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Preface

These lecture notes accompany the course “Introduction to Partial Differential Equations”,
held for the Bachelor’s Degree in Mathematics at EPFL in the Winter Semester 2024,/25.
Let us start with a quotation from [Die82]:

The theory of partial differential equations has been studied incessantly for more
than two centuries. By reason of its permanent symbiosis with almost all parts
of physics, as well as its ever closer connections with many other branches of
mathematics, it is one of the largest and most diverse regions of present-day
mathematics, and the vastness of its bibliography defies the imagination.

For some insight into the vastness of this research area, the interested reader may consult
[Nir94; BB98; Kla00; Kla09; Lue82; Die81].

Although the course title may suggest a broad overview, our focus will be specific: we aim to
introduce “elliptic partial differential equations”, delving into the theory surrounding both classical
and generalized (weak) solutions.

The prerequisites for this course are “Analysis I-IV”. We also recommend familiarity with
“Measure and Integration” and “Functional Analysis I”.

The structure of the course and the core of these lecture notes draws heavily from the material
prepared by Fabio Nobile for the course conducted in the Winter Semester 2023/24 at EPFL.
In addition, we will be significantly informed by several key textbooks: [Hunl4, Chapters 1-4],
[Eval0, Chapters 1, 2.2, 5-6, 8, 9.4], [Jos07, Chapters 1-4, 10-14], [Joh82, Chapter 4], [Brel3,
Chapters 8-9, Appendix], [Brell, Chapters 8-9], [HL11, Chapters 1-2, 6], [GT01, Chapters 14,
7-8], and [FR22, Chapters 1-2]. In total, these lecture notes have no pretense of originality.

Exam

A detailed list of examinable topics (a subset of the lecture notes and exercise series) will be
provided on Moodle.

The exam consists of a 30-minute oral examination at the blackboard. Each student will
select two questions: one from each part of the course (A: classical solutions, B: weak solutions).
Students will then have an additional 30 minutes to prepare their answers without external material
or support before the oral examination begins. It is essential for each student to arrive on time
(i.e., 30 minutes prior to their scheduled oral exam). Each student must bring a CAMIPRO card
or an ID card. Paper and pen for preparation will be provided.

Additional resources

[ACM18] L. Ambrosio, A. Carlotto, and A. Massaccesi. Lectures on elliptic partial differential
equations. Vol. 18. Appunti, Sc. Norm. Super. Pisa (N.S.) Pisa: Edizioni della Normale,
2018.

[Brel3] A. Bressan. Lecture notes on functional analysis. With applications to linear partial
differential equations. Vol. 143. Grad. Stud. Math. Providence, RI: American Mathe-
matical Society (AMS), 2013.

[Brell] H. Brezis. Functional analysis, Sobolev spaces and partial differential equations. Uni-
versitext. New York, NY: Springer, 2011.

[BB9S§] H. Brézis and F. Browder. “Partial differential equations in the 20th century”. In: Adv.
Math. 135.1 (1998), pp. 76-144.
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CHAPTER 1

Introduction

1. Notation for partial derivatives

Let Q c R",n > 2, be open, = = (x1,...,2,) € Q and u: Q@ — R be a scalar function.
The partial derivatives of u at x, are defined as
0 he:) —
“ (x) := lim u(@ +hei) = ulx) (if the limit exists),
ox; h—0 h
for ¢ = 1,...,n, where e; denotes the i-th standard basis vector of R". Commonly used are also
the notations gfl = O, U = Uy,
The partial derivatives of second order are defined as
*u 0 ([ ou
T) = — | (z if they exist
61‘1‘(9.%‘]‘ 69&1 (0:5]) ( ) ( Y )
for 4,7 =1,...,n. Commonly used are also the notations af;zj = (ﬁﬂju = Uy, -
More generally, let o = (o, ... a,) € Nij be a multi-index. Its order is defined as

n
la] = Z «;
i=1

and the corresponding |«|-th order partial derivatives of u are
ololy,
oxTt -+ Oxpm
Moreover, for k € N we denote by
DFu(z) = {D%(z) : |a| = k}
the collection of all k-th order partial derivatives of u in x.
In particular, we write Du(x) as a column vector (the gradient of u at x),

D%u(x) () = 0g}---0gru(x)  (if they exist).

