) and B is stable
under matrix multiplication. As B # A and I3 € B, it follows that B is neither a left nor a
right ideal of A.

(1) Is ¢ B, hence B is not a subring of A. We check to see if B is a left ideal in A. For this let
A = (a;j) € A and we have

a a 0 aila + a12b + a3 aiia+ algb +aiz. O
Alb b 0] = | asa+ agb+ as. asia—+ axb+asz. 0] € B.
c ¢ 0 azia + azzb + azze aszia+ azb+azz. 0

Therefore B is a left ideal of A. On the other hand, B is not a right ideal as

1 10 0 00 1 00
2 20 1 00]=(2 0 0]¢B.
330 0 00 3 00



(m)

B isnot asubring of AasId ¢ B. Let a = agId +a;(12)+a2(13)+a3(23)+a4(123)+a5(132) €
A and let b= A[Id+(12) + (13) + (23) + (123) + (132)] € B. Then

a-b:b-a:)\(ao+a1+a2+(l3+a4+a5)ZQEB
gES3

and we deduce that B is a bilateral ideal of A.

Again, B is not a subring of A, as Id ¢ B. Let a = agId +a1(12)+a2(13) +a3(23) +a4(123) +
a5(132) € A and let b = AId —A(12) — A(13) — A(23) + A(123) + A(132) € B. One checks that
a-b=MNap—a; —ay —az+as+as)Id—XAag —a; —ag —as + aq + a5)(12)—
—Map —a; —ag —az +aq + a5)(13) — Mag — a1 — ag — a3 + a4 + a5)(23)+
+ ANag — a1 —ag —az + aq + a5)(123) + Aag — a1 — ag — ag + aq4 + a5)(132)

= > (g,

gESs

where = A ag — a1 — ag — ag + a4 + as) € C. Therefore B is a left ideal of A. Analogously,

one shows that:
b-a= Z (—1)%29) . g,
geSs

where = A ag — a1 — az — ag + a4 + as) € C, and therefore B is a bilateral ideal of A.
Again, B is not a subring of A, as Id ¢ B. Let a = agld +a1(12) + a2(13) + a3(23) +
a4(123) 4+ a5(132) € A and let b = AId +Xe(123) 4+ Ae2(132) + p(12) + pe(23) + pe?(13) € B.
We compute:
a-b=(Aag+ pay + uazag + peas + \e2ay + Aeas) Id +(Aeag + peay + pag + ,u52a3 + Aag+
+ Ae%a5)(123) + (A\e?ag + peay + peag + paz + Aeayg + Aas)(132) + (pao + Aag+
+ Xeas + a3 + peaq + u52a5)(12) + (peag + Aeay + \e2ag + Aag + pelaq + uas)(23)+
+ (uelag 4+ Ae?ay + Aag + Aeas + pay + peas)(13)

Set & = Aag+par+peas+pcaz+Ae?as+Aeas and y = pag+Aa+Aeas+Ae2az+peas+peas.
Then, z,y € C and we see that

a-b=xId+re(123) + 2e%(132) + y(12) + ye(23) + y=2(13) € B

and conclude that B is a left ideal of A.

On the other hand, let a = agId+a;(12) € A and b = A1d +Xe(123) + A\e?(132) + p(12) +
pe(23) + pue?(13) € B. Then:

b-a= (Aag 4 par) Id +e(Xag + pear)(123) 4+ e2(Mag + pea1)(132) + (pag + rar)(12)+
+ e(pag + Aeap)(23) + €2 (pap + Ae?ay)(13) ¢ B.
Hence B is not a right ideal of A.
Once more, B is not a subring of A, as Id ¢ B. One checks that:

(12) - [A(123) + A(132)] = A(23) + A\(13) ¢ B
IA(123) + A(132)] - (12) = A(13) + \(23) ¢ B

Y

A
A

hence B is neither a left, nor a right ideal of A.



Exercice 2. 1. Let A = (a;;) € M,(K) be a matrix which is concentrated in the j* column,
i.e. ars =0 forall s # j. For all 1 <7 < n consider the matrix B, = a,je,; € M, (K). Then
Bye;j € I, where

n n . .
arj, fk=randl=j
(Breij)i = mz:l(arjeri)km(eij)ml = Qr;j mZ:l 0rk0imOji = QrjOrk0j; = {Otjotherwise

n
Lastly, as A = Z(BTeij), we conclude that A € I.

r=1

2. Let S C M, (K) be the subset of matrices which are concentrated in the j** column. Clearly,
S is an additive subgroup of M, (K). Now, let A = (a,s) € M,(K) and let B = (b,s) € S.
As

(A : B)rs = Zn: armbm57
m=1

it follows that (A - B),s = 0 for all s # j, and we deduce that A - B € S. Therefore, S is a
left ideal in M, (K).

3. Let {0} # I be a bilateral ideal in M,,(K). Let A be a non-zero matrix in /. Then A admits
a non-zero coefficient a;;. As I is an ideal and K is a field we have that % I,-A € I and so,

i

we can assume without loss of generality that a;; = 1. Since I is a bilateral ideal, it follows
that for all 1 <7, s <n, the product e,;Aej; € I. We compute

n n n

(eriAejs)kl = Z(eriA)kq(ejs)ql = Z [Z(eri)kpapq] 5jqésl = Z(Srkzéipapjésl
p=1

q=1 g=1 p=1
= 0rij051 = OpiOsi = (€rs)ki

and it follows that e,s € I for all 1 <r, s < n. Lastly, as I is an additive subgroup of M, (K),
we conclude that [ = M, (K).

Exercice 3. (a) Let 0 #x € I and let 0 # y € J. Then zy # 0, as A is integral, and xy € I N J;
(b) Proposition 1.4.6;
(c) Exercice 2;

(d) Proposition 1.4.6.

Pour les points (e) et (f), 'argument suivant s’applique. Soit € K non-nul. Alors Kz = K.
En particulier, il existe y € K tel que yr = 1. Comme Ky = K, il existe z € K tel que
zy = 1. En multipliant par x & droite, on obtient, zyxr = x, et donc z = x. Ainsi y est un
inverse & droite et & gauche de z.

Exercice 4. (a) Example 1.4.9;

(b) Recall the quotient homomorphism £ : A — A/I given by a LN [a] (Proposition 1.4.13). This
induces the surjective ring homomorphism f : My,(A) — M,(A/I) given by (a;;) AN ([asj])-
The kernel of f consists of those matrices in M,,(A) whose coefficients are zero in A/I, hence
ker(f) = My (I). We conclude that M, (A)/M,(I) = M,(A/I).



(c) Let ¢ : Z — Z[VT]/I, where ¢(n) = [n], for all n € Z. Clearly, ¢ is a ring homomorphism
and ker(p) = {n € Z | n € I}. Let n € ker(yp). Then there exist a,b € Z such that
n = (5+2v7)(a+bv7). We make the computations and arrive at 2n = 3b. As ged(2,3) = 1,
we have n € (3), hence ker(p) C (3). Conversely, let n € (3). Then n = 3m, for some m € Z,
and p(n) = ¢(3)p(m) = 0. We deduce that ker(p) = (3).

The only thing left to prove is that ¢ is surjective. Before we proceed, we remark that
VT(5+2V7) = 14 +5V7 € T and (14 + 5V7) — 2(5 + 2V7) = 4+ /7 € I. Now, let
[a + b\V/T] € Z[V/7]/I. We have that

[a + V7] = [a] + [V7] = [a] + [4b] = ¢(a) + ©(—4b) = p(a — 4b).

We use the isomorphism theorem to conclude that Z/(3) = Z[v/7]/(5 4+ 2v/7).

Exercice 5.
We recall that, by convention, the degree of the zero polynomial is —oo and that —oo +n = —o0

m
for all positive integers n. We can therefore assume that f,g # 0. We write f(t) = Zaiti,
i=0

where a,, # 0, hence deg(f) = m, and ¢(t) = ijtj, where b, # 0, hence deg(g) = n. Now

§=0
fg(t) = Z Z aibjti“ and so deg(fg) = n+ m, as the leading coefficient of fg is ay,b, # 0, by
i=0 j=0

integrity of A.

Exercice 6.
Consider the evaluation homomorphism ev. : Z[t] — Z[e]. Clearly ev. is surjective and so, the only
thing we need to show is that (t2 +t + 1) = ker(ev,).

Let f(t) € (2 +t+1). Then f(t) = (t2 +t + 1)g(t) for some g(t) € Z[t] and we have

eve( (1)) = eva(£ 4t + 1) eva(g(t)) = 0.

Therefore (t2 +t + 1) C ker(eve).
Conversely, let f(t) € ker(ev.). We will show that f(t) € (t> 4+t + 1) by recurrence on deg(f).
If deg(f) = 0, then f(t) = ap and as ev.(f) = 0, it follows that f = 0.
If deg(f) = 1, then f(t) = ait + ag, for some ay,ag € Z, and, as ev.(f(t)) = 0, it follows that
a1 = ag = 0, hence f(t) =0.

We can now assume that deg(f) > 2. We write f(t) = Zaiti, where deg(f) = m and a; € Z.
=0
Then, as f(t) € ker(ev.) and a,,t™ 2(t> +t + 1) € ker(ev.), it follows that:
m—3 '
g(t) = f(t) — amt™ (P +t+1) = Y ait’ + (am-2 — am)t™? + (@m-1 — am)t™" € ker(ev).
i=0

Now deg(g(t)) < m — 1 and so, by recurrence, we have g(t) € (t2 + ¢+ 1). Consequently, f(t) =
gt) + amt™ 22+t +1) € (2 +t+ 1) and so ker(ev.) = (2 + ¢+ 1).
We now apply the isomorphism theorem to conclude that Z[t]/(t* +t + 1) = Z[e].

Exercice 7.
On dit qu'un élément r € R est nilpotent si r™ = 0 pour un n > 1.



On commence par démontrer le fait suivant valide dans n’importe quel anneau commutatif A :
si A € AX et n € A nilpotent, alors A — n est inversible. En effet,

%Z n/\)".
=0

Ainsi, on voit que tout polynome f(t) = > it a;t" € R[t] avec coefficient constant inversible
et tout les autres coefficients nilpotents est inversible. En effet, dans ce cas on peut écrire f(t) =
f(t) — ag, avec f(t) un polynéme dont tout les coefficients sont nilpotents. Comme il suit de la
formule du binéme qu’une somme d’éléments nilpotents est un élément nilpotent, on voit que f (t)
est nilpotent.

Dans ce qui suit, on montre qu’un polynéme inversible est forcément de cette forme.

Soit f(t) € (R[t])*. Notons encore f(t) = > i*,a;t". On remarque tout d’abord avec evy :
R[t] = R que ap € R*. On montre dans ce qui suit que a; est nilpotent pour 7 > 0. Pour montrer
cela, on suppose sans perte de geénéralité que ap = 1. On note alors f(t) = 1 —tg(t), et on cherche
a démontrer que tout les coefficients du polynéme g(¢) sont nilpotents.

On considére I'inclusion R[t] C R][t]]. L’inverse de f(t) = 1—tg(t) dans R][t]] est (voir remarque

aprés la preuve)
o
> tig(®)’
i=0

En effet,
(1~ talt (Etz ) = >~ gt = Yoot =
=0 =1

Comme on suppose que f(t) est inversible dans R[t], cet élément est en fait un polynome, i.e.
il existe I € N tel que pour tout @ > I on a t'(g(t)) = 0. Comme t n’est pas un diviseur de
zéro, on a méme (g(t))’ = 0 pour tout 4 > I. En particulier, on voit que le coefficient dominant
ap, est nilpotent. Maintenant, on peut appliquer ’argument qu’on vient d’appliquer pour f(¢) au
polynéme h(t) = f(t) — amt™ pour conclure que a,,—1 est nilpotent. Par récurence descendante
avec le méme procédé, on conclut que tout les coefficients de g(¢) sont nilpotents.
Remarque. Pour faire sens de toute somme infinie avec g(¢) un polynéme

> tig(®)’
i=0

on laisse le soin au lecteur de vérifier que l'application naturelle R[[t]] = hm R[t]/(t™) est un
isomorphisme, ou le terme & droite est, -
lim R[#)/(t") = {(fa(t) € [] BRI/ (") | fas1(t) = fu(t) mod ¢ ¥n>1} C [ RI/(")
n>1 n>1 n>1

Ainsi, pour définir un élément de R[[t]] il suffit de le faire de maniére compatible dans R[t]/(t")
pour n > 1. En particulier la collection indicée par n > 1,

n—1
t)=>Y t(g(t))’ modt"
=0

défini bel et bien un élément de R|[[t]].

Exercice 8. 1. On a v(1) = v(12) = 2v(1), donc v(1) = 0. Comme 0 = v(1) = v(-12) =

2v(—1), on a également v(—1) = 0.

2. La stabilité de R, par I'addition et la multiplication est assurée par a) et b).



. Immeédiat car si k € K, soit k ou k~! est dans R,.
. Comme v(1) = v(—1) = 0, cela suit par b) par récurrence.
. Suit par la décomposition en nombres premiers et a).

. Notons d’abord que pour tout n € Z et ¢ € Q. Alors v(nq) > v(q) par a) et le point 4. Si p et
q deux premiers distincts avec v(p), v(q) non-nuls, alors comme par Bézout il existe a,b € Z
tel que ap +bg =1,

0=v(1) =v(ap+ bq) > min(v(ab),v(bq)) > min(v(p),v(q)) > 0
une contradiction.

. Cela suit par a) si on note ¢ = v(p) et le point précédent.

. Si ¢ est un premier distinct de p, alors ¢~ € Ry,.
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Exercice 1. 1. Wrong, for example, one can see that for the inclusion Z — @Q, the image of the
ideal (2) C Z is not an ideal in Q.

2. Correct according to Lemma 1.4.30.

Exercice 2.

Assume that &, (1) is principal, meaning that & *(I) = (f) for some f € Z[t]. Since I is by
definition an additive group, it contains 0, and therefore p € & YI) = Z[t] - f. It follows that
p=g- f for some g € Z[t]. We recall that by Exercise 5 on Sheet 2, deg(f - g) = deg(f) + deg(g).
It follows that

0 = deg(p) = deg(f - g) = deg(f) + deg(g).

Therefore, deg(f) = 0 and deg(g) = 0 and so f,g € Z. But then p = ¢ - f. Since p is prime, it
follows that either f = +1 or f = +p. If f = +1, then I = F,[t]. If f = £p, then I = {0}. Those
are contradictions to the assumption and therefore, £ L(I) is not principal.

Exercice 3. 1. Identité de Bézout. Let d be the biggest common divisor of m and n. Define
the set E := {em + dn!c, d € Z}. Let e = am + bn be the smallest non-zero positive integer
in E. Dividing n by e with rest, we get n = ge 4+ r for some ¢ € Z,0 < r < e. Then

r=n—qge=n—gqglam+bn) =(—ga)m+ (1 —gb)n € E.
S—— S——
7/ €Z
But since r < e, it follows that » = 0, and therefore e’n. Similarly, we show that e|m. It

follows that e is a common divisor of m and n. It remains to show that e is indeed the biggest
common divisor. Since d}m and d|n, it holds that d‘(am + bn) = e, and hence e = d.

2. We have

m)(n) = (mn) by Remarque 1.4.28.

(m)

(m) 4+ (n) = (m,n) by Remarque 1.4.28. According to Bézout, this is equal to (d).

(m) N (n) = (ppme{m,n}). The inclusion D holds due the definition, which states that
(m) N (n) contains elements that are simultaneously in (m) and (n), which means that
they are simultaneously multiples of (m) and of (n). For the other inclusion, let k be an
element contained in (m) N (n). That means that k is a multiple of both (m) and (n).
Let p be the least common multiple of m and n. As in the first part of this exercise, we
can divide k by p with rest, from which it follows that k is a multiple of p, and therefore

k € (ppmc{m,n}).

Exercice 4.
Let 14 : Z — A be the unique ring homomorphism with source Z. By definition, car(A) = n, where

ker(ta) = (n).



1. Consider the composition tp: Z —2 A i) B. Since the kernel of the first homomorphism
is contained in the kernel of the composition, it holds that (n) = ker(t4) C ker(tg) =: (m),
with m being car(B). Therefore, m!n, and so car(B)| car(A).

In general, car(B) # car(A), as one can see when considering the reductions modulo 2,
f:Z/67 — 7)2L.
2. If f is injective, then its kernel is trivial, meaning that ker(v4) = ker(f o t4) = ker(vp).

3. In order to show that F' is a ring homomorphism, we show that Va,b € A,

o« F(l)=17 =1,
o F(ab) = (ab)P = aPb? = F(a)F(b),
e lastly, F(a+b) = (a+ b)P = aP 4+ bP. This holds due to the fact that A is commutative,

and the fact that the binomial coefficients that would appear for expressions of the form
a't’, 1,7 #0,1,j # p are all divisible by p, and hence they are zero in A.

4. Denote by ¢ the unique homomorphism g : Z — Z[i]/(i — 2). The characteristic of Z[i]/(i — 2)
is k € Z, where (k) = ker(g). The kernel is ker(g) = {n € Z|3a,b € Z s.t n = (a +ib)(i — 2)}.
Let n € Z be contained in the kernel. Then, with a,b € Z,

n=(a+1ib)(i—2)=(—2a—0b) +i(a— 2b).

It follows that n = —5b, and so n € (5). Conversely, for m € (5), we have m = 5« for some
a € Z and g(m) = g(5a) = g(5)g(«) = 0. This shows that ker(g) = (5).

Exercice 5.
Let A =7Z/250Z.

1. The zero divisors are the divisors of 250 and their multiples, stictly bigger than 1. The divisors
of 250 (1 excluded) are 2,5, 10,25, 50,125 and 250.

e For the divisor 2, we get 124 multiples, up to the last multiple 248.

e For the divisor 5, we get 49 multiples, up to the last multiple 245. However, as half of
these multiples are even, they have already been counted as multiples of 2. We get 25
new zero divisors.

e The remaining divisors 10,25, 50 and 125 are multiples of 5 and have therefore already
been counted into those zero divisors.

Summing up, we get 124 + 25 = 149 zero divisors.

The remaining 100 elements are all invertible. Such an element x € A is prime to 250, meaning
that « and 250 don’t have any common divisors other than 1. With Bézout’s identity there
are two a,b € Z such that 1 = ax + b - 250. With this, ax = 1 mod 250.

2. By the correspondence described in Propositon 1.4.36, the ideals of A = Z /2507 correspond
to ideals of Z which contain (250). Ideals of Z are principal, of the form (n). With (250) C
(n) we get that n‘250 and so n = 1,2,5,10,25,50,125 and 250. Additionally, if the ideal
in A contains 50, then the ideals in Z need to contain the preimage of the class [50]. In
particular, they need to contain 50. Hence n is reduced to 1,2,5,10,25,50. The ideals in A
are A, ([2]), ([5]), ([10]), ([25]) and ([50]).



Exercice 6.

Soit A le sous-anneau de M3(Z) des matrices de la forme (g Z) ol a,b,c € Z. Montrer que le

sous-ensemble K des matrices pour lesquelles 5 | a et 11 | b est un idéal bilatére et construire un
isomorphisme (en deux temps) A/K — Z/5 x Z/11.

One verifies easily that the subset K is an additive subgroup, and that the product of a matrix
in A and a matrix in K is a matrix in K, with multiplication in both directions. Therefore, K is a
two-sided ideal.

To construct the isomorphism, we define the ideal I as

(ke

Again, verifying that this is an ideal is easy. Since I C K, we may apply the Proposition 1.4.39
(Quotient en deuzx temps). Let £ : A — A/I. Then,

A/K = (A/D)/§(K).

w-{(; )

Furthermore, we note that A/I can be described as classes of matrices with representatives of

the form <

We have that
a,be;Z,5\a,11]b}.

g 2) with a,b € Z. This is isomorphic to Z x Z via the obvious isomorphism

A/l — ZX1Z

]

With ¢, £(K) is sent to (5) x (11), and therefore, (A/1)/&(K) = (Z x Z)/((5) x (11)) = Z/(5) x
Z/(11).

Exercice 7. 1. We use Proposition 1.2.2. applied to the identity on Cly]. The proposition then
states that there exists a unique ring homomorphism evg : Cly]lz] — C[y] s.t. idcp) =
¢ o evy, where ¢ denotes the inclusion ¢ : Cly] — Cly][z]. evy acts by sending a polynomial
p(z,y) € Cly|[z] = Clx,y] to p(0,y) € Cly]. One easily verifies that evy is surjective, as the
identity on C[y] is surjective. The kernel of evg consists of all polynomials p(z,y) € Clx,y]
for which p(0,y) = 0. These are exactly those polynomials that are multiples of x, and hence
ker(evg) = (z). By the isomorphism theorem it follows that Cly] = C[z,y]/(x).

2. As above, congider the two evaluations

Cloy] > Cly _ Cley) = Cla]

eV = s eV =
0T pla,y) = p(0,y) OV p(x,y) = pla,0)

It holds that ker(evg,) = (y). Using the universal property of products, Proposition 1.4.45,
we get a unique homomorphism

Clz,y] —  Clz] x Cly]
= (p(2,0),p(0,y))

The kernel of ¢ is equal to ker(evy ;) Nker(evy,) = () N (y) = (zy).



3. We note that for a polynomial p(z,y) € C[z,y| the constant term of evg ,(p) and of evg y(p) is
the same. This suggests that the image of ¢ is as stated. To show that every such element is in
the image of ¢, we let p(z) € Clz] and ¢(y) € Cly]. Consider the pair (a + zp(x),a+yq(y)) €
Clz] x C[y] with a € C. Then

¢(a+xp(x) +yq(y)) = (a + zp(x), a + yq(y)).

Therefore, the pair (a + zp,(z), a + ypy(y)) is contained in the image of ¢. We conclude with
the isomorphism theorem.

Exercice 8. 1. By the definition of a valuation we have that v,(¢~!) = 0 too, because v,(q) +
vp(q~ 1) = vp(1) = 0. Therefore ¢~! € R and q is invertible.

2. The zero ideal is trivially an ideal of R. Now, take a non-zero ideal I, and let n be the
smallest valuation that appears among the elements of I. Then there is an element of the
form y = p™q, where ¢ is a unit. Take now any = € I non-zero. Then v,(z/y) > 0, again by
the properties of valuations and by the minimality of n, hence xz/y € R, and hence I = (y)

3. Consider the composition ¢ : Z — R — R/(p"™). Where the first map is the inclusion and the
second one is the quotient map. Then we can apply the isomorphism theorem to Z, because

a) ¢ is surjective because let a/b € R (with a,b € Z and p 1 b). Then we can write
ep™ + db = 1 for some c,d € Z. Hence [d|[b] = [1] € R/(p"). Hence, for every [ab~!] in
R/(p") we have [a][b~"] = [a][b~"][b][d] = [a][d] = [ad] = ¢(ad).

b) The kernel of ¢ is generated by p" as an ideal of Z, because if z is in the kernel, that
means that z = (a/b)p™ € R, where a and b are as in the previous point. That is,
bx = ap™. Now, using that p { b we obtain that p" divides = € Z.

