Lecture 11

Domenico Valloni

1 Noether normalization

Recall that from last section we defined a ring extension R C S to be finite if S is
a finitely generated R-module. We shall see later in the course that the induced map
Spec(S) — Spec(R) sends maximal ideals to maximal ideals. Now, if both R and S
are finitely-generated K -algebras, for K an algebraically closed field, we get a map of
algebraic varieties mSpec(S) — mSpec(R). Fact: this map is surjective and has finite
fibres. We shall explain why in the last lectures, but you will also see this if you will
follow the course on algebraic geometry next year.
In this lecture, we shall prove the following:

Theorem 1 (Noether’s normalization lemma). Let K be any field, and let
R=Kl[zy, - ,z,]/1

be a finitely generated K -algebra. There is a polynomial algebra S = K|[ty, - ,t4)
and a ring extension S C R such that R is finite over S. Moreover, if R is a domain,
then d = tr.degy (Frac(R)).

The geometric interpretation of this comes from the discussion made at the begin-
ning. Assume that R is a domain and K is algebraically closed. So mSpec(R) =
V(I) € K™ is an irreducible algebraic variety. The finite ring extension S C R then
induces amap V' (I) — K%, where d is the dimension of V(). Then this map is surjec-
tive and has finite pre-images. One can also add more conditions on the ring extension,
e.g., flatness (this will imply that all the pre-images have the same cardinality, when
counted in the right way) or unramified (this will result in something that looks like a
covering space in topology).

The theorem above is true for any field K. We shall give a proof in the case that
K is infinite (e.g., algebraically closed or of characteristic 0). The proof for finite
field follows the same ideas, but it is slighlty more complicated, and can be found in
Patakfalvi’s notes. We begin with a lemma:

Lemma 2. Let K be an infinite field. Let f(x1, -+ ,2pn_1,y) € K21, - ,Zpn_1,9]
be a polynomial of degree d. Then, there are elements ¢y, -+ ,¢,—1 € K and A € K\0
such that

)\—1'](‘(1,1 + C1Y,T2 + Y, ,Tn-1 + Cn—1Y, y) S K[mtha o, Tn—1, y]



has the form

Y+ ga-1(@y, ey gi(, @)y + o, Tnt)
where each g; € K[x1, -+, Tp_1]-

Proof. Write

F= Y (@)l
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with a;, ... ;,_, ; € K. Note that by definition
d= max{il + iQ + -+ in,1 +j Ay e i _1,] 75 0}

Let f4 be the homogeneous part of f of degree d:

fd = Z (aih”win—hj)xlf xizn:lly]?

b4 A1 +j=d

which is non-zero because f has degree d. Now, we consider

fd(xl + C1Y, * , Tp—1 + Cn-1Y, y)a

a simple computation shows that the coefficient of y of this polynomial is given by
fa(ei, e, -+ ,cn—1,1). Since K is infinite, there we can find ¢1,¢a,- - ,cp—1 € K
such that A :== fy(c1,¢2,- -+ ,¢pn—1,1) # 0. From this it follows that

A e+ ey, a1+ a1y, y)
has the prescribed form. O

Proof of Noether normalization. We prove this by induction on n. Let us look at the
case n = 1 first. Now, I C K][x] can either be the zero ideal, in which case we put
t;1 =z, or I = (f) for some f # 0, since K[z] is a PID. We can also assume that f is
monic without modifying the ideal I. In this case, let £ € R be the image of . Then
T generates R and satisfies the monic equation f(Z) over K, i.e., it is integral over K.
So we put S = K and the result follows.

Now we do the induction step. Let again ¥; € R be the image of z; in R. They gen-
erate R as a K-algebra. We reorder them and assume that z1, - - - , Z, are algebraically
independent over K and that Z, 1, - , T, are algebraic over K[Z1, - ,Z,] C R. If
r =nthen R = K[z, - ,x,] necessarily, and we can simply put t; = z;. So we can
assume r < n. In this case, Z,, is algebraic over K [Ty, - ,Z,_1] C R, so we can find
apolynomial 0 # f(y) € K[Z1,--- ,Zn—1][y] such that f(Z,) = 0. Since the natural
map K[z, - ,2p_1] — Kl[ZT1, - ,Tn-1] is surjective, we can find a polynomial
F € K[z, -+ ,zy—1|[y] such that F(Z1, -+ ,Zn,y) = f(y) (why?). Now we apply
the previous lemma, and we find ¢;, A € K such that

