

Exercise 1. (1) A simple module is a module that has only trivial submodules. Show that any simple module is cyclic.

(2) Let $m \in M$ be an element. We define the annihilator of m by

$$\text{Ann}_R(m) = \{ r \in R \mid rm = 0 \}$$

We only write $\text{Ann}(m)$ if it the base ring is clear from the context.

Show that $\text{Ann}(m)$ is a left ideal of R and that the cyclic module Rm is isomorphic to the module $R/\text{Ann}(m)$.

- (3) Let M be a simple $k[x]$ -module. Prove that $M \cong k[x]/(f)$ where f is an irreducible polynomial in $k[x]$ and (f) denotes the ideal generated by f .
- (4) Which of the following \mathbb{Z} -modules are simple?
 - (a) \mathbb{Z}
 - (b) $\mathbb{Z}/6\mathbb{Z}$
 - (c) $\mathbb{Z}/7\mathbb{Z}$

Proof. (1) If $M = 0$ then $M = R \cdot 0$ and the assertion is true. Otherwise let $m \in M \setminus \{0\}$.

Then Rm is a left submodule of M . Since $Rm \neq 0$ and M is simple we conclude that $Rm = M$.

- (2) We define a homomorphism of left R -modules $\Phi_m : {}_R R \rightarrow Rm$ by $\Phi_m(r) = rm$. The kernel of Φ_m is by definition the set of elements $r \in R$ such that $rm = 0$, i.e., $\ker(\Phi_m) = \text{Ann}(m)$. This proves that $\text{Ann}(m)$ is a left ideal of R and that $Rm \cong R/\text{Ann}(m)$.
- (3) By (1) and (2), M is isomorphic to $k[x]/\text{Ann}(m)$ for some $m \in M$. Let $\text{Ann}(m) = (f)$ for some $f \in k[x]$ (recall that $k[x]$ is a PID); we need to prove that f is irreducible. To this end let g divide f , then $k[x] \cdot (g + (f))$ is a left $k[x]$ -submodule of $k[x]/(f)$. Since by assumption $M \cong k[x]/(f)$ is simple we must have that $k[x] \cdot (g + (f)) = 0$ or $k[x] \cdot (g + (f)) = k[x]/(f)$, which implies that either f divides g or $(f, g) = (1)$. As g divides f , this means that either $g = f$ or $g = 1$ (up to multiplication by a unit). Thus f is irreducible.
- (4) Notice that the \mathbb{Z} -submodules of $\mathbb{Z}/n\mathbb{Z}$ are exactly the ideals of $\mathbb{Z}/n\mathbb{Z}$ seen as a ring. Hence $\mathbb{Z}/n\mathbb{Z}$ is a simple \mathbb{Z} -module if and only if it has no non-zero proper ideals. As you know a commutative ring has no non-zero proper ideals if and only if it is a field, in particular only (c) gives a simple \mathbb{Z} -module.

□

Exercise 2. Let R be a ring, M a left R -module and $m \in M$.

- (1) In the previous exercise you proved that $\text{Ann}(m)$ is a left ideal of R . Give an example to show that $\text{Ann}(m)$ might *not* be a two sided ideal of R .
- (2) Define the *annihilator* of M to be

$$\text{Ann}_R(M) = \{ r \in R \mid rM = 0 \} = \{ r \in R \mid \forall m \in M: rm = 0 \}$$

Prove that $\text{Ann}(M)$ is a two sided ideal of R .

(3) Let $\phi : S \rightarrow R$ be a surjective homomorphism of rings and M a module over S . Show that we can endow an R -module structure given by $r \cdot m = s \cdot m$ for any $s \in \phi^{-1}(r)$ and $m \in M$ if and only if $\ker \phi \subseteq \text{Ann}(M)$.

(4) For example, let $S = k[x]$ and $M = k[x]$ (with the standard action). Then M/f^2M is a $k[x]/(f^2)$ -module for any $0 \neq f \in k[x]$. In addition, if f is not invertible, then M/f^2M is not a $k[x]/(f)$ -module.