4. From the previous points we know all the non-trivial ideals of R, are of the form (p") for
some n € N, and we know that their quotient is isomorphic to Z/(p"). If R, and R, were
isomorphic for two different prime numbers p and ¢, there would be isomorphism between
their quotients. This is impossible because Z/p™Z and Z/q"Z are not isomorphic since their
size is different (p™ and ¢" respectively). Moreover, R, is not isomorphic to Z. Indeed, if
we take ¢ a prime number different from p, then Z/qZ is a quotient of size ¢, and R, has no
quotients of such size.
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Exercice 1. 1. (0) C Z est premier car Z est intégre (Proposition 1.5.2), non maximal car

0) ¢ (2).

(t) C Z][t] est premier car le quotient Z est intégre, non maximal car (t) C (¢,2) # Z[t].
3. (t) C R[t] est premier et maximal car le quotient est un corps.

(101) C ZJt] est premier. En effet, considérons ’homomorphisme

¢: Z[t) — (Z/101Z)[t Za,tl — Z ailioit’.

Il est clair que f(t) = >, a;t’ € ker¢ si et seulement si [a;]101 = 0 pour chaque 4, donc si et
seulement si 101 divise chaque coefficient, donc si et seulement 101 divise f(t). Cela prouve
que ker{ = (101). Pour conclure, il suffit de montrer que (Z/101Z)[t] est un anneau intégre.
Puisque 101 est un nombre premier, Z/1017Z est un anneau intégre. De maniére générale, si
A est un anneau intégre alors A[t] est aussi intégre (la preuve est un bon exercice), ce qui
conclut.

5. (42) C Z[t] n’est pas premier car 6 -7 = 42, donc non maximal.

6. (t> —2) C Z[t] est premier. En effet, considérons ’homomorphisme d’évaluation
ev 5: Z[t] — R, t— V2.

On montre comme dans 'Exemple 1.4.18 que kerev 5 = (t? — 2). Comme Z[t]/(t* — 2) est
isomorphe & un sous-anneau de R, c’est un anneau intégre, et donc (2 — 2) est premier.
Ce n’est pas un ideal maximal, puisque (2 —2) C (#2 — 2, 3) # Z[t]. Alternativement, on peut
vérifier que imev, 5 = Z[v/2] n'est pas un corps (par exemple 3 n’a pas d’inverse).
7. (1> —2) C R[t] n’est pas premier car t? — 2 = (t — /2)(t + v/2) dans R][t].
(t +5,10) C Z[t] n’est pas premier car 10 = 2 - 5.
9. (t+5,11) C Z[t] est maximal (donc premier) car le quotient est le corps Z/117Z.
10. (#2 + 1,2) C Z[t] n’est pas premier car (t +1)2 =2+ 1+ 2t € (2 +1,2).
Exercice 2. 1. Le premier systéme n’a pas de solutions. En effet, si x = 7 + 12k, alors x =
1+ 3- (24 4k), ce qui contredit x = 2 (mod 3).
Le second systéme admet une infinité de solutions. En effet, si * = 8 4+ 12k, alors x =

2+ 3- (24 4k). Donc le systéme est équivalent a x = 8 (mod 12), qui admet une infinité de
solutions.

2. Pour voir que Z/36Z % Z/3Z x Z/127Z on peut par exemple utiliser le fait que le deuxiéme
anneau n’est pas cyclique en tant que groupe abélien : tout élément est d’ordre un diviseur
de 12.

Exercice 3. 1. Prenons x € f~1(I). Alors f(x) € I et, par définition de I, on peut écrire

n
= Z Bib;, pour certains §; € B.
i=1

Puisque f est surjective, on peut choisir des «; € A tels que f(a;) = ;. Posons

n
= E ;C;.
=1



Par construction f(z) = f(2'), et donc = — 2’ € ker f. Ainsi il existe des v; € A tels que

m
Tr — ac' = E YiQ;
i=1

et cette égalité se réarrange en
m n
x = E Vit + E ;i € (@1, .., Am,Cl,. .-, Cn).
i=1 i=1

Comme z est arbitraire, cela montre que f~1(I) C (ay,...,am,c1,...,cs). L'inclusion inverse
est immeédiate, puisque

flai), f(ej) € I Vi, j.
On a donc démontré 1’égalité désirée.

2. I’Exemple 1.4.10.a montre que kerevy, = (y — b) et kerev, = (z — a). Puisque ker{ =
evb_l(ker evy) (I'égalité est facile a vérifier), par le point précédent on obtient que ker{ =
(r —a,y —b).

Puisque £(A) = X pour tout A € k, on voit que & est surjective. Par le premier théoréme
d’isomorphisme, on obtient k = k[x,y]/ker £. Par la Proposition 1.5.5, on obtient que ker ¢
est un idéal maximal.

Exercice 4.
Nota bene : la discussion des deux derniers points de cet exercice pourra étre grandement simplifiée
une fois & disposition les propriétés des polyndmes irréductibles.

1. Par 'Exemple 1.4.18 on a Z[i] = Z[t]/(t* + 1). Par la Proposition 1.4.41 on a

Z[t]/(p)
(% + [1]p) - (Z[t)/(p))

Z[t]/ (2 + 1)
p- (Z[t]/(t* + 1))

Z[il/ (p) = = Z[t)/ (p. t* + 1) = = Fplt)/ (8 + [1]p)-

2. Dans le cas ot p = 5, on remarque que [2]5 et [3]5 sont des racines de t> + [1]5 € F5[t]. En
particulier on a la factorisation

4+ [1]s = (t — [2]5) - (t — [3]5)- (1)

Remarquez que (t—[2]5) — (t—[3]5) = [1]p. Donc les idéaux générés respectivement par t —[2]5
et par ¢ —[3]5 sont premiers entre eux. Le théoréme des restes chinois (Théoréme 1.4.50) donne

alors
F5t] ~ Fslt] F5t]
(N —Bs -2 G Bh @)

L’évaluation en t = [2]5 induit un ismorphisme

et d’une maniére similaire on a
Fs[t]

(t—1[3]5)

On prétend pour finir que (¢t — [2]5) N (t — [3]5) = (#* + [1]5). L’inclusion D est claire, en vue
de la factorisation (1). Inversément, prenons un élément f(t) appartenant a l'intersection des
deux idéaux. On peut écrire

Fs



pour certains g(t), h(t) € Fs[t]. Considérons I'image de f(t) par ’évaluation evyy en t = [2].
On a
evig (f(1) = eviy ((t = [2)g(t)) = 0
d’une part, et
evi (f(t)) = evg ((t — B)A(t)) = —eviy(h(t))
d’autre part. Ainsi evy(h(t)) = 0, et puisque kereviy = (¢ — [2]) on en déduit que h(t) =
(t — [2])j(t) pour un certain j(t) € F5[t]. On peut ainsi écrire

F(&) = (¢ = B~ [2Di(8) = (¢ + [1])5(1)

ce qui montre que f(t) € (2 + [1]).
En combinant tout cela dans (2), on obtient

Fs|t]

@ e

ce qui implique que Z[i]/(5) = F5 x F5 en vue du point précédent.

. On prétend qu'dl existe un isomorphisme Z[i]/(p) = Fp, x F), si et seulement si —1 posséde

deux racines carrées distinctes modulo p.
Supposons d’abord que 'on puisse écrire a? = —1], = b? dans F, avec a # b. Puisque

kerev, = (t — a), on peut écrire
2+ [y = (t—a)(t =)
et on prétend que ' = b. En effet,

F,20=0"+[1]=ev,(t? +[1]) = (b —a)(b— 1)
~——
£0
et comme F,, est intégre, on obtient que b — b = 0. De plus, (t —a) = (t —b) =b—a # 0
est un élément inversible de IF,,, donc les idéaux (¢ —a) et (¢t — b) sont premiers entre eux. En
appliquant le théoréme des restes chinois comme dans la partie précédente, on trouve que

Fpt]
(t—a)N(t—b)

=T, x Fp.

Puisque b — a # 0 est inversible dans I, on obtient comme dans le point précédent que
(t—a)n(t—>) = (2 +[1]) (ot l'on avait utilisé que [2]5 — [3]5 = —[1]5 est inversible dans
F5), et donc que
. F,[t]
Z > PO o~F, xF,.
[Z]/(p) (t2 + [1]) p X p

Remarquons si a € F est une racine carrée de [—1],, alors —a en est aussi une. Or si p # 2
on a a # —a. Il nous reste ainsi a traiter deux cas : celui de p = 2, et celui ou [—1], n’a pas
de racine carrée dans IF,,.

Commencons avec le cas p = 2. Alors t2 + [1]o = (t + [1]2)?, et ainsi il existe un élément
0 # z de Fa[t]/(t? + [1]) tel que 22 = 0 (on dit que cet anneau quotient est non-réduit) : on
peut prendre z comme étant I'image de ¢ + [1]3 dans le quotient. Or il n’existe pas d’élément
non-nul dans Fy x [y satisfaisant une telle propriété, donc il ne peut y avoir d’isomorphisme
entre ces deux anneaux.

Pour finir, supposons qu'il n'existe pas de racine carrée de —1 dans IF,. On prétend que
Fp[t]/(t* + [1]) est un anneau intégre. Fixons une clottire algébrique F,, de F,,, et choisissons
une racine carrée i € F, de —1. On consideére ’homomorphisme d’évaluation

evi: Fylt] — Fp, tri.



~

Puisque F,[t]/ kerev; & imev; C F, et que F, est intégre, on voit que F,[t]/ kerev; est un
anneau intégre. On prétend que kerev; = (#2 + [1],). L’argument est le similaire & celui de
’Exemple 1.4.18. Pour finir, on prétend que Fp[t]/(#? + [1]) n’est pas isomorphe a F, x F,, :
en effet, cet anneau produit n’est pas intégre.

Exercice 5.

Soit J < A x B un idéal. Noter que (0,1)J < {0} x B et (1,0)J < A x {0} sont des idéaux de

A x B inclus dans J. De plus, noter que J = (1,0)J x (0,1)J. On conclut donc que tout idéal du

produit est de la forme I4 X Ig pour [4 et Ip des idéaux quelconques de A et B respectivement.
En ce qui est des idéaux premiers, on voit en utilisant qu’un idéal est premier si et seulement

si le quotient par cet idéal est intégre que les idéaux premiers sont de la forme

paxB Axpp

pour p4 et pp des idéaux premiers de A et B respectivement.

Exercice 6.
On suppose d’abord que R est intégre. Gréace a la formule du degré, on voit que R[t|* = R*, donc
les inversibles de R en degré zéro.

On traite maintenant le cas général. Soit p in idéal premier de R. Soit f(¢) un élément inversible.
L’image dans (R/p)[t] est encore inversible. Ainsi, par le cas intégre, on voit que les coefficients
en degré strictement positif de f(¢) sont dans 'idéal p et le terme constant n’est pas dans l'idéal.
Ainsi, comme p est quelconque, *

R[)* C tnil(R)[t] + R*.

L’inclusion inverse est également vérifiée. En effet, si f(¢) € tnil(R)[t] + R*, alors f(t) — ap est
nilpotent car c’est une somme d’éléments nilpotents. On conclut par le fait suivant valide dans
n’importe quel anneau commutatif A : si A € A* et n € A nilpotent, alors A\ — n est inversible. En
effet,
1 = .
=1 S
i=0

> =

Exercice 7.
To see that D(A) is a sub-ring of Endg (A) as

[potp,ma] = @ o[, ma] + [, ma] 0 Y

a double induction on n and m if ¢ € D<y,(A) and ¢ € D<;,(A) concludes.

1. Before we show that the Lie bracket is K-bilinear, we first mention the K-vector space struc-
ture of D(K|xz]). As K C K|z], the scalar multiplication in K[z] is just defined by the usual
multiplication in K[z]. Elements of D(K|z]|) are K-linear transformations K[z] — K|[x].
Therefore, scalar multiplication can be defined for ¢ € D([K[z]]) and A € K as

(Ad)(p(2)) = Ad(p(z)) € K[z]

for p(z) € K[z]. This is equivalent to A¢p = m o ¢.
We note that since ¢ is by definition K-linear, it holds that for all p(x) € KJ[z], and for all
e K
¢(Ap(x)) = A¢(p(z))
and therefore ¢ o my = my o ¢.

Now onto the exercise, let F, F}, F», G € D(K[z]) and A € K. To show K-bilinearity we show
that

*. Un élément dans l'intersection de tout les premiers est nilpotent. Un élément dans aucun idéal maximal est
inversible. Notons également que pour voir que le terme constant de f(¢) est inversible on peut évaluer en zéro.



— [F1 + F»,G] = [F1, G| + [F», G]. By the distributive property of a ring, we have

[Fl—f—Fg,G]:(F1+F2)OG—GO(F1+F2):FloG—l-FQOG—GOFl—GOFQ
=FloG—-GoF,+Fy,oG—GoF,=[F,G|+ [F,G]

— [AF,G] = A[F, G]. Due to the remark above, for all A € K, we have G o my = m) o G.
Additionally, we use the associativity of the composition to get

AF,G] = [myo F,G]=(myoF)oG—Go(myoF)=myo(FoG)—(Gomy)oF
=myo(FoG)—(myoG)oF =myo(FoG—GoF)=myol[FG]=\F,G]

The same properties for the second components are analogous.
2. Let p(z) = > a;z’ € K[z]. We exhibit how [a%, mm] acts on this polynomial and compare
it to the action of my. Using K-linearity of a%, we get

[;x,mx} (p(x)) = [;ﬂj,mx] (i ai:ri>

n o . n )
= Zai% (z"1) — Zai ezt g
=0 i=1
n n
:Zai~(i+1)xi—2ai'i-xi
i=0 i=1
n n n ]
:Zai-i-xi—i—Zaixi—Zai-i-xl
i=1 i=0 i=1
" .
= i’ =p(x) = m(p(x)).
i=0

3. Let p(z) = Y1y a;z® € K[z]. We exhibit how [%, m,;| acts on this polynomial and compare



it to the action of j - m_¢-1). Using K-linearity of %, we get

[aim} (b() = [aim} (Zm)

=0

Fle

1
S
/\/@/\
3
o )
N——
|
3
2.
TN
NE
&
S
£
SN—
N~

i=0 =0
0 (< - (i-1)
:8—:6 Za,x ]>—mmj (Zaz (Y
=0 =1
9, . i
= ai%(afﬂ)_zai izl g
=0 =1
=D ai-(i+ )2 =Y gy i- Y
i=0 =1
_ Z 0 i x(lﬂ 1) 4 Z a; - j x(iJr] 1) Z @ - - m(iJrjfl)
i1 i=0 =1
=3 201 Za 2 = j x(j’l)p(x) =17 mx@q)(p(ar))
1=0

4. By definition, a differential operator ¢ is of degree 1 if [¢, m,] is a differential operator of
degree 0 for all p € K[z]|. This means that [¢, m,] = m, for some q € K[z].

Let p(z) = Y1y ax’ € K[z]. Note that my,y = Y1 agm,:. Then, using the K-bilinearity
of the Lie brackets and the third part of the exercise, we get

) d & - )
|:8$,mp:| = lax,;almxz] :gai [M,mxz}

n
= § :ai L Mgiot =N apiai=t T Mol g (1)
i=1

We conclude with the fact that E}:& aji1-(j+1)-27 € K[z]. Furthermore, Z?:_& ajr1-(j+
1) -2l = Z(p(x)).
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Exercice 1. (a) Notons tout d’abord qu'un élément de x € k[t]/t? s’écrit uniquement sous la
forme x = XA + ut avec A\, u € k. Notons aussi qu'un élément est inversible si et seulement si
A # 0. En effet si A = 0, on a que x est nilpotent, et si A # 0, on a 271 = A7H(1 — pA~1¢).
Autrement dit on a (t) = (k[t]/t?) \ (k[t]/t?)*. Comme tout idéal propre est inclus dans
(k[t]/t3)\ (k[t]/t?)* = (t) (sinon Iidéal contient un inversible et n’est pas propre), on obtient
par le théoréme de correspondance que les idéaux propres de k[t]/t? sont en bijection avec les
idéaux J de k[t] tel que

(t*) C J C (t).

Mais comme (¢)/(t?) est un k-espace vectoriel de dimension 1, on voit que J = (t?) ou J = (¢).

On conclut que les idéaux sont : I'idéal impropre, Iidéal nul et I'unique idéal maximal (¢).

(b) Let I C M C A be two ideal in A. By Proposition 1.4.41 we have that:
Afar= D [ran)

Now M is a maximal ideal in A if and only if A/M is a field. Now, by the above, A/M is
a field if and only if (A/I) / 7(M) is a field, hence if and only if (M) is a maximal ideal in
Al

Exercice 2. (a) Let f(t),g(t) € A[t]. We have that

ev(f +9)(a) = (f +9)(a) = fa) + g(a) = ev(f)(a) +ev(g)(a) = (ev(f) +ev(g))(a)
for all @ € A. Therefore ev(f + g) = ev(f) + ev(g).
Similarly,

ev(fg)(a) = (fg)(a) = f(a)g(a) = ev(f)(a) ev(g)(a) = (ev(f)ev(g))(a)
for all a € A. Therefore ev(fg) = ev(f)ev(g).

Lastly, we have that ev(1)(a) = 1 for all a € A and thus ev(1) = 1, where the constant
polynomial function 1 is the unity of F(A).

(b) Let A =7Z/pZ and let f(t) =tP —t € A[t]. Then ev(f)(a) = f(a) =a? —a=0foralla € A
and thus f € ker(ev).

(c) Let A =R and let f(¢) € ker(ev). Then, for all a € R we have that ev(f)(a) = f(a) = 0,
which implies that all elements of R are roots of f. As f can have at most deg(f) real roots,
we conclude that f = 0.

Exercice 3. 1. Soit f(x,y) € k[z,y]/(2%y?) nilpotent. On écrit f(x,y) = zyhi(x,y) + xha(x) +
yha(y) + A, avec X € k. Comme zy est nilpotent, il suit que xha(x) + yha(y) + A est nilpotent.
Comme l'image dans le quotient par (z) et (y) dans k[y] et k[z] respectivement est encore
nilpotente et que ces anneaux sont intégres, il suit que ha(x) = ha(y) = A = 0. Dés lors on
conclut que nil(A) = (zy).

On peut aussi utiliser que les éléments nilpotents sont lintersection de tous les premiers
(Théoréme 2.5.17). Comme (x) et (y) sont premiers, on a nil(A) C (z)N(y) = (zy). Comme
Uautre inclusion est également vérifie, on a égalité.



2. Notons que (z) N (y) = (zy). En effet si f(z,y) € (z) N (y) alors f(x,y) = zhi(z,y) =
yho(z,y). Comme (x) est un idéal premier, et que y & (z) il suit que ha(z,y) € (x), et donc
que f(z,y) € (ry). Dés lors nil(A) = (z) N (y). Cette intersection est bien minimale, en effet
sinon nil(A) serait premier. Mais z,y ¢ nil(A) et zy € nil(A).

3. Sip est un premier qui contient 2y, alors x ou y appartient & p comme cet idéal est premier.
Ainsi (z) ou (y) est inclus dans p. Comme ces idéaux sont premiers on conclut que ces
premiers sont minimaux. En effet, en utilisant le raisonnement précédent si p C (z), alors
soit (y) C p C (x) ou (z)p C (x). Dans le deuxiéme cas, on a p = (z). Notez que le premier
cas est impossible car y ¢ (x). Ainsi (z) est minimal. Un raisonnement symétrique pour y
s’applique.

On avait d’abord pensé a cette preuwve trop alambiquée.

On avait donné en indication,

Pour ce dernier point, on fait remarquer le fait suivant. Si A commutatif et Iy,... 1. des
idéauz et p un idéal premier, alors si N;_I; C p, alors il existe j tel que I; C p.

Pour prouver cela, notons que si par I'absurde iy € Ij \ p pour tout les k, alors iy ---i, € p.
Mais comme p est premier, on obtient une contradiction. En particulier si

nil(A) = p1 Nps

comme dans le cas de I'exercice, en utilisant que nil(A) contient tout les premiers, si p est
minimal, on a p; Nps C p et donc en utilisant le lemme et la minimalité p; = p pour ¢ = 1 ou
i = 2. Ainsi on conclut dans le cas de I'exercice que I'ensemble des premiers minimaux (qui
est non-vide, voir remarque apres la preuve) est contenu dans {(x),(y)}. Or comme nil(A)
n’est pas premier, il ne peut exister un unique premier minimal, et donc les idéaux premiers
minimaux sont (z) et (y).

Remarque. On note que tout idéal premier contient un premier minimal par le lemme de
Zorn. (On vérifie qu’une intersection emboitée de premiers est encore un idéal premier.)

Exercice 4. (a) We first note that F),[Z/pZ] is an Fj-algebra: F,[Z/pZ] is a commutative ring
and ¢ : F, — Fp[Z/pZ] given by ¢(a) = a - [0], for a € F), is a ring homomorphism with the
property that ¢(F,) C F,[Z/pZ]. In particular, we have that F,[Z/pZ] is an [, vector space
with basis {[0],[g], [29],---,[(p — 1)g]}, where [g] is a fixed generator of Z/pZ.

We now consider the evaluation homomorphism
evig : Fplz] — FplZ/pZ]

evig(z) =1-[g].
We have that (2P — 1) C ker(eviy)), as evig(2? —1) = 1-[pg] — 1-[0] = 0. On the other hand,
as I is a field, by Corollary 2.2.5, it follows that F,[z] is a principal ring and thus there exists
f € Fp[x] such that ker(evyy) = (f). Therefore, as 27 — 1 € (f), it follows that 2¥ — 1= f-g
for some g € Fp[z] and by Lemma 2.1.1 we deduce that deg(f) < p.

P
We write f(x) = Z a;x’, where a; € F,. Then:
=0
m p—1
evig (f(z)) = Zai -lig] = (a0 +ap) - [0] + Zai -[igl =0
i=0 i=1
and, as [0], [g], [29], ..., [(p—1)g] are linearly independent, we have ap = —a, and a; = 0 for all

1 <i < p—1. Wededuce that f(z) = ap(2?—1), where a,, € Fp, and thus ker(ev(y)) = (zF—1).
In conclusion, we have shown that Fplz]/(zP — 1) = F,[Z/pZ)].



(b)

Recall that the characteristic is the natural number n such that nZ is the kernel of the
unique ring homomorphism from Z to F,[Z/pZ]. Note the unique ring homomorphism from
Z to F,[Z/pZ] sends = € Z to [z], € F,[Z/pZ]. Its kernel is pZ therefore F,[Z/pZ] has
characteristic p.

Let a = Z a; “ be an idempotent element of F,[Z/pZ]. Then

a2:Zaiaj (i+J)g Zak [kg] = a

i3

and, as [0],[g],...,[(p — 1)g] are linearly independent, it follows that aj = Z a;a; for all
itj=k

0 <k <p-—1. In particular, we have ag = ag and so ag =0 or ag = 1. As a1 = apaq + a1ag

we see that in both cases we obtain a; = 0. Recursively, we deduce that

Ak+1 = E a;a; = apQk+1 + ( E aiaj) + ap0k+1 = ApAk+1 + Ak+100
i+j=k+1 i+j=k+1
1<i,5<k

and therefore ap11 = 0. Hence, if ap = 0, it follows that a = 0 - [0], while, if ap = 1, it follows
that a = 1 - [0]. We have shown that the only idempotents of F,,[Z/pZ] are 0 - [0] and 1 - [0].
By Proposition 2.4.55 and Remark 2.4.56 we conclude that F)[Z/pZ] cannot be decomposed
as a product of non-zero rings.

On propose également une résolution qui évite tout calcul.
On montre le petit lemme suivant qui peut étre utile.

