EPFL - Fall 2024 Domenico Valloni
Rings and modules Exercises
Sheet 4 - Solutions

There was one bonus exercise on this problem sheet. The exercise was denoted by the
symbol # next to the exercise number.

Exercise 1. Let R be a commutative ring, and let M be an R-module.
(1) Show that Homp (M, —) is left exact. That is, for any short exact sequence of R-modules

I n

0 > N > N > N >0,

there is an induced exact sequence

0 —— Hompz(M,N') —— Homp(M, N) — Hompzp(M,N") .

(2) Give an example of a ring R and an R-module M such that Homg(M, —) is not right
ezact. That is, give an example of a surjection of R-modules N = N" such that the
induced morphism Hompz(M, N) - Homp(M, N") is not surjective.

Proof. (1) Suppose that
0—> N ——5 N —5 N >0,
is exact. We want to show that

0 — Homp(M, N') 2= Homp(M, N) == Homp(M, N") ,

is exact. Let ¢ € Homp(M, N') and suppose it is mapped to 0, i.e. t0¢p : M — N'
is the zero morphism. Since i is injective this implies that ¢ = 0. So we get exactness
at Homp(M, N'). To check exactness in the middle, observe that since s o i = 0 we
have the containment im(i o —) C ker(s o —=). Let ¢ € Hompz(M, N) be such that
so¢: M — N"is the zero morphism. Then ¢(M) C ker(s) = i(N'), and therefore ¢
factors through i : N' - N.

(2) Let R = Z. Consider the surjection Z — Z/QZ and let M = Z/QZ. The induced
morphism

Homy, (% /97, Z) - Homy (227, % [27,)
can not be surjective since the first group is zero, but the other is not.
OJ

Exercise 2. Let R = k[z,y] where k is a field. Extend the complex below to a free
resolution F, of the R-module k = R/(I’y). Then compute Exty, (k, R) for each i, and
note that you get the same as for the resolutions in Example 5.3.9 in the printed course
notes.

ReR®R > R > k > 0
The first morphism is defined by sending a basis to the following elements:
(1,0,0) = 2,(0,1,0) » y,(0,0,1) » x +y

and the second morphism is the natural surjection R — k. '
[ Remark: This is an example of the fact that the Ext-modules Exty, (M, N) don’t depend
on the free resolution F, of M.]
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Proof. The kernel of the first map is the set of those (a, b, c) € R® such that 0 = az + by +
c(x+y)=(a+c)r+(b+c)y. As R is UFD this means that a + ¢ = yd and b + ¢ = —xd
for some d € R. That is, we have a = yd — c and b = —xd — c. Equivalently a = yd — e and
b= —xd—e and ¢ = e (where e and d are arbitrary elements of R). From here one can read
off the following extension to a free resolution:

00— R6&R—=ROR®R R k 0
(1,0,0) —— =z
(0,1,0) —y
(0,0,1) —— 2z +y
(1,0) — (1,1,-1)
(0,1) —— (y,—,0)

Upon applying Hompz(_, R) to the projective resolution determined by the complex above
(removing k) and identifying R®" = Homz(R®", R), we get

0~—R®&R~—R®R®R~—R~—0
(z,y,2+y) <1
(1,y) =——(1,0,0)
(1,-2) =——(0,1,0)

(-1,0) =<——(0,0,1)

(Notice that on the level of matrices, the morphisms here are obtained from the morphisms
above by transposing the matrix.) We calculate the cohomology of this complex, The first

map is injective, hence H" = 0, ie., Ext%.(k:, R) = 0. The solution to the system

T1+T2_T3=0

riy —rox =0
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can easily seen to be r; = rax,ry = ry,r3 = r(x + y) for some r € R. Therefore the
above complex is exact in degree one and Ext}:.(k, R) = 0. Finally, the image of the
last map is R @ (x,y) (because rjy — rox runs through (z,y) for ry,ry running through
R and we can use r3 to get any element in the first coordinate). Thus the co-kernel is