O, u()
D'u(x) = Du(z) = : = Vu(z),
0, u(z)
and D?u(z) as a matrix (the Hessian of u at x),
02 pou(x) ... 0%, u(x)
D@ =| i

2. What is a partial differential equation?

A partial differential equation (PDE) is an equation for an unknown function u of several
variables that involves partial derivatives of u. The order of the highest partial derivative is called
the order of the PDE.

DEFINITION 1.1 (k-th order PDE). Let Q < R™ be open, n > 2 and k € N. An expression of
the form
F (Dku(x), DFYu(z), ..., u(z),z) =0, z€Q, (2.1)
1s called a k-th order PDE, where
k—1

F:R"ka" X..xR'"xRxQ—-R

Lect. 1, 10.09
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s a given function and u :  — R is the unknown.

DEFINITION 1.2 (Classical solution). A classical solution of the PDE (2.1) is a k-times con-
tinuously differentiable function u : Q — R that satisfies (2.1).

Depending on the structure of the function F in (2.1), we classify PDEs as follows.

DEFINITION 1.3. The PDE (2.1) is linear if the function F' is linear in w and its derivatives,
i.e. if it is of the form
Z ao(x)D%u(x) + f(z) =0,
la|<k
for given functions an and f. Moreover, if f = 0, the PDE is called homogeneous and otherwise
inhomogeneous.
The PDE (2.1) is semilinear if it is linear in the highest order derivatives, i.e. if it is of the
form
Z aa(z)Du(z) + ag (D" u(z),..., u(z),z) =0,
|| =k
for given functions a, and ag.
The PDE (2.1) is quasilinear if it is of the form

Z ao (DF (), ..., u(z),z) D*u(z) + ag (DF 'u(z),...,u(z),z) =0,
|| =k
for given functions a, and ag.

The PDE (2.1) is fully nonlinear if F' is a nonlinear function of the highest order derivatives
DFa.

For linear homogeneous equations the superposition principle holds, i.e., if © and v are both
solutions of the PDE, then the same applies to au + fBv, for all a, 5 € R. More generally, if
Uy, - .., Uy, are solutions, then so is any linear combination of these solutions.

Typically, the difficulty of the analysis of a PDE increases with the degree of nonlinearity.

Instead of scalar equations we can also look at systems of PDEs which arise in many appli-
cations. Here, several unknown functions uy, ..., u,,, m = 2, have to be determined that satisfy a
system of m PDEs.

DEFINITION 1.4 (k-th order system of PDEs). An expression of the form (2.1) is called a k-th
order system of PDEs if m > 2 and
F:R™ x R™ 7 x . x R™ x R™ x Q — R™,
where w = (U1, ..., Up) : Q@ — R™ is the unknown. Here, D®u = (D%uy, ..., D%u,,) and D¥u =
{Du : |a] < k}.

DEFINITION 1.5 (Classical solution). A classical solution of the system of PDEs (2.1) is a
k-times continuously differentiable function u :  — R™ that satisfies (2.1).

3. Type classification of linear second order PDEs

In this course, we mainly focus on linear, scalar PDEs of second order, i.e., equations of the

form
n n

2 aij(x)aiixju(x) + Z a;(x)0p,u(z) + ap(x)u(z) = f(x), x €, (3.1)
i,j=1 i=1
that we now further classify.
By Schwarz’ theorem, the Hessian matrix is symmetric if u is twice continuously differentiable;
hence, when working in this regularity class, we can assume that

aij = aj, forall 7,j=1,...,n,
i.e., that the coefficients a;; form a symmetric matrix

an(z) ... aip(z)
A(z) = , z €

an1(z) ... app(x)
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A useful type classification of the PDE (3.1) is based on the definiteness properties of A.

DEFINITION 1.6 (Elliptic, parabolic, and hyperbolic PDEs). We call the linear second-order
PDE (3.1) elliptic if A(x) is positive or negative definite, parabolic if A(x) is singular (i.e.,
det A(z) = 0), and hyperbolic if one eigenvalue of A(x) has a different sign than all the oth-
ers (where the eigenvalues are counted according to their multiplicity).

The following three examples are the archetypes of second-order linear PDEs.
ExAMPLE 1.1 (Laplace equation).

