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Rings and modules Exercises

Sheet 1 - Solutions

Exercise 1. (1) A simple module is a module that has only trivial submodules. Show that
any simple module is cyclic.

(2) Let m "M be an element. We de�ne the annihilator of m by

AnnR�m� � s r " R · rm � 0 y
We only write Ann�m� if it the base ring is clear from the context.
Show that Ann�m� is a left ideal of R and that the cyclic module Rm is isomorphic

to the module RªAnn�m�.
(3) Let M be a simple k�x�-module. Prove that M 	 k�x�«�f� where f is an irreducible

polynomial in k�x� and �f� denotes the ideal generated by f .
(4) Which of the following Z-modules are simple?

(a) Z
(b) Z©6Z
(c) Z©7Z

Proof. (1) If M � 0 then M � R � 0 and the assertion is true. Otherwise let m "M ¯ r0x.
Then Rm is a left submodule of M . Since Rm j 0 and M is simple we conclude that
Rm �M .

(2) We de�ne a homomorphism of left R-modulues Φm � RR � Rm by Φm�r� � rm. The
kernel of Φm is by de�nition the set of elements r " R such that rm � 0, i.e., ker�Φm� �
Ann�m�. This proves that Ann�m� is a left ideal of R and that Rm 	 RªAnn�m�.

(3) By (1) and (2),M is isomorphic to k�x�«Ann�m� for somem "M . Let Ann�m� � �f�
for some f " k�x� (recall that k�x� is a PID); we need to prove that f is irreducible.

To this end let g divide f , then k�x� � �g � �f�� is a left k�x�-submodule of k�x�«�f�.
Since by assumption M 	 k�x�«�f� is simple we must have that k�x� � �g � �f�� � 0

or k�x� � �g � �f�� � k�x�«�f�, which implies that either f divides g or �f, g� � �1�.
As g divides f , this means that either g � f or g � 1 (up to multiplication by a unit).
Thus f is irreducible.

(4) Notice that the Z-submodules of ZªnZ are exactly the ideals of ZªnZ seen as a ring.

Hence ZªnZ is a simple Z-module if and only if it has no non-zero proper ideals. As
you know a commutative ring has no non-zero proper ideals if and only if it is a �eld,
in particular only �c� gives a simple Z-module.

□

Exercise 2. Let R be a ring, M a left R-module and m "M .

(1) In the previous exercise you proved that Ann�m� is a left ideal of R. Give an example
to show that Ann�m� might not be a two sided ideal of R.

(2) De�ne the annihilator of M to be

AnnR�M� � s r " R · rM � 0 y � s r " R · ¾m "M � rm � 0 y
Prove that Ann�M� is a two sided ideal of R.
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(3) Let ϕ � S � R be a surjective homomorphism of rings and M a module over S. Show

that we can endow an R-module structure given by r �m � s �m for any s " ϕ
�1�r�

and m "M if and only if kerϕ N Ann�M�.
(4) For example, let S � k�x� and M � k�x� (with the standard action). Then M©f 2

M

is a k�x�©�f 2�-module for any 0 j f " k�x�. In addition, if f is not invertible, then
M©f 2

M is not a k�x�©�f�-module.

Proof. (1) We need to consider a non-commutative ring R to create an example, since left
and right ideals coincide in commutative rings. The �rst example of a non-commutative
ring R that comes to mind will su�ce. That is, let R be the ring of 2� 2 matrices over
some �eld k. To keep things as simple as possible we consider R as a left R-module by

left multiplication. Let 0 j a " k, we will calculate the annihilator of ma � �0 a
0 0

�.
Hence we are interested in solving the matrix equation

�b11 b12
b21 b22

� � �0 a
0 0

� � �0 0
0 0

� .
The solutions are exactly the matrices with b11 � b21 � 0, and thus Ann�ma� �
s �0 b

0 c
� · b, c " k y. This is not a right ideal of R because multiplying such an

element from the right with an arbitrary matrix in R does in general not give a matrix

of this form. For example multiplication from the right with �0 0
1 0

� gives b in the top

left corner of the matrix, so this top left entry is non-zero whenever b is.
(2) Let r, s " Ann�M� and l " R. Then l�r � s�m � l�rm � sm� � 0 and �r � s�lm �

r�lm� � s�lm� � 0.
(3) Assume �rst ker�ϕ� N Ann�M�, and let r " R, m " M and s, s

