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Rings and modules Exercises

Sheet 13 - Solutions

Exercise 1. Let R be a Noetherian ring. Show that R has only �nitely many minimal
prime ideals.

Hint: Reformulate this statement into a topological one by using spectra

Proof. Recall that given a radical ideal I, V �I� is irreducible if and only if I is prime.
Hence, the minimal primes of R correspond via Nullstellensatz (for general rings, so the
much easier statement) to irreducible components of Spec�R�. Since this is a Noetherian
topological space, it has �nitely many irreducible components, so we are done. □

Exercise 2. Let F be a �eld and let R be a ring, let I � �f� N F �x� be a principal ideal,
and let ϕ � F �x� � R be a ring morphism. If we speak of extensions and contractions
of ideals in this exercise, they are always understood to be with respect to ϕ. Let g be a
generator of the ideal I

ec
N F �x�, and note that g is uniquely de�ned up to multiplication

by a unit. Give a formula for g in terms of the prime factors of f when ϕ is

(1) the localization F �x�� F �x�x.
(2) the localization F �x�� F �x��x� (i.e. localization at the prime ideal �x� N F �x�).
Additionally, characterize in both casers when I

ec
� I, in terms of the prime factors of f .

Proof. If f � 0 we have g � 0 in both cases, so suppose f j 0. Write f � x
n
f0 where

f0 " F �x� � r0x is such that x doesn't divide f0 and n " Z'0.
(1) Using point (2) of Proposition 9.3.8 of the printed course notes we have

I
ec
� �

m'0

�I � xm� � rr " F �x� such that ¿m ' 0 � x
m
r " Ix

� rr " F �x� such that ¿m ' 0 � x
n
f0 ¶ xm

rx
� rr " F �x� such that f0 ¶ rx � �f0�.

Hence g � f0, and thus I
ec
� I if and only if f � 0 or x doesn't divide f , i.e. f�0� j 0.

(2) Using point (2) of Proposition 9.3.8 of the printed course notes we have

I
ec
� �

h��x�

�I � h� � rr " F �x� such that ¿h � �x� � hr " Ix
� rr " F �x� such that ¿h � �x� � x

n
f0 ¶ hrx

� rr " F �x� such that x
n ¶ rx

where for the last equality we used that as x
n¶hr and h � �x� we have x

n¶r and if
x
n¶r then we can take h � f0 to obtain x

n
f0¶f0r. Hence I

ec
� �xn�, i.e. g � x

n
. In

particular, we have I
ec
� I if and only if f is of the form f � λx

n
for λ " F and n ' 0.

□

Exercise 3. If S N R is a ring extension and p and q are prime ideals of S resp. R,
respectively, we say that q lies above p if and only if q

c
� p. Show the following:

(1) Let R be a UFD. Then an ideal p N R is a prime ideal of height 1 if and only there
exists an irreducible element f " R such that p � �f�.
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(2) If S N R is an integral extension and p N S is a prime ideal, then all prime ideals lying
over p have height at most that of p, with equality for at least one of them.�Hint: Localize at p.�

(3) If S N R is an integral extension of domains, then all primes of R lying over height 1
primes of S are of height 1.

(4) The ideal p � �x2
� y

2
� 1� N C�x2

, y
2� is a height 1 prime, and there is a single prime

in C�x, y� lying over it.

Proof. (1) Let f be an irreducible element of R. Then if ab " �f� for some a, b " R we
have that f divides ab, and thus f must appear in the irreducible factor decomposition
of either a or b. That is, either a " �f� or b " �f�, and thus �f� is prime.
Now suppose that p N R is a prime of height 1. In particular p j �0�, so let r " p be
non-zero. As p is prime, there must be an irreducible factor f of r such that f " p.
But then �0� à �f� N p, so as p is of height 1 and �0�, �f� are prime, we must have
p � �f�.
Finally, if f " R is irreducible and by contradiction we have a chain �0� à q à �f�
with q a prime ideal. Take some non-zero s0 " q. Then f divides s0, so there is s1 " R
with s0 � fs1. As f � q, this implies s1 " q. Repeating this argument, we obtain a
sequence of elements �si�i of q such that si � fsi�1, and thus f