(Re& R)/(R@ (z,y)) = R/(x,y) = k. Therefore, Exty. (k, R) = k. This agrees with the

values for these groups given by the resolutions in Example 5.3.9 in the printed course notes.
O

Exercise 3. Let 0 = M SZ25N - 0 be a short exact sequence of R-modules.
(1) A section of p is a morphism s: N — Z such that p o s = idy. Show that p admits a

section if and only if there exists an isomorphism ® : M & N —=» Z and a commuting
diagram with exact rows:

0 s M ———s 7 —2 SN

| H

0 S M —<> Me N I3 N 50

~
o

(2) A section of i is a morphism ¢: Z — M such that ¢ o i = id),. Show that i admits a

section if and only if there exists an isomorphism ¥ : Z — M & N and a commuting
diagram with exact rows:

p

0 s M —25 7 > N 5 0
H I H
0 S M —=3> MeN -3 N > 0

We say that a short exact sequence satisfying any of these conditions is split exact.

Proof. (1) Suppose that we have a commuting diagram as the one described in the exercise.

Define s : N - Z by N SMeN g Z where ey is the canonical inclusion. We need
to check that p o s is equal to the identity on N. By the commutativity of the diagram
p=7r0<1>_1 andhencepos=7r0<1>_1ocI)OeN=7roeN=idN.

Conversely, suppose that s : N — Z is a section of p. Define ® : M @ N — Z by
®(m,n) = i(m) + s(n). Then for any 2 € Z, let n = p(z). Now z — s(n) is in
ker p = im1, so let m be a preimage under 7. Then

®(m,n) =i(m) +s(n) =z —s(n) +s(n) = z,

so as z € Z was arbitrary, ® is surjective. On the other hand, if ®(m,n) = 0, then
0 = po®(m,n) = n and thus i(m) = 0 which also gives m = 0. Hence ® is an
isomorphism. As also ® oe =4 and p o ® = 7, the diagram commutes.

(2) If the diagram exists we can define ¢ as the composition Z = M ® N = M where 7,
is the canonical projection. We need to check that ¢ o i is equal to the identity on M.
By the commutativity of the diagram i = ¥™' o ¢ and hence goi =m0 Wo ¥ ' oe =
Ty ©€ = ldM
Conversely, suppose that ¢ : Z — M is a section of ©. Now define ¥ : Z - M @& N by
U(z) = (¢(2),p(z)). Let (m,n) € M & N be arbitrary, then by surjectivity of p there



exists z € Z such that p(z) =n. As goi =idy, and p oi =0 we then have

U(z +i(m = q(2))) = (¢(z +i(m = q(2))), p(z +i(m = q(2)))) = (q(z) + m —q(z),n) =

(m,n).

Hence W is surjective. On the other hand, if we suppose ¥(z) = 0, then in particular
z € ker p = im, so we can write z = i(m) for some m € M. But then 0 = ¢(z) = m, so
in fact m = 0 and thus z = 0. Hence W is an isomorphism. As Woi =¢ and mo V¥ = p,

we then obtain that the diagram commutes.

Exercise 4. Consider the ring Z[v-5].

(1) Is the ideal (2,1 + v=5) a free Z[v—5]-module?
[ Hint: Consider the element 6 € Z[v—-5].]
(2) Prove that (2,1 + v—=5) is a projective Z[v—5]-module.

O

[ Hint: Prove that (2,1++/=5) is projective by showing that it is a direct summand of a
free module. To do this, define the obvious surjection p : Z[v—=5]" — (2,1 ++v=5) and
examine the assignment s : (2, 1+v=5) — Z[v=5]" defined by s(z) = 2ze,— 1_\/?51’62.]
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Proof. (1) The Z[v=5]-module I = (2,1 + v/=5) is not free. Suppose the contrary, then
I = Z|:\/—_5:|EBQ for some index set 2. As I can be generated by 2 elements, we must
have |Q| < 2 (to see this, try to prove that a generating set of R®" always contains
at least n elements (Hint: you know this for fields, so try to reduce to this case by

dividing by a maximal ideal)).

