EPFL - Fall 2024 Domenico Valloni
Rings and modules Exercises
Sheet 1 - Solutions

Exercise 1. (1) A simple module is a module that has only trivial submodules. Show that
any simple module is cyclic.
(2) Let m € M be an element. We define the annihilator of m by

Anng(m)={reR|rm=0}

We only write Ann(m) if it the base ring is clear from the context.
Show that Ann(m) is a left ideal of R and that the cyclic module Rm is isomorphic
to the module R/Ann(m)-
(3) Let M be a simple k[z]-module. Prove that M = k?[x]/(f) where f is an irreducible
polynomial in k[x] and (f) denotes the ideal generated by f.
(4) Which of the following Z-modules are simple?
(a) Z
(b) Z[6Z
(c) Z|7Z

Proof. (1) If M =0 then M = R -0 and the assertion is true. Otherwise let m € M \ {0}.
Then Rm is a left submodule of M. Since Rm # 0 and M is simple we conclude that
Rm = M.

(2) We define a homomorphism of left R-modulues ®,, : kR = Rm by ®,,(r) = rm. The
kernel of ®,, is by definition the set of elements » € R such that rm = 0, i.e., ker(®,,) =
Ann(m). This proves that Ann(m) is a left ideal of R and that Rm = R/Ann(m)-

(3) By (1) and (2), M is isomorphic to k[x]/Ann(m) for some m € M. Let Ann(m) = (f)
for some f € k[z] (recall that k[x] is a PID); we need to prove that f is irreducible.
To this end let g divide f, then k[z]- (g + (f)) is a left k[z]-submodule of k[z] / (f)-
Since by assumption M = k’[x]/(f) is simple we must have that k[z]- (g + (f)) =0
or k[z]- (g + (f)) = k’[flf]/(f), which implies that either f divides g or (f,g) = (1).
As g divides f, this means that either g = f or g = 1 (up to multiplication by a unit).
Thus f is irreducible.

(4) Notice that the Z-submodules of Z/nZ are exactly the ideals of Z/nZ seen as a ring.
Hence Z / nZ is a simple Z-module if and only if it has no non-zero proper ideals. As
you know a commutative ring has no non-zero proper ideals if and only if it is a field,

in particular only (¢) gives a simple Z-module.
[

Exercise 2. Let R be a ring, M a left R-module and m € M.
(1) In the previous exercise you proved that Ann(m) is a left ideal of R. Give an example
to show that Ann(m) might not be a two sided ideal of R.
(2) Define the annihilator of M to be
Amp(M)={reR|rM=0}={reR|V¥YmeM:rm=0}

Prove that Ann(M) is a two sided ideal of R.
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(3)

(4)

Let ¢ : S = R be a surjective homomorphism of rings and M a module over S. Show
that we can endow an R-module structure given by r - m = s+ m for any s € ¢_1(r)
and m € M if and only if ker ¢ € Ann(M).

For example, let S = k[z] and M = k[z] (with the standard action). Then M/ f>M
is a k[z]/(f*)-module for any 0 # f € k[z]. In addition, if f is not invertible, then
M/ f>M is not a k[z]/(f)-module.

Proof. (1) We need to consider a non-commutative ring R to create an example, since left

(2)
(3)

and right ideals coincide in commutative rings. The first example of a non-commutative
ring R that comes to mind will suffice. That is, let R be the ring of 2 X 2 matrices over
some field k. To keep things as simple as possible we consider R as a left R-module by

left multiplication. Let 0 # a € k, we will calculate the annihilator of m, = [8 8}

Hence we are interested in solving the matrix equation

bll b12 . 0 a _ 0 0

bay  bas 0O 0 |0 Of
The solutions are exactly the matrices with by, = by; = 0, and thus Ann(m,) =
{ [8 i] | b,c € k } This is not a right ideal of R because multiplying such an

element from the right with an arbitrary matrix in R does in general not give a matrix

of this form. For example multiplication from the right with [(1) 8] gives b in the top

left corner of the matrix, so this top left entry is non-zero whenever b is.