i
divides s0 for every

i ' 0. This is a contradiction, so �f� must have height 1.
(2) Let q be a prime of R lying over p. Let q0 à� à qn � q be a strictly increasing chain

of prime ideals of R. Then by point (2) of the Going-Up Theorem (Proposition 9.4.2
of the printed course notes) q0 = S à � à qn = S � p is a strictly increasing chain of
prime ideals of S, and thus n & ht p. Thus we conclude ht q & ht p.
To construct a prime ideal where we have equality, as in the proof of Proposition 9.4.2

denote Rp �� �S � p��1R, and observe that Sp � Rp is integral. Hence by Corollary
9.4.4 in the printed course notes we have dimRp � dimSp, and by point (2) of Exercise
5 on Sheet 12 we have dimSp � ht p. Therefore, there exists a maximal ideal n of
Rp such that ht n � ht p. Just as in the proof of Proposition 9.4.2, if q denotes the
contraction of n under R � Rp, then q lies over p. But then by point (1) of Exercise 5
on Sheet 12 we have ht n � ht q and thus q is a prime lying over p with same height as
p.

(3) Let p N S be a prime of height 1 and let q N R be a prime lying over S. By the previous
point, we have ht q & 1. If by contradiction ht q � 0, then as R is a domain we must
have q � 0, and thus also p � 0, which contradicts ht p � 1. Hence ht q � 1.

(4) As C�x2
, y

2� 	 C�u, v�, it is a UFD. Notice also that C�x2
, y

2� N C�x, y� is an integral

extension, as x, y are integral over C�x2
, y

2�.
First of all, notice that x

2
� y

2
� 1 is an irreducible element of C�x2

, y
2�, and thus by

point (1) it is a prime of height 1. Let q N C�x, y� be a prime lying over p, which exists

by Going-Up. But now notice that x
2
� y

2
� 1 is also irreducible in C�x, y�, by seeing

it as an element of C�x��y� and applying Eisenstein's criterion with the prime element
x � i. Thus �x2

� y
2
� 1� � C�x, y� is a prime contained inside q, and as the latter is

of height 1, we must have q � �x2
� y

2
� 1� � C�x, y�. This is clearly a prime of height

1, and it lays over p: indeed, if f " C�x, y� is such that �x2
� y

2
� 1�f " C�x2

, y
2�,

then f can't contain a monomial of the form x
i
y
j
with at least one of i, j being odd,
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because if we take such i, j with i � j minimal then x
i
y
j
also appears in x

2
� y

2
� 1,

contradiction. So q � �x2
� y

2
� 1� �C�x, y� is the only prime of height 1 lying over p.

□

Exercise 4. Let R be a ring which is the quotient of a polynomial ring over an algebraically
closed �eld F by a radical ideal. This naturally determines an algebraic set X whose
coordinate ring is R. Noether normalisation says there is a subring S N R such that
S 	 F �t1, ..., tr� and R is an integral extension of S. Give a geometric interpretation of
Noether normalisation. That is, the inclusion S � R corresponds to a morphism f of
algebraic sets. Prove that the �bres of f are �nite, i.e. the preimage of any point in F

r

under f consists of a �nite set of points in X.

Proof. Recall that if for two algebraic sets X N F
m

and Y N F
n
we have an F -algebra

morphism λ � A�Y �� A�X� then this determines a morphism of algebraic sets f � X � Y
such that λ � λf . Following the hint and using the same notations as in the solution
to Exercise 5, let mP be a maximal ideal of A�X� (where P � �a1, . . . , am� " X). Let
h1, . . . , hn " F �x1, . . . , xm� be such that λ�yj � I�Y �� � hj � I�X� for all j. Let ϕ �

F �y1, . . . , yn� � F �x1, . . . , xm� be the F -algebra morphism de�ned by mapping yj to hj,
and let πX � F �x1, . . . , xm� � A�X� and πY � F �y1, . . . , ym� � A�Y � be the projection
maps. Then by Exercise 4 we have πX ` ϕ � λ ` πY . Therefore

π
�1
Y �λ�1�mP �� � ϕ

�1�π�1X �mP �� � ϕ
�1�mP �.

