
Exercise Sheet 3

Introduction to Partial Differential Equations (W. S. 2024/25)

EPFL, Mathematics section, Dr. Nicola De Nitti

• The exercise series are published every Tuesday morning at 8am on the moodle page of the course. The

exercises can be handed in until the following Tuesday at 8am, via moodle.

Exercise 1. This exercise explores the link between holomorphic C → C functions1 and harmonic

functions on R2.

(i) Let D̃ be an open connected subset of C, and let f : D̃ → C be holomorphic. Define D ={
(x, y) ∈ R2 : x+ iy ∈ D̃

}
. Show that the functions u, v : D → R,

u(x, y) = Re(f(x+ iy)), v(x, y) = Im(f(x+ iy))

are harmonic in D.

(ii) Let D ⊂ R2 be a simply connected domain, and let u be (real-valued) harmonic in D. Define

D̃ = {x + iy ∈ C : (x, y) ∈ D}. Show that there exists a second (real-valued) function v,

harmonic in D, such that f : D̃ → C, defined as

f(x+ iy) = u(x, y) + iv(x, y)

is holomorphic in D̃.

(iii) Show that the v in Point (ii) is unique up to a constant.

Hints: For (i): use the Cauchy–Riemann equations. For (ii), you can use the following fact (of

which we omit the proof): Let g be a holomorphic function on a simply connected domain D̃; then,

there exists a holomorphic function G on D̃ such that G′ = g.

1Short reminder (from Complex Analysis). Let D be an open set in C. A function f : D → C is holomorphic if
it is complex differentiable at every point of D. The existence of a complex derivative in a neighbourhood is a very
strong condition: it implies that a holomorphic function is infinitely differentiable and analytic. The Cauchy–Riemann
equations (named after Augustin-Louis Cauchy and Bernhard Riemann) provide a necessary and sufficient condition for
a complex function f(x+ iy) = f(x, y) = u(x, y) + iv(x, y) of a single complex variable z = x+ iy, (with x, y ∈ R) to be
complex differentiable. We have that f is complex differentiable at z = x+ iy if and only if u and v are real differentiable
functions and the partial derivatives of u and v satisfy

∂xu(x, y) = ∂yv(x, y) and ∂yu(x, y) = −∂xv(x, y).

We note that the term holomorphic was introduced in [BB75, §15 fonctions holomorphes].
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Solution:

(i) In view of the Cauchy-Riemann equations, we have

∂xu = ∂yv, ∂xv = −∂yu.

Thus, we obtain

∆u = ∂x(∂xu) + ∂y(∂yu) = ∂x(∂yv)− ∂y(∂xv).

Since f is analytic, v ∈ C2, and thus ∂2
xyv = ∂2

yxv. Hence, ∆u = 0. Similarly, ∆v = 0 can

be checked in the same way.

(ii) Let g : D̃ → C, with g(x+ iy) = ∂xu(x, y)− i∂yu(x, y), which is holomorphic by construction

since u is harmonic (and thus in C2(Ω)). Thus, using the proposition from the hint, there

exists a holomorphic function G : D̃ → C, G(x+ iy) = A(x, y) + iB(x, y), such that g = G′,

i.e.,

G′(x+ iy) = ∂xA(x, y) + i∂xB(x, y)

= ∂xA(x, y)− i∂yA(x, y)

= ∂xu(x, y)− i∂yu(x, y).

Hence, A(x, y) = u(x, y) + c for some real constant c. The desired v is v = B: indeed,

u+ iv = G− c is holomorphic.

(iii) Suppose f(x + iy) = u(x, y) + iv(x, y) and f̃(x + iy) = u(x, y) + iṽ(x, y) are holomorphic.

Then g(x + iy) = if̃(x + iy) − if(x + iy) = v(x, y) − ṽ(x, y) is holomorphic. From the

Cauchy-Riemann equations, we have

∂xv − ∂xṽ = 0, ∂yv − ∂yṽ = 0.

Hence, c1(y) + ṽ(x, y) = v(x, y) = c2(x) + ṽ(x, y), and thus ṽ(x, y) = v(x, y) + c for some

constant c.

Exercise 2. Let Ω be open connected and u be harmonic in Ω. Show that if |u| attains its maximum

in Ω, then u is constant.

Solution: Since u is harmonic, we know (see Exercise 3 in the Exercise Sheet 2) that v := u2

is sub-harmonic in Ω. By the strong maximum principle, if v attains its maximum in Ω (which

happens if and only if |u| does), then v is constant. The claim follows by observing that u is

continuous and Ω is connected.
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Exercise 3. Let Ω = Rn\B1(0). Let u ∈ C2(Ω̄) be harmonic in Ω, and such that lim|x|→∞ u(x) = 0.

Show that

max
Ω̄

|u| = max
∂Ω

|u|.

Solution: Let R > 1 and ΩR = BR(0)\B1(0). The maximum principle implies

max
ΩR

|u| = max
∂ΩR

|u| = max

{
max
∂Ω

|u|, max
∂BR(0)

|u|
}

Taking the limit for R → ∞ yields

sup
Ω̄

|u| = max

{
max
∂Ω

|u|, 0
}

= max
∂Ω

|u|

and the supremum is then attained on ∂Ω ⊂ Ω̄.

Exercise 4. Let Ω ⊂ Rn be an open bounded domain. Let b ∈ L∞(Ω)n, and c ∈ L∞(Ω), with c > 0

in Ω. Assume that u ∈ C2(Ω) ∩ C(Ω̄) satisfies

−∆u+ b · ∇u+ cu = 0, x ∈ Ω (1)

and u = 0 on ∂Ω. Show that u = 0 in Ω.

Hint: Show that maxΩ̄ u ≤ 0 and minΩ̄ u ≥ 0. Follow the lines of the alternative proof of the

maximum principle.

Solution: Let the maximum (resp. minimum) of u over Ω̄ be attained at x ∈ Ω (if this is not

the case, the hint holds trivially, as we know u|∂Ω = 0). Since u ∈ C2(Ω), we have the necessary

conditions ∇u(x) = 0,

∂2
xj
u(x) ≤ 0 (resp. ≥ 0), for j = 1, . . . , n.

Plugging everything into (1), we obtain

c(x)u(x) = ∆u(x)− b · ∇u(x) =
n∑

j=1

∂2
xj
u(x) ≤ 0 (resp. ≥ 0).

Since c(x) > 0, it follows that u(x) ≤ 0 (resp. ≥ 0). Hence, maxΩ̄ u ≤ 0 ≤ minΩ̄ u, and the

result follows.
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