Au=0% u+...40% _ u=0 in £,

T1T1 TnTn

where Q < R"™ is open, u : 2 — R and A is the Laplace operator or Laplacian.
We have A(z) = 1€ R™™ (identity matrix) and, thus, the PDE is elliptic.

ExAMPLE 1.2 (Heat equation).
Oiu — Au =0 mQ=1xU,

where t € I denotes time, x € U space, I < R is an open interval, U < R™ is open, u : I x U — R,
and Au = Agu is the Laplace operator with respect to x.

We obtain a singular matriz
0 0
A(t,x)—(o —H)’

I e R"™™™, and, thus, the PDE is parabolic.

EXAMPLE 1.3 (Wave equation).
Zu—Au=0 inQ=1xU,

where we use the same notation as for the heat equation.

In this case, we have
Alt,x) = 10
9 x) = O —H 9

4. Studying PDEs

and thus, the PDE hyperbolic.

A classical solution of a k-th order PDE is a k-times continuously differentiable function that
satisfies the PDE pointwise in 2 < R".

Often, a PDE possesses families of solutions, but the solution w is uniquely determined if values
of u and/or its derivatives are specified on the boundary 02 of Q2. A PDE together with these
boundary conditions is called a boundary-value problem. In applications that involve time (see,
e.g., Examples 1.2-1.3), we typically consider sets if the form  := I x U where I := (tg,t1) < R
is an open interval and U < R"™ is open. In this special case, the values of v and/or its derivatives
specified at the initial time tg are called initial conditions and the values specified on oU boundary
conditions. A PDE together with initial and boundary conditions is is called an initial-boundary-
value problem.

In the ideal case, we find explicit solutions for a given PDE, but this is only possible in few
particularly simple cases. This classical approach to PDEs that dominated the 19th century was
to develop methods for deriving explicit representation formulas for solutions.

If such formulas cannot be found, we aim at proving the existence and studying qualitative
properties of solutions. In particular, we say that a problem is well-posed? if the following properties
hold:

(1) there exists a solution;

(2) the solution is unique;

(3) the solution depends continuously on the given data (e.g., parameters, boundary or initial
values).

L or well-posed in the sense of Hadamard, after [Had02].
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For many PDEs the notion of classical solutions is too restrictive and such solutions do not
exist. However, one can weaken the concept of solutions and consider so-called weak solutions
or distributional solutions which are less regular and satisfy the PDE in a generalized sense. For
instance, PDEs describing the occurrence of shocks (essentially, the appearance of discontinuities
in the derivatives), require this notion. Moreover, even if classical solutions exist, it is often easier
to prove the existence of weak solutions first and then to show that the solutions have a higher
regularity and are, in fact, classical solutions of the problem.

5. Objectives of this course

In this course, we will focus on elliptic partial differential equations. In particular, we will
cover the following topics:

I. Laplacian operator; Laplace equation; mean-value property; maximum principles; Har-
nack’s inequality; Weyl’s lemma; fundamental solution; Green function and solutions to
the Dirichlet problem for the Laplace equation; Newtonian potential.

II. Theory of distributions; Sobolev spaces; weak derivatives and their properties; density
results; extension results; traces; embedding theorems; Poincaré inequalities.

III. Weak solutions of several elliptic PDEs involving the Laplace operator via variational
methods.

IV. General second-order linear elliptic PDEs: classical solutions (maximum principles, a
priori bounds) and weak solutions theory.



CHAPTER 2

Laplace equation and harmonic functions

1. Harmonic functions

Let Q < R™ (with n > 1) be an open set. The first equation we will study is the Laplace
equation:!

—Au(z) =0, x €. (1.1)
REMARK 2.1. We recall that

Au(z) =divVu(z) =0% , u+...+ 0% , u.

T1T1 TnTn

DEFINITION 2.1 (Harmonic, sub-harmonic, and super-harmonic functions). A function u €
C?(Q) is called
(1) harmonic in Q if it satisfies Au(x) =0 for all x € Q;
(2) sub-harmonic in Q if it satisfies —Au(z) <0 for all x € Q;
(8) super-harmonic in Q if it satisfies —Au(z) = 0, for all x € Q.