Suppose that |Q| = 2. Then we have a surjection Z[z]®* — I = Z[2]®* given by
mapping (1,0) to 2 and (0,1) to 1 + vV—5. But then by Exercise 4 on Sheet 2, this
surjection must be an isomorphism, which contradicts the fact that (3, -1+ v/—=5) €

Z[2]®* is mapped to 0.

So we must have || = 1. We first show that 1 ¢ I by proving that for all elements
a + bv/=5 € I we have that ¢ = b mod 2. We calculate (r; + rv/=5)(1 + V=5) =
r1=5re+ (11 4+75)V=5. We have that r, —5ry = 7 4+75 mod 2. Obviously a = b mod 2 for
all elements a+bv/=5 € (2) hence it is sufficient to note that if r, +79v/=5 and s, +59v/=5
are such that , = 7, mod 2 and s; = s, mod 2 then (r; + rov/=5) + (51 + s5v/=5) =

r1 + 81 + (ry + 89)V/—5 satisfies s; + 1 = sy + r mod 2.

Now suppose that (a + bv/=5) = I. For any a = a; + asvV =5 € Z[v—-5] write N(«)

ad € Z where & = oy — apv/—5. Then N is multiplicative, so N(a + bv=5) = a” + 5b°
divides N(2) = 4 and N(1 ++/=5) = 6. This implies N (a + bv/=5) is either one or two.
The equation a” +5b° = 2 is easily seen to have no integer solutions. If N(a+bv=5) = 1
then 1 € I which we have already proven not to be the case, hence the claim follows.
(2) Following the suggestion in the exercise we define p : Z[vV—=5]° = (2,1 + v=5) by
mapping the canonical basis e, es to e; = 2 and e, = 1 + v/=5. If we can prove that

p admits a section s we are done by Exercise 3 on this sheet.
Claim: for all z € I we have that #x € Z[V-5].

Proof of claim: write z = r;2 + r5(1 + vV=5), then %?535 = (1 — V=5)r; + 3r,.
Hence the assignment s given in the hint is well-defined. Moreover, we have that

p(s(x)) = p(2ze; — 1_‘2/?59562) =4r — 3r = x.

O
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Exercise 5. # Let R be a commutative ring. The projective dimension of an R-module M
is the smallest integer n = 0 such that there exists a projective resolution

O_)Pn_)Pn—l_)"'_)PO

of M. We write projdim(M ) = n, and if no finite projective resolution exists, this number
is by definition oo.

In our case, we focus on the ring R = k[z,y]/(z* — ) and M = R/(z,y). The goal is
to show that M does not have finite projective dimension. Proceed as follows:

(1) Compute the dimension as a k-vector space of Exty(M, M).
(2) Show that there is a short exact sequence

0> M- Rly—> M —-D0.

(3) Use the two points above to show that Exts(M, M) # 0 for all i = 0.
(4) Conclude that projdim(M) = oo.

Remark 0.1. A celebrated theorem of Serre states that a ring R is reqular if and only if every
module M over R has finite projective dimension. Without going into details, regular means
that the associated algebraic variety looks "good" (e.g. would be a smooth manifold over the
complex numbers). This gives a very important application of Ext-functors in commutative
algebra, since they help detect the projective dimension of modules (and hence regularity
of the ring).

In the case above, note that the associated variety (here {(z,y) € R*|2” = y°} if k = R)
doesn’t look good at the origin (draw this curve!), it has a so-called cusp singularity, and
hence it is not regular. This exercise is then about verifying Serre’s theorem in a special
example.