A711-7(1‘1 + C1Y, " s Tp—1 + Cn—ly,y) € K[l‘h o axn—l][y]



is monic in y. Let us denote ; = Z; + ¢;T,, € Rfor1 < ¢ < n — 1. Note

that R = K%y, ,Tpn-1,Tm| = K[Z1, -+ ,Zn_1,Tsm). Finally, the ring exten-
sion K[Z1, -+ ,&,—1] C R is finite, because R is generated over K[Z1, -+ ,Tpn_1]
by the element Z,, which satisfies the monic equation A\™*F(Zy, -+ ,%,_1,y) = O.
But now K|[Z1,- -+ ,Z,—1] is a quotient of K[z1,- - ,2,—1]. So by induction we can
findty, -+ ,tq € K[Z1,- - ,&,_1] which are algebraically independent and such that
Slt1,-+- ,ta] C K[Z1,- -+ ,Zpn—1]is finite. From this it follows that also S[t1, - - , t4] C
R is finite. O

Before showing that if R is a domain then d is the transcendental degree of Frac(R),
we prove the following useful proposition:

Proposition 3. Let S C R be an integral extensions of domains. Then R is a field if
and only if S is a field.

Proof. Let us assume that S is a field, and pick € R \ 0. Since r is integral over S it
satisfies a monic equation of the form

P Sy 1T s 480 = 0.
Let i = min{j: s; # 0}, so the equation above is
P Sy T st =0

with s; # 0. But then 7*(r" = + s, 17" 17" 4+ ... 4+ 5;) = 0 and since R is a domain
by assumption and 7 # 0, this shows that r" s, r"lT 4 45, =0. So we
can assume that ¢ = 0. Now, sg € S\ 0 and since S is a field by assumption we can
invert sg in S. Then we compute

s, 2 4 5
r- =1,
— 50

which shows that r is invertible in R.
Assume now that R is a field, and let s € S\ 0. Then r := s~ 1 exists in R. Since
R is integral over S, we find again a monic polynomial with coefficients in S such that

P Sy " T s 50 = 0;
we multiply now both sides by s ! and find
P4 Sy 1+ +858" 245" =0

hence

2

F=—Sp_1— - —818" 2 —g9s" L eS.

O
Let us now prove the last statement in in the Noether’s normalization lemma. So

we assume that R is a domain, and let S = K[ty - - , t4] be a polynomial algebra such
that S C R is finite. This means that there are integral elements 71, -+ , 7 € R such



that R = S[r1,--- , 7). Now consider the field extension Frac(S) C F = Frac(R).

The ring extension Frac(S) C Frac(S)[r1,- - - , 7] is finite and hence integral. More-
over, Frac(S)[ry, - ,rx] C F is necessarily a domain. By the previous proposition
we deduce that Frac(S)[rq,- - ,rg] if a field, which must necessarily be equal to F.

Hence, the field extension Frac(S) C F is algebraic (i.e., it has finite degree), from
which we deduce that d = tr.degy (Frac(S)) = tr.degy (F).
Let us gather some interesting consequences:

Corollary 4. Let R = Klx1,- -+ ,2,]/1I be a domain. Then
tr.deg (Frac(R)) =0 <= Ris a field.

Proof. By Noether normalization, we can find a polynomial algebra S = K[t1,- - , 4]
such that S C R is finite. Now, if R is a field, S must be a field too, because the
extension is integral, and hence d = 0 necessarily. Similarly, if tr.deg (Frac(R)) = 0
then K C R must be integral, and henc R is a field.

Lemma 5. Let R be a domain and let dim(R) be its Krull dimension. Then dim(R) =
0 if and only if R is a field.

Proof. Clearly, if R is a field, then its Krull dimension is zero. Now, assume that R
has Krull dimension zero and take € R\ 0. Note that r is invertible if and only if the
ideal it generates () C R is the whole ring. But if () # R then there is a maximal
ideal () C m which contains it. Since R is a domain (0) is a prime ideal, hence the
chain (0) C m shows that the Krull dimension of R is at least one. O

In particular, recall that one of our goals is to prove that if R is a finitely generated
K -algebra which is also a domain, then dim(R) = tr.degy (Frac(R)). The results
above show this particular case:

Corollary 6. In the notation above, dim(R) = 0 if and only if tr.deg; (Frac(R)) = 0.

2 Tensor products

We now introduce tensor products of modules, which is one of the most basic tools in
commutative algebra. Let R be a ring, and let NV, M, P be R-modules.

Definition 7. A map ¢: M & N — P is bilinear (over R) if
L. ¢(m1 +ma,n) = ¢(m1,n) + ¢(mg,n) for every my, ms € M and n € N;
2. ¢p(m,ny + na) = d(m,n1) + ¢(m, ny) for every m € M and ny,ng € N;
3. r-od(n,m) = ¢(rn,m) = ¢(n,rm) forr € Randn € N and m € M.
Bilinear maps appear everywhere, let us make some examples:

Example.