As we will see, to recover a unique solution to this equation, suitable boundary conditions
should be provided. The most common are the following.

Dirichlet? problem:

—Au(x) =0, ze€Q
u(z) = g(x), x€d

Neumann?® problem:

—Au(z) =0, ze€Q
dyu(z) = h(z), ze€dd

Robin* problem:

—Au(x) =0, e ) )
(with a > 0 given)
oyu(z) + au(r) = h(z), xe€d
The non homogeneous version of (1.1) is called the Poisson® equation:®
—Au(z) = f(x), z € (1.2)

for some given continuous function f : Q — R™.

The Poisson equation appears in many different fields of physics. For instance, it may describe
the distribution of temperature in a region €2, in the presence of a heat source f, knowing the
temperature at the boundary (Dirichlet problem) or the heat flux through the boundary (Neumann
problem).

ExXaAMPLE 2.1. Any affine linear function in R™ is harmonic in R™ since
A (a + ija:]) =0 nR™
J

1 Named after Pierre-Simon Laplace.

5 Named after Siméon Denis Poisson

6 The minus sign in the above equations could, of course, be removed (upon changing the sign of f). However,
we prefer to keep it and always think of the operator in the Laplace or Poisson equation as “—A”.

5
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EXAMPLE 2.2. The function In\/z% + y? = 3 1n (22 + y?) is harmonic in R?\{(0,0)}.
Indeed, assuming (0,0) # (z,y) € R?, we compute

\Y% (]nm) — Véln (xQ + y2) _ (z,y)

x2+y2;
A (lnw/gc2 +y2) = div (V (;ln (2® +y2)>>
iy &Y 9 @ oy

22+ dxa+y?  oya’+y?
(2 — 22) + (2% —?)
(22 +y2)°

=0.

EXAMPLE 2.3. The function (2 + y? + 22)_1/2 is harmonic in R3\{(0,0,0)}.
Indeed, assuming (0,0,0) # (z,y, z) € R®, we compute

1 o (_$7—y7_2) .
v 2 .24 2] (24,20 .2)3/2]
Vet +yt+z (22 +y% + 22)

A (1 > — —div — & ?)
AT2+y? + 22 (22 + 2 + 22)%?
o y? + 22 — 22 22+ y? — 22 - 22+ 2% — o2
(2 +y%2 + z2)5/2 (22 +y?2 + 22)5/2 (22 4+ y?2 + 22)5/2
=0.

Lect. 2, 17.09
EXAMPLE 2.4. Letn > 2. We compute
Alz|* = (na + ala — 2))|z|*2
Thus |x|* is harmonic for « = 2 —n and sub-harmonic for a = 2 — n.

ExAaMPLE 2.5 (Harmonic polynomials). Let us find all harmonic polynomials of degree n in
two variables,

n
Pn(xay) = Z Ckxnikyka
k=0

that are harmonic. To this end, we compute

n—2 n
AP, (z,y) = cx(n —k)(n —k — 1)z k2~ 4 Z cnh(h — 1)z~ hyh=2
k=0 h=2
n—2 n—2
= cr(n—k)(n—k— 1)z 2y~ 4 Z cryo(k 4+ 2)(k 4 1)z F2yF
k=0 k=0
n—2

= D ler(n = k) (n—k = 1) + cpa(k + 2)(k + 1)] 2" F 2y
k=0

and notice that, for P, to be harmonic, each summand must necessarily have zero coefficient. That
18, for any k, we need
ck(n—k)(n—k—1)+cppa2(k+2)(k+1) =0.
This condition yields
. ~ (n=k)mn-k-1)
T Tk 2)(k+ 1)

Ck-
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Therefore the even coefficients depend on the choice of C., while the odd ones depend on c;. Let
us consider the former ones:

e Mg, Mol 2 (),

2.1 20 (n—2)! 2
. :_(n—2)(n—3)c :n(n—l)(n—2)(n—3)c _
! 4-3 ? 4-3.2-1 ‘
nn—1)(n —2)(n —3)(n —4)! n
= Al (n— 4)! Ce = (4)06'

By induction, we can prove that

— (" Y R
C2h ( ) (2h>007 and7 analogously, C2h+1 ( ) <2h+1 n

In conclusion

S (n\ ‘ _ (-D)"C.  fork=2h
Pn , — n—k k’ th _
(CE y) kz_loclc(k)m Yy w1 C {(—l)h% Jor k= 2h +1

and C¢, ¢y arbitrary.