Let r,s € Ann(M) and [ € R. Then I(r + s)m = I[(rm + sm) = 0 and (r + s)ilm =
r(lm) + s(lm) = 0.

Assume first ker(¢) € Ann(M), and let r € R, m € M and s, s € ¢ '(r). Then
s —s € ker(¢), so by assumption

0=(s—s)m=sm—sm

so that sm = s'm. Thus, at least the map R x M — M sending (r,m) — r - m is
well-defined. The module axioms are then straight-forward to see.

Now assume that the action is well defined. Then in particular for any s € ker(¢) =
¢~'(0) and m € M,

sm =10

In other words ker(¢) € Ann(M).
Clearly, f* € Ann(M/f*M), so by the previous point we get that M/f>M is an
k[2]/(f*)-module via the above procedure.

Assume now that f # 0 is not invertible, and assume by contradiction that M/ f2M
in an R/(f)-module via the above procedure. Then by the previous point, f €
Ann(M [ f>M), so in particular

f=f-1€fM=fia]
so there exists ¢ € k[z] such that ¢f” = f. Since R is a domain, we get
cf=1

which contradicts the fact that f is not invertible.
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Exercise 3. Answer the following questions. Provide an explanation by a proof or a coun-
terexample.

(1) Suppose that R is a Noetherian ring. Let S C R be a subring. Is it true that S is
Noetherian?
(2) Let R be a commutative Artinian ring. Is every prime ideal of R maximal?

Proof. (1) Tt is not necessarily true that S is Noetherian. A counterexample is given by an
inclusion of any non-Noetherian integral domain (e.g., k[xy,xo,...]) into its fraction
field (clearly Noetherian).

(2) Let p be a prime ideal of R. Since there exists a correspondence between ideals in R/p
and ideals in R containing p, we know that I / p is an Artinian integral domain. Let
T € R/p be a non-zero element. The sequence of ideals ((2")),50 is decreasing and
hence by Artinianity it stabilizes, which means that 2" = uz™*" for some u € R /p and
n € N. Since R/p is a domain, and we have 2" (1 — uz) = 0 and thus uz = 1, which
proves that x is invertible. So every non-zero element of R/ p is invertible, and thus
R / p is a field. Therefore p is maximal inside R.

O
Exercise 4. Let I € R be an ideal.
(1) Show that

i=1
is an R-submodule of M.
(2) Show that M / IMisan R / J-module with scalar multiplication given by

(x+1)(y+IM)=xy+IM.

IM={ irimi

From now, let R = k[xz,y], let M be the R-submodule generated by the element (x,y) €
R® R = N, and let I be the maximal ideal I = Rx + Ry of R. Note that R/] = k via
the homomorphism R — k that evaluates x and y to 0.

(3) Show that M € IN and hence (N/M) = IN/M as R-submodules of N/M.
(4) Show that L/]L is a two dimensional vector-space over k, where L = N/M
[Hint: use point (3) and the third isomorphism theorem)|

Now, we change a little bit our setup, and we redefine M:

(5) Let M be the submodule generated by the two elements (z,0) and (0,y) of R& R = N.
Is N/p= R?
[Hint: look at Ann (N /7).

Proof. (1) We need to prove that /M is an additive subgroup and that it is stable under
multiplication by elements of R. By comparing definitions (i.e. that of IM above and
that of a subgroup generated by a subset), IM is in fact the subgroup of M generated
by the set {rm | r € I, m € M}, so IM is an additive subgroup of M. On the other



hand, we have for all » € R that
d

r-(IM) ={ Zz‘rzmi

=1 el

as [ is a left ideal. Thus IM <p M.