Lemme. Soit A un anneau commutatif tel que A\ A est un idéal. Alors c’est I'unique idéal
maximal de A.

Preuve. Notons que tout idéal propre est contenu dans A\ A*. En effet si un élément
inversible appartient a un idéal, celui-ci est forcément égal & A. Dés lors si m est maximal
(en particulier propre), on am C A\ A*. Mais comme on a supposé que A\ A* est un idéal,
on a par maximalité m = A\ A*.

Maintenant, notons qu'un produit d’anneaux A X B non-nuls contient toujours au-moins deux

idéaux maximaux : si m4 et mp sont des idéaux maximaux de A et B respectivement, alors
my X B et A X mp sont maximaux.

Maintenant, dans 'anneau

A =Tp[t]/(t = 1),

notons que ¢ — 1 est nilpotent. Si f(t) € F,[t], on peut écrire

f) = F(1) + (¢t = 1)g(t)

par division euclidienne. Ainsi I'image dans le quotient f(t) peut s’écrire f(t) = f(1) —
avec n € A nilpotent. Dés lors, on voit que* m est inversible si et seulement si f(1) # 0
ou autrement dit f(#) & (f — 1) = ker(evy). Ainsi on a A\ A* = (f — 1) qui est un idéal, et
donc 'unique idéal maximal. Dés lors, il suit que A ne peut étre un produit de deux anneaux
non-nuls.

*si A € A* et n € A nilpotent, alors A — n est inversible. En effet,

on %Z (n/A\)".
i=0



Exercice 5. 1. We define a + bv/5 = a — b\/5 and note that for all z € Z[v/5], the norm N(z) =
2Z. The fact that N is a multiplicative function then follows from the fact that Vy, z € Z[V/5],
it holds that gz = 5 z. With this, we get that N(yz) = yzyz = y2y z = yyzzZ = N(y)N(2).
Furthermore, if z € Z[\/5] is invertible, then N(z) = +1 is necessary. If we denote its inverse
by 271, then N(2)N(z7!) = N(1) = 1, and therefore, N(z) = £1. On the other hand, if
N(z) = +1 for some z € Z[v/5], then £1 = N(z) = 2Z and hence +7 is the inverse of z.

2. We note that N(9 4 4v5) = 92 — 5-42 = 1, and so by the first point, 9 + 41/5 is invertible.
Furthermore, by the multiplicative property of the norm, the norm of (9+4+/5)" is 1 as well,
for n € N. This means that we have created infinitely many invertible elements, and (Z[v/5])*
is infinite.

3. We first show that no elements of norm 2 exist. For this, we note that N(a+ \/51)) = a? —5b%,
which is equal to a? modulo 5, a square. But all squares in Z/5Z are either 0,1 or 4, as one
checks by taking the square of all elements in Z/5Z.

Now let z € Z[/5] be of norm 4, and we assume that z = v - w for v,w € Z[V/5]. Then
4= N(z) = N(v)N(w). But as there are no elements of norm 2, we have that either N(v) =
+1, N(w) = 4 or N(v) = £4, N(w) = %1. In either cases one of the two elements is of norm
41, which means that that element is invertible. Hence z is irreducible.

4. We have

e 4=2-2and N(2) =4, hence by the previous part, 2 is irreducible

e 4 = (1++5)(—=1++/5) and N(1 +5) = —4, N(~1 + /5) = —4, hence both 1 +
\/5, —1+ /5 are irreducible.

e 4=(3++5)(3—+5)and N(3+/5) =4, N(3 —+/5) = 4, hence both 3+ /5,3 —/5
are irreducible.
5. As we see from the previous point, 2-2 = 4 = (3 + v/5)(3 — /5), from which it follows that
2-2¢ (3++/5). But as 2 ¢ (3 ++/5), the ideal (3 +/5) is not prime.
We remark (all these notions will be defined later in the course) that irreducible does not
imply prime in a ring that is not factorial or principal.
Exercice 6. 1. Soit 2 = a + bivd € A avec a® + b*d < d + 1. Donc
a4+ (B* —1)d < 1.

On voit dés lors que |b| < 1. On distingue deux cas. Tout d’abord traitons le cas ot b = £1.
Alors on a nécessairement a = 0 ou a = £1, c’est & dire

r=+ivVd z=+(1—iVd) z==+(1+iVd).
Traitons maintenant le cas o b = 0. On alors z = a € Z avec la condition que |a| < /1 +d.

2. On montre d’abord que iv/d est irréductible. On a N(ivd) = d. Ainsi si z | iv/d avec z ni
inversible ni associé, il faut que 1 < N(z) < d. Selon la liste établie au point 1, on a alors
x = a € Z avec |a| < v/d. Mais comme on a supposé que z | iv/d, il existe e, f € Z tel que

ale + fivd) = iVd.

Donc e =0 et fa =1 ce qui contredit N(a) > 1.

On montre maintenant que 1 + iv/d est irréductible. Comme la conjugaison complexe est
un automorphisme d’anneau qui envoie 1 + iv/d sur 1 — iv/d cela montrera que 1 — iv/d est
également irréductible. Comme N (1 +ivd) = 14 d, si x| 14 4v/d avec z ni irréductible ni
associé a 1 +14v/d, alors 1 < N(z) < 14 d. Comme il faut aussi que N(z) | 1+ d, on voit que
N(z) < d. Ainsi un argument similaire & celui au-dessus conclut.



3. Supposons que 1 + d n’est pas premier dans Z. Alors on a
1+d=1+iVd)(1—iVd) =p

pour pi,...,p, des premiers avec p; < d comme on a supposé d + 1 pas premier. Comine
1 4 iv/d est irréductible, si 1 + d admet une factorisation unigue en produit d’irréductibles
(en supposant par 'absurde que A est factoriel) cela impliquerait que 1 4+ ivd | p; pour un
indice j. Mais dés lors il existerait e, f € Z avec

(1+ivVd)(e + fivd) =

Donce+ f=0et pj =e—df = (1+d)e. Comme p; < d, c’est une contradiction. Ainsi
on conclut que 1 + d n’admet pas de factorisation unique en produit d’irréductibles. En
particulier, on conclut que dans ce cas A n’est pas factoriel.

4. Supposons maintenant g := 1 + d premier dans Z. On a
1+d=(1+iVd)(1—iVd),

qui est une décomposition en irréductibles. On veut montrer que si x | 14d et est ni inversible
ni associé a 1+ d, alors x est associé & 14 iv/d ou 1 —iv/d. Comme N(1+d) = (1+d)? = ¢,
un tel diviseur z satisfait forcément N(x) = ¢ = 1+ d. Selon la liste au-dessus on a deés lors

=+(1—iVd) z==%(1+1iVd).
= ¢, mais cela n’est pas possible comme ¢ est premier.

Exercice 7. (a) Let Z ag-g € Z(A) and let h € G. Then 1-h € A is invertible with inverse
geG
(1-h)~1 =1-h"! and we have

(1-h) Zag g)(1-h)” Zag hgh™! = Zah,lglh-glzzag,.g

geG geG JeG gJ €eq

ou x € 7 avec z2

It follows that aj-14, = a4 for all h € G and thus the map g — a4 is constant over equivalence
classes.

Conversely, assume that g — a4 is constant over equivalence classes. Let 1-h € A. Then:

1hZagglh Zahlghg Zagr-g

geG J eq g eq
and thus
1) ag-9) =0 ag-g)(1-h), forall h e G.
geG geqG

Therefore

O an-hD ag-9)=> an-h> ag-g=>_ an(d_agh=0_ag-9)(>_an-h)

heG geG heG geG heG geG geG heG
and consequently Z ag-g € Z(A).

geG

(b) Fix A = C[S3]. By (a) we have that ej,es,e3 € Z(A). We will now show that they are
idempotents. First,

d= (> n

geSs heSs
[ZngZ (12)+ > g(13) + > g(23) + > g(123) + > g( 132]
gESs3 gESS3 gES3 gESS3 gES3 gE€S3

**29_61

gESs



In the above we have used the fact that for all € S3, the map S3 — S3 sending a — ax is
bijective. Hence Z gxr = Z g for all z € S3. Secondly,

gESs g€Ss
Z sen(9)g)( D sgn(h)h)
9633 heSs
=36 [ > sen(g)g — > sen(g)g(12) — > sen(g)g(13) — > sen(g)g(23)+
gESs gES3 gESs gESs
+ > sen(g)g(123) + ) sgn(yg (132)]
geSs geS3
= % [ > sgn(g)g— Y sen(g(12))g — Y sgn(g(13))g — Y sgn(g(23))g+
geSs gESs gES3 gESs
+ ) sen(g(132))g+ Y sgn(g(123))g]
gESs gES3
= - Z sgn(g
9653

In the above we have used the fact that sgn(o7) = sgn(o)sgn(r) for all o, 7 € Ss.
Lastly, we will show that fi and fo are idempotents and that f1fo = fofi = 0. We have that:

1
f= 5 [Id +€(123) + £2(132) + (123) + £2(132) + Id +£*(132) + Id +€(123)]

1
=3 [Id +£(123) + 52(132)} = fi.
Analogously one shows that f7 = f». Keeping in mind that ¢ + & = —1, we have

fifa = % [Id +e(123) + £2(132) + £2(123) + (132) + e Id +¢(132) + 2 1d +(123)}

5(
Analogously one shows that faf; = 0. Therefore €3 = (f1 + f2)? = f2 + fifo+ fofr + f3 =
fi+ fa=es.

We have shown that ej,es,es are central idempotents. We will now show that they are
pairwise orthogonal. We have

eres = [Z - 39012~ 3 9(13) - Y g23) + Y9123 + 3 g<132>] ~o.

geG geG geG geG geG geG

~Lo4e + &%) [Id+(123) - (132)} =0.

Analogously one shows that eze; = 0. We note that eg = (2Id —(123) — (132)). Then

6163—[29 > g(123) 29(132)]:0

geG geG geG
and
1
eges = 8 Z sgn(g Z sgn(g)g(123) Z sgn(g)g(132) }
geG geG geG
[ Z segn(g)g — Z sgn(h(132))h — Z sgn(h(123)) ]
geG heG heG

I
e



Now ey + ez = £[Id +(123) + (132)] is a central idempotent in A, as (e1 + e2)? = e + ere2 +
ege1 + e% = e1 + ey. Furthermore, one checks that (e; + ez2)es = 0 and e + e + eg = Id.
Thus, by Proposition 1.4.55, we have that A = A(e; + e3) x Aes.

Similarly, e; and e are central orthogonal idempotents in A(e; + e2) and, as e; + ey is the
identity in A(e1+e2), we once more apply Proposition 1.4.55 to obtain A(e;+e2) & Aeq x Aes.
We have shown that:

A A€1 X A€2 X Aeg.

Let 2 € Aey. Then x = yeq, where y = ag Id +a1(12)+a2(13)+a3(23)+a4(123)+a5(132) € A.
We compute

r=a0y g+a Yy g(12)+az Y g(13)+az Y _ g(23) +as Y _ g(123) +as »_ g(132)

geG geG geG geG geG geG
= (a0+a1+a2+a3+a4+a5)29
geG

5
= (Z a;)eq.

=0

Therefore if x € Ae; then x = cgeq, for some ¢, € C. Analogously, one shows that if
x € Aeg then x = czeg, for some ¢, € C. (In this case, computations will show that
Ce =00 — a1 — G2 — a3 + a4 + as.)

For i = 1,2 consider the map ¢ : Ae; — C given by ¢(x) = ¢,. One checks that ¢ is a ring
isomorphism and concludes that Ae; = C, for i =1, 2.

Let x € Aes. Then x = yes, where y = ag Id +a1(12)+a2(13)+a3(23)+a4(123)+a5(132) € A.
We compute
yf1 = (a0 + ase + ase?) fi + (a1 + aze + aze?)(12) f1

and
yfo = (ao + ase + ase?) f2 + (a1 + aze + aze?)(12) fo

to determine that

z = (ag + ase + ase®) fi + (a1 + aze + aze®)(12) f1 + (ap + ase + aze?) f2 + (a1 + aze + a2e?)(12) f

=x1f1+ x2(12)f1 + $3(12)f2 + 4.f2,

where z1,x9, 23,24 € C.

Define the map ¢ : Aes — M3(C) by ¢(z) = (il i3> Clearly ¢ is a bijective map,
2 T4

ol +y) = ¢(x) + p(y) for all z,y € Aes and p(e3) = Io. What remains to show is that

o(zy) = o(x)p(y) for all z,y € Aes.

We first remark that

(12)f1 = 5[12) + £(28) + 2(13)] = £2(12)

and
1

f1(12) = 2[(12) +(13) + £%(23)] = (12) fo.

Now, keeping in mind that ff = fi, f§ = fo, fifo = fofi = 0, (12)f1 = f2(12) and

w



f1(12) = (12) f2, we have

zy = (v1f1 + 22(12) fr + 23(12) f2 + zafo) (1 f1 + v2(12) f1 + y3(12) f2 + ya f2)
=y ff + 2y (12) f1 fr + 23y1(12) fofi + wava fo i + 2192 f1(12) f1 + 2y2(12) f1(12) f1+
+ 23y2(12) f2(12) f1 + 2ay2 f2(12) f1 + 21y3f1(12) f2 + 22y3(12) f1(12) f2 + 23y3(12) f2(12) fo+
+ 24y3.f2(12) f2 + z1yafifo + 22y4(12) f1fo + 23y4(12) fo fo + Tayaf3
= z1y1f1 + 22y1(12) f1 + 3y2 f1 + 24y2(12) f1 + 21y3(12) f2 + 2293 f2 + 23y4(12) f2 + Tayafo
= (z1y1 + 23y2) f1 + (T201 + 24y2)(12) f1 + (21y3 + 23Y4)(12) f2 + (2293 + T4y4) fo.

T1Y1 +T3Y2 T1Ys + T3Y4 r1 T3 Y1 Y3
Thus o(zy) = = . = p(x . We con-
wlzy) <£C2y1 + Zay2 T2ys3 + 964y4> <:L“2 964) (yz y4> P@)ey)

clude that ¢ is a ring isomorphism and thus Aes = My(C).
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Exercice 1. 1. We first do this division in C. There, we obtain that

(5+5i))  (5+5i)(-4+2) 3 1
(4+2) @A12i(—4+2) 2 2"

By either rounding up or down both the real and imaginary part, we find the closest elements
in Z[i] to be the quotients 1,2,1 + 7,2 + 4. The division by these with rest are

e 5+5i)=1-(4+2i)+ (14 3i)

e (5+5i)=2-(4+2i)+ (-3+1)

e (5+5i)=(1+1) (4+2i)+(3—1)

e (5+5i)=(2+41) (4+2i)+ (—1—3i)

Remark that we need to take the closest elements in Z[i] to % + %z € C as otherwise the norm
of the rest would exceed the norm of 44 2¢, which is a contradiction. In all of the above cases,
this is satisfied. This also shows that the quotent and rest of the euclidean division are not
unique.

2. We have

e 2=(1+4+14)(1—14) and since 1 +14,1 — i ¢ (Z[:])* it follows that 2 is not irreducible.
On note que en tant qu’idéaur (2) = (1 +1)2.

e Assume that 3 = z -y, with z,y € Z[i]. Then by Proposition 3.4.8, it follows that both
N(z) and N(y) divide N(3) = 9. This is possible if N(z), N(y) € {1,3,9}. If N(x) =1,
then x is a unit. If N(x) =9, then N(y) = 1 and y is a unit. If N(z) = 3, with z = a+1ib
for a,b € Z, then N(x) = a® + b?, but for natural numbers a and b this is impossible.
So N(z) # 3, and the only way to write 3 as a product of two elements z,y in Z[i] is if
either of them is a unit, which means that 3 is irreducible.

e 5=(2+14)(2—1) is not irreducible, as both factors are not units.

e 2i = (1+1)? is not irreducible, as 1+ i is not a unit.

e Since N(2 — 3i) = 13 is irreducible in Z, it follows by Proposition 3.4.8 that 2 — 3i is
irreducible in Z[i].
Remarque. Comme Z[i] est euclidien, donc principal, donc factoriel, un élément est

irréductible si et seulement si idéal associé est premier. Ainsi pour a + bi € Z[i] le
quotient

Zt)/(t* + 1,a + bt)
est intégre si et seulement si a + bi est irréductible.

3. We note that Z[i] is Euclidean by Example 3.2.7, from which it follows by Proposition 3.3.3
that Z[i] is principal. The Proposition 3.4.13 then states that since 3 is irreducible in Z][i],
the ideal (3) is maximal in Z[i]. It follows that Z[i]/(3) is a field.

Comme

Z[i)/(3) = F3t](¢* + 1)

c’est un 3 espace vectoriel de dimension 2, donc de cardinalité 9.



4. Le cas p = 2 étant clair, on suppose que p > 2 pour la suite. Notons que dans un anneau Eu-
clidien, un élément est irréductible si et seulement si I'idéal associé est maximal (Proposition
3.6.3).

(a) On montre que (a) == (b). Si p = a? + b?, alors p = (a + bi)(a — bi), un produit de
deux éléments non-invesibles. Ainsi (p) n’est pas premier. Dés lors comme

ZIi]/(p) = Fp[t]/(£* + 1),

on a que (t? + 1) n’est pas premier dans Fp[t] et le polynome ¢2 + 1 a donc une racine.
Cela signifie donc qu’il existe un élément d’ordre 4 dans F7. Ainsi 4 | p — 1.

(b) On montre que (b) = (a). Si 4| p—1, cela implique qu’il existe un élément d’ordre
4 dans FY = Z/(p — 1)Z. Ainsi t* + 1 a une racine dans F,[t] et donc p nest pas
irréductible dans Z[i]. Cela signifie qu’il existe un élément a + bi € Z[i] avec a + bi | p
tel que 1 < N(a+ bi) = a? + b* < p?> = N(p) et N(a+ bi) | N(p). Ainsi on conclut que
a®+ b =p.

Exercice 2. 1. On one hand, we have | a + bw ]2 (a+ bw)(a + bw) = a® + ab(w + ®) + b*wa.
On the other hand, we see that both w = ¢’ and its complex conjugate w = e —*%" are roots
of the polynomial 23 — 1 = 0. Since 2% — 1 = (2 — 1)(2%2 + z + 1), both w and @ are roots of
the polynomial (22 + 2z + 1) and therefore (22 +2z+1) = (z —w)(z — @) = 22 — (W + @)z + W,
from which it follows by comparing coefficients that w + @ = —1 and ww = 1. Therefore,
| a+bw [*>=a? — ab+b? = N(a + bw).

2. La norme au carré étant toujours positive, la formule définissant N montre que cette norme
prend des valeurs entiéres. Pour montrer qu’il s’agit d’une fonction euclidienne on procéde
comme pour les entiers de Gauss. Soit a+bw un entier d’Eisenstein et (a+bw) 'idéal principal
correspondant. Cet idéal est un réseau dans Z[w]. Voici une illustration tirée d Wikipedia de
Zlw):

La maille fondamentale de ce réseau est un losange de coté 1 dont les sommets sont par
exemples 0,1,w et 1 + w, ce dernier étant aussi de norme 1 — 14+ 1 = 1. Ainsi la petite
diagonale est de longueur 1 et la grande est de longueur v/3 = /N(1 — w).

L’idéal (a + bw) est donc obtenu a partir du réseau ci-dessus par une dilatation d’'un facteur
VN (a + bw) et rotation d’angle 'argument de a + bw. Pour nos considérations il suffira de
considérer la taille d’un losange de ce réseau homothétique, choisissons le losange de sommets
0,a+ bw,w(a+ bw) et (14 w)(a+ bw) (que 'on pourra dessiner sur lillustration précédente
pour 3 + 2w par exemple.) La petite diagonale est de longueur | a + bw | et la grande de
longueur v/3- | a+bw |. Par conséquent le cercle dont le centre est le milieu du losange (point
d’intersection des diagonales) et dont le rayon vaut v/3/2- | a + bw | contient toute la maille.



Ceci démontre que tout point de Z[w] se trouve a une distance d’au plus v/3/2- | a +bw | d'un
point de ce réseau (a + bw).

Autrement dit, pour tout entier d’Eisenstein ¢ + dw, il existe un entier ¢ = gy + qrw tel que
r = c+dw — q(a+ bw) est de norme plus petite ou égale a 3/4- N(a + bw) < N(a+ bw). On
choisira alors ¢ pour quotient et » comme reste de la division.

3. Let z € Z|w] be invertible, with inverse element denoted by z~!. Then by the multiplicative
properties of the norm, we have that 1 = N(1) = N(z) - N(z7!), and therefore, N(z) € N
needs to be equal to 1. This is obtained for the elements z = £1, +w, (14w). One checks that
these are indeed units: +1 is clearly a unit, and by the first point, we have that w+w = —1.
From this, it follows with w? = @ that w(l + w) = w + w? = w + @ = —1. Hence the inverse
of +w is F(1 + w).

—2411v20
Exercice 3. 1. We calculate the complex roots of the polynomial 3+2¢t+2t%. They are +

—1+iV5 1+iV5

2 2
T) This means that 3 4 2¢ 4 2¢2 is not irreducible in Q[iv/5], as we can express it as

1+12v5 1—1v5
the product of 2(t + —i_;\[) and (t + 21\[), both of which are not units.

. The roots are elements in Q[iv/5] and we have that 342t +2t% = 2(t+ )(t+

On the other hand, if we try to decompose 3 + 2t + 2t? into a product of two non-invertible
elements in Z[iv/5], then we have two option: we assume that 3 4 2t + 2t2 = f(t)g(t) with
f, g polynomials in Z[i+/5][t]. Now the sum of the degree of f plus the degree of g is equal to
2, which means that either f is of degree 2, and g of degree 0 (or vice versa), or the degree of
both is 1.

If g is of degree 0, then g is in Z[iv/5], and it holds that g times the leading coefficient of f is
equal to 2. But since 2 is irreducible in Z[i1/5], (this can be seen by checking that N(2) = 4,
and verifying that not element in Z[iv/5] exists with norm 2) it follows that either g = £1 or
g = £2. If g = £1, then the decomposition of 3 + 2t 4 2¢? is the decomposition into a unit
multiplied by a non-unit. The other decomposition with ¢ = +2 does not exist, since not all
coefficients of 3 + 2t + 2t? are divisible by 2.

Therefore, our only possibility for a decomposition into a product of two non-invertible el-
ements is if both f and g are of degree 1. Let f(t) = (at + 8),9(t) = (yt + §) with
@,...,8 € Z[iv/5]. Since the leading coefficient of 3 + 2¢ + 2t is 2, which is irreducible
in Z, it follows that o = +2,7 = £1 (or vice versa). We now note that the ring CJt] is
integral by Proposition 3.2.3. Since furthermore, it is principal by Corollary 3.3.5, it holds
that every irreducible element is prime by Proposition 3.4.13. Then by Proposition 3.5.4,
if an element c(t) € C[t] admits a decomposition into irreducible factors, then that decom-
position is unique (up to multiplication by units). This means that if a decomposition of
342t +2t? in Z[iv/5] exists, then it must agree with the decomposition in C[t] we have found
above. So if 3 + 2t + 2t2 = (2t + B)(t + &) is a decomposition in Z[iv/5][t], then it needs to
agree with the decomposition in C[t], which would force the decomposition to be of the form
342+ 262 = (2t 4+ 1+ V5i)(t + =05) or 342t + 22 = (¢t 4+ 5 (2t + 1 — iv/5). But
clearly one of the roots is not a root in Z[iv/5], which is a contradiction. We conclude that in
Z[iv/5], the polynomial can not be written as a product of non-invertible elements, making it
irreducible.