1. Let K be a field, and let A € M,,»,,(K) be a matrix. Then K" x K" — K
given by (v,w) — v' - A - w is bilinear.

2. Let R, T, S berings, and let f: R — S and g: 7" — S be ring homomorphisms.
Note that every ring can be seen in a natural way as a Z-module. Then, the map
R®T — S givenby (r,t) — f(r)g(t) is Z-bilinear.

3. Let I,J C R be ideals such that I + J = (1). Now consider a R-bilinear
map ¢: R/I & R/J — P where P is any R-module. We want to show that
¢ is identically zero. By assumption, we can write 1 = ¢ + j for ¢ € I and
je€J. Foranyx € R/I andy € R/J we have ¢(z,y) = (i + j) - d(x,y) =

The tensor product is the universal object for bilinear maps, in the following sense:

Theorem 8. Let R be a ring and let N, M be R-modules. Then, there is an R-module
N ®@pr M together with a bilinear map u: N & M — N ®gr M which satisfies the
Sfollowing universal property: for any other R-module P and bilinear map b: N &
M — P, there is a unique R-module morphism b: N9 g M — P suchthatb factorizes
as

bNoM“% NogM % P

The module N ®pr M is called the tensor product of N and M, and one denotes
n®m = u(n,m).

Proof. The universal property says that if such a pair exists, then it is unique up to
unique isomorphism (why?). So we only need to show that it exists, i.e., we need to
construct it. Consider the free module RV®M . This is the free R-module generated
by the elements of the set N @ M. So an R-basis of RV®M is given by the elements
€n.m Where (n,m) € N @ M and every element of RV®M if a finite sum of the form
> Tiln;m-

We let now K C RV®M be the submodule generated by the following elements:
® €nyi+4na,m — €ni,m — €ny,m fOrni,ng € N andm € M;

* Cnmitms — €n,my — €n,my f0rn € N and mq, mg € M;

* ernm — Tenmforr € R,n € Nandm € M;

* enrm —Tepmforr € R,m € Nandm € M.

Finally, we put N @ M = RN®M /K and we let u: N @ M — N ®r M be the
map which sends (n,m) — [e, ] where here the square brackets simply mean the
equivalence class in the quotient RV®M /K. We claim that u is bilinear (infact, we
have forced this to happen). For instance, we have u(ny + n2,m) = [€n,4+n,,m) but
SINCE €ny tmpm — €nym — €nym € K We have [en, 4ny.m]| = [€ny,m] + [Ens,m]. The
other verifications are done in the same way, and we leave them to the reader.

Now we show that this satifies the universal property. Pick any R-bilinear map
b: N® M — P. Note that if b: N ®g M — P it necessarily sends n ® m to
b(n,m). So, if it exists, it is once again unique. To show existence, we consider the



unique map of R-module b: RN®M — P which sends e, ,, — b(n, m). This exists
by the universal property of direct sums. So we only need to check that K C ker(B).
This is again easily done, we verify it only for one of the defyining relations above (all
the others are analogue): we have l;(en1+n2_,m — Enym — Engm) = l;(enﬁnzym) -

b(eny.m)—b(€ny m) = b(n1+mnz, m)—b(n1, m)—b(na, m) = 0 because b is bilinear.
O

We won’t say much more about tensor product in this course, although we will use
it in some of the proofs in the next lectures. I will gather here some important facts to
keep in mind (others can be found in the exercise sheets):

1. One has natural isomorphisms N @ g M =2 M ® N and (N1 & No) Qg M =
(N1 ®@g M) @ (N2 ®r M);

2. If N if a fixed R-module, then one can consider the functor A — A @ N.
This is right exact, in the sense that if 0 - A — B — C' — 0 is a short exact
sequence of R-modules, then A g N - B®r N - C ®r N — 0 is exact.
As for the Ext modules, we can extend the sequence above on the left and obtain
a long exact sequence:

- Tork(A, N) — Torg(B, N) = Tork(C,N) — A®xrN — B&zrN — C@rN — 0
using the Tor functors.

3. A module N is said to be flat if A — A®g N is exact. A ring morphism R ENYS
is said to be flat if S is flat seen as a R-module (the R-module structure on S is
given by (r,s) — f(r)sforr € Rands € S.)

4. If N, M are finitely generated R-modules, then also N ®p M is finitely gener-
ated.

5. Finally, if R — S and R — T are ring morphisms, then S @ T is aring in a
natural way. This is a fundamental construction which will be used in algebraic
geometry to construct fibre products of schemes.
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