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Exercise 1. Let R be a Noetherian ring. Show that R has only finitely many minimal
prime ideals.
Hint: Reformulate this statement into a topological one by using spectra

Proof. Recall that given a radical ideal I, V(I) is irreducible if and only if I is prime.
Hence, the minimal primes of R correspond via Nullstellensatz (for general rings, so the
much easier statement) to irreducible components of Spec(R). Since this is a Noetherian
topological space, it has finitely many irreducible components, so we are done. 0

Exercise 2. Let F be a field and let R be a ring, let I = (f) € F[x] be a principal ideal,
and let ¢ : F[x] —» R be a ring morphism. If we speak of extensions and contractions
of ideals in this exercise, they are always understood to be with respect to ¢. Let g be a
generator of the ideal I°“ € F[z], and note that g is uniquely defined up to multiplication
by a unit. Give a formula for g in terms of the prime factors of f when ¢ is

(1) the localization F[z] - F[xz],.
(2) the localization F[x] — F[z]) (i-e. localization at the prime ideal (z) € F[x]).

Additionally, characterize in both casers when I°“ = I, in terms of the prime factors of f.

Proof. If f = 0 we have ¢ = 0 in both cases, so suppose f # 0. Write f = 2" f, where
fo € F[x] \ {0} is such that x doesn’t divide f; and n € Zs,.

(1) Using point (2) of Proposition 9.3.8 of the printed course notes we have
I = U(I :2") ={r € F[z] such that Am 2 0: 2"'r € I}

mz0
= {r € F[z] such that Im =20: 2" f, | z"r}
= {r € F[x] such that fy | r} = (/).

Hence g = f,, and thus I = I if and only if f = 0 or = doesn’t divide f, i.e. f(0) # 0.
(2) Using point (2) of Proposition 9.3.8 of the printed course notes we have

I“ = U (I:h)={re€ F[z]such that 3h ¢ (x) : hr € I}
he(x)
= {r € F[z] such that 3h & (z) : 2" f, | hr}
= {r € F[«] such that 2" | r}

where for the last equality we used that as 2" |hr and h & (z) we have 2" |r and if
2" |r then we can take h = f, to obtain z" fy| for. Hence I = (2"), ie. g = 2". In
particular, we have I°“ = I if and only if f is of the form f = A\z" for A € I and n = 0.

O

Exercise 3. If S € R is a ring extension and p and ¢ are prime ideals of S resp. R,
respectively, we say that q lies above p if and only if q° = p. Show the following:

(1) Let R be a UFD. Then an ideal p € R is a prime ideal of height 1 if and only there

exists an irreducible element f € R such that p = (f).
1



(2)

(3)
(4)

If S € R is an integral extension and p € S is a prime ideal, then all prime ideals lying
over p have height at most that of p, with equality for at least one of them.

[ Hint: Localize at p.]

If S € R is an integral extension of domains, then all primes of R lying over height 1
primes of S are of height 1.

The ideal p = (z° +y° + 1) € C[2°, 4] is a height 1 prime, and there is a single prime
in C[z,y] lying over it.

Proof. (1) Let f be an irreducible element of R. Then if ab € (f) for some a,b € R we

have that f divides ab, and thus f must appear in the irreducible factor decomposition
of either a or b. That is, either a € (f) or b € (f), and thus (f) is prime.

Now suppose that p € R is a prime of height 1. In particular p # (0), so let r» € p be
non-zero. As p is prime, there must be an irreducible factor f of r such that f € p.
But then (0) € (f) € p, so as p is of height 1 and (0), (f) are prime, we must have
p=(f)

Finally, if f € R is irreducible and by contradiction we have a chain (0) € q € (f)
with q a prime ideal. Take some non-zero sq € q. Then f divides sg, so there is s; € R
with sg = fs1. As f € g, this implies s; € q. Repeating this argument, we obtain a
sequence of elements (s;); of q such that s; = fs;,1, and thus f* divides s, for every
i = 0. This is a contradiction, so (f) must have height 1.

Let g be a prime of R lying over p. Let qq & -+ & q,, = q be a strictly increasing chain
of prime ideals of R. Then by point (2) of the Going-Up Theorem (Proposition 9.4.2
of the printed course notes) qo NS & -+ & q, NS = p is a strictly increasing chain of
prime ideals of S, and thus n < ht p. Thus we conclude ht q < ht p.