2. Généralisation. We calculate

(a+ ct)(b+ct) = ab+ (cb+ ac)t + *t = cd + (cb + ac)t + *t = c(d + (a + b)t + ct?)



which shows that the roots of d + (a + b)t + ct? are —a/c and —b/c in K. This shows that in
K, we can write the polynomial d + (a + b)t + ct* as the product c(t + 2)(t + g), with both
terms c(t + %) and (¢ + 2), not units. Hence the polynomial is not irreducible in K.

On the other hand, over A, the polynomial is irreducible. This we prove as in the exercise
above. We assume that the polynomial decoposes into a product of two non-invertible poly-
nomials f and g. There are two options. Firstly, we suppose that g is of degree 0, and f
is of degree 2. Then, g multiplied with the leading coefficient of f is equal to ¢. But since
c is irreducible in A, it follows that ¢ = u,u € A* or ¢ = uc,u € A* If ¢ = u, then the
decomposition is the decomposition into a unit and non-unit. The other decomposition, with
g = uc does not exist, since ¢ does not divide at least one coefficient of our polynomial. In
fact, ¢ does not divive d because they are irreducible and not associated.

So we now assume that the degree of f and ¢ is 1. Then, f(t) = at + B,9(t) = vt + 6,
with «, ..., 0 € A. Since the leading coefficient is ¢, which is irreducible in A, it follows that
a =uc,u € A*. The argument above only uses the fact that C is a field to show that if an
element over C[t] admits a decomposition into irreducible factors, then it is unique. Hence we
apply the same propositions to the field K and see that the decomposition of d+(a-+b)t+ct? as
the product c(t+2)(t+2) is unique. From this, it follows that if there exists a decomposition
of the polynomial in A, then it must agree with the decomposition in K, which is of the form
d+ (a+b)t+ct® = (ct+a)(t+2), or d+ (a+b)t + ct®> = (t+ 2)(ct + b). But clearly in both
cases, one of the roots is not a root in A, which is a contradiction. Hence the polynomial is
irreducible in A.

3. By divide —2 +iv/5 by 1+ /5 with rest, and then calculate the norm of the rest. If Z[iv/5]
with the norm N(a + iv/5b) = a? + 5b? was Euclidean, then the norm of the rest would need
to be smaller than the norm of 1 + iy/5, which is 6. We perform the division over C, and

obtain 71%:%5 = %+z%\/5 The closest elements in Z[iv/5] are 0, iv5,1,141v/5. It holds that

240V = (144V5) -0+ (-2 +iV5) = 0+ (=2 +iv/5) with N(=2+iv/5) =9
—2+14v5 = (14+4V5) - iv/5+3 = (=5 +14v/5) + 3 with N(3) =9
—2+4+ivV5=(144V5) -1+ (=3) = (1 +iV5) + (=3) with N(=3) =9

—2+iv5 = (1+iv5) - (1+ivV5) +(2—5) = (—4+i2v/5) +(2—/5) with N(2—+/5) = 9
As the norm of every rest is bigger than 6, we can not find ¢, € Z[iv/5] such that —2+iy/5 =

q(1 +iV/5) 4+ r with N(r) < N(1 +14+/5), which means that Z[iv/5] equipped with N is not
Euclidean.

Note that we can also look at the calculations above in a geometric way. The four elements
0, 1 +1iv5, =5+ iv/5 et —4 + 2i\/5 are the edges of the rectangle of the lattice spanned by
(14 4+/5) that contains —2 + iv/5.

Exercice 4.
La technique de I'exemple 3.7.4.(3) s’applique texto car (en reprenant les notations de I’exemple)

b 1 b 1
I < = & - — < —
Gl o pe(d)l= 5

Ceci implique que

et on conclut comme dans 'exemple.



Exercice 5.
For any field K, we know that by Corollary 3.3.5, K[t] is a principal ideal domain. By Proposition
3.4.13, in a PID, the following are equivalent, for ¢ in the PID:

e ( prime
e ¢ irreducible

e (q) prime

e (¢) maximal.
1. For CJ[t], we know by Example 2.3.7(c) that
f(t) € C[t] irreducible & f(t) = ct +d,c € C\ {0},d € C.

Hence the prime=maximal ideals in C[t] are of the form (ct + d).

For R[t], we know by Example 3.4.7 that the ideal (¢ — d) is prime=maximal for all d € R.
Furtermore, by Example 3.4.7, we know that if f € R[t],deg(f) < 3, then

f(t) € R[t] irreducible & Ve € R: f(c) #0

Let f(t) = at? + bt + ¢ = a (t* + gt + £), with a € R invertible. It suffices therefore to

study f(t) = 2% + bz + ¢. The complex roots of f are =bEVh —dc V2l’2_4c. Both roots are not in R if
b2 —4c < 0. Hence f is irreducible if b — 4c < 0. The ideals (22 + bz + ¢) are prime=maximal
for b? — 4c < 0.

There are no irreducible polynomials of higher degree, since a polynomial in R[t| of degree 3
or higher has at least one root that is contained in R.

2. We consider the evaluation of K[s,t| at t = a, defined as
ev, : K[s,t] = K[s], s s,t+ a.

Similar to Example 1.4.10, we show that ker(ev,) = (¢ — a). With the first isomorphism
theorem (and ev, being surjective), it follows that K|[s,t]/(t — a) = K|[s]. With Proposition
3.2.3, it follows from K being a field, and hence in particular being integral, that Kls| is
integral as well. From Proposition 2.5.2 it follows that (¢t — a) is a prime ideal. On the other
hand, it holds that K[s| is not a field, and therefore, with Proposition 2.5.5 it follows that
(t — a) is not a maximal ideal.

3. Consider the evaluation of C[s,t] at s = t? defined as
evg_y2 : Cls,t] = C[t], s+ t2,t > L.

Again, by the usual argument, ker(ev,_s2) = (s — t2). Tt follows with surjectivity by the first
isomorphism theorem that C[s,¢]/(s — t?) = C[t]. By Corollary 3.3.5, using that C is a field,
it follows that C[t] is a principal ideal domain.

4. We want to apply the Chinese remainder theorem to the ideals (t —a;) in K[t]. We may do so,
since from a; # a; for all ¢, j it follows that (¢ — a;) is prime to (¢ — a;). With the remainder
theorem, we get that

K[E/((t—a))n...0(t—apn) K[/t —a1) x ... x K[t]/(t — an).

First, we remark that (t —a;)N...N(t —ap) = ((t —a1) ... (t — ap)), and we denote
f(t) == ({t—ai)-...- (t —an). Seondly, the K|[t]/(t — a;) are isomorphic to K, using the
evaluation at a;. It follows that

KH/(ft) =2 K x ... x K~ K"



We now take (b1,...,b,) € K". Via the isomorphism above, there exists g(¢) € K[t| modulo
f(t) that corresponds to (by,...,b,) € K™. Since the isomorphism above is constructed using
the evaluations as a;, it follows that g(a;) = b; for all ¢ = 1,...,n. Lastly, since f(t) is of
degree n, we may represent a class (modulo f) by a polynomial of degree strictly smaller than
n. Hence g(t) is of degree at most n — 1.

Exercice 6.

By Example 3.2.7, we have that Z[i] is euclidean. From Proposition 3.3.3 it follows that Z[i] is
principal. This means that every ideal in Z[i] is generated by a single element. So let a € Z[i] such
that (5) € (a) € Z[i]. From Remark 3.4.5 it follows that a | 5 and then with Proposition 3.4.8 it
follows that N(a) | N(5) = 25. The only options for N(a) are 1,5, or 25. But since (a) is not equal
to both (5) and Z[i], it follows that N(a) # 25 and N(a) # 1. Hence N(a) = 5, and we let a = c+id
with ¢,d € Z. In order for N(c+1id) = 5 to hold, we have that either ¢ = +1,d = £2 or vice versa.
The possibilities for a are a = 1+24,1 —2¢,—1+2i,—1—2ianda =2+1¢,2—14,—2+14,—2—1i. But
the elements —1 — 24,1+ 2¢ and —2 + ¢ are all associated to 2 — ¢ and the elements —1 4+ 27,1 — 23
and —2 — i are all associated to 2 + i. We obtain two ideals (a) = (2 — i) and (a) = (2 4 7). Since
the elements 2 — ¢ and 2 + ¢ are not associated, these ideals are distinct.

We now let b € Z[i] such that (2) C (b) € Z[i]. As above, b | 2, from which it follows that
N(b) | N(2) = 4. The options for N(b) are 1,2 and 4, but since (b) is not equal to (2) or Zl[i], it
follows that N(b) = 2. This is satisfied for b of the form 1+4,1 —4,—1 44, —1 — 4. As all of these
elements are associated, the only ideal we obtain is (b) = (1 + 7).

Exercice 7. 1. It holds that

e (S7'A,+) is a subgroup of (Frac(A),+), since 9 € S71A4, as 0 € 4,1 € S. Furthermore,
Ve, g€ S—1A, we have that Tto= % € S71A, since ad + cb € A, and be € S for
b€ S, ce S. Lastly, the additive inverse of 7 € S—1Ais =+, which is contained in S—1A

as well.
e Since 14 € S, it holds that % c S1A.

e Vi, 9 € S~ A we have that i € S~ 'Asinceace A,andbd € Sforbe S,de S.

This means that S™!A is a ring.
2. We show that S:= A\p={a € A|a ¢ p} is closed under multiplication.

e It holds that 1 € S, since if 1 were contained in p, then p would be the whole ring A.

e For a,b € S, it holds that a - b € S, which means that a - b ¢ p. This holds because if
a-b were contained in p, then since p is prime, it would follow that either a € p or b € p,
which is not possible due to the assumption that both a and b are contained in S.

For the ring A = Z, you have seen the localization at a prime ideal in Example 2.1.7.

3. We note that the elements in the ring Z ) are of the form
a a
Lg) = {E € Frac(Z) | be Z\ (2)} = {E €Q|210b}.

We remark that the elements § € Z9) with 2 { a are the units of Z,), since the inverse of ¢
is 3, which is contained in Z) due to the fact that 2 1 a.

We define m C Zy) to be m := {§ € Zy) | a € (2)}. This is an ideal, since for § € m, § € Zy),

it holds that § - 5 = 5 € m, since a € (2),¢ € Z, and hence ac € (2). Furthermore, it is

clearly an additive group. We show that this ideal is maximal. For this, we assume that there



exists an ideal I such that m C I and m # I. So there must exist an element 3 € I which
is not contained in m. This means that a ¢ (2), and hence 2 { a. But as we remarked above,
then 7 is a unit in Zy), and so [ is equal to Zy).

Other proper ideals in Z ) are of the following form I = {§ € Z(y) | a € (n)} where (n) is an
ideal such that (n) C (2) < 2| n. These are clearly ideals. They are all ideals, since if there
was an ideal that contained an element 7 such that a is not a multiple of 2, then 7 is a unit

and hence the ideal is the whole ring.

Lastly, we remark that the only prime ideal is the maximal ideal. The other ideals of the

form I = {§ € Z) | a € (n)} with (n) C (2) but n # 2 are not prime, since we have that

T € I, and we may write n = 2m for some m € Z, m < n. But then 7 = %% and both % ¢ 1

and 7 ¢ 1.

. It holds that Zy = {$ € Q | b€ {1,2,2%,2%,...}} = {£& € Q | i € N}. Hence for i = 0, we
obtain elements 55 = a € Z, and for ¢ > 0, we obtain elements of the form g with 2 1 a.
The units are elements that have an inverse in Zo. These are the elements of the form 2¢ € Z,

since their inverse is of the form %, which is contained in Zs, and elements of the form %

275
since their inverse is of the form 2{, which is contained in Zs. The other elements are not
units, since seen as elements in Q they have an inverse, which is unique, but their inverse in
not contained in Zy (i.e. the inverse of 5; with 2{a in Q is %, but since 2 1 a, this is not an
element of Zs.)

The irreducible elements are the elements of the form £ and 2° - p with p € Z prime. To

21
prove this, we let 5; € Zz. Then a € Z has a prime decomposition of the following form,
a= p]fl Ca -p,’fr for some prime numbers p; € Z, and r > 1, k; > 1. There are two cases.

e If all the prime numbers p; are odd, then we can write

a 1

k kT
i =g Pl

with % a unit in Zg. It follows that 5 is irreducible if and only if r = 1 and k; = 1.

This means that 5 is of the form 2 with p prime im Z.
e If the prime number 2 appears in the decomposition of a, then we have the following:
We may assume that p; = 2, and that ¢ = 0 (since we assume that the fractions in Zo

are shortened). We can write

a k r

@:a:2kl.p22..._.pf R

with 2%1 a unit in Zo. It follows that a is irreducible if and only if r = 2 and ko = 1.

This means that Z; is of the form 2J . p with p prime in Z.
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Exercice 1. 1. Soit A un anneau euclidien, avec une fonction euclidienne v: A\ {0} — N. Etant
donnés ag € A et 0 # a; € A, on construit une suite d’éléments a; € A de la maniére récursive
suivante :

(a) ag,ay sont donnés ;

(b) pour ¢ > 1, si a; # 0, il existe une expression a;—1 = a;q; + aj+1 ot v(a;+1) < v(a;).

La condition v(a;+1) < v(a;) implique que Valgorithme s’arréte, c’est-a-dire qu’il existe un n
tel que an4+1 = 0. On prétend que

an est un pgde de ag et ag.

Prouvons cette assertion. On prétend d’abord que a,, divise tous les a; (i < n). On procede
par induction descendante sur i. Puisque an+1 = 0, on a apla,—1. Si a, divise a;, ..., an,
alors comme

aj—1 = ;¢ + Aj41
on voit que a,, divise a;_1.

On prétend ensuite que si b divise ag et a1, alors b divise a,. En effet, comme as = ag — a1q1,
on voit que b divise as ; et par induction croissante sur ¢, on voit que b divise tous les a;, en
particulier a,.

La combinaison de ces deux observations montre que a, est un pgdc de ag et de a;.

Faisons la remarque suivante, qui sera utile dans la suite : si une étape de ’algorithme fournit
une unité, c’est-a-dire si a; € A* pour un certain ¢, alors ag et a; sont premiers entre eux.
En effet, puisque a; est une unité, 'étape suivante sera

i1 = (ai—lai_l)ai +0

donc a;41 = 0 et ainsi a; est un pgdc de ag et a;. Par définition cela implique que ag et a;
sont premiers entre eux.
o . . 193 211, . .
2. La division de 27 — 23¢ par 8 + ¢ donne 5 az. On arrondit au nombre entier le plus

proche pour trouver ¢ = 3 — 3i. Attention: on ne peut pas arrondir indifféremment vers le
haut ou vers le bas, sans quoi le reste de la division aura une norme trop grande! On calcule
alors

27 —23i = (3 —3i)(8 + 1) + (—21)

Le reste vaut donc —2¢. On poursuit la recherche du pgdc avec l'algorithme d’Euclide dans
cet anneau euclidien. Comme

8+i=—di>4i=4i- (=2i)+i

Le reste de cette division est ¢, un élément inversible de Z[i]. On conclut que ces deux nombres
sont premiers entre eux.

148 (1+8i)(2+4i)
2 —4i 20 N

et nous retrouvons la possibilité de choisir deux quotients distincts: ¢ = —1 + ¢ ou

3. On calcule 11+ 3¢ = (1 —)(1+8i) +2 —44. La division suivante
-3+ 2




¢ = —2 + 1. Les restes correspondants sont r = —1 + 2i et ' = 1 — 2i respectivement. Dans
les deux cas on constate que 2 — 44 est un multiple de ce reste.

Ainsi le dernier reste non nul dans l'algorithme d’Euclide est —1 + 2i ou 1 — 2i. Chacun est
un pgde (de norme 5). Plus généralement, le pgdc est uniquement défini dans un anneau
factoriel modulo la relation d’étre associé.

4. Pour décomposer les idéaux premiers (11 4 3¢) et (14 8¢) on commence par décomposer leur
normes dans les entiers.

(11 +3i)(11 —3i) =130 =13 -5-2 (1 + 8i)(1 — 8i) = 65 = 13- 5.
Ensuite on décompose dans Z[i]
13=(342i)(3—2i) 5=(1+2)(1—2i) 2=(1+4)1—1i).

Notons que comme ces éléments ont norme premiére, ils sont forcément irréductibles, donc
que leur idéal associé est un idéal premier (par factorialité de 'anneau.) Comme on sait
déja que 1 — 2 divise 1 4 8 on voit avec une division par 1 — 2¢ que c’est 3 — 2¢ qui divise
également 1 4 8i. Ainsi, en termes de multiplication d’idéaux (noter qu’en termes d’idéaux
la décomposition est unique)

(14 8) = (3 — 2)(1 — 2i).
Comme on sait de plus que le pged de 11 4 3¢ et 1 + 8i est 3 — 27 on conclut que
(11 + 3d) = (3 + 20)(1 — 2i)(1 + ).
Exercice 2. 1. Pour z € [0, 1], considérons l'application d’évaluation
evy: C—= R, f fx).

Alors ev, est surjective et kerev, = I,. Donc C/I, = R par le premier théoréme d’isomorphisme,
et ainsi I, est maximal puisque R est un corps.

2. 1l est facile de trouver f,g € C tels que f(z) = 0 = g(y) et f(y) # 0 # g(z) (on peut
construire de telles fonctions linéaires par parties). Donc ni f ni g n’appartient a I, N I, =
{heC|h(x)=0=h(y)}, tandis que fg € I, NI,.

3. Pour chaque x € [0, 1], par hypothése il existe 0 # f, € I tel que f,(x) # 0. Puisque f, est
continue, l'ensemble U, := {y € [0,1] | fz(y) # 0} est ouvert (dans la topologie euclidienne
de [0, 1]) et contient x. Ainsi

0,1 = ] t.

z€[0,1]

Puisque la topologie euclidienne fait de [0, 1] un espace compact, la propriété de Heine—Borel
implique qu’il existe x1,...,z, € [0,1] tels que

n

[0,1) = | U,

=1

Considérons maintenant la fonction continue

n
F:= Zfi
i=1

Alors F' € I et par construction F est strictement positive sur [0,1]. Ainsi 1/F € C, et
1=F-1/Fel. DonclI=C.



4. Soit I C C un idéal maximal. En vertu du point précédent, puisque I # C il existe un I, tel
que I C [,. Puisque I est maximal, on en déduit que I = I,.

Il est également possible de définir une topologie sur l'ensemble {I, | z € [0,1]} (la topologie la
moins fine pour laquelle les sous-ensembles {I,, | f € I} sont ouverts pour des f € C quelconques),
pour laquelle la bijection

[0;1] — {idéaux maximaux de C}, x> I,

devient un homéomorphisme. En d’autres termes, il est possible de reconstruire ’espace topologique
[0, 1] & partir de son anneau de fonctions réelles continues. C’est une forme de dualité entre [0, 1] et
C. Le méme résultat est vrai plus généralement pour les espaces topologiques Hausdorff et compacts
(voir Gelfand-Kolomogorov duality sur le n-lab).

Exercice 3. 1. On vérifie que

fa)=(z—=2)(a* +1) et g(x) = (z—2)(«’+7),

et on prétend que z? + 1 et z3 + 7 sont premiers entre eux. En fait, ceux deux polynomes
sont primitifs et ne se décomposent pas dans Q[z] (car —1 n’as pas de racine carrée dans
Q, et —7 n’a pas de racine cubique dans Q), donc en vertu de la Proposition 3.8.13 ils sont
irréductibles dans Z[z]. Ainsi  — 2 est un pgdc de f et de g.

2. Les décompositions f = (z — 2)(2% + 1) et g = (x — 2)(z + 7) sont encore valables aprés la
réduction modulo p. Apres cette réduction, le pgde n’est plus égal & = — [2], si et seulement
si 22 + [1], et 2® + [7], ne sont plus premiers entre eux dans Fp[z].

Notons qu’on peut écrire (en suivant la méthode de I'algorithme d’Euclide, méme si Z[z] n’est
pas euclidien) :

B4 T=2@+ )+ (—x+7), 22+1=(—2z—-T)(—x+7)+50

et ces égalités sont encore valables modulo p. En fait, comme Fp[z] est un anneau euclidien
dont la fonction euclidienne est donnée par le degré, la réduction modulo p de ces deux égalités
donne les deux premiers pas de l'algorithme d’Euclide pour 23 +[7], et 22+ 1], (voir I'Exercice
1.1). Notons que le second reste est [50],. Si [50], = 0, alors 'algorithme est complet et

pgde(z? + [1]p,x3 +[7p) = —x+[7], et ainsi pgde(f,g) = (z — 2]p)(—z +[7]p).

Si [50], # 0, alors il s’agit d’une unité dans Fp[x], et donc la prochaine étape de I’algorithme
donne un reste nul. Ainsi le pgdc de 2% + [1], et de o3 + [7], est une unité, autrement dit ces
deux polyndmes sont encore premiers entre eux.

Puisque 50 = 2 - 5%, on a [50], = 0 si et seulement si p € {2,5}. Ainsi :

(a) Sip ¢ {2,5}, alors pgdc(f,g) =z — [2],.
(b) Si p = 2, alors pgde(f, g) = z(x + [1]2).
(c) Sip =5, alors pgde(f,g) = (z — [25)(—z + [2]5).

Exercice 4. 1. Montrons d’abord que Q[iv/d] est un corps. Puisque (iv/d)? € Q, on voit que
Q[iVd] = {a + bivVd | a,b € Q}.
Les inverses de ces éléments existent dans C, ol ils sont donnés par

— bivd

(a + bivd)™! \a—i—bZ\fP,

ou |a + bivd)? = a* +b*d € Q.


https://ncatlab.org/nlab/show/Gelfand-Kolmogorov+theorem

Le coté droit appartient aussi a Q[iv/d], on en déduit donc qu'il s’agit d’un corps.
On a I inclusion évidente Z[iv/d] C Q[ivd]. Pour chaque a + biv/d € Q[iv/d], on peut écrire

a v
a+bivd=—+ —iVd
non
ot n est le plus petit dénominateur commun de a et b, et o/, b’ € Z. Ainsi Q[Z\/g] est un corps
de fractions pour Z[iv/d).

2. Montrons que 2® — 2i est irréductible dans Z[i][z]. Puisque le coefficient dominant est une
unité, ce polynome est primitif. En vertu du lemme de Gauss (Proposition 3.8.13) et du
premier point, il est irréductible dans Z[i|[z] si et seulement si il est irréductible dans Q[i][z].
Si 23 — 2i se décompose dans Q[i][z], I'un des facteurs doit étre un polynéme linéaire. Donc
23 — 2i est irréductible dans Q[i][z] si et seulement si il n’a pas de racines dans Q[i].

a+bi

n ?

Supposons que 2i posséde une racine cubique dans Q[i]. On peut écrire cette racine
avecn € Net a,b € Z. On a alors

n32i = (a + bi)?
et en prenant les modules au carré, on obtient
4n% = (a® + )3

C’est une égalité entre deux entiers, on peut donc compter les puissances de 2 dans chaque
membre et s’apercevoir qu’elles n’ont pas le méme reste modulo 3. C’est une contradiction.
Ainsi 2i n’a pas de racine cubique dans Q[z].