¬

" ϕ
�1�r�. Then

s � s
¬

" ker�ϕ�, so by assumption

0 � �s � s¬�m � sm � s
¬

m

so that sm � s
¬

m. Thus, at least the map R �M � M sending �r,m� � r � m is
well-de�ned. The module axioms are then straight-forward to see.
Now assume that the action is well de�ned. Then in particular for any s " ker�ϕ� �

ϕ
�1�0� and m "M ,

sm � 0

In other words ker�ϕ� N Ann�M�.
(4) Clearly, f

2
" Ann�M©f 2

M�, so by the previous point we get that M©f 2
M is an

k�x�©�f 2�-module via the above procedure.
Assume now that f j 0 is not invertible, and assume by contradiction that M©f 2

M
in an R©�f�-module via the above procedure. Then by the previous point, f "

Ann�M©f 2
M�, so in particular

f � f � 1 " f
2
M � f

2
k�x�

so there exists c " k�x� such that cf
2
� f . Since R is a domain, we get

cf � 1

which contradicts the fact that f is not invertible.
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□

Exercise 3. Answer the following questions. Provide an explanation by a proof or a coun-
terexample.

(1) Suppose that R is a Noetherian ring. Let S L R be a subring. Is it true that S is
Noetherian?

(2) Let R be a commutative Artinian ring. Is every prime ideal of R maximal?

Proof. (1) It is not necessarily true that S is Noetherian. A counterexample is given by an
inclusion of any non-Noetherian integral domain (e.g., k�x1, x2, . . .�) into its fraction
�eld (clearly Noetherian).

(2) Let p be a prime ideal of R. Since there exists a correspondence between ideals in Rªp
and ideals in R containing p, we know that Rªp is an Artinian integral domain. Let

x " Rªp be a non-zero element. The sequence of ideals ��xn��n'0 is decreasing and

hence by Artinianity it stabilizes, which means that x
n
� ux

n�1
for some u " Rªp and

n " N. Since Rªp is a domain, and we have x
n�1 � ux� � 0 and thus ux � 1, which

proves that x is invertible. So every non-zero element of Rªp is invertible, and thus
Rªp is a �eld. Therefore p is maximal inside R.

□

Exercise 4. Let I N R be an ideal.

(1) Show that

IM � w d

=
i�1

rimi

»»»»»»»»»» 1 & d " Z, ri " I, mi "M }
is an R-submodule of M .

(2) Show that MªIM is an RªI-module with scalar multiplication given by

�x � I��y � IM� � xy � IM.

From now, let R � k�x, y�, letM be the R-submodule generated by the element �x, y� "
Rh R � N , and let I be the maximal ideal I � Rx � Ry of R. Note that RªI 	 k via
the homomorphism R � k that evaluates x and y to 0.

(3) Show that M N IN and hence I �NªM� � INªM as R-submodules of NªM .

(4) Show that LªIL is a two dimensional vector-space over k, where L � NªM
[Hint: use point �3� and the third isomorphism theorem]

Now, we change a little bit our setup, and we rede�ne M :

(5) LetM be the submodule generated by the two elements �x, 0� and �0, y� of RhR � N .
Is NªM 	 R?

[Hint: look at Ann �NªM�.]
Proof. (1) We need to prove that IM is an additive subgroup and that it is stable under

multiplication by elements of R. By comparing de�nitions (i.e. that of IM above and
that of a subgroup generated by a subset), IM is in fact the subgroup of M generated
by the set rrm ¶ r " I, m " Mx, so IM is an additive subgroup of M . On the other
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hand, we have for all r " R that

r � �IM� � w d

=
i�1

rriÍÑ Ï
"I

mi

»»»»»»»»»» 1 & d " Z, ri " I, mi "M } N IM
as I is a left ideal. Thus IM &R M .