To construct a prime ideal where we have equality, as in the proof of Proposition 9.4.2
denote R, := (S \ p)_lR, and observe that S, — R, is integral. Hence by Corollary
9.4.4 in the printed course notes we have dim R, = dim S, and by point (2) of Exercise
5 on Sheet 12 we have dim S, = htp. Therefore, there exists a maximal ideal n of
R, such that htn = htp. Just as in the proof of Proposition 9.4.2, if q denotes the
contraction of n under R — R,, then q lies over p. But then by point (1) of Exercise 5
on Sheet 12 we have ht n = ht q and thus q is a prime lying over p with same height as
p.
Let p € S be a prime of height 1 and let ¢ € R be a prime lying over S. By the previous
point, we have ht q < 1. If by contradiction ht q = 0, then as R is a domain we must
have q = 0, and thus also p = 0, which contradicts htp = 1. Hence htq = 1.

As C[z”,y°] = C[u,v], it is a UFD. Notice also that C[z°,y°] € C[z, y] is an integral
extension, as z,y are integral over C[2%, y*].

First of all, notice that z° + ¥ + 1 is an irreducible element of C[z”, 4], and thus by
point (1) it is a prime of height 1. Let ¢ € C[z, y] be a prime lying over p, which exists
by Going-Up. But now notice that z° + y* + 1 is also irreducible in C[z,y], by seeing
it as an element of C[x][y] and applying Eisenstein’s criterion with the prime element
z +i. Thus (z° +y* + 1) - C[z,y] is a prime contained inside g, and as the latter is
of height 1, we must have q = (z° + y° + 1) - C[z, y]. This is clearly a prime of height
1, and it lays over p: indeed, if f € C[z,y] is such that (2> + >+ 1)f € C[2°, ],
then f can’t contain a monomial of the form x'y’ with at least one of i, j being odd,
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because if we take such ¢, 7 with ¢ + 7 minimal then xiyj also appears in ° + y2 + 1,
contradiction. So q = (z° +¢° + 1) - C[z, y] is the only prime of height 1 lying over p.
O

Exercise 4. Let R be a ring which is the quotient of a polynomial ring over an algebraically
closed field F' by a radical ideal. This naturally determines an algebraic set X whose
coordinate ring is R. Noether normalisation says there is a subring S € R such that
S = F[ty,...,t,] and R is an integral extension of S. Give a geometric interpretation of
Noether normalisation. That is, the inclusion S — R corresponds to a morphism f of
algebraic sets. Prove that the fibres of f are finite, i.e. the preimage of any point in F"
under f consists of a finite set of points in X.

Proof. Recall that if for two algebraic sets X € F" and Y € F" we have an F-algebra
morphism A : A(Y) - A(X) then this determines a morphism of algebraic sets f : X - Y
such that A = A;. Following the hint and using the same notations as in the solution
to Exercise 5, let mp be a maximal ideal of A(X) (where P = (ay,...,a,) € X). Let
hi,...,h, € Flzy,...,z,] be such that X(y; + I(Y)) = h; + I(X) for all j. Let ¢ :
Flyi,...,yn] = Flz1,...,2,] be the F-algebra morphism defined by mapping y; to h;,
and let 7x ¢ Flx,...,2,,] = A(X) and 7y @ Fly,...,yn] = A(Y) be the projection
maps. Then by Exercise 4 we have mx o ¢ = X o my-. Therefore

T (AH(@p)) = ¢ (my (Mp)) = ¢ (mp).
Now by construction we have ¢(y; — f(P);) = h;—h;(P) and thus evaluating ¢(y; — f(P);)
at P gives 0. Hence y; — f(P); € ¢~ (mp) for all j, and thus nepy i= (Y1 = fF(P)1y o Y —
F(P),) € ¢ "(mp). As nygpy is maximal and 1 ¢ ¢ "(mp), we thus have

nypy =@ (mp) =1y (A7 (mp)).

Applying 7y on both sides this gives
ey = A (Wp).

This expresses how one can obtain f : X - Y from A : A(Y) —» A(X) in terms of maximal
ideals.