Proof. (1) We need to consider a non-commutative ring R to create an example, since left and right ideals coincide in commutative rings. The first example of a non-commutative ring R that comes to mind will suffice. That is, let R be the ring of 2×2 matrices over some field k . To keep things as simple as possible we consider R as a left R -module by left multiplication. Let $0 \neq a \in k$, we will calculate the annihilator of $m_a = \begin{bmatrix} 0 & a \\ 0 & 0 \end{bmatrix}$.

Hence we are interested in solving the matrix equation

$$\begin{bmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{bmatrix} \cdot \begin{bmatrix} 0 & a \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}.$$

The solutions are exactly the matrices with $b_{11} = b_{21} = 0$, and thus $\text{Ann}(m_a) = \left\{ \begin{bmatrix} 0 & b \\ 0 & c \end{bmatrix} \mid b, c \in k \right\}$. This is not a right ideal of R because multiplying such an element from the right with an arbitrary matrix in R does in general not give a matrix of this form. For example multiplication from the right with $\begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}$ gives b in the top left corner of the matrix, so this top left entry is non-zero whenever b is.

(2) Let $r, s \in \text{Ann}(M)$ and $l \in R$. Then $l(r+s)m = l(rm+sm) = 0$ and $(r+s)lm = r(lm) + s(lm) = 0$.

(3) Assume first $\ker(\phi) \subseteq \text{Ann}(M)$, and let $r \in R$, $m \in M$ and $s, s' \in \phi^{-1}(r)$. Then $s - s' \in \ker(\phi)$, so by assumption

$$0 = (s - s')m = sm - s'm$$

so that $sm = s'm$. Thus, at least the map $R \times M \rightarrow M$ sending $(r, m) \rightarrow r \cdot m$ is well-defined. The module axioms are then straight-forward to see.

Now assume that the action is well defined. Then in particular for any $s \in \ker(\phi) = \phi^{-1}(0)$ and $m \in M$,

$$sm = 0$$

In other words $\ker(\phi) \subseteq \text{Ann}(M)$.

(4) Clearly, $f^2 \in \text{Ann}(M/f^2M)$, so by the previous point we get that M/f^2M is an $k[x]/(f^2)$ -module via the above procedure.

Assume now that $f \neq 0$ is not invertible, and assume by contradiction that M/f^2M is an $R/(f)$ -module via the above procedure. Then by the previous point, $f \in \text{Ann}(M/f^2M)$, so in particular

$$f = f \cdot 1 \in f^2M = f^2k[x]$$

so there exists $c \in k[x]$ such that $cf^2 = f$. Since R is a domain, we get

$$cf = 1$$

which contradicts the fact that f is not invertible.

□

Exercise 3. Answer the following questions. Provide an explanation by a proof or a counterexample.

- (1) Suppose that R is a Noetherian ring. Let $S \subset R$ be a subring. Is it true that S is Noetherian?
- (2) Let R be a commutative Artinian ring. Is every prime ideal of R maximal?

Proof. (1) It is not necessarily true that S is Noetherian. A counterexample is given by an inclusion of any non-Noetherian integral domain (e.g., $k[x_1, x_2, \dots]$) into its fraction field (clearly Noetherian).

- (2) Let \mathfrak{p} be a prime ideal of R . Since there exists a correspondence between ideals in R/\mathfrak{p} and ideals in R containing \mathfrak{p} , we know that R/\mathfrak{p} is an Artinian integral domain. Let $x \in R/\mathfrak{p}$ be a non-zero element. The sequence of ideals $((x^n))_{n \geq 0}$ is decreasing and hence by Artinianity it stabilizes, which means that $x^n = ux^{n+1}$ for some $u \in R/\mathfrak{p}$ and $n \in \mathbb{N}$. Since R/\mathfrak{p} is a domain, and we have $x^n(1 - ux) = 0$ and thus $ux = 1$, which proves that x is invertible. So every non-zero element of R/\mathfrak{p} is invertible, and thus R/\mathfrak{p} is a field. Therefore \mathfrak{p} is maximal inside R .

□

Exercise 4. Let $I \subseteq R$ be an ideal.

- (1) Show that

$$IM = \left\{ \sum_{i=1}^d r_i m_i \mid 1 \leq d \in \mathbb{Z}, r_i \in I, m_i \in M \right\}$$

is an R -submodule of M .