Proof. (1) To compute Extl(]\/[, M), we will find the first few pieces of a resolution of M.
Consider the sequence

(4

R s R VR > M,

where R — M is the quotient map, and we set 7(a,b) = ax + by and ¥(a,b) =
aly, —z)+b(z, —y*). It is immediate to see that the kernel of R — M is (z,y) = im(x),
and im(v) € ker(w). Hence, in order to show that the sequence above is exact, we

have to show that ker(r) = ((y, —z), (z, —y*)).
Let us do that now, so consider two polynomials f,g € k[z,y] such that zf + gy =
(2> = 4*)h for some h € k[z,y]. Re-ordering, we get that

z(f - zh) = —y(g + y’h).

Since x and y are coprime in the UFD k[, y], we obtain that z divides g + y°h and y
divides f — xh. In other words, we can write

g+y’h = ap;;
J=axh = yps.
(and thus automatically p, = —p;). We then obtain that
(f.9) = h(z,=y") + pa(y. ),
which concludes the proof that ker(7) = ((y, —z), (z, —=y°)).



Applying Hom(—, M) to the piece of the projective resolution of M that we found
gives a sequence

M2 < ' M2 < 7' M,
(recall that Hom(R", M) = M" by sending a map f: R" — M to (f(e1),..., f(e,)) €
M"). Furthermore, an explicit computation with the explicit isomorphism we just
wrote shows that 7 (1) = (Z,7) = 0, so 7 = 0. Similarly, we get that ¢'(1,0) = (7,7) =
0 and ¢'(0,1) = (=%, =7°) = 0, so again ¢' = 0. This shows that Ext' (M, M) = M,
so its dimension over k is 2.

The quotient map R — M factors through R/y — M, and its kernel is then K =
(z,v))/(y). First, note that K # 0. Indeed, otherwise we could write

z = fy+g(a’ -y’

in k[z,y]. However, setting y = 0 in this equation gives z = gz” in k[z], which is
impossible.

Now, consider the surjection R — K given by sending 1 to . Then its kernel
certainly contains y, but also z since its image is z° = y3 € (y). Thus, the kernel
of R - K contains the maximal ideal (z,y), so since K # 0, we deduce that K =
Rf(z,y) = M.

First of all, let us show that

0-R3R-Rly—0

is exact. The only thing to show is that y is a non-zero divisor (i.e. the first map
is injective), but this follows from the fact that - y3 € k[z,y] is an irreducible
polynomial (seen as a element in k[z][y], it has degree 2 but no root).

The associated long exact sequence is Ext-modules shows that:

Hom(R/y, M) = M;
Ext'(R/y, M) = M;
Ext'(R/y, M) =0 for all i = 2.

Let us apply Hom(—, M) to the sequence in (2). Then the long exact in Ext-modules
and our computation right above gives that

Ext'(M, M) = Ext'™ (M, M)

for all = = 2, and a sequence

y BExt'(R/y, M) ——— Ext' (M, M) j

[» Ext’(M, M) 5 0.

Since Ext'(R/y, M) = M has k-dimension 1 and Ext' (M, M) has k-dimension 2 by the
first point, we obtain that the map Ext' (R/y, M) — Ext' (M, M) cannot be surjective,
so Ext’(M, M) # 0 by exactness. Thus, we have obtained that Ext'(M, M) # 0 for all
12 0.
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(4) If M had a finite projective resolution, then by definition, we would obtain that for

any R-module N, Extiz(N, M) =0 for : > 0. This contradicts the previous point.
[

Exercise 6. Prove the following.

(1) If 0 > M, > ... > M, > 0 is an exact sequence of finitely generated

modules over an Artinian and Noetherian ring R, then 0 = Z?zo(—l)i length M;.
(2) Let R = k[e] denote (as usual) the quotient k’[iﬁ]/(xQ) where k is a field (and ¢ is the

class of ). Let M be the R-module R/(g). Show that M has no finite resolution by
finitely generated free modules.

(3) In general if R is Artinian and Noetherian, and length R } length M, prove that M has
no finite resolution by finitely generated free modules.

(4) Prove that over a PID every finitely generated module has a finite free resolution.