Now we are ready to tackle the Exercise. Let A : S = R be the inclusion. By Exercise 7
of sheet 7, the algebraic sets determined by S and R can be identified with MaxSpec(S)
resp. MaxSpec(R), and by the paragraph above A determines a morphism of algebraic sets
f : MaxSpec(R) — MaxSpec(S) = F" given by m = A'm = mn S. So to show that f
has finite fibers, we need to show that for every maximal ideal n € S, there exist at most
finitely many maximal ideals m of R such that m NS = n. Any such m contains n° = R - n,
so we may suppose that the latter is non-trivial, and then the maximal ideals m € R with
m N S =n are in one-to-one correspondence with the maximal ideals of R/ne. Note that
A gives rise to a map A S/n - R/ne. Furthermore, we have S/n = F (by sending a
scalar «v to its class a + n), and as the target ring is non-trivial we must have ker A = 0.
Hence, under the identification S/n = F, we have that A is just the natural inclusion of F’
into R/ne (as R is a quotient of a polynomial ring over F, R/ne is too, and thus there is
a natural inclusion F' — R/ne). On the other hand, as ) is an integral extension, A is too.
Indeed, if 7 + n® € RB/° then there is a monic polynomial T+ sy T + - + 55 € S[T]
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annihilating r, and thus 7% + (sy_; + )T + < + (5o + n) € (5/)[T] is a monic poly-
nomial annihilating » + n°. In conclusion, R / n is a finitely generated F-algebra which is
integral over F. Let gy,..., g be generators of 11/ ie. B[n® = Flg,..., 9] Now let
N € Z,, be such that for every g; there exists a monic polynomial in F[T'] annihilating
it. Then every power of g; can be written as an F-linear combination of 1,g;,..., glN -
Hence every element of R/ne = Flgi,...,q] can be written as an F-linear combination of
{97 =g | c1,...,c; €40,..., N —1}}. In partiular, R/n"’ is finite as an F-vector space, so
in particular Artinian. So by Exercise 7 on Sheet 9, 1 / n® has only finitely many maximal
ideals, and hence the fiber £~ (n) is finite.

Alternative approach, following the proof of Noether Normalization S is itself a polynomial

ring, so it is the co-ordinate ring of the algebraic set F". Thus by the previous Question,
the inclusion S — R corresponds to a morphism f: X — F".
To show that the fibres (i.e. the set of pre-images of a point) are finite, use the notation of
the proof of Noether normalisation for an infinite field as in the lecture notes. That is, we
use induction on the number of variables n such that R is a quotient of a polynomial ring
in n variables to prove that there exists a poynomial ring S C R over which R is integral
and such that the induced morphism of algebraic sets has finite fibers. Hence, we only need
to modify the proof in the lecture notes slightly. For n = 1 the statement is clear since
the algebraic set X in this case is the finite set of roots of the polynomial f. Let X' be
the algebraic set determined by the ring R’ as a quotient of F[x, — 12, o, Tpei — Cp1Zn ]
(notation as in the lecture notes). If we show that the fibres of X — X' are finite then we
are done by induction. Suppose P = (p1, ..., pp-1) € X'c F"'. Then we wish to show that
theset A={z € F:(p—cx,..,pp_1 — Cpo1x,x) € X} is finite. In the proof of Noether
normalisation, we found a polynomial ¢'(y; — €1Yn, -, Une1 — Cn-1Yns Yn) which is satisfied
everywhere on X but which is monic as a polynomial in y,. But this then implies there can
be only finitely many possible values of x in A, as these are the solutions of this polynomial
for certain values of y; for i = 1,...,n — 1.

O

Exercise 5. Let F' be an algebraically closed field. Calculate the Krull dimension of the
ring
F[wv z,Y, Z]/(:L‘2 - wy,y2 —TzZ,WzZ — ZL‘y)

Proof. We saw already in Exercise 5 of sheet 7 (the same proof works over any algebraically
closed field) that the R = Flw,z,y, Z]/(ﬁ —wy,y’ — 2, wz — zy) is the coordinate ring
of the algebraic set Z = {(u°, u*v, uwv”,v*) | u,v € F}. In fact, define @ : F[w,z,y, 2] —
F[ug,ugv,uvz,vg] by w + ug,w - u2v,y - qu,z - 0 (as in the solution to Exercise
3). The kernel is precisely the set of all polynomials f € F[w,z,y, 2] that vanish on the
set Z, i.e., the kernel of @ is the ideal I(Z) = (¢° — wy,y" — xz,wz — zy). Thus R is
isomorphic to the image of ®, which is F [ug,UQU,UUQ,US]. There is an obvious inclusion
of rings F[u’, u*v,uv*,v°] € F[u,v] and the latter is obviously integral over the former.
Therefore the dimension of R = F[u’,u’v, uv®,v°] is the same as the dimension of the
polynomial ring F[u,v]. As we have seen repeatedly in this course the dimension of a
polynomial ring in two variables is two. So dim R = 2. U
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Exercise 6. Let [’ be an algebraically closed field. Calculate a primary decomposition for
the ideals
(1) (2" - 22° — 42 + 22 + 3) € F[x],

(2) (2%, 29°) € Flz,y],
(3) (xQ,xy,:L’z,yz) c Flz,y,z].