On a donc montré que x3 — 2i est irréductible dans Z[iv/d][x].

Remarque : Le critére d’Eisenstein ne peut étre invoqué pour résoudre ’exercice. En effet
la décomposition en facteurs irréductibles de 2¢ est

2i = (141)?,
ou 1+ 7 est irréductible en vertu de la Proposition 3.4.8

Exercice 5. 1. Notons A = k[t?,t3]. Puisque A C k[t], on a

A* C (k[t])* =k~
et Iinclusion inverse étant claire, on obtient AX = k*. On prétend ensuite que t? et t3 sont
irréductibles dans A :

(a) Si on peut écrire t?> = fg dans A, alors cette décomposition est aussi valable dans kl[t].
Donc soit f ou g est une unité dans k[t] et donc dans A, soit deg f = 1 = degg. Or A
ne contient aucun polynéme linéaire en ¢ (observez que A = k + 2 - k[t] + 3 - k[t], et que
les éléments de t2 - k[t] et de t3 - k[t] n’ont pas de termes d’ordre 1). On voit donc que
t? est irréductible dans A.

(b) Pour 3, on procéde de la méme maniére : les seules décompositions non-triviales dans
k[t] sont données par t3 =t-t-t =1t-t2, mais t ¢ A.

On peut ainsi affirmer que

(t?)? = (t*)* dans A,

et que t? et 3 sont des éléments irréductibles non associés de A, puisqu’il n’existe pas de
constante A € k* telle que A\t? = t3. Cela montre que A n’est pas factoriel.

2. On montre de la méme maniére que k[t?,t%] et k[t3,¢7] ne sont pas factoriels.



3. On prétend que k[x, y]/(x?—y?) est isomorphe a k[t?, t3]. En effet, considérons ’homomorphisme
d’évaluation k-linéaire

o: klz,y] — k:[tQ,tg}, T 10, Y 2.

Alors ¢ est surjective et k[x,y]/ ker ¢ = k[t?,+3]. On prétend que ker ¢ = (2%2—y3). L’inclusion
D est claire. Pour montrer l'inclusion inverse, prenons f € ker et faisons 'observation
suivante : il existe un polynéome g € k[z,y] tel que deg,[f — (2% — y3) - g] < 2. En effet,
puisque f — (22 — y3) - g € ker ¢, cela se montre aisément par induction sur deg, pour les
éléments de ker . Si nous montrons que f — (22 — y3) - g € (2% — y?), nous aurons établi
I'inclusion désirée. Nous pouvons donc supposer que deg,, f < 2, et nous allons en fait montrer
que f=0.

Si deg, f = 0, alors f = > . a;y’ et p(f) = >, a;t*. 1l est alors clair que p(f) = 0 si et
seulement si f = 0.

Si deg, f =1, alors on peut écrire
=St + b
i J

et ainsi

<,D(f) _ Z aitQi + Z bjt3+2j-
( J

Les puissances de t dans la premiére somme sont paires, celles dans la seconde sont impaires
: il n’y a donc pas de simplifications possibles entre ces deux sommes, et on en déduit que
©(f) =0 si et seulement si f = 0.

On a donc montré que k[z,y]/(x? — y3) = k[t2,3], ce qui conclut.

Pour démontrer I'inclusion ker(¢) C (22 4+ y®) on mentionne le lemme suivant qui peut étre
utile.

Lemme. Soit A un anneau factoriel, B un anneau intégre et A — B un morphisme injectif
d’anneau. Soit b € B tel que ker(evy) est non-nul. Alors ker(ewvy) est principal, généré
par un élément irréductible. Plus encore, si p(t) est irréductible et p(t) € ker(ewy), alors

ker(evy) = (p(t)).
Preuve. On montre qu’il ne peut exister au plus qu’un unique élément irréductible (modulo

la relation d’étre associé) dans ker(evp). Si deux éléments irréductibles non-associés p(t) et
q(t) sont dans ker(evp) alors on aurait un élément non-nul a € A et m(t), g(t) € At] tel que

p(tym(t) +q(t)g(t) = a

en utilisant que p(t) et g(t) seraient premiers entre eux dans ’anneau Frac(A)[t]. En utilisant
que A — B est injectif et en évaluant en b on obtient a = 0, une contradiction.

Si on décompose un élément non-nul du noyau en produit d’irréductibles, comme B est
intégre, on voit qu’au moins un des facteurs irréductibles est dans ker(evy). Ainsi on a montré
lexistence d’un élément irréductible dans le noyau. Comme c’est en fait le seul (modulo la
relation d’étre associé) on voit qu’en fait ker(evy) = (p(t)). O

Ainsi en appliquant le lemme pour A = k[y] et B = k[t?,3] et y + t2, on voit qu’il suffit de
démontrer que z? 4 > est irréductible. Cela peut se montrer exactement comme en 7.2.

a b\ (z y\_ (ax ay+bz
0 ¢ 0 z) \0 cz

Exercice 6. 1. Rappelons que



de quoi il s’ensuit immédiatement que la fonction

A—7ZxQ, <g l;) — (a,c)

est un homomorphisme surjectif dont le noyau est I.

Montrons maintenant que ’anneau commutatif Z x Q est Noethérien. Soit I C Z x Q un idéal.
Il est facile de vérifier que U'intersection I’ := IN({0} x Q) est un idéal de Q via l'identification
évidente Q = {0} x Q. Puisque Q est un corps, on a I’ = {(0,0)} ou I’ = {0} x Q.

(a) Supposons que I’ = {(0,0)}. Alors tous les éléments de I sont de la forme (z,0). En
effet, si (x,y) € I, alors (0,1) - (x,y) € I et donc (0,y) € I’, d’on y = 0.

Dans ce cas, I s’identifie & un idéal de Z via 'identification évidente Z = Z x {0}.
L’anneau Z est principal puisqu’il est Euclidien (Proposition 3.3.3), donc on en déduit
que I est généré par un élément de la forme (n,0).

(b) Supposons que I’ = {0} x Q. Alors on prétend que I = I"” x Q pour un idéal I”
de Z. En effet, soit (x,y) € I. Puisque (0,2) € I’ pour tout z € Q, on voit que
(x,y) + (0,2) = (z,y + z) € I pour tout z € Q. Puisque la translation par y dans Q est
bijective, on en déduit que (z,z) € I pour tout z € Q. Cela prouve qu’on peut écrire
I = I"” x Q pour un certain sous-ensemble I’ C Z. Puisque I est un idéal, on vérifie
aisément que I” doit étre un idéal de Z. Si I"” = (n), alors I est généré par (n, 1).

On a montré que tous les idéaux de Z x Q étaient finiment générés (en fait, ils sont tous
principaux), ce qui montre que cet anneau produit est Noethérien (et méme principal).

. Soit J un idéal a droite qui contient un élément de la forme

0 b
<0 0), 0#beQ.

Le calcul au début du point précédent montre alors que J contient tous les éléments de la

G 5) o

et il s’ensuit que J D I. Cela montre que I est minimal comme idéal & droite.

forme

Notons que I n’est pas minimal comme idéal a gauche, puisqu’il contient strictement le sous-

idéal & gauche
0 n
{(O 0) ne z} |

. Montrons finalement que A est Noethérien a droite. Soit
J1IChC...

une suite croissante d’idéaux a droite. Alors chaque Jy N I est un sous-idéal & droite de I.
Par le point précédent, pour chaque k on a soit Jy NI = I, soit Jy NI = 0. Puisque la suite
est croissante, ces intersections sont toujours les mémes pour k assez grand. Quitte & oublier
les premiers idéaux, on peut donc supposer que Jx NI = 0 pour tous les k, ou que JyNI =1
pour tous les k.

Considérons V'application quotient 7: A — A/I. Puisque 7 est surjective, les ensembles
images m(Jj) sont tous des idéaux (& droite) de A/I (la vérification est aisée), et on obtient
une suite croissante d’idéaux

m(J1) Cn(J2) C ...



dans A/I. Nous avons montré dans le premier point que A/l est Noethérien : donc 7(Jg) =
7(Jg+1) pour tous les k assez grands.

On prétend que w(Jg) = m(Jx41) entraine Jp = Ji41. Si ce n’est pas le cas, on peut trouver
x € Jgy1 \ J. Puisque 7(z) € w(Jgy1) = w(Jx), il existe 2’ € Jj, tel que z — 2’ € kerm = 1.

(a) Si Jgr1 NI =0, puisque z — 2’ € Ji1 NI on obtient z = 2’ € Jj, contradiction.

(b) Si Jig41 NI = I, alors par notre simplification initiale on a aussi Jp NI = I et donc
I C Ji. Alors x — 2’ € Ji et ainsi © = 2’ + (v — 2') € Ji, contradiction.

Ainsi Jy, = Ji4+1 pour tous les k assez grands, ce qui montre que la chaine d’idéaux se stabilise.
Ainsi A est Noethérien & droite.

Exercice 7. 1. Onax?+y? = (z+iy)(z—iy) dans C[z, y], donc le polyndome n’est pas irréductible
dans Clz,y].

Montrons qu'il est irréductible dans Q[x,y]. Posons A := Q[z], ¢’est un anneau factoriel en
vertu des Corollaires 3.3.5 et 3.7.2. On a Q[z,y] = Ay, et 2% +1y? € A[y] est primitif puisque
son coefficient dominant est une unité. Donc par la Proposition 3.8.13, 22 +12 est irréductible
dans A[y] si et seulement si il est irréductible dans Frac(A)[y].

On a
Frac(4) = Q) = { 10 | 100 9(0) € Qlel o) # 0}
9(x) ’ ’
Puisque degy(y2 + 22) = 2 et que les polynémes constants non-nuls de Frac(A)[y] sont des
unités, le polynome y2 + 22 € Aly] se scinde dans Frac(A)[y] si et seulement si y? + 22
(vu comme un polynéme en y) admet une racine dans Frac(A4) = Q(z), autrement dit si et

seulement si il existe f(z), g(x) € Q[z] tels que
f(x)>2 I
(57) =

f@)? = —a?g(x)?  dans Q[z].

Regardons le coefficient dominant de chaque coté : celui de f(z)? est positif (il s’agit du carré
du coefficient dominant de f(x)), celui de —x2g(z)? est négatif (il s’agit de I’opposé du carré
du coefficient dominant de g(z)), c’est une contradiction.

Cela impliquerait que

Donc y? + 22 € Frac(A)[y] est irréductible, et ainsi y? + 22 € Q[z, y] est irréductible.

2. Montrons que 2% — (3" +2y°4+y3) est irréductible dans Q[z,y]. Comme dans le point précédent
(en échangeant les roles de = et y), il suffit de montrer qu’il n’existe pas de polyndomes

f(),9(y) € Q[y] tels que

3
() =y +2y° +y° dans Q(y).
Cela impliquerait que

FW)P =" +2° +9*)g(y)® dans Q[y.

Regardons le degré de chaque c6té : celui de gauche est un multiple de 3, tandis que celui de
droite vaut 1 modulo 3. C’est une contradiction, et on en déduit que 23 — (y7 + 2y° + 9°) est
irréductible dans Qlz, y].

Remarque : le critére d’Eisenstein ne peut étre appliqué dans aucun des deux cas (remarquons
que le décomposition de y” + 2y + y3 en facteurs premiers est (y? + 1)%y3).



Exercice 8.
Comme b est supposé non-nul, on peut diviser 1 par b pour obtenir

1=0bq+r,

avec o(r) < 0 ou r = 0. Cela force r = 0.
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Exercice 1. (a) Let ¢ : A — B be a ring homomorphism and let a € A*. Then, there exists
b € A* such that ab = 1. Then:

1= ¢(1) = ¢(ab) = ¢(a)p(b).
Hence ¢(a) is an invertible element of B with inverse ¢(b).

(b) Let a,b € A such that a ~ b. Then there exists u € A* such that a = ub and we have:

¢(a) = ¢(ub) = ¢(u)P(b).
Now by point (a) we have that ¢(u) € B* and we conclude that ¢(a) ~ ¢(b).

(c) Counterexample: Consider the ring homomorphism: & : Z[z] — Falz] (Example 1.4.36).
Now 22 + 42 + 2 € Z[z] is irreducible (one shows this using Eisenstein with p = 2), but
&(2? + 42 + 2) = 22 and 22 € Fa[z] is reducible.

Exercice 2. (a) Voir corrigé du bonus 3.

(b) Par le théoréme des restes chinois
Z)pqZ = ZL]pZ x 7] qZ.

Ainsi (1,0), (0,1), (0,0) et (1, 1) sont des racines. Comme les polynomes en jeu sont moniques,
on peut voir avec le degré que le produit des (¢ — a;) ne peut diviser t2 — t.

(c) As flg in Q[t], there exists h € Q[t] such that g(¢t) = f(¢)h(t). Now, as h € Q[t|, we can write
h(t) = c- hi(t), where hi(t) € Z[t] is primitive and ¢ € Q. Then:

g(t) = c- f(t)h (1)

By Lemma 3.8.9, we have that f(¢)hq(t) is primitive and, since g(t) is also primitive, we use
Lemma 3.8.11 to determine that ¢ € Z*, i.e. ¢ = 1. Then

g(t) = £f(t)h1(t) in Z[t], therefore flg in Z[t].

(d) The roots of 2%+ 1 over C are ei(%%ﬁ), where 0 < k < 3, and we have:

We group the conjugate complex roots and obtain the decomposition over R[z]
2+ 1= (22 — V2 + 1) (2 + V22 +1).

By Example 3.9.2 (4), it follows 2* + 1 does not admit roots in Q, as it does not admit
roots in R. If #* + 1 = f(z)g(z), where f(z),g(z) € Q[z] are polynomials of degree 2, then
f(z) = (x—a1)(z—a2) and g(z) = (r—a3)(x—ay), where a1, as, a3, a4 € {ei(%r%ﬁ)] 0<k<3}
are distinct. One checks that for every choice of a; a; the polynomial (x — a;)(x — a;) does



not have coefficients in Q. We conclude that z* + 1 is irreducible in Q[z]. Lastly, we note
that, as it is primitive., by Lemma 3.8.13, it is also irreducible in Z[z].

In Fa[x] we have x4 + [1]2 = (z + [1]2)*.

The squares in Fq1 are [0]11, [1]11, [3]11, [4]11, [5]11 and [9]11 and we deduce that 2* + [1]11 does
not admit roots in Fy;. Assume that 2 + [1]1; admits a decomposition into a product of two

polynomials of degree 2. As F1; is a field, we can assume that these polynomials are unitary.
We have:

gt 1 =@ +az+b)(@® +cx+d) =2t + (a+ c)2® + (b+ ac+ d)z® + (be + ad)x + bd
and so d = b~! and ¢ = —a. We substitute and obtain:

e[ =a* + b —a® + b Nz +abt bz + [1n
and so a(b~! —b) = 0.

e ifa=0,then b—a?+b"!=b+b"! =0, which is impossible as [~1]1; is not a square
in Fn.
o if b= b_l, then b% = [1]11 and so b € {[1}11, [10]11}.

— If b = [1]11, then b — a? + b~ = [2]11 — a? = 0, which is impossible as [2]1; is not a
square in Fy;.
— If b= [10]11, then b —a? + b~ = [9]1; — a® = 0 and so a € {[3]11, [8]11}.

We conclude that
ZL‘4 + [1}11 = (x2 + [3]11 - x4+ [10]11)(£E2 + [8]11 - T+ [10]11) in Fn[x].

Since 28 — 1 = (2* + 1)(2* — 1) it suffices to factor 2% — 1:

e in C[z] we have: 2 — 1 = (x +i)(z — i)(x + 1)(x — 1).
e in R[z], Q[z] and Z[x] we have: 2* — 1 = (22 + 1)(z + 1)(z — 1).
e in Fy[z] we have: x* — [1]y = 2% + [1]2 = (z + [1]2)*.

e in Fyi[z] we have: z — [1]1; = (22 + [1]11)(z + [1]11) (2 + [10]11), where we have seen
earlier that x2 + [1]11 is irreducible.

Exercice 3. (a) We write 22° + 22 4+ 23 4+ £ = §(22° + 152" + 923 + 3) € Q[x].

Now & € Q[z]*, as § € Q*. Therefore 22° + 32 + 23 + 1 is irreducible in Q[z] if and only if
22° +152% + 923 + 3 is. As ged(2,15,9,3) = 1, we have that 22° + 152* + 922 + 3 is primitive,
hence it is irreducible in Q[z] if and only if it is irreducible in Z[z] (Lemma 3.8.13). Using
Eisenstein for p = 3, where 3 € Z is irreducible, we deduce that 2z° + 152% + 923 + 3 is
irreducible in Z[x].

Let f(x) = 2* +[2]5 € F5[x]. Note that for all a € F5 we have a® € {[0]s, [1]5,[4]5}. Therefore
f does not admit roots in F5. We will now show that f is not a product of two polynomials
of degree 2. As 5 is a field, we can assume that these polynomials are unitary and so assume
there exist a, b, ¢, d € F5 such that

f(2) =2* +[2]5 = (2® +ax+b)(2® +cx+d) = 2 + (a+c)2® + (b+ac+d)z* + (be+ ad)z + bd.
Then ¢ = —a and d = [2]5b~! and substituting in the above gives:
25 =at + (b—a®+ 25 -0 a2 + (—ab + [2]5 - ab V) + [2]5.

Thus —ab + [2]5 -ab~! = a(—b+ [2]5-b~!) = 0 and



e if a = 0, then b = —[2]5, a contradiction.
e if —b+[2]5b671 =0, then b? = [2]5, a contradiction.

We conclude that f is irreducible in Fs[x].

Lastly, let x4 41523 +7 € Q[z]. As the dominant coefficient is 1, this polynomial is primitive,
hence it is irreducible in Q[z] if and only if it is irreducible in Z[z] (Lemma 3.8.13). Let
¢5 : Z — F5 be the quotient homomorphism and let 75 : Z[z] — Fs[z] be its induced
homomorphism. We have that:

w5zt + 1523 +7) = 2t + [2]5

and, as z* +[2]5 is irreducible in F5[z], we use Proposition 3.9.1 to conclude that z* + 152347
is irreducible in Z|x].

First we note that 22 4+ y? +1 € R[z, y] is primitive as its dominant coefficient is 1. Secondly,
y? + 1 € R[y] is irreducible. We now apply Eisenstein with p = y? + 1 to conclude that
2?2 +y? + 1 is irreducible in Rz, y].

We have 22 + y? + [1]2 = (z + y + [1]2)? in Fa[z,y].

The evaluation homomorphism evy : Q[y] — Q, evg(y) = 0, induces the homomorphism
¢ : Qy][z] — Q[z] with {(y) = 0 and &(x) = x. We have that:

Et+ B+t oy + 22t —s+ ) =22+ 202 — x4+ 1

and, by Proposition 3.9.1, y* 4+ 23 + 22y + 2y + 222 — 2 + 1 is irreducible in Q[z,y] if
23 +22? —z+1 is irreducible in Q[x]. Now deg(z®+ 222 —x+1) = 3 and thus 23+ 222 — 2 +1
is irreducible in Q[x] if and only if it does not admit roots in Q. Assume 2 € Q, where p,r € 7Z
and ged(p,7) = 1, is a root of 2% + 222 — x + 1. Then

() +=() - () e

As ged(p,r) = 1, it follows that p|1, r[1 and so £ € {—1,1}. One checks that neither —1, nor
1is a root of 23 4+ 222 — 2 + 1 and thus 2 + 222 — 2 + 1 is irreducible in Q[z].

We have 423 + 12022 + 8z — 12 = 4(2® + 3022 + 22 — 3) € Q[z]. Now 4 € Q[z]* and
so 423 4+ 12022 + 8z — 12 is irreducible in Q[z] if and only if 23 + 3022 + 2z — 3 is. As
deg(z® + 3022 + 2z — 3) = 3 it follows that z® + 302% + 2z — 3 is irreducible in Q[z] if and only
if it does not admit roots in Q. Assume there exist £ € Q, where p,7 € Z and ged(p,r) =1,

such that: 5 )
<p) +30(p> +2<p> _3-0.
r r r

As ged(p,r) = 1, it follows that p[3 and r|l. Therefore £ € {-3,—1,1,3}. One checks that
none of the elements in {—3,—1,1,3} is a root of z3 + 3022 + 22 — 3. We conclude that
23 + 3022 + 22 — 3 is irreducible in Q[z]. .

As the polynomial % +#3 41 is primitive, it follows that it is irreducible in Q[¢] if and only if it
is irreducible in Z[z] (Lemma 3.8.13). We consider the quotient homomorphism ¢g : Z — Fy
and its induced homomorphism s : Z[t] — Fs[t] under which

ot + 3 +1) = 1% + 3 + [1]..

By Proposition 3.9.1, t® + ¢3 + 1 is irreducible in Z[t] if 5 + 3 + [1]2 is irreducible in Fa[t].

Now, one checks that t5+#3+[1]2 does not admit roots in Fa[t]. Secondly, the only irreducible
polynomial of degree 2 in Fy[t] is t2 + ¢ + [1]o and one checks that this does not divide



t6 + 13 4 [1],. Lastly, we assume that t5 + 2 4 [1]5 is a product of two polynomials of degree
3. As s is a field, we can assume that these polynomials are unitary and we have:

t6 + t3 + [1]2 = (t3 + a2t2 + a1t + ao)(t3 + b2t2 + blt + bo)
=15 + (ag + b2t + (a1 + agby + by)t* + (ag + a1by + aghy + bo)t>+
+ (aobz + a1by + agbo)t2 + (a0b1 + alb())t + apbop.

Then ag = bo e [1}2, ag = b2 and

apb1 + a1bg = [0]2 b1+ a1 = [0]2

apbs + a1b1 + asby = [0]2 N arb; = [0]2 _ [1]2 _ [0]2.
ap + arby + az2by + by = [1]2 ba(ar +b1) = [1]2

a1 + azby 4+ by = [0]2 azby = [0]2

We conclude that t5 + ¢3 + [1]5 is irreducible in Fa[t].

(h) We first note that the ring Q[z] is factorial, as Q is (Theorem 3.8.1), and that = € Q[z] is
irreducible. Secondly the polynomial y* 4+ zy® + xy? + 22y + 322 — 2z € Q[z,y] is primitive,
as its dominant coefficient is 1. We now apply Eisenstein with p = z to conclude that
y* + 2y® + 2y? + 2%y + 322 — 22 is irreducible in Q[z, y].

Exercice 4.
Let f(t) =tt+4t3 + 3t + 7t — 4 € Z[t].

(a) We have mo(f(t)) = t* +t2+t = t(t3 +t +[1]2) € Fa[t]. Moreover, we remark that ¢34+t + [1]2
is irreducible in Fs[t], as it does not admit roots in Fy.

(b) We have m3(f(t)) =ttt + 3+t —[1]s = (2 + [1]3) (£ +t — [1]3) € F3[t].

(c) Assume that f(t) is reducible in Z[t]. Then either f(t) = (t — a)g(t), where a € Z and
g(t) € Z]t] is a polynomial of degree 3, or f(t) = fi(t)f2(t), where fi(t), f2(t) € Z[t] are two
polynomials of degree 2.