Proof. (1) This follows from the additivity of lengths proven in a previous exercise (Exercise
2.4) after slicing the long exact sequence into short exact sequences. Since ker(f;) =
im(f;4q) for 1 <4 <n—1 we get an exact commuting diagram as follow:

ker( f,,— ker( f,-3)
O e ; / . .
0 \ / 0
ker(fy) im(f)

>~ .
™~

> M,
ker(f,)
0 \‘ 0
By the additivity of lengths on short exact sequences, we have length(M,) = length(M;)—
length(ker(f;)) and length(ker(f;)) = length(M,;,;) — length(ker(f;,,)) for 1 < ¢ <

n — 2. Finally length(ker(f,—;) = length(M,,). These equations combined yield then
the formula.
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(2)

Suppose that

OHR@% fk> f2>R€Bn1 fl}k S 0

is a finite length free resolution of k. Then by the previous exercise and by Example
3.2.9 of the lecture notes we have 1 = Zle(—l)l+l2ni, but this is impossible since the
right-hand side is an even number.

Suppose that

0 lRenk fk> f2>Ren1 f1>M >0

is a finite length free resolution of M. Then by the previous exercise we have length(M) =
Zle(—l)ﬁllength(R)ni. Since length(R) divides the right hand side the result fol-
lows.

This follows from the structure theorem for finitely generated modules over principal
ideal domains. Let R®® — M be a surjection, which exists as M is finitely generated.
As R is Noetherian, the kernel K is finitely generated too. But then as R is a domain,
K can’t have non-trivial torsion elements. From the classification of finitely generated
modules, we conclude that K = R® for some t. Hence we obtain an exact sequence

0> R¥ SR 5 M >0

which is thus a finite free resolution of M.
O

Exercise 7. In this exercise R is an integral domain which is not a field; in particular it is
commutative. Recall the definition of an R-module M being divisible: for all m € M and
r € R\ {0} there exists an n € M such that rn = m. In other words, M is divisible if and
only if multiplication by 7 on M is surjective for every r € R\ {0}.

(1)
(2)

(3)

Show that a non-trivial free R-module is not divisible.

Show that Q is not a projective Z-module, or in general Frac(R) is not a projective
R-module.

[ Hint: Define the notion of submodule of divisible elements, and refine (1) by showing
that it is trivial for free R-modules.]

From now on, let M, N be R-modules. Let P, be a projective resolution of M and let
1 : N = N be the R-module homomorphism corresponding to multiplication by a fixed
r € R. Show that 1 induces a co-chain morphism Hompg(P,, N) — Homg(P,, N). By
passing to cohomology, one obtains a map Extj(M,v) : Extpr(M, N) = Extr(M, N).
Show that Exty (M, ) is still just multiplication by r on Extyp(M, N). In particular,
it is independent of the projective resolution.

[ Remark: One can in fact perform an analogous construction for any R-module ho-
momorphism @ : N — L, and thus obtain a map Extp(M,v) : Extr(M,N) —
Extr(M, L), which as in Remark 5.4.26 of the printed course notes is independent of
the projective resolution. This makes also Exti(M, —) a functor, while in the course
we only saw that Extir(—, N) is a functor.]

Fix 7 € R, and let ¢ : M — M be the multiplication by r. Show that Extj(¢, N), as in

Definition 5.4.25 of the course notes, is also just the multiplication by r on Ext (M, N).



(5)
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Show that, despite Frac(R) being not a projective R-module, if N is an R-module such
that Ann(N) # 0, then Exty(Frac(R), N) = 0 for all i = 0 (note that for P projective,
Extr(P, N) =0 for all i > 0 by definition).

Proof. (1) In view of the hint in the second point, for an R-module M we define

Div(M):={meM | V¥Yre R\{0} Ane N: rn=m}.