(2) One can prove this by simple (but tedious) veri�cation of well-de�nedness and of all
the axioms. But let us give a more conceptual proof. An abelian group M has a left
R-module structure if and only if we have a ring morphism λ � R � EndAb�M� (where
the multiplication law on the latter is given by composition): if M is an R-module
then we can de�ne λ�r� " EndAb�M� to be left multiplication by r, and conversely
if λ � R � EndAb�M� is a ring morphism then r.m �� λ�r��m� endows M with the
structure of an R-module.
Now let λ � R � EndAb �MªIM� be the ring morphism corresponding to the R-

module structure on MªIM . If r " I, then multiplication by r on MªIM is the zero
map, and thus r " ker�λ�. As thus I N ker�λ�, we obtain an induced ring morphism

λ � RªI � EndAb �MªIM�, given by λ�r � I� � λ�r� for all r " R. Hence, λ endows
MªIM with the structure of an RªI-module, given explicitly by

�x � I��y � IM� � λ�x � I��y � IM� � λ�x��y � IM� � xy � IM.

(3) Let m "M be arbitrary, then there exists a polynomial f " R such that m � �xf, yf�.
Thus m � x � �f, 0�� y � �0, f� " IN , and so we obtain M N IN . In particular, INªM
is a well-de�ned R-submodule of NªM . To conclude, notice that

I �NªM� � w d

=
i�1

ri�ni �M� »»»»»»»»»» 1 & d " Z, ri " I, ni " N }
� w � d

=
i�1

rini�
ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ

"IN

�M

»»»»»»»»»» 1 & d " Z, ri " I, ni " N }

� w <d

i�1 rini

»»»»»»»»»» 1 & d " Z, ri " I, ni " N }®M � INªM.

(4) By (3) we have

LªIL �3�
� �NªM�«�INªM� 	 NªIN

by the third isomorphism theorem. Now observe that the map

N � RªI h RªI�f, g�( �f � I, g � I�
is surjective and has kernel IN (verify it!). Thus, as by the remark above (3) we have
RªI 	 k (can you describe the R-module structure on k given by this isomorphism?),

we obtain by the �rst isomorphism theorem that NªIN 	 k h k.
(5) Let �f, g� " N be arbitrary. Then xy�f, g� � fy�x, 0� � gx�0, y� " M , and thus

xy��f, g� � M� � 0 inside NªM . As �f, g� " N was arbitrary, we obtain xy "
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Ann�NªM�. On the other hand, as R is a domain, we have Ann�RR� � �0�. As the
annihilator is preserved under R-module isomorphisms, we thus have NªM ©	 R.

□

Exercise 5. Let
0�M � N � NªM � 0

be a short exact sequence of R-modules. For each of the following assertions either prove
that the assertion holds or provide a counterexample.

(1) If M and NªM are �nitely generated, then N is too.

(2) Conversely, if N is �nitely generated, then NªM is �nitely generated too.
(3) If N is �nitely generated, then M is �nitely generated too.

Proof. (1) As M is �nitely generated, we can �nd a subset rm1, . . . ,mkx N M generating
M as an R-module, and as NªM is �nitely generated we can �nd a subsetrn1 �M, . . . , nl �Mx N NªM generating NªM as an R-module.
We claim that N is generated by rm1, . . . ,mk, n1, . . . , nlx. Given n " N , we can write

n � M � <l

j�1 sj�nj � M� for some sj " R, and so n � <l

j�1 sjnj " M . But then

there exist ri " R such that n �<l

j�1 sjnj � <k

i�1 rimi. This exhibits n as an R-linear
combination of the mi's and nj's and so N is generated by these elements.

(2) The statement is true. Suppose rn1, . . . nkx generate N , then in fact rn1�M, . . . , nk�

Mx generates N©M . Indeed any n �M " N©M can be written as

n �M � � k

=
i�1

rini� �M �

k

=
i�1

ri�ni �M�
and thus n �M is an R-linear combination of the ni �M 's.

(3) This statement is not true. Take R � C�x1, x2, ...�, the polynomial ring in in�nitely
many variables. (An element of R is by de�nition a polynomial in �nitely many of the
variables x1, x2, ..., and addition and multiplication are then exactly what one would
think it is).

LetN be R viewed as a module over itself, and take the submoduleM to be generated
by rx1, x2, ...x. This is a proper submodule, as it does not contain the constants C L N .
Any element ofM is a polynomial f�x1, ..., xi� with no constant term. Given a �nite set
of such polynomials rfix LM , there is an integer I such that any element contained in�rfix� can be written as a linear combination of monomials, each of which has positive
degree in some xi with i $ I. So this span cannot be equal to all of M , as it does not
contain xn for n9 0.