One can prove this by simple (but tedious) verification of well-definedness and of all
the axioms. But let us give a more conceptual proof. An abelian group M has a left
R-module structure if and only if we have a ring morphism A : R — Ends, (M) (where
the multiplication law on the latter is given by composition): if M is an R-module
then we can define A\(r) € Enda,(M) to be left multiplication by r, and conversely
if A : R — Endy,(M) is a ring morphism then r.m := A(r)(m) endows M with the
structure of an R-module.

Now let A : R — End,, (M/]M) be the ring morphism corresponding to the R-
module structure on M/[M. If r € I, then multiplication by r on M/[M is the zero
map, and thus r € ker(\). As thus I € ker(\), we obtain an induced ring morphism
e R[1 — Ends, (M/10r), given by X+ 1) = A(r) for all r € R. Hence, \ endows
M / I M with the structure of an R / [-module, given explicitly by

(z+ D+ IM)=XNz+(y+IM)=Naz)(y+IM) = zy+ IM.

Let m € M be arbitrary, then there exists a polynomial f € R such that m = (zf,yf).
Thus m = z- (f,0)+y- (0, f) € IN, and so we obtain M € IN. In particular, IN /s
is a well-defined R-submodule of IV / M- To conclude, notice that

d
I(N/M)={ Zri(ni-l-M) 1<de€Z, r,el, n,-eN}

d
={ Zrmi)JrM 1<d€Z, r, €l nieN}

= { Z?:ﬁi”i

By (3) we have

it (N[a) /(1N [y = N 1N
by the third isomorphism theorem. Now observe that the map
N-RlreR[r
(f,9) = (f+1,g+1)

is surjective and has kernel I N (verify it!). Thus, as by the remark above (3) we have
R / I = k (can you describe the R-module structure on k given by this isomorphism?),
we obtain by the first isomorphism theorem that N/]N =kok.

Let (f,g) € N be arbitrary. Then ay(f,g) = fy(z,0) + gz(0,y) € M, and thus
zy((f,g) + M) = 0 inside N/ps. As (f,g) € N was arbitrary, we obtain zy €
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Ann(N/pr). On the other hand, as R is a domain, we have Ann(zR) = (0). As the

annihilator is preserved under R-module isomorphisms, we thus have &V / M #R.
O

Exercise 5. Let

0—>M—>N—>N/]\/[—>O

be a short exact sequence of R-modules. For each of the following assertions either prove
that the assertion holds or provide a counterexample.

(1)
(2)
(3)

If M and N/M are finitely generated, then N is too.
Conversely, if N is finitely generated, then V / M is finitely generated too.
If N is finitely generated, then M is finitely generated too.

Proof. (1) As M is finitely generated, we can find a subset {my,...,m;} € M generating

M as an R-module, and as &V / M 1is finitely generated we can find a subset
{ni+M,...,ny+ M} C N/]\/[ generating N/M as an R-module.

We claim that N is generated by {m4,...,my,ny,...,n;}. Given n € N, we can write
n+ M= Zé’:l sj(n; + M) for some s; € R, and so n — Zézl s;n; € M. But then
there exist r; € R such that n — Z§=1 sin; = Zle r;m,;. This exhibits n as an R-linear
combination of the m,’s and n,’s and so IV is generated by these elements.

The statement is true. Suppose {n,...n;} generate N, then in fact {n, + M, ... n, +

M} generates N/M. Indeed any n + M € N[/M can be written as

n+ M= (irini)+M= iri(ni+M)

i=1 i=1

and thus n + M is an R-linear combination of the n; + M’s.

This statement is not true. Take R = C[xq, x5, ...], the polynomial ring in infinitely
many variables. (An element of R is by definition a polynomial in finitely many of the
variables x;, x, ..., and addition and multiplication are then exactly what one would
think it is).