In the first case, a|4 but none of the elements of {£1, 42, +4} are roots of f. Hence, we only

need to consider the case when f(t) = fi(t) f2(t), where deg(fi1(t)) = deg(f2(t)) = 2, and we
have:

m(f (1)) = ma(f1(t) f2(t)) = ma(f1(£))m2(f2(2).
Now, as deg(ma(f(t))) = 4 and as deg(ma(fi(t))) = deg(ma(f2(t))) < 2, it follows that
deg(mal f1(1))) = 2 and deg(ms(fa(1))) = 2.

On the other hand, we have mo(f(t)) = t*+2+t = t(t3 +t+[1]2), where t3 +t+ 1]y € Fa[t] is
irreducible. We have arrived at a contradiction. We conclude that f(t) € Z]t] is irreducible.
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Exercice 1. 1. Let L’ denote the field extension of K of degree 1. This means that L’ is a field
that contains K, and that has a K- vector space structure such that the dimension of L’ as
a K-vector space is 1.The K-subspace of L' generated by 1 is equal to K, and equal to L’ as
well, due to the dimension of L’ over K being 1. Hence K and L’ coincide.

2. We take any o € L\ K. Then we have the following field extensions, K C K(«) C L. From
this, it follows using Proposition 4.2.15 that

[L:K]=[L: K(a)]-[K(a): K].
=2

Since we take a ¢ K, it holds that K # K(«), and hence by the first point, [K(«) : K] # 1.
From this, it follows using the equation above that [K(«) : K] = 2. But that means that
[L: K(a)] =1, from which it follows by the first point that L = K(«).

3. Since L = K(a), and [L : K| = 2, it holds that {1, a} forms a K-linear basis of K («). This
means in particular that a? is a K-linear combination of 1 and «. There exists a,b € K such
that o> =b-14+a-a < o —aa—b = 0. We define d to be d = a®+4b, the discriminant of the
quadratic equation. We now show that d is a square in K(«). We do so by multiplying the
quadratic equation by 4 (note that the characteristic of K is not equal to 2), and completing
the square, to find:

402 —daa—4b=0s 2a—a)? —a®> —4b=0 20 —a)? =a® +4b = d.

Hence d is a square in K (a), and we let § = 2a — a € K (o) \ K, with 62 = d. By the second
part of this exercise, it holds that L = K(§) = K(V/d).

Let us give an alternative proof that illuminates the role of the discriminant. Since the
characteristic of K is different from 2, the well-known theory of quadratic equations with
coefficients in C can be carried over verbatim to K to obtain the following: if p(z) = az? +
bx + ¢ € K|[z] is a degree 2 polynomial, then the roots &1, &> of p(x) in any extension F of K

can be written
—2b+ /A(p) —2b — /A(p)
T T e
a 2a

where A(p) = b? — 4ac and /A(p) € F denotes a square root of A(p). Now observe that:
(a) K(&) = K(&1,&) for any ¢ = 1,2. We can write in K (&;)[z] that

p(x) = (x = &1)q(x)

where necessarily degg(x) = 1. Thus g(x) = = — &, and so & € K(&1). Hence K (&) =
K (&1,&2), and by exchanging the roles of 51 and & we also obtain K (&) = K (&1, &2).

(b) K(&1,&) = (\/ ) Indeed \/A(p) = 2a(&; — &2) so the inclusion D holds. Also it

follows from the formulae for & and 52 that C holds.

So we obtain that K (&) = K (&) = K(£1,6) = K ( A(p)) as subfields of F. Taking F = L
and p(z) = mq, i, we obtain an alternative proof of the exercise.
4. From the definition of ¢, it immediately follows that {1,0} forms a K-linear basis of K(J) as

a K-vector space. By definition, [K(J) : K] is the dimension of K(J) as a K-vector space,
which is 2.



Exercice 2. 1. There are two options for Q(y/a). If a is a square in Q, then it holds that \/a
is contained in Q, and hence Q(y/a) = Q, and so [Q(v/a) : Q] = 1. If a is no square, then
Q € Q(v/a), and the degree of this field extension is equal to 2, since the polynomial 22 — a
is zero for y/a, and the polynomial is irreducible (since a is no square). The same holds for
Q(\/l;) We now use the fact (seen in Linear Algebra) that any two vector spaces over the
same field are isomorphic if and only if they are of the same dimension. In our case, both
Q(v/a) and Q(\/B) can be of dimension 1 or 2 over QQ, depending on whether or not a resp.
b is a square. We conclude that Q(y/a) is of the same dimension over Q as Q(v/b), and
hence isomorphic, if and only if both a and b are simultaneously squares in Q, or both are
simultaneously not squares.

2. We now assume that Q(y/a) and Q(v/b) are isomorphic as fields. We claim that this holds
if and only if they are equal as subfields of C. This means that there exists ¢ € Q such that
Va = cV/b.

First, we assume that /a = cV/b. Then, Va and Vb generate the same field extension of Q,
and hence clearly the two fields are isomorphic.

Secondly, assume that the fields Q(y/a) and Q(v/b) are isomorphic. Denote the isomorphism
¢ : Q(v/a) — Q(vb). We note that from ¢(1) = 1, it follows that ¢ acts as the identity on Z,
and furthermore on Q. On one hand, we have that p(/a) = u 4+ vbv for some u,v € Q. On
the other hand, with a € Q, it holds that

a = p(a) = p(v/a’) = p(vVa)® = (u+ Vov)? = (u? + bw?) + Vb(2uv).

We now distinguish between two cases.

e If Vb € Q, then ¢(v/a) € Q, and hence v/a € Q. (If \/a was not contained in Q, then
¢ would be an isomorphism from Q(y/a) # Q to Q. This is a contradiction to ¢ being
injective.) Then,

_ve
f—\/B\/E,

and v/a = ¢V/b with ¢ := ZE@.
e If Vb ¢ Q, then

sk

a = (u? + bv?) + Vb(2uv),

with vb ¢ Q. Since a € Q, it follows that 2uv = 0, and hence either v = 0 or v = 0. If
u = 0, then a = bv?> = \/a = Vbv, and hence the property is satisfied. If v = 0, then
o(y/a) = u € Q. It then follows that the image of ¢ is contained in Q, which means that
 can not be an isomorphism. Hence this case does not occur.

Exercice 3. 1. We have the following field extensions,
K C K(a®) C K(a) C L.
By proposition 4.2.15, it follows that
[L: K] =[L:K(a)]- [K(a): K(a®)] - [K(a®) : K].

Since the degree of the field extension L over K is odd, it follows that the degrees on the right
hand side of the equality above are odd as well. We now look at the extension K (o) over
K(a?). The degree of this extension is at most 2, since the polynomial 22 — o? € K(a?)[x]
vanishes at «. But since the degree needs to be odd, it follows that it is 1. Hence K(a) =
K(a?).



2. We first show that \/p ¢ Q(,/q). If \/p is contained in Q(,/q), then there are r,s € Q such
that \/p = r + s,/q. From this, it follows that

p=(r+syq)?=(r*+s°q) + (2rs)y/q.

Using the fact that p € Q, we compare the right hand side and left hand side, and note that
2rs = 0. If r = 0, then p = s?¢ which is a contradiction with p, ¢ prime and distinct.

If s=0,then \/p=r=p= r2, which is a contradiction to p prime.
It follows that \/p ¢ Q(,/q). The same argument, with the roles of p and ¢ reversed shows
that /g ¢ Q(\/p).

We now compute the degree of the field extension Q(,/p,/q) over Q. We have the following
extensions of fields,

Q c Q(vp) € Qv Va)-

From proposition 4.2.15 it follows that

[Q(vp:va) - Ql = [Q(vp, va) : Q(vP)] - [Q(vP) : Q-

We calculate both degrees on the right hand side separately. Firstly, [Q(,/p) : Q] = 2. This
holds because \/p ¢ Q. The polynomial 2% — p € Q[xz] vanishes at ,/p, and combining Gauss
IIT with Eisenstein for the prime p, it follows that the polynomial is irreducible over Q. Hence
it is the minimal polynomial, and the degree is 2.

Secondly, [Q(/p,/q) : Q(y/p)] = 2. This holds because /g ¢ Q(/p). Therefore, the degree
of the extension is not equal to 1. Furthermore, the degree of the extension is at most 2,

since \/62 = q € Q, and hence \/62 € Q(\/p). Combining these restrictions, the degree of
the extension is equal to 2, and hence the product of the two extensions is 4, meaning that

[Q(vP, va) - Q] = 4.

3. We have the following extension of fields, K C K(a) C K(«, ). Using proposition 4.2.15, it
follows that
[K(, B) : K] = [K(a, B) : K(a)] - [K () : K].

From this, it follows that m = [K(«) : K] divides [K(«, ) : K]. The same argument for
the extension of fields K C K(5) C K(a, 3) shows that n divides [K(a, ) : K|. Using the
fact that m and n are coprime, it follows that mn divides [K(a, ) : K]. This means that
the degree of the field extension is a multiple of mn. We show that it is equal to mn by
considering the first field extension again, K C K(a) C K(«,f3). Since [K(B) : K| = n, it
holds in particular that the degree of the field extension K(a, ) over K(a) is at most n.
Hence [K(a, ) : K] is at most nm. On the other hand, as we have seen above, it is at least
mmn, from which we conclude that it is exactly mn.

The two field extensions are illustrated below.

K
2 <
K(a) K(B)
g 2
K(a, B)

Exercice 4.
It holds that Q(v/3 + v/7) € Q(v/3,4/7). We show that indeed it holds that Q(v/3 + V7) =



Q(v/3,4/7). For this, it is enough to show that v3 € Q(v/3 + v/7) and 7 € Q(v3 + V7). We
denote K = Q(v/3++/7). It holds that (v/3++/7)3 = 24v/3 +16+/7 € K. With this, and using that
—16V/3 —16V7 € K, it follows that their sum is contained in K as well,

(24v/3 + 16V7) + (—=16v/3 — 16V/7) = 8V/3.

Now using that % € K, and 8v/3 € K we deduce that their product V3 € K. From V3 € K, it
immediately follows that /7 € K as well, since /7 = (\/§ + V7 ) — V3. This shows that indeed
K =Q(V3,V7).

The degree of the field extension [Q(v/3,v/7) : Q] is by definition the dimension of Q(v/3,v/7)
as a Q-vector space. Using exercise 3.2, it follows that the degree is 4. {1,v/3,v/7,V/3V/7} forms a
basis of this vector space.

Exercice 5. 1. If p = 2, then e2™/2 = —1, which is contained in R, and hence R(e?7/P) = R.
From this, it follows that the degree of the extension is equal to 1.

For p # 2, it holds that e27/P is a complex number, and not contained in R. By example
4.2.14 (a), we know that [C : R] = 2. Using exercise 1.2, it follows that R(e*7/P) = C, and
hence [R(e?™/P) : R] = [C : R] = 2.

2. By definition, a vanishes over ¢*2 4 ¢*! +... 4 ¢2 + ¢ 4 1. Furthermore, using the fact that 43
is prime, and Example 3.9.4(b), it follows that 42 4 ¢4 4+ ... 4+ 2 + ¢ 4 1 is irreducible over
Q. Hence we get that ma g = t*2 +t4 + ... +t2 +t+ 1, and so [Q(a) : Q] = 42.

3. We follow the same steps as example 4.2.16(a). First, we note that we have the following field
extensions, Q C Q(+/13) C Q(+v/13,). We can calculate the degree of the extension Q(~v/13, 1)
over Q using proposition 4.2.15. It holds that

[Q(V13,4) : Q] = [Q(V13,4) : Q(V13)] - [Q(V13) : Q].

First, we calculate [Q(+/13) : Q]. The polynomial 2° — 13 vanishes at v/13. Furthermore, the
polynomial is irreducible over Q : By Gauss I11, it is equivalent to showing that the polynomial
is irreducible over Z. We can apply Eisensteins criterion with p = 13, form which irreducibility
over 7Z follow. Therefore, m Y13.0 = x° — 13, and the degree of the field extension is 5.

Secondly, we calculate [Q(v/13,7) : Q(v/13)]. Since Q C R, and v/13 € R, it follows that
Q(¥/13) C R. Hence i ¢ Q(~+/13). Using that i is a root of 22 + 1, we get that the degree of i
over Q(+/13) is 2, and hence [Q(V/13,4) : Q(v/13)] = 2.

By the formula above, it follows that
Q(V/13,1) : Q] = [Q(V13,4) : Q(VI3)] - [Q(¥13) : Q] = 25 = 10.

4. There are two possibilities. The first possibility is that « is the root o = [1]3. In that case,
F3(a) = F3, and hence [F3(a) : F3] = 1. We can therefore write the polynomial t* — 3 — 2 —
t—[1]3 = (t—[1]3)(#3 —t+[1]3). If & # [1]3, then a is a root of the polynomial ¢3 —t+[1]3. But
this polynomial is irreducible over Fs, since neither [0]3,[1]3 or [2]3 is a root of 3 — ¢ + [1]3.
We conclude with the fact that mqr, = t3 — ¢ + [1]3, and hence [F3(a) : F3] = 3.

5. We note that (3+1/5)% = 14+6v/5 = 3+v/5 = v/14 + 61/5. Therefore, Q(v/14 + 61/5,/3) =
Q(3 ++/5,v3) = Q(+/5,V3). It follows that [Q(v/5,v3) : Q] = 4. {1,/3,v/5,V3/5} forms
a basis of Q(v/5,1/3) as a Q-vector space.



6. We calculate the degree of the extension using proposition 4.2.15 for the extension Q C
Q((V7)?) € Q(V/7), from which it follows that

[Q(V7): Q] = [Q(V7) : QUVT)H)] - [Q((V7)?) : Q).

We first calculate [Q(v/7) : @]. The polynomial 2% — 7 € Q[z] is zero for v/7. Furthermore,
by Gauss III, it is irreducible if it is irreducible over Z. Applying Eisenstein with p = 7, this
holds. Hence memo = 2% — 7, and the degree of the field extension is 6.

Secondly, we calculate [Q((v/7)?) : Q]. It holds that (v/7)? = v/7. The polynomial 23—7 € Q[x]
is zero for v/7. Furthermore, by Gauss II1, it is irreducible if it is irreducible over Z. Applying
Fisenstein with p = 7, this holds. Hence m ¥rio = 22 —7, and the degree of the field extension
is 3.

Using the formula above, we get that [Q(v/7) : Q((V/7)%)] = 2.

7. We apply the same technique as in the exercise above, noting that we have an extension as
follows, Fy C Fa(a?) C Fy(a), and hence

[FQ(OK) : FQ] = [Fg(a) : IFQ(O[Q)] . [FQ(O&2) . FQ]

On the left hand side, the degree is equal to 3, since mqar, = t3 + ¢ + [1]2. Hence on the
right hand side, one of the factors is 1, and the other one is three. We note that [Fa(a?) : Fy]
can not be 1, since a? ¢ Fy. If a? was contained in Fg, then the polynomial t? — a? € Falt]
vanishes at «, which contradicts the fact that [Fa(a) : Fg] = 3. Therefore, [Fa(a?) : Fo] = 3,
and so [Fa(a) : Fo(a?)] = 1.

Exercice 6. 1. We show that the minimal polynomial mg = 27 — y € K[z]. It holds that the
polynomial vanishes at (3, since

063 7 ()é73 * y53
67—y=<2> —y=( 12 —y=( 11 —y=y-y=0,

where in the equation *, we use the fact that « is a root of f in L, and hence of = g°.
Furthermore, the polynomial is irreducible in K[x] : We use Gauss III to deduce that f is
irreducible in K[z] = (C(y))[x] if and only if f is irreducible in (C[y])[z]. Since y is irreducible
in C[y], we may use Eisenstein with p = y to deduce that 27 —y is irreducible in (C[y])[z], and
hence in K[z]. This proves that the minimal polynomial mg x = 27 —y € K[z]. We conclude
that [K(8) : K] =T.

2. To show that K(«a) = K(f), we show that K(a) C K(8) and K(8) C K(«).

We note that s
. ol als als
y (¥°)"  (af)

From this, it follows that o = B° € K(B), and hence K(a) € K(B). On the other hand,
B =2 € K(a), and hence K(8) C K(a).

3. We first remark that by Gauss III, f is irreducible in C[z,y] = (C[y])[y] if and only if f is
irreducible in (C(y))[z] = K|[z]. By the first and second part of this exercise, it holds that
[K(a) : K] = 7. From this, it follows that the degree of the minimal polynomial mq g is 7.
Now since « is a root of 27 —y° € K[z], it follows that 7 —y° | ma, k. Since both polynomials
are of degree 7, it follows that mq rx ~ z’ —y°, and from mq, Kk being irreducible in K] it
follows that 27 — ¢° is irreducible in K[z] as well. Applying Gauss 111, with 2" — y° being
primitive, it follows that 7 — ¢° is irreducible in C[z, y].



Exercice 7.
Par le point 3 de I’exercice bonus, pour tout k > 1, le polynome @ (¢) est irréductible. En particulier

t" =1 =] ®a(t)
din

est une décomposition en irréductibles dans Q[t]. Dés lors,

QZ/nz) = Q[1]/(t" — 1) = [ [ Q(6a)-

dn

On a désigné par &g une racine primitive d-iéme de I'unité. Si pu(n) désigne le nombre de diviseurs
de n, on obtient alors

m0(Q[Z/nZ]) = pu(n).
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Exercice 1.
Soient K C L C F comme dans I’énoncé. Pour montrer que F' est algébrique sur K, il suffit
de montrer que chaque a € F' est algébrique sur K. Puisque a est algébrique sur L, il existe
bo, ... bn € L tels que mg (t) = Y i bit". En particulier, a est algébrique sur le sous-corps
K(bg,...,by).
Nous allons comparer les deux chaines d’extensions suivantes :
\ (a,bo, ..., by)

On prétend que les degrés

[K(a,bo,...,bp) : K(bg,...,bn)] et [K(bo,...,by): K]

sont finis. C’est le cas du premier par construction (cf la Proposition 4.2.7 et le Corollaire 4.2.13).
Pour le second, par la formule de multiplication des degrés on se réduit & montrer que chaque

[K(bo,...,bi_;,_l) : K(bo,---;bi)]

est fini. C’est le cas par le Corollaire 4.2.13, puisque b; 1 est algébrique sur K, donc a fortiori sur
K(bg,...,b;). On peut ainsi appliquer la Proposition 4.2.15 pour obtenir

(K (a,bo, ... bn) : K] = [K(a,bo,-...bn) : K(bo,....bn)] - [K(bo,....by) : K] < oc.

On en déduit que 'extension intermédiaire K C K (a) C K(a,bo,...,b,) est de degré fini sur K (il
s’agit simplement d’algébre linéaire : un sous-espace vectoriel d’un espace de dimension finie, est
également de dimension finie). Donc a est algébrique sur K par le Corollaire 4.2.13.

Exercice 2.

Comme
e?ﬂ'i/n + 6—27Ti/n 627ri/n _ e—?ﬂ'i/n

5 sin(27/n) = 57
on voit que cos(2m/n),sin(27/n) € Q(&y,, 1) si &, désigne une racine primitive n-iéme de 'unité, ce

qui conclut.
On peut aussi tirer partie des polynomes de Chebyshev {T),(x)},, qui ont la propriété que

cos(2m/n) =

cos(nf) = T, (cos(f)) VO €Rn>0.
Les polynomes T,,(z) sont définis par la relation de récurrence
To(z) =1, Ti(z)==z, Thtyi(z)=22T,(x)—Th_1(x).

et il s’ensuit que les coefficients de T),(x) sont rationnels (et méme entiers) pour tous les n.

On voit ainsi que cos(f) est algébrique sur Q(cos(nf)) pour tout n > 1. En prenant § = 27/m
et n = m, on obtient ainsi que cos(27w/n) est algébrique sur Q(cos(27)) = Q.

Pour finir, la relation bien connue cos?(#) + sin?(f) = 1 entraine que sin(27/n) est algébrique
sur Q(cos(27/n)), et donc sur Q par I’Exercice 1.



Exercice 3.

Dans Q(x) on a la relation 23 — sz + 2 = 0, ce qui montre que = est une racine du polynoéme
t3 — st +2 € Q(s)[t]. Ainsi Q(x) = Q(s, ) est une extension algébrique de Q(s). On prétend que
Q(s) est une extension transcendante de Q. Si ce n’était pas le cas, alors par 'Exercice 1 'extension
Q C Q(x) serait également algébrique, ce qui est absurde. Donc [Q(s) : Q] = oco.

Calculons ensuite le degré de Q(x) sur Q(s). On prétend que t3 — st + 2 est irréductible dans
Q(s)]t], et il s’ensuivra que [Q(x) : Q(s)] = 3. Si ce polynéme n’est pas irréductible, puisqu’il est de
degré 3 il doit admettre une racine dans Q(s). Puisque s est transcendant sur Q, on peut traiter s
comme une variable indépendante et oublier qu’elle a été définie en fonction de x. Supposons donc
qu’il existe p(s),q(s) € Q[s] tels que

On obtient donc
P [pQ — qu] = —2¢% dans Q[s].

Distinguons deux cas :

1. p est un polynéme constant, qu’on peut sans perte de généralité prendre égal & 1. Dans ce
cas 1 —sq? = —2¢>. Le terme constant de 1 — sq¢? vaut 1, tandis que celui de —2¢® vaut —2b3
ot b est le coefficient constant de ¢. Donc b € Q est une racine cubique de —1/2, ce qui est
impossible. Donc p ne peut étre constant.

2. pn'est pas constant. Puisque p divise le membre de gauche, il doit aussi diviser —2¢?, et donc
¢>. En particulier p et ¢ ne sont pas premiers entre eux. Or on peut sans perte de généralité
les supposer premiers entre eux, on a donc une contradiction.

On obtient ainsi que t3 — st + 2 est irréductible dans Q(s), ce qui conclut.

Voici une autre méthode pour montrer que t3 — st +2 € Q(s)[t] est irréductible. Par le lemme
de Gauss III, il suffit de montrer que ce polynéme est irréductible dans Q[s][t]. Par la Proposition
3.9.1, il suffit de montrer que la réduction modulo s, & savoir t3 4+ 2 € Q[t], est irréducible. Par
Gauss I1I encore, il suffit de montrer que t3+2 € Z[t] est irréductible, et cela se vérifie en appliquant
le critére d’Eisenstein.

Exercice 4. _

Note that the complex roots of 22 — 2 are of the form eyx/ﬁ for 0 < k < n. Moreover, note that
22" — 32" + 2 can be factorized as 2" — 32" +2 = (2™ — 2)(2™ — 1). One can conclude for Lemma
4.3.3 point (1) that the splitting fields are the same and they are given by Q(¢, ¥/2) .

Exercice 5. 1. : These two polynomials are 23 + z + 1 and 23 + 2 + 1, because we know that
a degree 3 polynomial is irreducible if and only if it does not have a root. If we plug in 0,
this means that we have to have a constant term, and if we plug in 1, this means that there
has to be an odd number of terms. These two conditions together leave only the above two
polynomials.

2. In both cases if o denotes the class of = in the quotient, then o2 and a? are also roots of
f. This follows from f(a?) = f(a)? = 0 and f(a?) = f(a)* = 0. Note that they are indeed
diffferent elements because they are represented by the classes of the polynominals x, z? and
22 + z and 23 + x respectively in the cases f =23+ 2 + 1 and f =23 + 2% + 1.

Remarque. C’est un fait général qui suit du fait que tous les corps finis sont des corps de
décomposition que si f(z) € Fy[z] est irréductible, alors il scinde sur Fy[z]/f(x) et les racines
dans le quotient sont données par les classes 27 pour i = 0, deg(f) — 1.