Now by construction we have ϕ�yj�f�P �j� � hj�hj�P � and thus evaluating ϕ�yj�f�P �j�
at P gives 0. Hence yj � f�P �j " ϕ

�1�mP � for all j, and thus nf�P � �� �y1� f�P �1, . . . , yn�
f�P �n� N ϕ

�1�mP �. As nf�P � is maximal and 1 � ϕ
�1�mP �, we thus have

nf�P � � ϕ
�1�mP � � π

�1
Y �λ�1�mP ��.

Applying πY on both sides this gives

nf�P � � λ
�1�mP �.

This expresses how one can obtain f � X � Y from λ � A�Y �� A�X� in terms of maximal
ideals.
Now we are ready to tackle the Exercise. Let λ � S 0 R be the inclusion. By Exercise 7
of sheet 7, the algebraic sets determined by S and R can be identi�ed with MaxSpec�S�
resp. MaxSpec�R�, and by the paragraph above λ determines a morphism of algebraic sets
f � MaxSpec�R� � MaxSpec�S� 	 F

r
given by m ( λ

�1
m � m = S. So to show that f

has �nite �bers, we need to show that for every maximal ideal n N S, there exist at most
�nitely many maximal ideals m of R such that m= S � n. Any such m contains n

e
� R � n,

so we may suppose that the latter is non-trivial, and then the maximal ideals m N R with
m = S � n are in one-to-one correspondence with the maximal ideals of Rªne. Note that

λ gives rise to a map λ � Sªn � Rªne. Furthermore, we have Sªn 	 F (by sending a

scalar α to its class α � n), and as the target ring is non-trivial we must have kerλ � 0.

Hence, under the identi�cation Sªn 	 F , we have that λ is just the natural inclusion of F

into Rªne (as R is a quotient of a polynomial ring over F , Rªne is too, and thus there is

a natural inclusion F � Rªne). On the other hand, as λ is an integral extension, λ is too.

Indeed, if r � n
e
" Rªne then there is a monic polynomial T

d
� sd�1T

d�1
��� s0 " S�T �
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annihilating r, and thus T
d
� �sd�1 � n�T d�1

��� �s0 � n� " �Sªn��T � is a monic poly-

nomial annihilating r � n
e
. In conclusion, Rªne is a �nitely generated F -algebra which is

integral over F . Let g1, . . . , gl be generators of Rªne, i.e. Rªne � F �g1, . . . , gl�. Now let
N " Z%0 be such that for every gi there exists a monic polynomial in F �T � annihilating

it. Then every power of gi can be written as an F -linear combination of 1, gi, . . . , g
N�1
i .

Hence every element of Rªne � F �g1, . . . , gl� can be written as an F -linear combination ofrgc11 �g
cl
l ¶ c1, . . . , cl " r0, . . . , N � 1xx. In partiular, Rªne is �nite as an F -vector space, so

in particular Artinian. So by Exercise 7 on Sheet 9, Rªne has only �nitely many maximal

ideals, and hence the �ber f
�1�n� is �nite.

Alternative approach, following the proof of Noether Normalization S is itself a polynomial
ring, so it is the co-ordinate ring of the algebraic set F

r
. Thus by the previous Question,

the inclusion S � R corresponds to a morphism f � X � F
r
.

To show that the �bres (i.e. the set of pre-images of a point) are �nite, use the notation of
the proof of Noether normalisation for an in�nite �eld as in the lecture notes. That is, we
use induction on the number of variables n such that R is a quotient of a polynomial ring
in n variables to prove that there exists a poynomial ring S L R over which R is integral
and such that the induced morphism of algebraic sets has �nite �bers. Hence, we only need
to modify the proof in the lecture notes slightly. For n � 1 the statement is clear since
the algebraic set X in this case is the �nite set of roots of the polynomial f . Let X

¬
be

the algebraic set determined by the ring R
¬
as a quotient of F �x1 � c1xn, ..., xn�1 � cn�1xn�

(notation as in the lecture notes). If we show that the �bres of X � X
¬
are �nite then we

are done by induction. Suppose P � �p1, ..., pn�1� " X
¬
L F

n�1
. Then we wish to show that

the set Λ � rx " F � �p1 � c1x, ..., pn�1 � cn�1x, x� " Xx is �nite. In the proof of Noether
normalisation, we found a polynomial g

¬�y1 � c1yn, ..., yn�1 � cn�1yn, yn� which is satis�ed
everywhere on X but which is monic as a polynomial in yn. But this then implies there can
be only �nitely many possible values of x in Λ, as these are the solutions of this polynomial
for certain values of yi for i � 1, ..., n � 1.