Note: the statement in �3� is true for modules over an important class of rings
called Noetherian rings. These include many common rings such as �elds k, Z,
and k�x1, ..., xn�. So C�x1, x2, ...� is an example of a non-Noetherian ring.

□

Exercise 6. (1) Let
0�M � N � NªM � 0

be a short exact sequence of R-modules. For each of the following assertions either
prove that the assertion holds or provide a counterexample.
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` If N is free, then NªM is free.
` If N is free, then M is free.
` If M and NªM are free, then N is free.

(2) Let R � Z. Is Z�x�«�x2 � 1�Z�x� a free R-module? How about Z�x�«�2x2�Z�x�?
Is Q a free R-module? Is it �nitely generated?

Proof. A module is free if it is isomorphic to,I R for some (possibly in�nite) indexing set
I.

Digression:

De�nition 1. A subset rmix LM is a basis for M if:

` It spans M : every m "M can be written as m � < rimi for some ri " R.
` It is linearly independent: if < rimi � 0 for ri " R then ri � 0 for each i.

Lemma 1. The module M is free if and only if it has a basis.

Proof. Assume M is free, so M 	,I R. We can de�ne a basis reixI for M where ei is 1

in its i
th
position and zero elsewhere. It is straightforward that these span and are linearly

independent. Conversely suppose we have a module M which has a basis reixi"I . De�ne
ϕ � hIR �M by extending linearly from ϕ��δi,j�j"I� � ei for each i " I. This is surjective,
because any m "M can be written as a linear combination of the ei and each of these is in
the image. It is injective, because if not there is some non-zero element of hIR killed by ϕ.
But this gives a non-trivial linear dependence among the ei in M . □

Now we return to the solution.

(1) ` This is false: a counterexample is given by R � Z, N � Z, M � 2 � Z, for then
N©M 	 Z©2Z.

` This is also false: a counterexample is R � Z©4Z, N � Z©4Z and M � 2 �Z©4Z 	
Z©2Z. This has too few elements to be a free Z©4Z-module.

` This is true. Suppose M has basis rm1, . . . ,mkx and N©M has basis rn1 �

M, . . . , nl �Mx. We claim that rm1, . . . ,mk, n1, . . . , nlx is a basis for N . They
span by the argument in Exercise 4.1. For linear independence: suppose < sjnj �

< rimi � 0. This implies < sj�nj �M� � 0 in N©M and so the sj's are all zero
by the linear independence of the nj � M 's. But then < rimi � 0 is a linear
dependence for a basis of M , forcing also the ri's to be zero as well.

(2) ` Z�x�©�x2�1�Z�x� is a free Z-module, with basis r1, xx (it is isomorphic to Z�i�).
` Z�x�©�2x2�Z�x� is not free since xn is a torsion element for all n ' 2 (as x

n
� �2x2�

but 2x
n
" �2x2�).

` Q is not a free Z module. Indeed, any two elements of Q are Z-linearily dependet:
if a©b, c©d " Q then either both are equal to zero, or cb�a©b� � ad�c©d� � 0 is
a non-trivial Z-linear relation. Thus if Q was a free Z-module, then it must be
generated by a single element, which is impossible. For example, this can be seen
by the second part of the question:
Q is not �nitely generated over Z since if rp1

q1
, . . . , pn

qn
x is a generating set, let

q � q1�qn. Then
1

q�1
does not lie in the Z-span of rp1

q1
, . . . , pn

qn
x.

□
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Optional exercise. Not on the exam. Suggested if you are seriously interested in algebra.

Exercise 7. Let k be a �eld. In this exercise, we want to understand di�erential

operators on k�x�. To this end, de�ne the operator ∂

∂x
Endk�k�x�� by the usual

rule
∂

∂x
�xn� � nx

n�1
.

De�ne also x " Endk�k�x�� de�ned by multiplication by x. Finally, de�ne the
subring D N Endk�k�x�� to be the sub-k-algebra generated by x and ∂

∂x
.