*This is also well understood using Galois theory.



3. Note that f and g are irreducible and that K is a field such that L = Fa[z]/f = Fa(«), where
a is a roots of f. Since L is a extension of degree 3 of K = Fa[z], it is a finite field. Then by
theorem 4.4.17, L is a splitting field of % — 2 over K. To see that it is also the splitting field
of g, we know from the previous point that K contains all the roots of g and is an extension
of degree 3. Using this one can conclude that K satisfies the definition of being the splitting
field of g.

Exercice 6. 1. Use the following isomorphisms to define n: K(a) — K'(a/)

K(a) = K(z]/(ma,k) = K'[2]/(§(ma,x)) = K'[2]/(ma k1) = K'()

This shows that L = L', and moreover by the universal property of polynomial rings and of
fraction fields we have that 7 is the unique extension of ¢ such that n(«) = o'.

2. Use point (1) with the automorphism K(z) — K(x) given by x + x + 1. This isomorphism
is induced by the universal property of polynomial rings and of fraction fields, and also that
it is an isomorphism because it has an inverse given by x +— =z — 1

3. Use point (1) with the automorphism K(z,y) — K(x,y) given by x — z and y — z +y, here
the inverse is ¢ — x and y — y — x.
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Exercice 1.

We note that F, = Z/26Z, see Theorem 4.4.17 (7). Let o € F3;. Then ord(e) € {1,2,13,26}.
As a # 1,—1, it follows that ord(a) € {13,26}. If ord(a) = 13, then (—a)!® = —1 and so
ord(—a) = 26.

Exercice 2. 1. Par le Corollaire 4.4.22, F,» contient un et un seul sous-corps isomorphe a F,»
pour n divisant 7. Si Fps est I'un d’eux, alors les corps intermédiaires de I’extension F,s C Fpr
sont les F,n ou s divise n et n divise 7.

2. Les sous-corps de Fig, en vertu du premier point, sont Fo et Fy, et ils forment une chaine.
Donc Fa(a) = Fyg si et seulement si a ¢ Fy. Par le Théoréme 4.2.17 on a

F}, =~ Z/15Z, F} =7/3Z

et F} C Fij est un sous-groupe. Un élément 0 # a € Fy¢ vérifie Fo(a) = Fig si et seulement si
son image dans Fi; n’est pas contenue dans ce sous-groupe. D'un autre coté, il y a ¢(15) = 8
éléments qui générent Fiy, ot ¢ est la fonction de comptage d’Euler. Remarquons aussi qu’un
élément contenu dans le sous-groupe Fj ne saurait générer le groupe Fig. Il y a ainsi

[Fiel — [Fy|—(15) =15-3 -8 =4
élements 0 # a € Fyg tels que Fa(a) = Fig et (a) # F1X6~

3. L’argument est semblable a celui du point précédent. Les sous-corps de Fa sont F, C F 2, et

on a F,(a) = Fpu si et seulement si a ¢ F,2. Par le Théoréme 4.2.17 on a

FX =Z/(p" = 1)Z, Fp =Z/(p* 1)L

Notons E := {0 # a € Fig | (a) = F}5}. Alors |E| = ¢(p* — 1). Remarquons aussi que E et
IF;Q sont des sous-ensembles disjoints de IB‘;4. Ainsi
{0#a€Fy [Fpla) = By et (a) #FSH = |2/ = DZ\ (BUF)
= p'=1-0"-1) ' -1)
= p' =0’ — o' - 1).

Exercice 3. 1. Notons ¢ := pgdc(f, - x). Comme f est irréductible, on a ¢ = 1 ou ¢ = f.
On va montrer que ¢ = 1 n’est pas possible. Puisque f est irréductible de degré d, le quotient
Fp[t]/(f(t)) est un corps de degré d sur F,. En particulier il contient p? éléments. Par le
Théoréme 3.4.17, on obtient un isomorphisme

¢: Fp[t]/(f(t)) = Fpa

qui se restreint & I’égalité sur F), (puisqu'’il envoie 1 vers 1). Ainsi 'isomorphisme

@ (Fplt)/(f))[x] = Fpala]
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induit par ¢ fait commuter le diagramme

On en conclut que 'extension I, C F ¢ contient une racine de ®(f) = f € F)[z]. Notons a €

. 2 N N . . d
F,a cette racine. Par le Théoreme 4.2.17 & nouveau, « est aussi une racine de ¥ —z € Fp[z].

Donc = — « divise a la fois [ et 2P" — x dans Fpa[z]. Cela implique que (f, - z) C (r—a)
dans I'anneau Fa[z].

Si ¢ = 1, alors par Bézout il existerait a,b € Fp[z] tels que af—i—b(avpd —x) = 1. Cette relation
serait encore vraie dans le plus gros anneau F,e[z]. Or on vient d’établir que (f, a? — ) C

(z — a) dans Fe[z], c’est donc une contradiction. Ainsi ¢ = f, d’ou f divise o — 1.

2. Le Théoréme 4.2.17 nous indique que 2" — 2 se scinde sur Fpa. Or f divise zP" — x, donc
(par unicité de la décomposition en facteurs premiers) le polynoéme f se scinde sur .

3. Puisque f se scinde sur Fq et divise a?" — x dans Fa[z], il suffit de montrer que ' —zna
pas de racines multiples dans Fja. Or le Théoréme 4.2.17 implique que

2#" — 1z est divisible par H (r —a) dans Fufz].
OtE]de

En comparant les degrés et les coefficients dominants, on voit qu’il y a en fait égalité entre
d . -
ces deux polyndémes. Donc zP — x n’a pas de racine multiple.

4. Par le second point, f et g se scindent sur Fq. S’ils ont une racine § en commun dans F 4,
alors 'idéal (f,g) C (v — ) n’est pas égal & Fa[r]. Mais si pgdc(f,g) = 1 dans Fy[z], alors
par Bézout on obtient comme dans le premier point que (f, g) = F,a[x]. Donc pgde(f,g) # 1.
Comme f et g sont irréductibles, on en déduit que f = g modulo une unité (c’est-a-dire
modulo multiplication par un scalaire de F}’).

5. Le premier point montre que 2P — x est divisible par tous les polynomes irréductibles de
degré d. La preuve du Corollaire 4.4.22 montre que zP° — z divise P pour tous les s
divisant d. Donc

H ho divise 2P — 1.

h unitaire irréd.
dans Fp[z]

deg h divise d
Il reste & montrer qu’il n’existe pas d’autre polynoéme irréductible divisant 2?" — x. Soit g un
polynéme irréductible dont le degré ne divise pas d. Si g divise b — x, alors g se scinde sur
Fpa, et donc Fy[z]/(g) s’identifie & un sous-corps de Fpa, c’est-a-dire & un Fps ou s divise d.
Mais dans ce cas
deg g = [Fp[z]/(g) : Fp] = [Fps : Fp] =5

divise d, ce qui est une contradiction. On a donc ’égalité désirée.
Exercice 4.

Cette solution est adaptée de 'article Counting Irreducible Polynomials over Finite Fields Using the
Inclusion-Exclusion Principle de S.K.Chebolu et J. Minac, dans Math. Mag. 84 (2011) 369-371.



1. On a vu dans I’Exercice 3 que tout polynome f irréductible de degré d se scinde sur Fa.
On a vu dans le méme exercice que f n’a pas de racines doubles, et que deux polyndémes
unitaires irréductibles de méme degré n’ont pas de racines en commun. Si fi,..., fn, sont
les polynomes unitaires irréductibles de degré d et Ry, C Fq les ensembles de racines, on a
donc montré que

|Rfi|:d et RfiﬂRfj:(DSii#j.

Ainsi on obtient
dNg = ‘Rfl -t Rde|.

Il reste a déterminer quels éléments de F,a sont des racines de polynomes irréductibles de
degré d. Remarquons que si a € Fja est une racine de f;, alors

Fp(a) = Fplt]/(fi(1))

et en prenant les degrés sur ), on obtient [Fy(a) : Fp] = d. Donc Fy(a) = F,e. Ainsi si a est
une racine de f;, il n’appartient & aucun sous-corps strict L C F 4. Inversément, supposons
que a € F s n’appartienne & aucun sous-corps strict. Par le Théoréme 4.2.17, a est racine de

'~z e [F,[z], donc de 'un de ses facteurs irréductibles de degré e. Alors [F,(a) : F] = e,
et si e < d on obtient Fy(a) & Fpa, ce qui est une contradiction avec le choix de de a. En
définitive nous avons montré que

RpU---URp, =Fu\ [J L

LGF a
ou L parcourt les sous-corps stricts de Fq.

2. Le probléme pour tirer une formule générale du point précédent est que les sous-corps L
ne sont pas tous inclus les uns dans les autres, et que leurs intersections sont non-triviales.
Pour les petites valeurs de d, il est cependant facile passer en revue les sous-corps et leurs
intersections. Nous utilisons sans plus y faire référence le Corollaire 4.4.22.

(a) d = 2. Le seul sous-corps strict de 2 est I,,. Donc

(b) d = 3. Le seul sous-corps strict de I3 est [F,. Donc

p—-D

Naq =
3 3

(c) d=4. Les sous-corps stricts de F1 sont F,, C F2. Donc

(e) d=6. Le premier cas non-trivial. Les sous-corps stricts sont
Fp2 D) Fp C Fp;a.

Ainsi
”Fpﬁ \ (sz UFp3)| = |]Fp6| — |1Fp2’ — |Fp3| + ‘sz O}Fps‘.



L’intersection Fp2 N3 est un corps fini de caractéristique p, donc un corps de la forme
Fps ot s divise & la fois 2 et 3. Donc s = 1 et le cardinal de l'intersection vaut p. Il
s’ensuit que

P —pP—pP+p

= : _

3. Observez que le Corollaire 4.4.22 permet d’écrire explicitement le réseau de sous-corps de
n’importe quel corps fini. Puisque Fpa/m NF ja/m est un sous-corps a la fois de Fpa/m, de Fpa/m
et de Fq, on utilise le Corollaire 4.4.22 pour indentifier cette intersection. Elle est donnée
par s, ot s est le plus grand entier qui divise & la fois d/n et d/m. Puisque n et m sont
premiers entre eux, en considérant la décomposition de d en facteurs premiers on voit que

Ng

s =d/nm.

4. Passons au cas général. Dans la formule établie au premier point, on peut évidemment prendre
I"union sur ’ensemble des sous-corps stricts L qui sont maximaux. Par le Corollaire 4.4.22,
ces sous-corps sont donnés par

n
Fj:= de/s ; avecd = H s jj la décomposition en nombres premiers.
Jj=1

Ecrivons F}, . j, := F;; N---NF} . En utilisant le point précédent par induction sur ¢, on voit
que |Fj,. 5| = p¥i%t. La formule d’inclusion-exclusion nous donne alors

dNgq = ’de|_ UFJ
j=1

n

= p =0T YT R

t=1 J1<<jt
n
= pd—Z(—l)t—H Z pd/sjl"'sjt
t=1 J1<<ji
n
B SR e
=0 J1<<Jt

oil on pose p%%i1%t = p@ pour ¢ = 0. Considérons maintenant un entier r divisant d. On a

n d n
k; )
r:”s-J avec 0 < kj <i;, donc — =
J T
j=1 j=1

ij—k;
[

Par la définition de la fonction de Mdbius, on obtient

i 0 si kj <i; — 2 pour au moins un j,
7 (r) =<1 siVj: k;j >1i; — 1 avec inégalité pour un nombre pair de j,
—1 siVj: kj >i; — 1 avec inégalité pour un nombre impair de j.

Il s’ensuit que
. d
1\t d/sj, 55 _ “ r
S 3 g =Su(f)
t=0 J1<<git rld
ce qui conclut ’exercice.
Exercice 5. 1. By corollary 4.4.22 we know that for every j K;;1 contains a subfield isomorphic

to K;. We can then considered the induced inclusion homomorphism ¢; : K; — Kjiq for
every j > 1.



2. Recall that if K & K N Ko &% .. is an infinite sequence of fields with injectiv homomor-
phisms between each K; and K;1. Then the direct limit is given by

lim K — LLienKi /- 2 = 15-10...04(x) et 1s_1 0...0(x) = x pour chaque entier
% vt s>r, et x € K,

- x = x pour chaque z € K,

is a field with sum given by [z] + [y] and product given by [z] - [y] for x € K, and y € K are
defined as follows: if s > r, then [z] = [ts—1 o ... 0 t(z)] which means that we can suppose
s = r, and thus we define

(a) [a] + [yl = [z + ]
(b) [z] - [y] =[x - 9]

It is clear that the unit and zero element are given by the inclusion of each the zero and unit
element in each field. And since each Kj is a field the sum and multiplication defined as above
endow the direct limit with a ring structure. It is also not difficult to see that each element
[z] € | ];cn K has an inverse, since x € K, for some n € N

Moreover the inclusion Ko < | |;cy K gives us an embedding Ko — hﬂKz
i

3. Note that F, C K. Moreover each extension K; C Kjy1 is a finite extension therefore it is
an algebraic extension. Thus we have that each K is algebraic over F,. We then have that
K is algebraic over I, because each of its element lives in one of the Kj.

4. Let g be a polynomial in K[t]. Since g has a finite sum of coefficients, then there exists n € N
such that g € K,[t]. Let a be a root of g, then K,, C K, («) is a finite extension of degree r,
for some r € N. Therefore K, («) is a field with p™ elements. Hence K,(«) is also a finite
field containing F},. Then we have that K, (o) = K,,. So the root « is also an element of K
since o € K, C K. Thus K is the algebraic closure of F,,.
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Exercice 1. (a) As o ¢ KP? it follows that for all 5 € K we have P # a and thus 2P — a € K|z]
does not admit roots in K. Let F be a decomposition field of 2P — « over K and let § € F
be a root of this polynomial. We have that:

2P —a=2P - P = (z — B)P in Flz].

Let mg g (x) € K[z] denote the minimal polynomial of 8 over K. As 3 is a root of 2P — «, it
follows that mg i (z)|2? — a = (x — §)P. Therefore there exists some ¢, 1 < i < p, such that
mg i (z) = (z — B)°. Now, as mg i () € K|x] we have that:

(0= 0 = 3019 () I8 =t itk (1) € KLl

j=0

It follows that —if = 0 and so @ = p. Therefore mg g (x) = (x— )P = 2P —a and we conclude
that 2P — o € Klx] is irreducible.

(b) To show that L is a field, we will show that the polynomial y* — z(x — 1)(z + 1) € (Fp())[y]
is irreducible. As y? —z(z —1)(z +1) is a unitary polynomial, it is primitive and so, by Gauss
II1, it is irreducible in (Fp(z))[y] if and only if it is irreducible in (Fp[z])[y]. Now, x € Fp[z] is
irreducible and we use Eisenstein with "p = 2" (here p denotes the irreducible in Eisenstein
criterion) to deduce that y* — z(z — 1)(z + 1) is irreducible in (F,[x])[y].

(¢) By Proposition 4.5.7, as char(L) = p, we have that L is perfect if and only if LP = L. We
will show that = ¢ LP.

Assume by contradiction that x € LP. Then, there exists f € L such that x = fP. It follows
that f € L is a root of the polynomial t* — z € F,(x)[t]. As x € Fy(z) is not a p™* power,
see Exercice 3, it follows that the polynomial ¥ — z is irreducible in (Fp(x))[t], see item (a).
This shows that m g (,)(t) ~ ¥ — 2z € (Fp(x))[t].

Consider the chain of extensions:

Fp(z) € (Fp(x))(f) € L

and we have [(Fy(2))(f) : Fp(2)]|[L : Fp(x)]. But [L : Fy(x)] = 2 and [(Fy(2))(f) : Fp(z)] = p,
where p # 2. We have arrived at a contradiction.

(d) We have that L = (Fa(2))[y]/(y* + z(z + 1)?). Note that the polynomial y? + z(x + 1)% €
(Fa(x))[y] admits /z(xz + 1) as a double root and so it is irreducible in (Fo(z))[y]. Now,
by Proposition 4.2.25, it follows that L = (Fo(z))(v/z(z + 1)) = (Fa(z))(v/z) = Fa(y/).
For the last equality, note that Fo(y/z) C (Fa2(z))(y/z) and, as Fo(z) C Fao(y/x), we have
(F2(2))(Vz) € (F2(V2))(v) = Fa(V).

As char(L) = 2, it follows that L is perfect if and only if L? = L, see Proposition 4.5.7. But

1= el 56m € 1 = { (AYDY') 1o, ) € Ralval, v #0)
{ae
(o)

(). fol) € Fala], fo(a) #o} ~ ()
and clearly \/z ¢ L2




Exercice 2(a)(i) Let o € L\K. As o? € K, it follows that « is a root of the polynomial 2% +a? €

(i)

(iii)

K[z] and thus [K(«) : K] < 2. On the other hand, we have that [K(«) : K] > 2, as a ¢ K,
and we conclude that [K(«): K] =2 and K(a) = L.

The polynomial 22 + o? € Klx], where a € L\K, admits « as a double root, hence it is

irreducible in K[z]. Now, as this is a unitary irreducible polynomial of degree 2 and as
a ¢ K, it follows that m, x(z) = 2% + o and so we conclude that o € L\K is inseparable.

Let o € L\ K be such that o? ¢ K. First, we have that [K(a) : K] > 2 and, as K(a) C L, it
follows that [K(«) : K| <[L: K] =2, and so [K(«) : K] =2, hence K(a) = L.

Secondly, as o? € K(a) and o? ¢ K, there exist a,b € K, a # 0, such that a® = aa + b.

Then:
2
« I} b
a a a

Set =2 € K(a) and ¢ = 5 € K. We have that K (o) = K(2) = K(8) and so L = K(B).

Moreover, 3 is a root of the unitary polynomial 22+ z 4 ¢ € K|x] and, as [K(8) : K] = 2, we
conclude that mg g (2) = 22 + 2 + c.

Note that a polynomial of the form x? 4z +c is always separable as the derivative is 1 # 0. So,
f is automatically separable. Now 341 € K () is a root of mg i (), as (8+1)2+(8+1)+c =
%+ B+ c = 0, and we conclude that 7 : K(8) — K(8B) given by 7(8) = 8+ 1 is an
automorphism of K (8). Then, by Proposition 4.6.3.4 we have that | Gal(K(8)/K)| = 2.

Note that K(8)(" = K by theorem 4.6.13. If v € L\ K then 7(7) # v and by proposition
4.6.3.(3), we get that the minimal polynomial of 7 is (t —7)(t — 7(7)). Therefore K C L is
separable.

Exercice 3.
We use the same techniques as in Example 4.6.5, and denote G = Gal(K/Q) = Autg(K).

e Let K = Q(i). The irreducible polynomial 2% + 1 € Q[z] has two distinct roots in Q(i), and

they are i and —i. From Prop 4.6.3(1), it follows that every element in G sends i to i or to —i.
By Prop 4.6.3(2), there is at most one element in G for each possibility. By Prop 4.6.3(4), it
holds that | Gal(K/Q) |= [Q(i) : Q] = 2, hence Gal(K/Q) = {idg(;), o} = Z/27Z, where (the
identity sends i to i, and) o sends i to —i. As o is Q-linear, we have that o(a + ib) = a — ib,
the conjugation.

Let K = Q(\/7). Using the same steps as above, considering the irreducible polynomial
22 — 7 € Qlz], we get that Gal(K/Q) = {idQ(ﬁ),a} >~ 7./27, where (the identity sends /7
to /7, and) o sends /7 to —/7. As ¢ is Q-linear, we have that o(a + /7b) = a — \/7b.

Let K = Q(+/2). The irreducible polynomial 3 — 2 € Q[z] has only one root in Q(+/2). As
by Prop 4.6.3(1), every root of this polynomial gets sent to a root of the same polynomial
by an element in GG, and for each such possibility there is at most one element in G by Prop
4.6.3(2), we conclude that G = {idQ( %)} is trivial.

Let K = Q(w?), where w = €?7/3, The irreducible polynomial 2> + = + 1 € Q[z] has two
roots in Q(w), which are w and w?. As for the first and second example, it follows that G is
cyclic of order two, consisting of the identity and o, which sends w to w?. We have in fact
K = Q(iv/3), and one can argue as in the first two points.

Exercice 4.
We have the following extension tower:

Q CQ(V2) CQ(\/1+v2).



The extension Q C Q(v/2) is Galois, as Q is a perfect field and Q(v/2) is the decomposition
field of the polynomial 22 — 2 € Q[z], see Theorem 4.6.15. Similarly, the extension Q(v/2) C

Q(V1++/2) is Galois, as Q(v/2) is perfect and Q(v/1++/2) is the decomposition field of the
polynomial 22 — 1 — /2 € Q(v/2)[z].

We now consider the extension Q C Q(v/1 4 v/2). We note that this extension is of degree 4.
We also note by develloping

(¢® = (1 +v2))(@? — (1 - V2))
/ : LA 9.2 _ 492
that v/1 + /2 is a root of the polynomial 2 —22% —1 € Q[x], hence mm(@(x) x*—2x°—1by
the degree because [Q(v/1 +v/2) : Q] = 4. Moreover, the other roots of 2* — 222 — 1 are —/1 + /2

and +1/1 — /2. Now, we remark that Q(v/1+ +v/2) C R, therefore +v/1 — /2 ¢ Q(v/1 +V/2).
Let 0 € Gal(Q(v/1++v/2)/Q). Then o(vV1++v2) € Q(V/1 + v2) is a root ofm\/m@(x) and thus

o(v1+v2) = £V1 + /2, see Proposition 4.6.3 (c). It follows that | Gal(Q(v/1+ v/2)/Q)| = 2
and we conclude, using Corollary 4.6.13, that the extension Q C Q(v/1 + v/2) is not Galois.

Exercice 5.

In the following solutions, we use the same technique to find the minimal polynomials as in Example
4.6.11. With Proposition 4.6.10, it holds that for an element z € Q(«, ), the minimal polynomial
is m, g = [[(z — 2’), where 2’ is a Galois conjugate of z.

Z/

1. Asin Example 4.6.4 (3), we see that G = Z/2Z x Z/2Z. The elements in G are the identity,
o, with 0(v/3) = V3 and o(\/7) = —/7, 7 with 7(v/3) = —v/3 and 7(v/7) = V7, and 70,
with 70(v/3) = —v/3 and 70(v/7) = —V/7.

The elements {1,v/3,v/7,V3v7} form a basis of Q(v/3,+/7) over Q. Now let z € Q(a, ),
with 2 = a + bv/3 + V7 + dv3V/7. The conjugates of z are

z, a+bV/3—eVT—dV3VT, a—bV3+eVT—dV3VT, a—bV3— VT +dV3VT.
As noted above, the minimal polynomial is

m.q = (x—2)(x—(a+bV3—cVT—dV3VT)) (x—(a—bV3+cVT—dV3VT)) (x—(a—bV3—cVT+dV3VT)),

if all factors are different. Hence the minimal polynomials of the elements \/3, V3 + V7 , V3.
V7,v3 " are

2
myso== -3
Mg yig=(@—V3-VT) (- V3+VT)(x+V3-VT)(z+V3+VT)

5 1

m\/§717Q:x g

2. We note that since § = —1 € Q, it holds that Q(«, 8) = Q(«). « is a root of the polynomial
23 + 1. The other two roots are —1, and e~2i7/3 = @. Since one of the roots is contained in
Q, over which every element of the Galois group acts as the identity we get by Prop 4.6.3 (1)
that every element of the Galois group G either sends « to a, or to @. By (b), there exists at
most one element for each possibility. Hence |G| < 2. There are exactly two automorphisms,
one being the identity, and the other acting on a by sending a to @. Therefore, G = Z/27.