Let N be R viewed as a module over itself, and take the submodule M to be generated
by {x1, x5, ...}. This is a proper submodule, as it does not contain the constants C C N.
Any element of M is a polynomial f(x,, ..., 2;) with no constant term. Given a finite set
of such polynomials {f;} C M, there is an integer I such that any element contained in
({f;}) can be written as a linear combination of monomials, each of which has positive
degree in some x; with ¢ < I. So this span cannot be equal to all of M, as it does not
contain x,, for n > 0.

Note: the statement in (3) is true for modules over an important class of rings
called Noetherian rings. These include many common rings such as fields k, Z,
and k[xy,...,x,]. So C[xy,xs,...] is an example of a non-Noetherian ring.

U

Exercise 6. (1) Let

0->M->N->N/y-0
be a short exact sequence of R-modules. For each of the following assertions either
prove that the assertion holds or provide a counterexample.



o

(o]

(o]

If N is free, then N/]\/[ is free.
If N is free, then M is free.
If M and N/M are free, then N is free.

(2) Let R=27Z.Is Z|:$]/(x2 +1)Z[«] a free R-module? How about Z[w]/(sz)Z[x]?

Is Q a free R-module? Is it finitely generated?

Proof. A module is free if it is isomorphic to €, R for some (possibly infinite) indexing set

I.

Digression:

Definition 1. A subset {m;} C M is a basis for M if:

o It spans M: every m € M can be written as m = ) r;m; for some r; € R.
o Tt is linearly independent: if ) r;m; = 0 for r; € R then r; = 0 for each 1.

Lemma 1. The module M s free if and only if it has a basis.

Proof. Assume M is free, so M = @, R. We can define a basis {e;}; for M where ¢; is 1

in its i™ position and zero elsewhere. It is straightforward that these span and are linearly
independent. Conversely suppose we have a module M which has a basis {e;};c;. Define
¢ : &R — M by extending linearly from ¢((d;;);er) = e; for each ¢ € I. This is surjective,
because any m € M can be written as a linear combination of the e; and each of these is in
the image. It is injective, because if not there is some non-zero element of &;R killed by ¢.
But this gives a non-trivial linear dependence among the e; in M. 0

Now we return to the solution.

(1)

o

o

This is false: a counterexample is given by R = Z, N = Z, M = 2 - Z, for then
N|M = 7]27.

This is also false: a counterexample is R = Z[4Z, N = Z[AZ and M = 2-Z[AZ =
Z[27. This has too few elements to be a free Z[4Z-module.

This is true. Suppose M has basis {m,...,m;} and N/M has basis {n; +
M,...,n; + M}. We claim that {mq,...,my,nq,...,n;} is a basis for N. They
span by the argument in Exercise 4.1. For linear independence: suppose » sn; +
> r;m; = 0. This implies ) s;(n; + M) = 0 in N/M and so the s,’s are all zero
by the linear independence of the n; + M’s. But then ) r;m; = 0 is a linear
dependence for a basis of M, forcing also the r;’s to be zero as well.

Z[z]/(z* + 1)Z[z] is a free Z-module, with basis {1, z} (it is isomorphic to Z[4]).
Z[x]/(22°)Z[2] is not free since " is a torsion element for all n = 2 (as " ¢ (22°)
but 22" € (227)).

Q is not a free Z module. Indeed, any two elements of Q are Z-linearily dependet:
if a/b,c/d € Q then either both are equal to zero, or cb(a/b) — ad(c/d) = 0 is
a non-trivial Z-linear relation. Thus if Q was a free Z-module, then it must be
generated by a single element, which is impossible. For example, this can be seen
by the second part of the question:

@ is not finitely generated over Z since if {%, ceey z—:} is a generating set, let

= 1 o i _ b1 Pn
q=q1""*q,. Then pe does not lie in the Z-span of {q1 s }.
[l



Optional exercise. Not on the exam. Suggested if you are seriously interested in algebra.

Exercise 7. Let k be a field. In this exercise, we want to understand differential
operators on k[x]. To this end, define the operator a% End,(k[z]) by the usual
rule

Define also x € End(k[z]) defined by multiplication by z. Finally, define the
subring D € Endj(k[x]) to be the sub-k-algebra generated by = and %.