- (2) Show that M/IM is an R/I -module with scalar multiplication given by

$$(x + I)(y + IM) = xy + IM.$$

From now, let $R = k[x, y]$, let M be the R -submodule generated by the element $(x, y) \in R \oplus R = N$, and let I be the maximal ideal $I = Rx + Ry$ of R . Note that $R/I \cong k$ via the homomorphism $R \rightarrow k$ that evaluates x and y to 0.

- (3) Show that $M \subseteq IN$ and hence $I(N/M) = IN/M$ as R -submodules of N/M .
- (4) Show that L/IL is a two dimensional vector-space over k , where $L = N/M$
[Hint: use point (3) and the third isomorphism theorem]

Now, we change a little bit our setup, and we redefine M :

- (5) Let M be the submodule generated by the two elements $(x, 0)$ and $(0, y)$ of $R \oplus R = N$. Is $N/M \cong R$?
[Hint: look at $\text{Ann}(N/M)$.]

Proof. (1) We need to prove that IM is an additive subgroup and that it is stable under multiplication by elements of R . By comparing definitions (i.e. that of IM above and that of a subgroup generated by a subset), IM is in fact the subgroup of M generated by the set $\{rm \mid r \in I, m \in M\}$, so IM is an additive subgroup of M . On the other

hand, we have for all $r \in R$ that

$$r \cdot (IM) = \left\{ \sum_{i=1}^d \underbrace{rr_i}_{\in I} m_i \mid 1 \leq d \in \mathbb{Z}, r_i \in I, m_i \in M \right\} \subseteq IM$$

as I is a left ideal. Thus $IM \leq_R M$.

(2) One can prove this by simple (but tedious) verification of well-definedness and of all the axioms. But let us give a more conceptual proof. An abelian group M has a left R -module structure if and only if we have a ring morphism $\lambda : R \rightarrow \text{End}_{\text{Ab}}(M)$ (where the multiplication law on the latter is given by composition): if M is an R -module then we can define $\lambda(r) \in \text{End}_{\text{Ab}}(M)$ to be left multiplication by r , and conversely if $\lambda : R \rightarrow \text{End}_{\text{Ab}}(M)$ is a ring morphism then $r \cdot m := \lambda(r)(m)$ endows M with the structure of an R -module.

Now let $\lambda : R \rightarrow \text{End}_{\text{Ab}}(M/IM)$ be the ring morphism corresponding to the R -module structure on M/IM . If $r \in I$, then multiplication by r on M/IM is the zero map, and thus $r \in \ker(\lambda)$. As thus $I \subseteq \ker(\lambda)$, we obtain an induced ring morphism $\bar{\lambda} : R/I \rightarrow \text{End}_{\text{Ab}}(M/IM)$, given by $\bar{\lambda}(r+I) = \lambda(r)$ for all $r \in R$. Hence, $\bar{\lambda}$ endows M/IM with the structure of an R/I -module, given explicitly by

$$(x+I)(y+IM) = \bar{\lambda}(x+I)(y+IM) = \lambda(x)(y+IM) = xy + IM.$$

(3) Let $m \in M$ be arbitrary, then there exists a polynomial $f \in R$ such that $m = (xf, yf)$. Thus $m = x \cdot (f, 0) + y \cdot (0, f) \in IN$, and so we obtain $M \subseteq IN$. In particular, IN/M is a well-defined R -submodule of N/M . To conclude, notice that

$$\begin{aligned} I(N/M) &= \left\{ \sum_{i=1}^d r_i(n_i + M) \mid 1 \leq d \in \mathbb{Z}, r_i \in I, n_i \in N \right\} \\ &= \left\{ \underbrace{\left(\sum_{i=1}^d r_i n_i \right)}_{\in IN} + M \mid 1 \leq d \in \mathbb{Z}, r_i \in I, n_i \in N \right\} \\ &= \left\{ \sum_{i=1}^d r_i n_i \mid 1 \leq d \in \mathbb{Z}, r_i \in I, n_i \in N \right\} \bigg/ M = IN/M. \end{aligned}$$

(4) By (3) we have

$$L/IL \stackrel{(3)}{\cong} (N/M)/(IN/M) \cong N/IN$$

by the third isomorphism theorem. Now observe that the map

$$\begin{aligned} N &\rightarrow R/I \oplus R/I \\ (f, g) &\mapsto (f+I, g+I) \end{aligned}$$

is surjective and has kernel IN (verify it!). Thus, as by the remark above (3) we have $R/I \cong k$ (can you describe the R -module structure on k given by this isomorphism?), we obtain by the first isomorphism theorem that $N/IN \cong k \oplus k$.