□

Exercise 5. Let F be an algebraically closed �eld. Calculate the Krull dimension of the
ring

F �w, x, y, z�«�x2
� wy, y

2
� xz, wz � xy�.

Proof. We saw already in Exercise 5 of sheet 7 (the same proof works over any algebraically

closed �eld) that the R � F �w, x, y, z�«�x2
� wy, y

2
� xz, wz � xy� is the coordinate ring

of the algebraic set Z � r�u3
, u

2
v, uv

2
, v

3� ¶ u, v " Fx. In fact, de�ne Φ � F �w, x, y, z� �
F �u3

, u
2
v, uv

2
, v

3� by w ( u
3
, x ( u

2
v, y ( uv

2
, z ( v

3
(as in the solution to Exercise

3). The kernel is precisely the set of all polynomials f " F �w, x, y, z� that vanish on the

set Z, i.e., the kernel of Φ is the ideal I�Z� � �x2
� wy, y

2
� xz, wz � xy�. Thus R is

isomorphic to the image of Φ, which is F �u3
, u

2
v, uv

2
, v

3�. There is an obvious inclusion
of rings F �u3

, u
2
v, uv

2
, v

3� L F �u, v� and the latter is obviously integral over the former.
Therefore the dimension of R 	 F �u3

, u
2
v, uv

2
, v

3� is the same as the dimension of the
polynomial ring F �u, v�. As we have seen repeatedly in this course the dimension of a
polynomial ring in two variables is two. So dimR � 2. □
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Exercise 6. Let F be an algebraically closed �eld. Calculate a primary decomposition for
the ideals

(1) �x4
� 2x

3
� 4x

2
� 2x � 3� N F �x�,

(2) �x2
, xy

2� N F �x, y�,
(3) �x2

, xy, xz, yz� N F �x, y, z�.
Proof. (1) Factorizing the polynomial, we get:

x
4
� 2x

3
� 4x

2
� 2x � 3 � �x � 3��x � 1��x � 1�2

Therefore the ideal is the intersection of the primary factors �x�3�, �x�1� and �x�1�2.
These are primary because their radicals are maximal.

(2) A primary decomposition is

�x2
, xy

2� � �x2
, y

2� = �x�
The �rst factor is primary as it has a radical which is a maximal ideal, while the second
is prime. The above equation holds because if p " �x2

, y
2� = �x�, then p � x

2
a � y

2
b

and x ¶ p, so b � xc for some c and p � x
2
a � xy

2
c. Hence p " �x2

, xy
2�.

(3) It may help to �rst calculate the irreducible components of V �I� where I � �x2
, xy, xz, yz�.

If �a, b, c� is a point of F
3
where a

2
, ab, ac, bc all vanish, the �rst thing we can deduce

from a
2
� 0 is that a � 0. Hence ab � ac � 0 gives us no new information, and bc � 0

implies that at least one of b and c is zero. Hence V �I� � V ��x, y��< V ��x, z�� is the
decomposition into irreducible components of V �I�, and hence as a �rst guess, we may
try if �x, y� and �x, z� themselves appear in the minimal primary decomposition. As

�x, y� = �x, z� � �x, yz�
we need at least another ideal. The point is that, as you may see later in your studies,
the primary decomposition is somewhat related to the order of vanishing of elements
in the ideal. Here, all elements vanish at order 2 at the origin (and no other point

has this property). This suggests that we should try �x, y, z�2 as the corresponding
primary ideal (this is �x, y, z�-primary as its radical is �x, y, z� and hence maximal).

So let us try to show that I � �x, yz�=�x, y, z�2. Let p " �x, yz�=�x, y, z�2, then on
the one hand we can write p as p � xα� yzβ�y, z�, where we can suppose that β only
depends on y, z as we can put everything with an x into α. On the other hand, as p is a
combination of x

2
, y

2
, z

2
, xy, yz, zx, we can write it as p � x

2
a�xyb�xzc�yzd�y, z��

y
2
e�y, z� � z

2
f�y, z�, where we can suppose that d, e, f only depend on y, z as we can

put everything with xy resp. xz into b resp. c. Hence by evaluating at x � 0 we obtain
yzβ�y, z� � yzd�y, z�� y

2
e�y, z�� z

2
f�y, z�, so p � x

2
a�xyb�xzc� yzβ�y, z�. Hence

p " I.
Hence I � �x, y� = �x, z� = �x, y, z�2 is a primary decomposition of I.