Again, we calculate the minimal polynomial of an element z = (a + ba)) € Q(«) as above. Its



minimal polynomial is m, g = (z — a — ba)(z — a — ba), if the factors are different. We get

Mag=(r—a)(z—a)=2*—z+1
ma+57(@:x2+x+1
ma.,g@::cz—i—:v—kl

Ma-1.0 =zt —z+1

. Let a = e™/? and B = i. Since a = cos(n/3) + isin(7/3) = 3 + 3iv/3, it follows that
a € Q(iV3), and Q(a) € Q(iv3). With iv/3 = 2a — 1, it follows that iv/3 € Q(a),
and Q(iv3) C Q(«). With this, it follows that Q(a) = Q(iv/3). Furthermore, Q(a, 3) =
Q(iv3,4) = Q(v/3,i). As in Example 4.6.4 (c), we see that Gal(Q(v/3,7)/Q) contains 4 ele-
ments, the identity, o, 7 and o7, where o(i) = i,0(v/3) = —V/3,7(i) = —i,7(v/3) = /3 and
o1(i) = —i,07(v/3) = —V/3, and that Gal(Q(v/3,1)/Q) = Z/27Z x 7,/2Z. On the elements «
and [, those four elements act as follows:

O’(Oé) = e_(iﬂ—/g)a 0—(5) = f, T(Oé) = 6_(i7r/3)> 0(6) =B, 0—7_(04) = 0470—7_(/8) =—p.

As for the first example, we remark that the elements {1,4,v/3,4v/3} form a basis of Q(1/3,1)
over Q. Let z € Q(v/3,i) with z = a + bi + ¢/3 + dv/3i. Then, as stated above, the minimal
polynomial of z is of the following form, if all factors are different

m.q = (¢ = 2)(x = 0(2))(z - 7(2))(z - 97(2))

=(z—2)(z— (a+bi — V3 —dV3i))(z — (a—bi+ V3 — dV3i))(z — (a — bi — cV/3 + dV/3i)).

We note that the element o is of the form a = § + 3(iv/3) in the basis {1,4,/3,4v/3}. Then,
the minimal polynomials are of the form

Ma,g = (& — (0.5 4 0.50v/3)) (z — (0.5 — 0.51V3)) = (z — ) (z — e =7/?))

Moo = (x — (0.5 +i 4+ 0.5i1V3))(x — (0.5 4+ i — 0.5V34))(z — (0.5 — i — 0.5v/3i))(z — (0.5 — i + 0.5V/3i))
Map,0 = (¥ — (0.5i — 0.5v/3))(x — (0.5i + 0.5v/3))(z — (—0.5i — 0.5v/3))(x — (=0.5i + 0.5v/3))

Ma-1,0 = Myir/9),g = Mys o550 = (@ — (0.5 = 0.51v3))(z — (0.5 + 0.5iV/3))

. Let o = (/%) and g = 4. We first calculate G = Gal(Q(c, 8)/Q). We remark that 8 =
a3, and hence Q(c, 8) = Q(«). Furthermore, « is a root of the polynomial 2% + 1, which
decomposes as 2% + 1 = (22 + 1)(2* — 22 + 1). The polynomial z* + 1 has two complex
roots #i. The polynomial z* — 22 + 1 has four complex roots o, a®, a7, a'l. Furthermore, this

polynomial is irreducible over Q.

Hence the minimal polynomial of o is mq,q = x* — 22 + 1. Since by adjoining « to Q, all roots
of mq,g are adjoined as well, we remark that Q(«) is the splitting field of the polynomial
z* — 22 + 1 over Q. By Proposition 4.6.3 (4), we get that |G| = [Q(a) : Q] = degmqa g = 4.
The elements in G are the identity, 7, 0,7, where the root « gets sent to a root of x4 — 2% +1

by every element of G. We let 7(a) = o, 0(a) = a”,n(a) = o'l

The minimal polynomials are calculated as stated above by observing the action of the ele-



ments id, 7, o, n. It follows that

Mag = (¢ — a)(z = 7(a))(z — o(a))(z —n(a)) = (¢ — a)(z - ®)(z — ") (z — ') =2 —2? +1

Mat8,0 = Mayes g = (T — (a+a’))(z —7(a+a ))(x—0(0é+043))( n(a+a?))
=(z—(a+a)(z—-(°+)(z— (" +a))(z— (o' + ) =2t +32°+9

Mab0 = Mat g =M 5105050 = (& — &)@ —7(ah))(@ —a(a®))(@ —nla"))
=(z—aYz - z—aN(z—a) =22 +z+1

Ma-1,0 = Mall g = (v — ozn)(x _ T(all))(x _ U(an))(gj _ 77(0411))
= (z—a')(z - Ct7)(x — 047)($ —a)= R |

Exercice 6. 1. As deg f = 3 one just has to verify that f does not have a root over Q. So, we
need to show that if @ and b are non-zero relatively prime integers, then

(a/b) + (a/b) +1 #0,

or equivalently
a® 4+ ab® +b* #£ 0.

Suppose the contrary. Then b divides a® and a divides 3. Using the relative prime assumption
we obtain both a and b are plus-minus 1, but one cannot add together three numbers, each
plus or minus 1 to get 0.

2. Let «, 8 and < be the three roots of f in its splitting field. Assume that they are all real.
Then we have

f=—a)(z—p)(x—7)

and hence

at+B+v=0

and

af +ay+ Py =a

From the first equation we have v = —a — . Plugging this into the left side of the second
equation yields

af +a(—a— )+ B(—a—B) = —a? —Bz—aﬂ—— (a—i—ﬂ) ———=x<0
However, we assumed that @ > 0. This is a contradiction.

3. As deg f = 3, and complex roots of a real polynomial come in complex conjugate pairs, f
has to have a real root. Let this real root be a. Then, Q C Q(«) is a degree 3 extension and
additionally Q(«) C R. Hence, the other two roots of f, say § and -, cannot be contained
in Q(«). So, every element g € Gal(Q(«)/Q) can send « only to a. However, as a generated
Q(«) this means that g = id.



4. Let o, f and 7 be as in the previous point. Then both 5 and v are roots of h = ﬁ € Q(a)[x].
As this polynomial has degree 2, and 8 and v are not in Q[z], h = mgg(a) = My,Q()- S0,
Q(av, B,7y) has degree 2 over Q(«). So, by the multiplicativity of the degrees of field extensions,
L = Q(«, B,7) has degree 6 over Q. Let G be the Galois group of L over Q. Then, G acts
faithfully on «, 8 and ~y, which yields an embedding G < S3. As both have 6 elements, this
is in fact an isomorphism.

Exercice 7. 1. Let 3 be a root of f. It holds that 8 — 3+« = 0. Let v € F, C K. Then,
using Fermat’s little theorem, which states that 4¥ = v modulo p, it holds that over a field
of characteristic p, we have

BN =B+ +ta=pF+7"-B-—v+a=p"'+7-B-v+a=p"-F+a=0.

Hence all 8 + v, where v € F, are roots of f. We get p distinct roots, and as F, C K, by
adjoining /5 to K, all roots are contained in K () and hence L = K ().

Moreover, we have that mg i = f. Let mg x = [ ¢;(x—(8+7) in L[z] with I C Fy[z]. Then

the coefficients in front of z//I=1 are exactly — dover(pey) = 1B+ 2 er- If we suppose
that |I| < p, one contradicts the fact that 5 ¢ K. Therefore mg x = f.

We use Proposition 4.6.3 and get the following: by (a), G acts on the roots of f. By (b), since
L = K(), there is at most one element in G that sends the root 5 to the root 8 + ~, for
v € Fp,. Therefore, |G| < p. There are indeed p elements in G, which are of the form o, with
oy(B) =+~ for all k € F,. We get p automorphisms, and hence G = Z/pZ.

2. The fact that f is irreducible over K follows from Prop 4.6.3 (d), which states that |G| =
[L: K], where L = K(f3) is the splitting field of f. By the previous point, |G| = p, and hence
[K(B) : K| = degmg kg = p. Since 3 is a root of f, and since its minimal polynomial is of
degree p, it follows that f ~ mg i, and hence, f is irreducible over K.

3. Let £ € Fy(t) a root of 2P — x +t. Then, g,h € F[t],h # 0 and it holds that

P
(4)'= (2) +t=0eg" —ghr '+t =0.

h h

Denote the degree of g by dg4, and the degree of h by dj,. Then, the degree of the following

polynomials are
deg(g”) = pdg, deg(gh?’™') = dy+ (p— 1)dn, deg(th?) =1+ pdp.

In order for the sum g” — ghP~! 4 th? to be zero, the degrees of each of the summands needs
to be canceled out.

If d, > dg, then the degree of th?, being 1+ pdy, is strictly bigger than pdy and dy + (p —1)dp,
and hence th? can’t be canceled out, and the sum of polynomials can only be zero if h = 0,
but this is a contradiction to the choice of g, h.

On the other hand, if d4 > dj, then nothing can cancel out g”, which one sees by a degree
comparison, and hence the sum gP — ghP~! + th? can only be zero if g = 0 and h = 0, which
is a contradiction.

4. Let u be aroot of f:uw’ —u+t =0« v’ —u = —t, and hence F(t) C Fp(u). With u
being transcendental over F,,, it follows that the splitting field is F,(u). We remark that by
the second part of the exercise, all roots are of the form u + «, where v € F,,, and hence all
roots are contained in Fp(u).

Exercice 8 (Galois correspondence). 1. Let L = Q(v/7). We have that [L: Q] =2, as V7 ¢ Q
is a root of the irreducible polynomial 2 — 7 € Q[z]. Now, Q is a perfect field and L is the

splitting field of 22 — 7 € Q[z] over Q, hence the extension Q C L is Galois. By Proposition



4.6.3(d), it follows that | Gal(L/Q)| = 2 and so Gal(L/Q) = Z/27Z. The only subgroups of
Gal(L/Q) are Gal(L/Q) and {Idy}, therefore the only sub-extensions of L are Q = LG2I(L/Q)
and L = Lilde},

. Let L = Q(v/2,v/3). We have seen in Series 9, Exercise 5.2 that [L : Q] = 4. Now, Q is a
perfect field and L is the decomposition field of (2% — 2)(2? — 3) € Q[z] over Q, hence the
extension Q C L is Galois. By Proposition 4.6.3(d), it follows that | Gal(L/Q)| = 4. Now,
let 0,7 € Gal(L/Q) be such that o(v/2) = —v/2 and o(v/3) = V/3, respectively 7(v/2) = V2
and 7(v/3) = —v/3. We see that 02 = 72 = Id;, and that o7 = 70. Therefore Gal(L/Q) =<
o,7 >= 7/27 x 7/2Z. Now, Gal(L/Q) admits 3 non-trivial proper subgroups: < o >,
< 7 > and < o7 >, each isomorphic to Z/27Z. Let H be one of these subgroups. By
applying Theorem 4.6.18, we determine that L C L is Galois and [L : L] = |H| = 2.
Therefore, [L¥ : Q] = 2. One checks that Q(v/3) € L<>, as o(v/3) = V/3, and, similarly,
that Q(v/2) € L<7> and Q(v/6) C L<97>, respectively. We conclude that

L7 =Q(v3), L= = Q(v2) and L<°™> = Q(V/6).

. Let L = Q(ﬂ, \/§7 \/5) and consider the extension chain:
QCQ(WV2,v3)CL

We have that [L: Q] = [L : Q(v/2,v3)][Q(v/2,v3) : Q] = 8, as v/5 ¢ Q(v/2,V/3) is a root of
the polynomial 22 — 5 € Q(v/2,v3)[z]. Now, Q is a perfect field and L is the splitting field of
(22 — 2)(2% - 3)(2% — 5) € Q] over Q, hence the extension Q C L is Galois. By Proposition
4.6.3(d), it follows that | Gal(L/Q)| = 8. Let 01, 02,03 € Gal(L/Q) be such that:

o1(V2) = —V2, 01(V3) = V3 and 01(V5) = V5

o2(V2) = V2, 02(V3) = =3 and 03(V5) = V5
o3(V2) = V2, 03(V3) = V3 and 03(v5) = —V5

One shows that 01-2 = Idy, for all i« = 1,2,3 and that o;0; = o0j0; for all i # j, therefore
determining that Gal(L/Q) =< o01,02,03 >= Z /27 x Z/27 x Z/2Z. We first consider the
subgroups of order 2 of Gal(L/Q). There are 7 of them and each of these is cyclic and
generated by an element of Gal(L/Q). Let H be one of these subgroups. We apply Theorem
4.6.18 to determine that L C L is Galois with [L : L] = |H| = 2. Therefore we have
[LH . Q] = 4.

Let H =< o1 >. One checks that @(\/3, \/5) C LH as 01(\/§) = /3 and 01(\/5) = /5.
Therefore, Q C Q(v/3,v5) C L, where [Q(v/3,v/5) : Q] = 4 and [L¥ : Q] = 4. We conclude
that L = Q(v/3,/5). Similarly, one shows that:

L[<02> — Q(\/i \/5)7 L<03> — @(\@, \/5)7 [ <o102> _ Q(\/é, \/g)
[[<o103> Q(\/g, \/ﬁ% [[<0203> _ Q(\[Q, \/ﬁ)7 [,<010203> _ Q(\TG, \/ﬁ7 \/ﬁ) _ Q(\fﬁ, \/ﬁ)

We now consider the subgroups of order 4 of Gal(L/Q). Again, there are 7 of them and each
of these is generated by two distinct elements of order 2 of Gal(L/Q) and is isomorphic to
7.)27 x 7./27. Let H be one of these subgroups. We apply Theorem 4.6.18 to determine that
LT C L is Galois with [L : L] = |H| = 4. Therefore we have [L¥ : Q] = 2. One shows that:

[<o1,02> Q(\/g), [ <01,03> _ @(\/g)’ [, <01,0203> _ Q(\/ﬁ), [,<02,08> _ Q(\/ﬁ)
[,<02,0103> _ Q(\/ﬁ), [,<03,0102> _ Q(\/é>v [,<0102,0103> _ Q(\/%)



4. First, we note that the extension Q C F is Galois, as Q is a perfect field and F is the splitting
field of the polynomial t* — 22 — 1 € Q[t] over Q. By Proposition 4.6.3(d), it follows that

|Gal(E/Q)| = [E : Q]. Wesee that t1—2t2—1 = (t?—1—v/2)(1>—1+v2) = (t—V/1 +V2)(t+
1+v2)(t — V1 —V2)(t + V1 —+2). Therefore E = Q(v/1+v2,v/1 —+2). Now, we
have that 7 = \/1 +42- \/1 — /2 € E and thus QW1+ \/i,z) C E. Conversely, we have
1-vV2=i-(V1+v2)™' € Q1+ 2,i) and we deduce that £ = Q(v/1+v/2,i). We

now consider the extension chain:

QCQ(Y1+V2)CE.

Since v/1 4+ /2 is a root of t* —2t2 —1 € Q][] it follows that [Q(v/1 +v/2) : Q] < 4. We have
already seen that the polynomial ¢* —2t2 — 1 does not admit roots in Q. We now assume that

there exist a, b, c,d € Q such that:

th—2t> 1= (> +at +b)(t* + ct +d).

a+c=0
b d= -2
Then tact and so ¢ = —a, d = —3 and —a(3 +b) =0.
ad 4 bc =0
bd = —1

e If a =0, then ¢ = 0 and b+ d = —2. Keeping in mind that d = —%, it follows that
(b+1)2 =2, hence v/2 € Q, which is a contradiction.

o If % +b=0, then b> + 1 =0 and so i € Q, which is a contradiction.

We have thus shown that t* —2t2—1 € Q[t] is irreducible and therefore [Q(v/1 + v/2) : Q] = 4.
We remark that Q(v/1++v2) CRand so [E: Q(v1+v2)] =2, asi ¢ Q(W1++2)is a
root of 2+ 1 € Q(v/1 + v/2)[t]. In conclusion, [E : Q] = 8, hence | Gal(E/Q)| = 8.

Let 0,7 € Gal(E/Q) be such that O'(\/l +42) = v1— /2 and o(1) = —i, respectively
7(vV/1+4++v2) = V1 ++/2 and 7(i) = —i. One checks that:

2(\V14+V2) = —\1+V2, o%(i) =i

BV 14+V2) = —\1-V2, o3(i) = —i
(V1 +V2) =1+ V2, o(i) =i

and thus deduces that 0* = 72 = Idg. Now < o > is a subgroup of order 4 in Gal(E/Q)
and 7 ¢< o >. We deduce that Gal(E/Q) =< 0,7 > and, moreover, as o7 # 7o, Gal(E/Q)
is non-commutative. Lastly, Gal(F/Q) admits two elements of order 2: o2 and 7, and we
conclude that Gal(F/Q) = Ds.

We now determine the subgroups of Gal(E/Q). There are 5 elements of order 2 in Gal(E/Q):
7,02, 70?, 7o and o7, each generating a cyclic group of order 2. Let H be one of these
subgroups. By applying Theorem 4.6.18, we determine that E¥ C E is Galois and [E :
EH] = |H| = 2. Therefore, [E* : Q] = 4. One checks that:

7a?(\V1+V2) = 7(—\/1+ V2) = —\/1 + V2 and 70%(i) = —i
ro(\V14+V2) =71 -V2) =7(Gi(\/1+v2) ') =—\/1—-V2and 70(i) =i




or(V1+vV2) =0(\/14+V2)=1/1—V2and o7(i) =i
and therefore
ro? (V) = 7?(Y 1+ V3)? — 1) = (roX (V1 4+ VD)2 =1 = (—/1+ V22— 1= V2

m(\/1+x/§—\/1—\/5):70(\/1+\/5)—m(z‘( 1+v2)™ ) = 1 -vV2—7(—i(\/1-v2)"}

:—\/1—\@—7(—\/1+\/§):\/1+f—\/1—f2
or(\/1+ﬂ+\/1—ﬁ)=\/1—ﬁ+m(i( 1+v2)™ ) =y1-V2+a(—i(\/1+V2))

:\/1—\/§+i(\/1—\/§)‘1:\/1—\/§+\/1+\/§

The corresponding sub-extensions are

E<T> _ Q(m)7 E<o?> _ Q(\/1 - \/i)7 E<To?> _ Q(\/i i)
F<To> :Q(\/l"i‘\/i_ \/1—\/5) and E<o7> :@(\/1—1—\@—1— \/1—\@).

Lastly, Gal(E/Q) admits 3 subgroups of order 4, one of which is cyclic, < ¢ >, and the
other two are isomorphic to Z/27Z x Z/27, < 7,0 > and < 70,02 >.Let H be one of
these subgroups. By applying Theorem 4.6.18, we determine that £ C FE is Galois and
[E: EH] = |H| = 4. Therefore, [E¥ : Q] = 2. One checks that:

o(iV2) = —ioc(V2) = —io((\V 1+ V2)? = 1) = —i(\/1 - V2)? - 1) = iV2

(V3 = T(V1+ V2P~ (= V1+ V2P —1=2
(V2 = A(VI+ V22— 1) = (—VI+ V22 —1 =12
To(i) = 7(—i) = i and 02(i) = i
The corresponding sub-extensions are:
E<O’> — Q(Z\/ﬁ), E<T,02> — Q(\/Q) and E<Ta,a2> — Q(l)

Exercice 9.
Let G be a finite group and let |G| = n. By Cayley’s Theorem, we know that we can embed G as
a subgroup of S,,.

Now, consider the ring F' = Q[z1,...,z,] and for each o € G define:

G+ F' = F by ¢5(7;) = 24(;y for alll <i<n.

One shows that ¢, is a ring homomorphism for all ¢ € G. Moreover, we have that ¢, o ¢,-1 =
by-1 0 ¢y = Idp, hence ¢, is invertible for all ¢ € G with inverse ¢, ! = ¢ 1.

Let E = Q(z1,...,xy,) be the field of fractions of F. Then ¢, : F' — E is an injective ring
homomorhism, as it is the composition of two injective ring homomorphisms.We now apply the
universal property of the fraction field, to determine that:

¢o : B — E, where ¢ (z;) = 2,; forall 1 <i<n

is a field homomorphism. Now, one checks that, in fact, ¢, is a Q-automorphism of F.

Let H = {¢,| 0 € G} be a subset of Autg(E). Since ¢y, © ¢g, = Poy0, for all 01,00 € G,
it follows that H is a subgroup of Autg(E). Moreover, we have that H = G, hence H is a finite
group. We now apply Theorem 4.6.12 to F and H to deduce that [E : E¥] = |H| = | Gal(E/EH)|,
hence B C E is Galois, see Corollary 4.6.13. We conclude that Gal(E/E) = H = G.
Remarque. En utilisant des techniques de géométrie algébrique et de topologie algébrique on peut
montrer que tout groupe fini est réalisé comme un groupe de Galois d’une extension de C(t).



1. Avec de la géométrie algébrique, on voit que les extensions finies de C(¢) correspondent & des
morphismes de courbes algébriques X — IP’}C tel que si ont enléve un nombre fini de points &
IP’%:, le morphisme devient un revétement au sens topologique.

2. IP’(%: privé d’un nombre fini de points est le plan complexe C privé d’un nombre fini de points.
Par la topologie algébrique, on sait que 71 (C \ {p1,...,pn}) = F, le groupe libre sur n-
générateurs. On sait également par la théorie des revétements, comme tout groupe fini G
admet une surjection F,, — G pour un certain n, qu’il existe un revétement fini de C\
{p1,...,pn} avec groupe de Galois égal a G.

3. En retournant a la géométrie algébrique, on obtient alors un morphisme de courbes algébriques
X — P{. avec groupe de Galois G et donc une extension de C(t) avec groupe de Galois G.

Si ce genre de choses vous intrigue, le rédacteur vous encourage & suivre des cours de géométrie
algébrique et de topologie algébrique, et/ou a faire des projets dans ces domaines.

Exercice 10.
Remarquons que

(o= () (= () e () o

Notons que C(vt) — C(v/t) qui envoie v/t ﬁi et Vt ﬁﬁ sont des automorphismes.

Comme X™—+/t est irréductible par Einsenstein, il suit que les deux polynomes en facteur ci-dessus
sont irréductibles. On voit alors que 'extension

WJVE+T
Vi—1

C(t)cC(Wt)cC

est de degré 2n. Notons x := { ViHL s racines de X2 — 2 (t+1> X™+1 sont

Vi-1
1 1 1
n—1 n—1
xvé‘nzw"a n x777§n77"'7 n ]
x x
ol &, est une racine primitive n-iéme de I'unité. Dés lors C ( v ﬁ’j) est le corps de décomposition

xen - () X4,
Notons ¢ € Gal(L n/(C( )) automorphisme tel que o(z) = &,z pour &,. Notons 7 pour

lautomorphisme tel que 7(x) = % Comme les racines de X" — 2 (t“) X™+ 1 sont de la forme

Eﬁn pour e = 1,—1 et 7 =0,. — 1, on voit que tout élément du groupe de Galois est de la
forme 7¢07. Comme 0" = id, 72 = 1d et ToTo =id on a dés lors un morphisme surjectif

Doy — Gal(Ly, /C(t))

qui est un isomorphisme par cardinalité.