(5) Let $(f, g) \in N$ be arbitrary. Then $xy(f, g) = fy(x, 0) + gx(0, y) \in M$, and thus $xy((f, g) + M) = 0$ inside N/M . As $(f, g) \in N$ was arbitrary, we obtain $xy \in$

$\text{Ann}(N/M)$. On the other hand, as R is a domain, we have $\text{Ann}({}_R R) = (0)$. As the annihilator is preserved under R -module isomorphisms, we thus have $N/M \not\cong R$. □

Exercise 5. Let

$$0 \rightarrow M \rightarrow N \rightarrow N/M \rightarrow 0$$

be a short exact sequence of R -modules. For each of the following assertions either prove that the assertion holds or provide a counterexample.

- (1) If M and N/M are finitely generated, then N is too.
- (2) Conversely, if N is finitely generated, then N/M is finitely generated too.
- (3) If N is finitely generated, then M is finitely generated too.

Proof. (1) As M is finitely generated, we can find a subset $\{m_1, \dots, m_k\} \subseteq M$ generating M as an R -module, and as N/M is finitely generated we can find a subset $\{n_1 + M, \dots, n_l + M\} \subseteq N/M$ generating N/M as an R -module.

We claim that N is generated by $\{m_1, \dots, m_k, n_1, \dots, n_l\}$. Given $n \in N$, we can write $n + M = \sum_{j=1}^l s_j(n_j + M)$ for some $s_j \in R$, and so $n - \sum_{j=1}^l s_j n_j \in M$. But then there exist $r_i \in R$ such that $n - \sum_{j=1}^l s_j n_j = \sum_{i=1}^k r_i m_i$. This exhibits n as an R -linear combination of the m_i 's and n_j 's and so N is generated by these elements.

- (2) The statement is true. Suppose $\{n_1, \dots, n_k\}$ generate N , then in fact $\{n_1 + M, \dots, n_k + M\}$ generates N/M . Indeed any $n + M \in N/M$ can be written as

$$n + M = \left(\sum_{i=1}^k r_i n_i \right) + M = \sum_{i=1}^k r_i (n_i + M)$$

and thus $n + M$ is an R -linear combination of the $n_i + M$'s.

- (3) This statement is not true. Take $R = \mathbb{C}[x_1, x_2, \dots]$, the polynomial ring in infinitely many variables. (An element of R is by definition a polynomial in finitely many of the variables x_1, x_2, \dots , and addition and multiplication are then exactly what one would think it is).

Let N be R viewed as a module over itself, and take the submodule M to be generated by $\{x_1, x_2, \dots\}$. This is a proper submodule, as it does not contain the constants $\mathbb{C} \subset N$. Any element of M is a polynomial $f(x_1, \dots, x_i)$ with no constant term. Given a finite set of such polynomials $\{f_i\} \subset M$, there is an integer I such that any element contained in $\langle \{f_i\} \rangle$ can be written as a linear combination of monomials, each of which has positive degree in some x_i with $i < I$. So this span cannot be equal to all of M , as it does not contain x_n for $n \gg 0$.

Note: the statement in (3) is true for modules over an important class of rings called Noetherian rings. These include many common rings such as fields k , \mathbb{Z} , and $k[x_1, \dots, x_n]$. So $\mathbb{C}[x_1, x_2, \dots]$ is an example of a non-Noetherian ring. □

Exercise 6. (1) Let

$$0 \rightarrow M \rightarrow N \rightarrow N/M \rightarrow 0$$

be a short exact sequence of R -modules. For each of the following assertions either prove that the assertion holds or provide a counterexample.

- If N is free, then N/M is free.
- If N is free, then M is free.
- If M and N/M are free, then N is free.