Proof. (1) Factorizing the polynomial, we get:
2t =22 -4’ + 20 + 3 = (z =3)(x—1)(z +1)°

Therefore the ideal is the intersection of the primary factors (z—3), (z—1) and (z+1)°.
These are primary because their radicals are maximal.

(2) A primary decomposition is

(2%, 2y%) = (2", y") 0 ()
The first factor is primary as it has a radical which is a maximal ideal, while the second

is prime. The above equation holds because if p € (z°,y%) N (z), then p = 2°a + y°b
2 2 2
and z | p, so b = xc for some c and p = z°a + 2y“c. Hence p € (z°, zy").

(3) It may help to first calculate the irreducible components of V (I) where I = (2%, 2y, 22, y=).
If (a,b,c) is a point of F* where a®, ab, ac, be all vanish, the first thing we can deduce
from a” = 0 is that @ = 0. Hence ab = ac = 0 gives us no new information, and bc = 0
implies that at least one of b and ¢ is zero. Hence V(1) = V{((z,y)) UV ((x, 2)) is the
decomposition into irreducible components of V' (I), and hence as a first guess, we may
try if (x,y) and (z, z) themselves appear in the minimal primary decomposition. As

(z,y) N (z,2) = (z,yz)

we need at least another ideal. The point is that, as you may see later in your studies,
the primary decomposition is somewhat related to the order of vanishing of elements
in the ideal. Here, all elements vanish at order 2 at the origin (and no other point
has this property). This suggests that we should try (z,y,z)” as the corresponding
primary ideal (this is (z,y, z)-primary as its radical is (z,y, z) and hence maximal).

So let us try to show that I = (z,yz)n(z,y,2)°. Let p € (z,y2)n (z,y, z)°, then on
the one hand we can write p as p = za + yz3(y, 2), where we can suppose that 3 only
depends on y, z as we can put everything with an z into a. On the other hand, as pis a
combination of x2, y2, 27, xy,yz, zx, we can write it as p = 2’a+ xyb+vze+yzd(y, z2) +
er(y, 2) + fo(y, z), where we can suppose that d, e, f only depend on ¥, z as we can
put everything with zy resp. xz into b resp. c. Hence by evaluating at = 0 we obtain
y2B(y, z) = yzd(y, z) +y’e(y, 2) + 2°f(y, 2), so p = 2°a + xyb+ zzc + yzB3(y, ). Hence
p €l

Hence I = (z,y) N (z,2) n (2,9, 2)” is a primary decomposition of I.

OJ

Exercise 7. Let T' € R be a multiplicative subset of a ring R and let {I;},<;<,, be finitely
many ideals in R. By extension and contraction of ideals we shall mean extension and
contraction via the natural morphism R — T “'R. Prove the following;:

(L) (L) =, 1"
(2) (ML) = 17



(3) Show that T_l(R/]) = T_lR/[e as R-modules. Use this to endow T_l(R/]) with a
ring structure, so that it becomes in fact an isomorphism of rings.
(4) If I is primary, and u ¢ VI, then (I :u) = I
(5) For an ideal I of a ring R admitting a finite primary decomposition, let I = [, I; be
such a primary decomposition, and show the following
(i) ]e = anIFQ) If’
(ii) I = ﬂTnIFQ) I;
(6) From now on, let R = F[x,y] for a field ', I, = (x), I, = m® where m = (z,y) and
s > 1 is some integer, Iy = (z,y — 1)°, and p € R a prime ideal for which we set
T = R\ p. Show that

(i) it p = (), then 7™ (B/ [, 0 [, I;) = F(y).
ey - -1 ~ 71 e e
(i) if p = (z,9), then T~ (B[ nL,np) e T R/J1 nr
(iii) if p = (x,y), compute the smallest integer n such that (%)n erT™! (Rl nlni,)

1S zero.

Proof. (1) We have

(mji)ec Pr0p=9.3.8 U ((ﬂ[,) : U) Prop ;0.3.19 U (m(lz : u)>

u€T 7 u€T 7

Now we would like to swap the |J and the (). To this end, note that if (u;); is a
sequence of elements of T, and u := Hl u;, then

(VL w) € ()L ).