We will show that this non-commutative rung behaves very differently, whether
we work in characteristic zero or in positive characteristic.

(1) Show that a basis of D as a k-vector space is given by the elements 2’ (a%)J’

where (i,7) € N° if chark = 0, and i € N and j € {0,1,...,p — 1} if
chark =p > 0.

(2) Now we change the perspective and consider a quotient of the free k-algebra
on two generators D' = k(u,v)/(uv — vu — 1). Prove that in D'”™ we
have the identity

uP(v) = %P(U) + P(v)u

for all polynomials P(v) € k[v]. Use this to prove that D™ is generated
as a k-vector space by {v’u’ | (i,j) € N°}.

(3) Show that there are well defined ring homomorphisms ¢ and ¢ from
to Endg(k[z]), such that ¢(u) = a% and ¢(v) = xz, as well as Y¥(u) = z
and ¥ (v) = _a%' Show that ¢ and ¢ are surjective onto D, and define an
isomorphism betwenn D and D™ if and only if char(k) = 0.

(4) Determine the submodules of k[x] as a left D-module (with left D-module
structure given by the inclusion D € End,(k[x])) in the case when char k = 0.

(5) Determine the left submodules of k[z] as a D-module when char k = 2.

Dform

Proof. (1) Let us first show that By := {z' (a%)]}iajzo spans D (in any characteristic). By
definition of D (recall that we work in a non-commutative setup), it enough to show
that each (%)J oz is spanned by B;. Note that

0

%x=$2+1

ox

(this follows from the Leibniz rule) so an induction on ¢ and j shows that B; spans D
as a k-vector space. 4

Now notice that if char(k) = p > 0 then (6%)] = 0 for all j = p (repeatedly taking
derivatives more than p times will produce a factor divisible by p in front of every
monomial). Thus if we let Q = Z2, if char(k) = 0 and Q = Z,o % {0,...,p — 1} if
char(k) = p > 0, we obtain that already B = {z’ (%)] | (i,7) € Q} generates D.



Now we need to prove that the elements of B are k-linearily independent. Let A, :
) — k be a set of finitely many non-zero coefficients in £ such that Z(Z. en At (%)j =

0. In particular, if we evaluate the expression on the LHS at 1 we obtain Z(i,O)EQ Aoz’ =
0 as element of k[z], and thus \; o = 0 for all i. Suppose we have proven ), ; = 0 for all
i and all j < J for some J > 0 (satisfying J < p — 1 if char(k) = p > 0). Then we have

Z(m.)EQ, I )\Z-J(Bi (a%)J = 0, and evaluating the LHS at 2’ shows that Aig = 0 for all

i. By induction, we conclude that \;; = 0 for all (¢, j) € Q. Thus B is a basis of D.

Inside D/™, we can use the relation uv — vu — 1 = 0 to swap the w’s and v’s in any
given monomial. Let us make this precise. By induction on j, one proves

9. _
w’ = =—v’ +0'u
ov

inside D’ (i.e. modulo uv — vu — 1). The formula in question then follows by k-
linearity. Multiplying the formula by powers of u, it then follows also more generally

that -
Pw =Y (2 e -

k=0

In particular, we have a formula to replace any monomial u't? by an expression where
in all monomials v is to the left of u. By using this iteratively, moving all v’s to the
left, one can express every element of D™ as a sum of monomials of the form v’u’.
That is, B/7™ := {v'u' | i,j € Zsy} is a generating set of D™ as a k-vector space.
By the universal property of the free k-algebra on two generators, there exists a k-

algebra morphism ® : k(u,v) —» End,(k[x]) mapping u +— a% and v » z. To show

that ® factors through D/, it suffices to prove that uv — vu — 1 is in the kernel of ®.
This amounts to proving that for all f € k[z] we have %(xf(x)) = f(x) + xa%f(x),
which follows from the (algebraic) Leibnitz-rule. Therefore, we obtain the well-defined
¢ : D' > End, (k[2]) mapping u ~ a% and v b .