EXAMPLE 2.6. Let u: Q — R be harmonic and positive and B = 1. Then u® is sub-harmonic.
Indeed, we compute

d
AuP = Y (BuP 102w+ B(B — a0 u 0,,)

i=1
d d
= Z 6(6 - 1)u5_28ziu alzu = Z 6(6 - 1)uﬁ_2(aﬂﬂiu)2'
i=1 i=1

EXAMPLE 2.7. From Ezample 2.6, we note that, if u € C*(R") is a positive function and B € R,
then
A (u?) = BuP T Au + B(B — DuP 2|Vl

EXAMPLE 2.8. Let u: 2 — R be harmonic and positive. Then

D (02 u Op; U Oy, U N O, U O, U (0z,u)?
Alog“22< i >:Zu222 R

i=1 i=1 i=1

Thus, logu is super-harmonic and —logu is sub-harmonic.

EXAMPLE 2.9. Let u: Q — R be harmonic, f : u(2) — R be a C? convex function. Then fou
s sub-harmonic. We compute

Af(u(z)) = Z (f'(u(@))02 u + f"(u(x)) 0, u Or,u)
= Z 1" (u(z)) ((%Eiu)2 (since u is harmonic)
>0

since for a convex C2-function f" > 0.
REMARK 2.2 (Chain rule). From Ezample 2.9, we note that, if u e C% (R™) and ¢ € C%(R),
Ap(u) = " (u)|Vul* + ¢ (u) Au
(which is just the chain rule). If we assume that ¢ is also converz, then ¢” = 0, and we obtain
(—A)p(u) < ¢ (u)(-A)u.
REMARK 2.3 (Product rule). If u,v e C?(R™), we compute
A(uv) = uAv +2Vu - Vo + vAu.

In particular, we notice that, if u and v are harmonic, then uv is harmonic if and only if Vu-Vv =

0.
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EXAMPLE 2.10. If u,v € C?(Q) with u positive, then
A (1) =vu " Au + v’ (log u) Av + v(v — 1)u" 2| Vu|?
+u®(log u)?|Vu|* + 2u* " (1 + vilogu)Vu - V.
ExAMPLE 2.11 (Laplacian in polar coordinates). Let u € C?(R?) and define a function U by
U(r,0) = u(rcosf, rsind). We compute
10 ( ou ) 1 0*U

A A
v "o ) T2 e

T ror

EXAMPLE 2.12 (Laplacian in spherical coordinates). Let u € C?(R3) and define a function U
by U(p,0,9) = u(psinpcosf, psinpsind, pcosy). We compute

Au_ii QaiU +#i sin aiU +#627U
2o \" ) T pPsing e Mg ) T p2sin?p 067
2. Properties of harmonic functions

Before addressing the question of the existence and uniqueness of solutions of the above-
mentioned boundary value problems, we first focus on some important properties of harmonic
functions.

2.1. Mean-value formula. In what follows, we will use the notation w, := |0B;(0)| for the
surface of the unit sphere in R™. For instance, ws = 27, w3y = 4w, and the general expression
is wy, = IE(WT/;) We will use o, = |B1(0)| to denote the volume of the unit ball in R”. We can

compute the relationship between «,, and w,, as follows:

1 1
ozn=f 1dx=f \8BT(0)|dr=wnf rn=lgp = &2
B1(0) 0 0 n
Finally, by a simple scaling argument, we can check that |0B,.(z)| = r" 1w, and |B.(z)| = " apn,
for any r > 0 and x € R".
Harmonic functions have the following mean-value property which states that the average value
of the function over a ball or sphere is equal to its value at the center.

THEOREM 2.1 (Mean-value formula). Let Q be a domain and u € C%(Q)) a harmonic function.

Then, for any closed ball B.(x) < §2, it holds

1 1
w@) = g | wwdy= e [ s (21)
1B (%) Jp,(x) 0B (2)| Jo, ()
Following the proof of Theorem 2.1, we can actually show a mean-value property for sub/super-
harmonic functions as well.