Hence Z Z
ﬂ U([z fu) € U ﬂ([z fu),
i u€T u€T 1

and as the reverse inclusion is elementary set theory we have
ec Prop 9.3.8 ec
(1= U(ﬂ@‘“)):ﬂuw Al
i weT \ i i u€eT i

(2) By Prop 9.3.8.(1), two ideals of S™'R are equal if and only if their contractions are
equal. From the previous point we have

(m[i)ec (é) mjiec — <m116>

where for the last equality we used that contraction (i.e. taking preimage) commutes
with intersections. Hence it follows that ([, ;) =), I}

(3) The structure of T_IR/]G as an R-module is given by 7+ (#'[t + I) = (rr') [t + I°.
We have a natural morphism of R-modules R — T_IR/je given by mapping r € R to
r/l1+1°€ T_IR/]e. This morphism has I in its kernel, so we obtain a morphism of

R-modules R/] - T_IR/]e. Notice that T_IR/]e is T-invertible (see the solution
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of Exercise 5 on Exercise Sheet 11), and thus by the universal property of localization
of a module we obtain an R-module homomorphism ¢ : T_l(R/]) - T_lR/[e given
by mapping (r + I)/t to r/t + I°. This is clearly surjective, so to prove injectivity
suppose that (r + I)/t is mapped to 0. Then r/t € I°, and thus by the proof of point
(2) of Proposition 9.3.8 there exist 7 € I and ¢ € T such that r/t = 7' /t'. Hence there
exists ¢' € T such that t"(rt' —r't) = 0. Hence we have t"t'(r + I) = 0 inside R/, and
thus (r+ 1)/t = 0 inside T_l(R/[). Hence our map ¢ : T_l(R/[) - T_lR/[e is also

injective. This endows T (R /1) with a natural ring structure by the formula

r+I r+1 -1 r+1 P+ T o e rr 4 T
r 4 =9 (¢( 7 )QS( 4 >>_¢ (?'l'l)_ P
With this ring structure, ¢ is tautologically a ring morphism.
(4) te (I :u) =tuel =1te€ I, where in the last implication we used that no power of
wisin [.
(5) Let I = nI; be such a primary decomposition.
(i) From point (2) we have I° = (]I, but for I; intersecting T non-trivially we have
I{ = ST'R. Hence I° = ﬂTn]F@ I
(i) Since (S™'R)° = R it follows from taking the contraction of the identity of point
(2) that I = [V;,;.p Ii - Now for an ideal I; with TN I; = @, notice that as T

is multiplicatively closed we also have T' N \/_Z = @. Hence it follows that

]iec Pr0p£9.3.8 LJ(‘[Z - (i) U ]i _ ]Z

u€T u€T

So Iec = ﬂTﬂLL:@ IZ
(6) Note that I; is primary for all ¢, as I, is prime, and \/]—2 = (x,y) and \/1_3 = (z,y—1)
are maximal. Let I = I} N I, N I3. We start with the following lemma.

Lemma 1. Let R be a ring, T € R a multiplicatige subset and I € R an ideal. Let
T:={t+I|teT}c R[1. Then T_I(R/[) = T_I(R/[) as rings, where the ring
structure on T_l(R/]) is given by point (3).

Proof. 1t is straightforward to see that the localisation map of R-modules R/ I -
T_l(R/[) is a ring morphism for the ring structure on T_l(R/]) given by point
(3). Furthermore, ¢t + I € T is mapped to (t + I)/1, which is a unit with inverse
(1+1)/t. Hence by the universal property of localisation there exists a ring morphism
T Rl - T_l(R/]) mapping (r+1)/(t+1) to (r+1)/t. This is clearly surjective.
To prove that it is injective, let (r + I)/(t + I) be in the kernel, i.e. there exists t € T
such that ¢'(r + I) = 0. But then (¢ + I)(r+ 1) =0,s0 (r + I)/(t +I) = 0 as well.
Hence T_l(R/[) - T_l(R/]) is an isomorphism. O

(i) By the previous point we have I° =[], ., I;. As I, is the only ideal contained in

p we hence have I° = I = (2)°. Therefore, by point (3) we have

Lemma 1

TR E TR = TR [ T (R () E TR (1))



Now notice that T' = {p + () | p & ()} = {p(y) + () | p(y) € Fly]\ {0}}. So
under the identification F[I;y]/(g;) = Fly] we have T = F[y] \ {0} and thus

T7(R[1) = F(y).
(ii) Note that I3 is not contained in p, while I; and I, are. Hence by points (5) and
(3) we have

TR QTR

(iii) Under the isomorphism of the previous point, (z+1)/1 is mapped to z/1+ 1] N I5.
So we need to compute the smalles integer n > 0 such that 2" /1 € I and 2" /1 €
I5. Or equivalently, the smallest integer n > 0 such that 2" € I;° and 2" € I5°.
But by the argument in point (5).(ii) we have I{° = I} and I5° = I, so we need to
find the smallest integer n with 2" € I; and 2" € I,. Clearly n = s works, and if
2" € I, we must have n > s as every non-zero element of I, has degree at least s.

Hence n = s is the minimal integer with the searched property.
O