(2) Let $R = \mathbb{Z}$. Is $\mathbb{Z}[x]/(x^2 + 1)\mathbb{Z}[x]$ a free R -module? How about $\mathbb{Z}[x]/(2x^2)\mathbb{Z}[x]$? Is \mathbb{Q} a free R -module? Is it finitely generated?

Proof. A module is free if it is isomorphic to $\bigoplus_I R$ for some (possibly infinite) indexing set I .

Digression:

Definition 1. A subset $\{m_i\} \subset M$ is a basis for M if:

- It spans M : every $m \in M$ can be written as $m = \sum r_i m_i$ for some $r_i \in R$.
- It is linearly independent: if $\sum r_i m_i = 0$ for $r_i \in R$ then $r_i = 0$ for each i .

Lemma 1. *The module M is free if and only if it has a basis.*

Proof. Assume M is free, so $M \cong \bigoplus_I R$. We can define a basis $\{e_i\}_I$ for M where e_i is 1 in its i^{th} position and zero elsewhere. It is straightforward that these span and are linearly independent. Conversely suppose we have a module M which has a basis $\{e_i\}_{i \in I}$. Define $\phi : \bigoplus_I R \rightarrow M$ by extending linearly from $\phi((\delta_{i,j})_{j \in I}) = e_i$ for each $i \in I$. This is surjective, because any $m \in M$ can be written as a linear combination of the e_i and each of these is in the image. It is injective, because if not there is some non-zero element of $\bigoplus_I R$ killed by ϕ . But this gives a non-trivial linear dependence among the e_i in M . \square

Now we return to the solution.

- (1)
 - This is false: a counterexample is given by $R = \mathbb{Z}$, $N = \mathbb{Z}$, $M = 2 \cdot \mathbb{Z}$, for then $N/M \cong \mathbb{Z}/2\mathbb{Z}$.
 - This is also false: a counterexample is $R = \mathbb{Z}/4\mathbb{Z}$, $N = \mathbb{Z}/4\mathbb{Z}$ and $M = 2 \cdot \mathbb{Z}/4\mathbb{Z} \cong \mathbb{Z}/2\mathbb{Z}$. This has too few elements to be a free $\mathbb{Z}/4\mathbb{Z}$ -module.
 - This is true. Suppose M has basis $\{m_1, \dots, m_k\}$ and N/M has basis $\{n_1 + M, \dots, n_l + M\}$. We claim that $\{m_1, \dots, m_k, n_1, \dots, n_l\}$ is a basis for N . They span by the argument in Exercise 4.1. For linear independence: suppose $\sum s_j n_j + \sum r_i m_i = 0$. This implies $\sum s_j (n_j + M) = 0$ in N/M and so the s_j 's are all zero by the linear independence of the $n_j + M$'s. But then $\sum r_i m_i = 0$ is a linear dependence for a basis of M , forcing also the r_i 's to be zero as well.
- (2)
 - $\mathbb{Z}[x]/(x^2 + 1)\mathbb{Z}[x]$ is a free \mathbb{Z} -module, with basis $\{1, x\}$ (it is isomorphic to $\mathbb{Z}[i]$).
 - $\mathbb{Z}[x]/(2x^2)\mathbb{Z}[x]$ is not free since x^n is a torsion element for all $n \geq 2$ (as $x^n \notin (2x^2)$ but $2x^n \in (2x^2)$).
 - \mathbb{Q} is not a free \mathbb{Z} module. Indeed, any two elements of \mathbb{Q} are \mathbb{Z} -linearly dependent: if $a/b, c/d \in \mathbb{Q}$ then either both are equal to zero, or $cb(a/b) - ad(c/d) = 0$ is a non-trivial \mathbb{Z} -linear relation. Thus if \mathbb{Q} was a free \mathbb{Z} -module, then it must be generated by a single element, which is impossible. For example, this can be seen by the second part of the question:
 \mathbb{Q} is not finitely generated over \mathbb{Z} since if $\{\frac{p_1}{q_1}, \dots, \frac{p_n}{q_n}\}$ is a generating set, let $q = q_1 \cdots q_n$. Then $\frac{1}{q+1}$ does not lie in the \mathbb{Z} -span of $\{\frac{p_1}{q_1}, \dots, \frac{p_n}{q_n}\}$.