□

Exercise 7. Let T N R be a multiplicative subset of a ring R and let rIix1&i&n be �nitely
many ideals in R. By extension and contraction of ideals we shall mean extension and
contraction via the natural morphism R � T

�1
R. Prove the following:

(1) ��i Ii�ec � �i I
ec
i

(2) ��i Ii�e � �i I
e
i
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(3) Show that T
�1�RªI� 	 T

�1
R¬I

e as R-modules. Use this to endow T
�1�RªI� with a

ring structure, so that it becomes in fact an isomorphism of rings.
(4) If I is primary, and u ©" Ó

I, then �I � u� � I
(5) For an ideal I of a ring R admitting a �nite primary decomposition, let I � �i Ii be

such a primary decomposition, and show the following
(i) I

e
� �T=Ii�o

I
e
i ,

(ii) I
ec
� �T=Ii�o

Ii
(6) From now on, let R � F �x, y� for a �eld F , I1 � �x�, I2 � m

s
where m � �x, y� and

s % 1 is some integer, I3 � �x, y � 1�2, and p N R a prime ideal for which we set
T � R � p. Show that
(i) if p � �x�, then T

�1 �RªI1 = I2 = I3� 	 F �y�.
(ii) if p � �x, y�, then T

�1 �RªI1 = I2 = I3� 	 T
�1
R¬I

e
1 = I

e
2

(iii) if p � �x, y�, compute the smallest integer n such that �x

1
�n " T

�1 �RªI1 = I2 = I3�
is zero.

Proof. (1) We have

��
i

Ii�ec Prop 9.3.8
� �

u"T

���
i

Ii� � u� Prop 10.3.19
� �

u"T

��
i

�Ii � u�� .
Now we would like to swap the � and the �. To this end, note that if �ui�i is a
sequence of elements of T , and u ��4i ui, then

�
i

�Ii � ui� N�
i

�Ii � u�.
Hence

�
i

�
u"T

�Ii � u� N �
u"T

�
i

�Ii � u�,
and as the reverse inclusion is elementary set theory we have

��
i

Ii�ec � �
u"T

��
i

�Ii � u�� ��
i

�
u"T

�Ii � u� Prop 9.3.8
� �

i

I
ec
i .

(2) By Prop 9.3.8.(1), two ideals of S
�1
R are equal if and only if their contractions are

equal. From the previous point we have

��
i

Ii�ec �1�
� �

i

I
ec
i � ��

i

I
e
i �

c

where for the last equality we used that contraction (i.e. taking preimage) commutes
with intersections. Hence it follows that ��i Ii�e � �i I

e
i .

(3) The structure of T
�1
R¬I

e as an R-module is given by r � �r¬©t � I
e� � �rr¬�©t � I

e
.

We have a natural morphism of R-modules R � T
�1
R¬I

e given by mapping r " R to

r©1 � I
e
" T

�1
R¬I

e. This morphism has I in its kernel, so we obtain a morphism of

R-modules RªI � T
�1
R¬I

e. Notice that T
�1
R¬I

e is T -invertible (see the solution
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of Exercise 5 on Exercise Sheet 11), and thus by the universal property of localization

of a module we obtain an R-module homomorphism ϕ � T
�1�RªI� � T

�1
R¬I

e given

by mapping �r � I�©t to r©t � I
e
. This is clearly surjective, so to prove injectivity

suppose that �r � I�©t is mapped to 0. Then r©t " I
e
, and thus by the proof of point

(2) of Proposition 9.3.8 there exist r
¬
" I and t

¬
" T such that r©t � r

¬©t¬. Hence there
exists t

¬¬
" T such that t

¬¬�rt¬ � r
¬
t� � 0. Hence we have t

¬¬
t
¬�r� I� � 0 inside RªI, and

thus �r� I�©t � 0 inside T
�1�RªI�. Hence our map ϕ � T

�1�RªI�� T
�1
R¬I

e is also

injective. This endows T
�1�RªI� with a natural ring structure by the formula

r � I
t

�
r
¬
� I

t¬
�� ϕ

�1 �ϕ �r � I
t


ϕ�r¬ � I

t¬
�� � ϕ

�1 �rr¬
tt¬

� I
e� � rr

¬
� I

tt¬
.