One checks easily that this is in fact a submodule of M, and by definition it is clear
that M is divisible if and only if M = Div(M). Now consider a free module R®” where
Q is non-empty. As R is not a field, there exists » € R\ {0} which is not a unit.
Let (24)aeq € DiV(R$Q) and suppose that there is an § € (2 such that 25 # 0. By
definition, we find (y, ) such that rag-(y,) = (z,). In particular we obtain rzgys = x4,
which implies that r is a unit, contradiction. Thus Div(R®?) = 0.

We directly prove the general statement. If by contradiction Frac(R) is projective,
then it is a direct summand of a free module F. But then as Frac(R) is divisible, it
injects into Div(F"), which by (1) is trivial. This is a contradiction.

Consider the diagram

veo &—— Homp(Py, N) <2 Homp(Py, N) <2~ Homp(P), N) <— 0

wo—l w"‘l l o

w+ & Homp(P,, N) <7~ Homp(P, N) <—— Homp(F, N) <— 0

It commutes because post-composition commutes with pre-composition. Notice also
that 1 o — is just multiplication by r on Hompz(FP;, N). Now to get the maps induced
on cohomology, we restrict and corestrict to the kernels of the horizontal maps, and
then quotient out the images of the horizontal maps. Under all of these operations,
multiplication by r remains multiplication by r. Hence the induced map ExtR(M, )
is multiplication by 7 on Extyr(M, N).

We follow the construction of Extz(¢, N) as in Definition 5.4.25 of the printed course
notes. In a first step, we have to lift the map ¢ : M — M to a chain morphism
®, : P, = P,, as in Theorem 5.4.20 of the course notes. Notice that the diagram

p2 P1
s P, s P s P, > 0

2 2 2

> P —— Py —> 0

p

where vertical arrows are multiplication by 7, commutes, because multiplication by
r commutes with any R-module homomorphism by definition. As in the previous
point, this then also induces multiplication by r on homology, so it induces the map
¢ : M — M (recall that M is the 0-th homology module of P,). Therefore, if ®,
is multiplication by r on every module of the sequence, then this is a lift of ¢ as in
Theorem 5.4.20.

The next step is to apply Homz(—, N) to the entire diagram above. This will reverse
all arrows, and the vertical arrows will be pre-composition with multiplication by r.
But as again multiplication by r commutes with any R-module homomorphism, the
vertical arrows will again be multiplication by r. As in the previous point, the induced
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morphism on cohomology is then also just multiplication by r. Hence Exty(¢, N) is
multiplication by  on Exth(M, N).

Let r € Ann(N) \ {0}. Let ¢ : Frac(R) — Frac(R) be multiplication by 7, then this
is an automorphism of Frac(R). As functors preserve isomorphisms (explained at the
end), EXt’jq(¢, N) is still an automorphism, and by the previous point it is multiplication
by 7 on Exty(Frac(R), N).

On the other hand, let ¢ : N —» N be multiplication by r. As r € Ann(V), this
coincides with multiplication by 0. By point (3), we then obtain that multiplication
by r on Exth(Frac(R), N) coincides with multiplication by 0 on Ext%(Frac(R), N).
But above we obtained that multiplication by r is an automorphism. Therefore, we
conclude Exty(Frac(R), N) =0 for all i = 0.

Now we explain what is meant by ’functors preserve isomorphisms’. In fact, one can
verify that Extj(idy, N) = idgyi () and Extp(aca, N) = Exty(a’, N)oExty(a, N)
for any M, N, and any R-module homomorphisms o : M — M and o' : M' - M".
This is in fact part of the definition of a (contravariant) functor.

Now let o : M — M' be an isomorphism, with inverse o' : M' — M. Then we have

idmi vy = Extp(a’ o o, N) = Exti(a, N) o Extp(a’, N)
and
: i ' i, i
idgyet, vy = Extr(a o o, N) = Extg(a, N) o Extg(a, N).
Hence Ext(a, N) : Exth(M',N) — Exth(M,N) is an isomorphism with inverse

Extyk(a, N). So functors preserve isomorphisms.
[