\square

Optional exercise. Not on the exam. Suggested if you are seriously interested in algebra.

Exercise 7. Let k be a field. In this exercise, we want to understand *differential operators* on $k[x]$. To this end, define the operator $\frac{\partial}{\partial x} \text{End}_k(k[x])$ by the usual rule

$$\frac{\partial}{\partial x}(x^n) := nx^{n-1}.$$

Define also $x \in \text{End}_k(k[x])$ defined by multiplication by x . Finally, define the subring $\mathcal{D} \subseteq \text{End}_k(k[x])$ to be the sub- k -algebra generated by x and $\frac{\partial}{\partial x}$.

We will show that this non-commutative ring behaves very differently, whether we work in characteristic zero or in positive characteristic.

- (1) Show that a basis of \mathcal{D} as a k -vector space is given by the elements $x^i \left(\frac{\partial}{\partial x} \right)^j$, where $(i, j) \in \mathbb{N}^2$ if $\text{char } k = 0$, and $i \in \mathbb{N}$ and $j \in \{0, 1, \dots, p-1\}$ if $\text{char } k = p > 0$.
- (2) Now we change the perspective and consider a quotient of the free k -algebra on two generators $\mathcal{D}^{\text{form}} = k\langle u, v \rangle / (uv - vu - 1)$. Prove that in $\mathcal{D}^{\text{form}}$ we have the identity

$$uP(v) = \frac{\partial}{\partial v}P(v) + P(v)u$$

for all polynomials $P(v) \in k[v]$. Use this to prove that $\mathcal{D}^{\text{form}}$ is generated as a k -vector space by $\{v^i u^j \mid (i, j) \in \mathbb{N}^2\}$.

- (3) Show that there are well defined ring homomorphisms ϕ and ψ from $\mathcal{D}^{\text{form}}$ to $\text{End}_k(k[x])$, such that $\phi(u) = \frac{\partial}{\partial x}$ and $\phi(v) = x$, as well as $\psi(u) = x$ and $\psi(v) = -\frac{\partial}{\partial x}$. Show that ϕ and ψ are surjective onto \mathcal{D} , and define an isomorphism between \mathcal{D} and $\mathcal{D}^{\text{form}}$ if and only if $\text{char}(k) = 0$.
- (4) Determine the submodules of $k[x]$ as a left \mathcal{D} -module (with left \mathcal{D} -module structure given by the inclusion $\mathcal{D} \subseteq \text{End}_k(k[x])$) in the case when $\text{char } k = 0$.
- (5) Determine the left submodules of $k[x]$ as a \mathcal{D} -module when $\text{char } k = 2$.

Proof. (1) Let us first show that $\mathcal{B}_1 := \{x^i \left(\frac{\partial}{\partial x} \right)^j\}_{i,j \geq 0}$ spans \mathcal{D} (in any characteristic). By definition of \mathcal{D} (recall that we work in a non-commutative setup), it enough to show that each $\left(\frac{\partial}{\partial x} \right)^j \circ x^i$ is spanned by \mathcal{B}_1 . Note that

$$\frac{\partial}{\partial x}x = x\frac{\partial}{\partial x} + 1$$

(this follows from the Leibniz rule) so an induction on i and j shows that \mathcal{B}_1 spans \mathcal{D} as a k -vector space.

Now notice that if $\text{char}(k) = p > 0$ then $\left(\frac{\partial}{\partial x} \right)^j = 0$ for all $j \geq p$ (repeatedly taking derivatives more than p times will produce a factor divisible by p in front of every monomial). Thus if we let $\Omega = \mathbb{Z}_{\geq 0}^2$ if $\text{char}(k) = 0$ and $\Omega = \mathbb{Z}_{\geq 0} \times \{0, \dots, p-1\}$ if $\text{char}(k) = p > 0$, we obtain that already $\mathcal{B} = \{x^i \left(\frac{\partial}{\partial x} \right)^j \mid (i, j) \in \Omega\}$ generates \mathcal{D} .