With this ring structure, ϕ is tautologically a ring morphism.
(4) t " �I � u�� tu " I � t " I, where in the last implication we used that no power of

u is in I.
(5) Let I � =Ii be such a primary decomposition.

(i) From point (2) we have I
e
� � I

e
i , but for Ii intersecting T non-trivially we have

I
e
i � S

�1
R. Hence I

e
� �T=Ii�o

I
e
i .

(ii) Since �S�1
R�c � R it follows from taking the contraction of the identity of point

(2) that I
ec
� �T=Ii�o

I
ec
i . Now for an ideal Ii with T = Ii � o, notice that as T

is multiplicatively closed we also have T =
Ô
Ii � o. Hence it follows that

I
ec
i

Prop.9.3.8
� �

u"T

�Ii � u� �4�
� �

u"T

Ii � Ii.

So I
ec
� �T=Ii�o

Ii.

(6) Note that Ii is primary for all i, as I1 is prime, and
Ô
I2 � �x, y� and Ô

I3 � �x, y � 1�
are maximal. Let I � I1 = I2 = I3. We start with the following lemma.

Lemma 1. Let R be a ring, T N R a multiplicative subset and I N R an ideal. Let
xT �� rt � I ¶ t " Tx N RªI. Then T

�1�RªI� 	 xT�1�RªI� as rings, where the ring

structure on T
�1�RªI� is given by point (3).

Proof. It is straightforward to see that the localisation map of R-modules RªI �
T
�1�RªI� is a ring morphism for the ring structure on T

�1�RªI� given by point

(3). Furthermore, t � I " xT is mapped to �t � I�©1, which is a unit with inverse�1� I�©t. Hence by the universal property of localisation there exists a ring morphism
xT�1�RªI�� T

�1�RªI� mapping �r�I�©�t�I� to �r�I�©t. This is clearly surjective.
To prove that it is injective, let �r� I�©�t� I� be in the kernel, i.e. there exists t

¬
" T

such that t
¬�r � I� � 0. But then �t¬ � I��r � I� � 0, so �r � I�©�t � I� � 0 as well.

Hence xT�1�RªI�� T
�1�RªI� is an isomorphism. □

(i) By the previous point we have I
e
� �IiNp

I
e
i . As I1 is the only ideal contained in

p we hence have I
e
� I

e
1 � �x�e. Therefore, by point (3) we have

T
�1�RªI� �3�

	 T
�1
R¬I

e � T
�1
R¬I

e
1

�3�
	 T

�1�Rª�x�� Lemma 1

	 xT�1�Rª�x��
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Now notice that xT � rp � �x� ¶ p � �x�x � rp�y� � �x� ¶ p�y� " F �y� � r0xx. So
under the identi�cation F �x, y�«�x� � F �y� we have xT � F �y� � r0x and thus

xT�1�RªI1� 	 F �y�.
(ii) Note that I3 is not contained in p, while I1 and I2 are. Hence by points (5) and

(3) we have

T
�1�RªI� �3�

	 T
�1
R¬I

e �5�
� T

�1
R¬I

e
1 = I

e
2
.

(iii) Under the isomorphism of the previous point, �x�I�©1 is mapped to x©1�I
e
1=I

e
2 .

So we need to compute the smalles integer n % 0 such that x
n©1 " I

e
1 and x

n©1 "
I
e
2 . Or equivalently, the smallest integer n % 0 such that x

n
" I

ec
1 and x

n
" I

ec
2 .

But by the argument in point (5).(ii) we have I
ec
1 � I1 and I

ec
2 � I2, so we need to

�nd the smallest integer n with x
n
" I1 and x

n
" I2. Clearly n � s works, and if

x
n
" I2 we must have n ' s as every non-zero element of I2 has degree at least s.

Hence n � s is the minimal integer with the searched property.
□