We will show that this non-commutative rung behaves very di�erently, whether
we work in characteristic zero or in positive characteristic.

(1) Show that a basis of D as a k-vector space is given by the elements x
i � ∂

∂x
�j,

where �i, j� " N2
if char k � 0, and i " N and j " r0, 1, . . . , p � 1x if

char k � p % 0.
(2) Now we change the perspective and consider a quotient of the free k-algebra

on two generators Dform
� k�u, v�©�uv � vu � 1�. Prove that in Dform

we
have the identity

uP �v� � ∂

∂v
P �v� � P �v�u

for all polynomials P �v� " k�v�. Use this to prove that Dform
is generated

as a k-vector space by rvjui ¶ �i, j� " N2x.
(3) Show that there are well de�ned ring homomorphisms ϕ and ψ from Dform

to Endk�k�x��, such that ϕ�u� � ∂

∂x
and ϕ�v� � x, as well as ψ�u� � x

and ψ�v� � �
∂

∂x
. Show that ϕ and ψ are surjective onto D, and de�ne an

isomorphism betwenn D and Dform
if and only if char�k� � 0.

(4) Determine the submodules of k�x� as a left D-module (with left D-module
structure given by the inclusion D L Endk�k�x��) in the case when char k � 0.

(5) Determine the left submodules of k�x� as a D-module when char k � 2.

Proof. (1) Let us �rst show that B1 � rxi � ∂

∂x
�jxi,j'0 spans D (in any characteristic). By

de�nition of D (recall that we work in a non-commutative setup), it enough to show

that each � ∂

∂x
�j ` xi is spanned by B1. Note that

∂

∂x
x � x

∂

∂x
� 1

(this follows from the Leibniz rule) so an induction on i and j shows that B1 spans D
as a k-vector space.

Now notice that if char�k� � p % 0 then � ∂

∂x
�j � 0 for all j ' p (repeatedly taking

derivatives more than p times will produce a factor divisible by p in front of every
monomial). Thus if we let Ω � Z2

'0 if char�k� � 0 and Ω � Z'0 � r0, . . . , p � 1x if

char�k� � p % 0, we obtain that already B � rxi � ∂

∂x
�j ¶ �i, j� " Ωx generates D.
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Now we need to prove that the elements of B are k-linearily independent. Let λa �

Ω� k be a set of �nitely many non-zero coe�cients in k such that<�i,j�"Ω λi,jx
i � ∂

∂x
�j �

0. In particular, if we evaluate the expression on the LHS at 1 we obtain<�i,0�"Ω λi,0x
i
�

0 as element of k�x�, and thus λi,0 � 0 for all i. Suppose we have proven λi,j � 0 for all
i and all j $ J for some J % 0 (satisfying J & p � 1 if char�k� � p % 0). Then we have

<�i,j�"Ω, j'J λi,jx
i � ∂

∂x
�j � 0, and evaluating the LHS at x

J
shows that λi,J � 0 for all

i. By induction, we conclude that λi,j � 0 for all �i, j� " Ω. Thus B is a basis of D.

(2) Inside Dform
, we can use the relation uv � vu � 1 � 0 to swap the u's and v's in any

given monomial. Let us make this precise. By induction on j, one proves

uv
j
�

∂

∂v
v
j
� v

j
u

inside Dform
(i.e. modulo uv � vu � 1). The formula in question then follows by k-

linearity. Multiplying the formula by powers of u, it then follows also more generally
that

u
i
P �v� � i

=
k�0

� ∂
∂v


k �P �v�� � ui�k.
In particular, we have a formula to replace any monomial u

i
v
j
by an expression where

in all monomials v is to the left of u. By using this iteratively, moving all v's to the

left, one can express every element of Dform
as a sum of monomials of the form v

j
u
i
.

That is, Bform
�� rvjui ¶ i, j " Z'0x is a generating set of Dform

as a k-vector space.
(3) By the universal property of the free k-algebra on two generators, there exists a k-

algebra morphism Φ � k�u, v� � Endk�k�x�� mapping u ( ∂

∂x
and v ( x. To show

that Φ factors through Dform
, it su�ces to prove that uv� vu� 1 is in the kernel of Φ.