Now we need to prove that the elements of \mathcal{B} are k -linearly independent. Let $\lambda_{\bullet} : \Omega \rightarrow k$ be a set of finitely many non-zero coefficients in k such that $\sum_{(i,j) \in \Omega} \lambda_{i,j} x^i \left(\frac{\partial}{\partial x} \right)^j = 0$. In particular, if we evaluate the expression on the LHS at 1 we obtain $\sum_{(i,0) \in \Omega} \lambda_{i,0} x^i = 0$ as element of $k[x]$, and thus $\lambda_{i,0} = 0$ for all i . Suppose we have proven $\lambda_{i,j} = 0$ for all i and all $j < J$ for some $J > 0$ (satisfying $J \leq p - 1$ if $\text{char}(k) = p > 0$). Then we have $\sum_{(i,j) \in \Omega, j \geq J} \lambda_{i,j} x^i \left(\frac{\partial}{\partial x} \right)^j = 0$, and evaluating the LHS at x^J shows that $\lambda_{i,J} = 0$ for all i . By induction, we conclude that $\lambda_{i,j} = 0$ for all $(i,j) \in \Omega$. Thus \mathcal{B} is a basis of \mathcal{D} .

(2) Inside \mathcal{D}^{form} , we can use the relation $uv - vu - 1 = 0$ to swap the u 's and v 's in any given monomial. Let us make this precise. By induction on j , one proves

$$uv^j = \frac{\partial}{\partial v} v^j + v^j u$$

inside \mathcal{D}^{form} (i.e. modulo $uv - vu - 1$). The formula in question then follows by k -linearity. Multiplying the formula by powers of u , it then follows also more generally that

$$u^i P(v) = \sum_{k=0}^i \left(\frac{\partial}{\partial v} \right)^k (P(v)) \cdot u^{i-k}.$$

In particular, we have a formula to replace any monomial $u^i v^j$ by an expression where in all monomials v is to the left of u . By using this iteratively, moving all v 's to the left, one can express every element of \mathcal{D}^{form} as a sum of monomials of the form $v^j u^i$. That is, $\mathcal{B}^{form} := \{v^j u^i \mid i, j \in \mathbb{Z}_{\geq 0}\}$ is a generating set of \mathcal{D}^{form} as a k -vector space.

(3) By the universal property of the free k -algebra on two generators, there exists a k -algebra morphism $\Phi : k\langle u, v \rangle \rightarrow \text{End}_k(k[x])$ mapping $u \mapsto \frac{\partial}{\partial x}$ and $v \mapsto x$. To show that Φ factors through \mathcal{D}^{form} , it suffices to prove that $uv - vu - 1$ is in the kernel of Φ . This amounts to proving that for all $f \in k[x]$ we have $\frac{\partial}{\partial x}(xf(x)) = f(x) + x\frac{\partial}{\partial x}f(x)$, which follows from the (algebraic) Leibnitz-rule. Therefore, we obtain the well-defined $\phi : \mathcal{D}^{form} \rightarrow \text{End}_k(k[x])$ mapping $u \mapsto \frac{\partial}{\partial x}$ and $v \mapsto x$.

Now as \mathcal{D} contains $\frac{\partial}{\partial x}$ and x , the image of ϕ is contained in \mathcal{D} . On the other hand, as every element of \mathcal{B} is attained by ϕ (evaluating at $v^i u^j$), we obtain that the image is exactly \mathcal{D} , i.e. ϕ is surjective onto \mathcal{D} .

By repeating the same argument for $\Psi : k\langle u, v \rangle \rightarrow \text{End}_k(k[x])$ mapping $u \mapsto x$ and $v \mapsto -\frac{\partial}{\partial x}$, we obtain also the desired map $\psi : \mathcal{D}^{form} \rightarrow \text{End}_k(k[x])$, surjective onto \mathcal{D} .

Now finally we investigate when the surjective morphism $\phi : \mathcal{D}^{form} \rightarrow \mathcal{D}$ is also injective. If $\text{char}(k) = p > 0$ then u^p is mapped to $\left(\frac{\partial}{\partial x} \right)^p$, which as we have seen is equal to 0 inside \mathcal{D} . To conclude that ϕ isn't injective, it remains to show that u^p isn't equal to 0 inside \mathcal{D}^{form} . This can be seen via ψ , because $\psi(u^p)$ is the k -endomorphism of $k[x]$ given by multiplication with x^p , which is not the zero map. So u^p is non-zero inside \mathcal{D}^{form} , and hence ϕ is not injective. The same argument, replacing u and v , shows that ψ is not injective either.

