Exercise Sheet 3
Introduction to Partial Differential Equations (W. S. 2024 /25)
EPFL, Mathematics section, Dr. Nicola De Nitti

e The exercise series are published every Tuesday morning at 8am on the moodle page of the course. The

exercises can be handed in until the following Tuesday at 8am, via moodle.

Exercise 1. This exercise explores the link between holomorphic C — C functions' and harmonic

functions on R2.

(i) Let D be an open connected subset of C, and let f: D — C be holomorphic. Define D =
{(w,y) eER?:z+4iye D} Show that the functions u,v : D — R,

u(r,y) = Re(f(z +iy)), v(z,y)=Im(f(z +iy))

are harmonic in D.

(ii) Let D C R? be a simply connected domain, and let u be (real-valued) harmonic in D. Define
D = {x+iy € C: (x,y) € D}. Show that there exists a second (real-valued) function v,
harmonic in D, such that f : D — C, defined as

[z +iy) = u(z,y) +iv(z,y)

is holomorphic in D.
(iii) Show that the v in Point (ii) is unique up to a constant.

Hints: For (i): use the Cauchy-Riemann equations. For (ii), you can use the following fact (of
which we omit the proof): Let g be a holomorphic function on a simply connected domain D; then,

there exists a holomorphic function G on D such that G = g.

!Short reminder (from Complex Analysis). Let D be an open set in C. A function f : D — C is holomorphic if
it is complex differentiable at every point of D. The existence of a complex derivative in a neighbourhood is a very
strong condition: it implies that a holomorphic function is infinitely differentiable and analytic. The Cauchy—Riemann
equations (named after Augustin-Louis Cauchy and Bernhard Riemann) provide a necessary and sufficient condition for
a complex function f(z +iy) = f(z,y) = u(x,y) + iv(z,y) of a single complex variable z = = + iy, (with z,y € R) to be
complex differentiable. We have that f is complex differentiable at z = x + 4y if and only if v and v are real differentiable
functions and the partial derivatives of u and v satisfy

oz, y) = Oyv(z,y)  and  Jyu(z,y) = —O0uv(z,y).

We note that the term holomorphic was introduced in [BB75, §15 fonctions holomorphes].



Solution:

(i) In view of the Cauchy-Riemann equations, we have

Opu = Oyv, 0Orv = —0yu.

Thus, we obtain
Au = 05 (0zu) 4+ 0y(Oyu) = 05(0yv) — 0y(0,v).

Since f is analytic, v € C2, and thus 8§yv = 8§zv. Hence, Au = 0. Similarly, Av = 0 can

be checked in the same way.

(ii) Let g : D — C, with g(z +iy) = dyu(x,y) —idyu(x,y), which is holomorphic by construction
since u is harmonic (and thus in C2(2)). Thus, using the proposition from the hint, there
exists a holomorphic function G : D — C, G(z +iy) = A(x,y) +iB(x,y), such that g = G,
ie.,

G'(z +iy) = 0, A(x,y) + 10, B(z,y)

Az, 10y A(z,y)

= Oyu(z,y) — i0yu(z,y).

y)
y) —
Hence, A(z,y) = u(z,y) + ¢ for some real constant c¢. The desired v is v = B: indeed,

u 4 iv = G — ¢ is holomorphic.

(iii) Suppose f(z + iy) = u(x,y) + iv(z,y) and f(z + iy) = u(z,y) + iv(x,y) are holomorphic.
Then g(x + iy) = if(z + iy) — if(x + iy) = v(z,y) — 0(z,y) is holomorphic. From the

Cauchy-Riemann equations, we have

O,v — 0,0 =0, 0Oyv—0yv =0.

Hence, c¢1(y) + v(z,y) = v(z,y) = c2(z) + v(x,y), and thus v(z,y) = v(z,y) + ¢ for some

constant c.

Exercise 2. Let € be open connected and u be harmonic in Q. Show that if |u| attains its maximum

in , then u is constant.

Solution: Since u is harmonic, we know (see Exercise 3 in the Exercise Sheet 2) that v := u?

is sub-harmonic in Q. By the strong maximum principle, if v attains its maximum in Q (which
happens if and only if |u| does), then v is constant. The claim follows by observing that w is

continuous and €2 is connected.




Exercise 3. Let Q = R"\B;(0). Let u € C*(Q) be harmonic in , and such that limy,_,, u(z) = 0.
Show that

max |u| = max |ul.
Q oN

Solution: Let R > 1 and Qg = Br(0)\B1(0). The maximum principle implies
max |u| = max |u| = max{max]u, max \u|}
Qn p E19) 8Br(0)

Taking the limit for R — oo yields

sup |u| = max {max \u|,0} = max |u|
Q o0 o0N

and the supremum is then attained on 99 C Q.

Exercise 4. Let Q C R" be an open bounded domain. Let b € L>(Q)", and ¢ € L*°(Q2), with ¢ > 0
in Q. Assume that u € C?(Q2) N C(Q) satisfies

—Au+b-Vu+cu=0, zef (1)

and u = 0 on 092. Show that u = 0 in .
Hint: Show that maxgu < 0 and mingu > 0. Follow the lines of the alternative proof of the

maximum principle.

Solution: Let the maximum (resp. minimum) of u over {2 be attained at z € € (if this is not
the case, the hint holds trivially, as we know u|;q = 0). Since u € C*(f2), we have the necessary

conditions

Vu(z) =0,
2 _
8mju(:c) <0 (resp. >0), forj=1,...,n.

Plugging everything into (1), we obtain
_ N
c(x)u(zr) = Au(z) —b- Vu(zr) = Z Oz, u(z) <0 (resp. = 0).
j=1

Since c(x) > 0, it follows that u(z) < 0 (resp. > 0). Hence, maxgu < 0 < ming u, and the

result follows.
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