THEOREM 2.2 (Mean-value property for sub/super-harmonic functions). Let u € C?(Q) be a

sub-harmonic (resp., super-harmonic) function. Then, for any closed ball B, (x) < it holds

u(z) < (resp. =) u(y) dy,

|Br(2)| JB, (2

1

u(z) < (resp. 2) = u(y) dS(y)-
|0B(z)] Jog, (2)

It follows from these inequalities in Theorem 2.2 that the value of a sub-harmonic (or super-
harmonic) function at the center of a ball is less (or greater) than or equal to the value of a harmonic
function with the same values on the boundary. Thus, the graphs of sub-harmonic functions lie
below the graphs of harmonic functions and the graphs of super-harmonic functions lie above,
which explains the terminology.

EXAMPLE 2.13. The function u(z) = |x|* is sub-harmonic in R™ since Au = 4(n + 2)|z|? = 0.
The function is equal to the constant harmonic function U(x) = 1 on the sphere |z| = 1, and
u(z) < U(x) when |z| < 1.
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ProOOF OF THEOREM 2.1. We divide the proof into two parts.
Step 1. We first prove

1

u(z) = u(y) dS(y)-
10B,(2)| Jon, @
To this end, let us define the function
1
¢(r) = u(y) dS(y)
108, ()] Jop, (x)
Writing y = x + rz with z = - € dB;(0), we can recast the integral on the unit sphere
1 1
P(r) = — J u(z +7r2)r"tdS(z) = — u(z + rz)dS(z)
W JoB,(0) 0B1(0)

Since u € C* (Br(x)), in particular 4 and Vu are uniformly continuous in B, (z) and

¢(0) = lim ¢(r) = S lim u(x + r2)dS(z) = u(x)
r—0 Wn JoB, (0) r—0

Moreover,

1
' (r)=— iu(ac +rz)dS(z)
4B1(0)
1
=— Vu(z +rz)-2dS(z) ( where z is the normal unit vector)

0B1(0)

1 J
= — Vu(y) - v(y)dS(y
o |y VU0 ) as)

1

= a1
rtT Wy,

J Au(y)dy =0  (since u is harmonic), (2.2)
B, (x)

which yields ¢(r) = ¢(0) = u(z).
Step 2. To prove the first identity,

we compute

L’m) Hdy = J: (LBt(x) U(y)dS(y)> d

= J t" L, u(z) dt
0

"W,

= w(z) = |Br(z)] u(z).

n

O

PrROOF OF THEOREM 2.2. Compared to the proof of Theorem 2.1, the only difference is in
line (2.2). O

The converse of this result is also true, i.e. if a function u € C?(f2) satisfies the mean-value
property, then it is harmonic.

THEOREM 2.3 (Mean-value property implies harmonicity). If u € C%(Q) satisfies the mean-

value property
1
= ds
u(@) |08, ()| LBT(:ﬁ) uly) d5()

for any closed ball B,(x) < Q, then u is harmonic in Q.
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PRrROOF. We argue by contradiction. If u is not harmonic, then there exists € ) such that
Au(x) # 0. Assume Au(x) > 0. Since u € C%(Q), then there exists s > 0 such that Au(y) > 0, for
all y € Bs(z) and Bs(z) < . As in the proof of Theorem 2.1, we define the function

1
or) = 10B,(x)] 0B, (z) uy)dSy), 0<r<s,

and compute that

a contradiction. O

In Theorem 2.3, we can drop the hypothesis u € C?(£2) and the claim remains true for any
u e CQ), i.e., if a function u € C°(Q) satisfies the mean-value formula (2.1) for any closed ball
contained in ©, then it is automatically C?(Q2) and harmonic. More than that, it is of class C®(2).
To prove this result we recall first the notion of mollifier”.

DEFINITION 2.2 (Standard mollifier). Let us consider the C® function

Cexp(ﬁ), f0<r<l,
0, ifr>=1,

¢: Ry >R, ¢<r>:—{

with C' > 0 chosen such that §, ¢(|z])dz = 1. For any ¢ > 0 we call standard e-mollifier the
function

1 T
Ne :R" >R, n(x) =— <|6|>

E?’L

We can show that the e-mollifier satisfies n. € C* (R™), {,,, n-(z) dz = 1, and supp (1.) = B-(0)
where, for a function f : R™ — R, we recall that supp(f) = {z e R: f(x) # 0}.