It remains to consider the case where $\text{char}(k) = 0$. We have seen that $\mathcal{B}^{form} := \{v^j u^i \mid i, j \in \mathbb{Z}_{\geq 0}\}$ generates \mathcal{D}^{form} over k , and in characteristic zero $\mathcal{B} = \{x^i \left(\frac{\partial}{\partial x} \right)^j \mid i, j \in \mathbb{Z}_{\geq 0}\}$ is a k -basis of \mathcal{D} . But then ϕ induces a bijection between \mathcal{B}^{form} and \mathcal{B} , and thus

we obtain that \mathcal{B}^{form} is also linearly independent, and thus a k -basis. Therefore ϕ induces a bijection between two bases, and is thus a vector-space isomorphism. In particular, ϕ is injective, and hence $\mathcal{D}^{form} \cong \mathcal{D}$ in characteristic zero. The argument for ψ is completely analogous.

- (4) We claim that $k[x]$ is a simple \mathcal{D} -module. First note that $k[x]$ is generated as a \mathcal{D} -module by the element $1 \in k[x]$, because for any $f(x) \in k[x]$, the k -endomorphism of $k[x]$ given by multiplication with $f(x)$ is an element of \mathcal{D} , and the image of 1 under this endomorphism is $f(x)$. Hence any element of $k[x]$ can be obtained by letting some element of \mathcal{D} act on 1, i.e. 1 generates $k[x]$ as a \mathcal{D} -module. Now suppose N is a non-zero \mathcal{D} -submodule of $k[x]$. We will show that $1 \in N$. As N is non-zero, it contains some non-zero element $f(x) = \sum_{i=0}^n a_i x^i$ (where $a_n \neq 0$). We need to find a differential operator D such that $D(f) = 1$. In fact, $D = \frac{1}{a_n n!} \left(\frac{\partial}{\partial x}\right)^n$ will do it (here we use that $\text{char}(k) = 0$).
- (5) The first thing to note is that

$$\frac{\partial}{\partial x}(x^2) = 2x = 0.$$

Similarly $\frac{\partial}{\partial x}(x^{2n}) = 0$ any $n \in \mathbb{N}$.

Now let N be a non-zero \mathcal{D} -submodule of $k[x]$, and notice that N is generated by a single element. Indeed, the ring \mathcal{D} contains a copy of $k[x]$ as a subring (by viewing an element p of $k[x]$ as the k -endomorphism of $k[x]$ given by left multiplication by p), and the induced $k[x]$ -module structure on $k[x]$ is the natural one. Thus N is also a $k[x]$ -submodule of $k[x]$, i.e. an ideal. But $k[x]$ is a PID, so N is generated by some f as a $k[x]$ -module. In fact, we can take f to be the monic polynomial of minimal degree inside N (there is a unique one). As $N \neq 0$ we have $f \neq 0$, and as the derivative of f is has degree strictly smaller than f and is inside N (as N is a \mathcal{D} -module), we must have $\frac{\partial}{\partial x}f(x) = 0$. This means that $f(x) = \sum_{i=1}^{2n} a_i x^{2i}$ for some $a_0, \dots, a_n \in k$ with $a_n = 1$. Finally, we show that $\mathcal{D} \cdot f = k[x] \cdot f$ as k -subspaces of $k[x]$; it suffices to show that the LHS is included in the RHS. As both sides are k -vector spaces, it suffices to prove that $\mathcal{B} \cdot f \subseteq k[x] \cdot f$. This is true as $\left(x^i \left(\frac{\partial}{\partial x}\right)^j\right) \cdot f(x) = 0$ if $j \geq 1$, and $x^i f(x) \in k[x] \cdot f$ for all $i \geq 0$.

Therefore, we conclude that the \mathcal{D} -submodules of $k[x]$ are exactly the subsets of the form $k[x] \cdot f$ with f monic and only having terms of even degree. Notice also that any two distinct such f give distinct submodules.

□