This amounts to proving that for all f " k�x� we have ∂

∂x
�xf�x�� � f�x� � x ∂

∂x
f�x�,

which follows from the (algebraic) Leibnitz-rule. Therefore, we obtain the well-de�ned

ϕ � Dform
� Endk�k�x�� mapping u( ∂

∂x
and v ( x.

Now as D contains ∂

∂x
and x, the image of ϕ is contained in D. On the other hand,

as every element of B is attained by ϕ (evaluating at v
i
u
j
), we obtain that the image

is exactly D, i.e. ϕ is surjective onto D.
By repeating the same argument for Ψ � k�u, v�� Endk�k�x�� mapping u( x and

v ( �
∂

∂x
, we obtain also the desired map ψ � Dform

� Endk�k�x��, surjective onto D.

Now �nally we investigate when the surjective morphism ϕ � Dform
� D is also

injective. If char�k� � p % 0 then u
p
is mapped to � ∂

∂x
�p, which as we have seen is

equal to 0 inside D. To conclude that ϕ isn't injective, it remains to show that u
p
isn't

equal to 0 inside Dform
. This can be seen via ψ, because ψ�up� is the k-endomorphism

of k�x� given by multiplication with x
p
, which is not the zero map. So u

p
is non-zero

inside Dform
, and hence ϕ is not injective. The same argument, replacing u and v,

shows that ψ is not injective either.

It remains to consider the case where char�k� � 0. We have seen that Bform
��

rvjui ¶ i, j " Z'0x generatesDform
over k, and in characteristic zero B � rxi � ∂

∂x
�j ¶ i, j "

Z'0x is a k-basis of D. But then ϕ induces a bijection between Bform
and B, and thus



9

we obtain that Bform
is also linearily independent, and thus a k-basis. Therefore ϕ

induces a bijection between two bases, and is thus a vector-space isomorphism. In

particular, ϕ is injective, and hence Dform
	 D in characteristic zero. The argument

for ψ is completely analogous.
(4) We claim that k�x� is a simple D-module. First note that k�x� is generated as a D-

module by the element 1 " k�x�, because for any f�x� " k�x�, the k-endomorphism of
k�x� given by multiplcation with f�x� is an element of D, and the image of 1 under
this endomorphism is f�x�. Hence any element of k�x� can be obtained by letting
some element of D act on 1, i.e. 1 generates k�x� as a D-module. Now suppose N
is a non-zero D-submodule of k�x�. We will show that 1 " N . As N is non-zero, it

contains some non-zero element f�x� � <n

i�0 aix
i
(where an j 0). We need to �nd a

di�erential operator D such that D�f� � 1. In fact, D �
1

ann!
� ∂

∂x
�n will do it (here we

use that char�k� � 0).
(5) The �rst thing to note is that

∂

∂x
�x2� � 2x � 0.

Similarly ∂

∂x
�x2n� � 0 any n " N.

Now let N be a non-zero D-submodule of k�x�, and notice that N is generated by a
single element. Indeed, the ring D contains a copy of k�x� as a subring (by viewing an
element p of k�x� as the k-endomorphism of k�x� given by left multiplication by p),
and the induced k�x�-module structure on k�x� is the natural one. Thus N is also a
k�x�-submodule of k�x�, i.e. an ideal. But k�x� is a PID, so N is generated by some f
as a k�x�-module. In fact, we can take f to be the monic polynomial of minimal degree
inside N (there is a unique one). As N j 0 we have f j 0, and as the derivative of f is
has degree strictly smaller than f and is inside N (as N is a D-module), we must have
∂

∂x
f�x� � 0. This means that f�x� � <2n

i�1 aix
2i
for some a0, . . . , an " k with an � 1.

Finally, we show that D � f � k�x� � f as k-subspaces of k�x�; it su�ces to show that
the LHS is included in the RHS. As both sides are k-vector spaces, it su�ces to prove

that B �f N k�x� �f . This is true as �xi � ∂

∂x
�j	 �f�x� � 0 if j ' 1, and x

i
f�x� " k�x� �f

for all i ' 0.
Therefore, we conclude that the D-submodules of k�x� are exactly the subsets of the
form k�x� � f with f monic and only having terms of even degree. Notice also that any
two distinct such f give distinct submodules.

□