Now as D contains a% and x, the image of ¢ is contained in D. On the other hand,

as every element of B is attained by ¢ (evaluating at v'u’), we obtain that the image
is exactly D, i.e. ¢ is surjective onto D.
By repeating the same argument for ¥ : k(u,v) — End,(k[2]) mapping v — z and

v _a%’ we obtain also the desired map v : D'”™ = End, (k[2]), surjective onto D.

Now finally we investigate when the surjective morphism ¢ : D/ — D is also
injective. If char(k) = p > 0 then «” is mapped to (a%)p, which as we have seen is
equal to 0 inside D. To conclude that ¢ isn’t injective, it remains to show that u” isn’t
equal to 0 inside D'”™. This can be seen via 1, because ¥(u”) is the k-endomorphism
of k[x] given by multiplication with 2", which is not the zero map. So u” is non-zero
inside D™, and hence ¢ is not injective. The same argument, replacing u and v,
shows that v is not injective either.

It remains to consider the case where char(k) = 0. We have seen that Bform =

{v'u' | i, € Zso} generates D' over k, and in characteristic zero B = {z’ (—) |i,j €
Zso} is a k-basis of D. But then ¢ induces a bijection between B/ and B, and thus
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we obtain that B/”™ is also linearily independent, and thus a k-basis. Therefore ¢
induces a bijection between two bases, and is thus a vector-space isomorphism. In
particular, ¢ is injective, and hence D'”™ = D in characteristic zero. The argument
for 1 is completely analogous.

We claim that k[z] is a simple D-module. First note that k[x] is generated as a D-
module by the element 1 € k[x], because for any f(z) € k[x], the k-endomorphism of
k[x] given by multiplcation with f(z) is an element of D, and the image of 1 under
this endomorphism is f(z). Hence any element of k[z] can be obtained by letting
some element of D act on 1, i.e. 1 generates k[x] as a D-module. Now suppose N
is a non-zero D-submodule of k[x]. We will show that 1 € N. As N is non-zero, it
contains some non-zero element f(x) = Z?:o a;z' (where a, # 0). We need to find a
differential operator D such that D(f) = 1. In fact, D = aln,(%)" will do it (here we
use that char(k) = 0). !

The first thing to note is that

0

Ox
Similarly a%(x%) =0 any n € N.
Now let N be a non-zero D-submodule of k[x], and notice that N is generated by a
single element. Indeed, the ring D contains a copy of k[x] as a subring (by viewing an
element p of k[z] as the k-endomorphism of k[xz] given by left multiplication by p),
and the induced k[x]-module structure on k[z] is the natural one. Thus N is also a
k[x]-submodule of k[x], i.e. an ideal. But k[z] is a PID, so N is generated by some f
as a k[z]-module. In fact, we can take f to be the monic polynomial of minimal degree
inside N (there is a unique one). As N # 0 we have f # 0, and as the derivative of f is

has degree strictly smaller than f and is inside N (as N is a D-module), we must have
%f(x) = 0. This means that f(z) = Z?:l a;z” for some ag, ..., a, € k with a, = 1.
Finally, we show that D - f = k[x] - [ as k-subspaces of k[x]; it suffices to show that

the LHS is included in the RHS. As both sides are k-vector spaces, it suffices to prove
that B« f € k[x]- f. This is true as (xl (%)j) ~f(z)=0ifj =21, and 2" f(z) € k[z]- f
for all ¢ 2 0.

Therefore, we conclude that the D-submodules of k[z] are exactly the subsets of the

form k[x]- f with f monic and only having terms of even degree. Notice also that any
two distinct such f give distinct submodules.

(z°) =2z = 0.

O