DEFINITION 2.3 (Mollification). Let Q@ < R™ be a domain and, for all € > 0, define the
subdomain Q. = {x € Q : dist(z,0Q) > €}. For f : Q — R locally intergrable, we call e-
mollification of f the function f.: Q. — R,

Jo(@) = (e # f) (2) = fﬂ ne(@ — ) () dy = jB JRECHCELY

It can be proven that f. € C* (€.) (for all € > 0) and that the following properties hold:

(1) fe > fae inQase—0;
(2) if f e C%(Q) then f¢ — f uniformly on any compact subset of €
(3) if fe LY (Q) then f. — fin LV (Q).

loc loc

THEOREM 2.4. If u € C°(Q) satisfies the mean-value property

1
ue) = e LBT@ u(y) dS(y)

for any closed ball B,.(x) < Q, then ue C*(Q) and is harmonic in €.

7 Also known as Friedrichs mollifier, after Kurt Otto Friedrichs [Fri44], or approzimations of the identity
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PROOF. Let us consider an e-mollification of u, u. = 1. *u : & — R and recall that 7. is a
radial function, i.e. ne(z) = e "¢(|z|/e) and ue € C* () for all € > 0. Then

e = [ n—puma= [ () uway

[ ( [ 5 (£) dS<y>> at

- [ () ( [, m dsw)) a

-2 : p <z> 0By()|u(x)dt  (by mean-value property)
_ “ﬁf) f¢ (2) 0By ()| dt

0@ [ nway

_ u(z).

Hence u(x) = uc(z) for all x € Q. and we conclude that u € C% (). Since € > 0 is arbitrary,
it follows that u € C*(Q), hence, in particular, u € C?(€2) and, by Theorem 2.3, v is harmonic in
Q. ]

REMARK 2.4. The stronger result of Theorem 2.4 does not extend to sub/super harmonic
functions, in general. If a function u € C°() satisfies u(x) < m S5 @) u(y) dy for any closed
B,.(z) c R, it is not true, in general, that uw € C*(2), nor that —Awu < 0 (the Laplacian of u might
not even erist).

We stress that the C® regularity result for harmonic functions contained in Theorem 2.4 says
nothing about the behavior of u at the boundary of €.
EXAMPLE 2.14. We can check that the functions

i )

u(z,y) = m’ v(w,y) = —m

are harmonic and C® in the open unit disc
Q= {(x,y)eR2 (r—1)2 42 < 1}.
However, both are unbounded as (x,y) — (0,0) € 0.

2.2. Derivative estimates. An important feature of the Laplace equation is that we can
estimate the derivatives of a solution in a ball in terms of the solution on a larger ball.

THEOREM 2.5 (Gradient estimate). Let us suppose that u € C?(S2) is harmonic in the open set
Q and B.(z) € Q. Then, for any 1 <i < n,
n
|Oju(z)] < — max |u(z)].
T zeB,(x)
PROOF. Since u is smooth, differentiation of Laplace’s equation with respect to z; shows that
0;u is harmonic. Therefore, by the mean-value property for balls and the divergence theorem,

1
Oiu = fBrm Oiu(z)dx = LBT@) u(y) vi(y) dS(y).

a,r"

Taking the absolute value of this equation and using the estimate

J ur; dS
0B, (z)

we get the result. O

< noy,r™ ! max |ul
B, (x)
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One consequence of Theorem 2.5 is that a bounded harmonic function on R™ is constant.®

COROLLARY 2.1 (Liouville’s theorem). If u € C? (R™) is bounded and harmonic in R", then u
18 constant.
PRrROOF. If |u| < M on R”, then Theorem 2.5 implies that
M
Oru() < =7

r

for any r > 0. Taking the limit as r — 00, we conclude that Vu = 0, so w is constant. |
We will also present an alternative proof of Corollary 2.1, due to [Nel61].

ALTERNATIVE PROOF OF COROLLARY 2.1. Let r > 0 and consider x,y € R"™. The mean-value
property yields:

1
u(e) — u(y)| = B

u(z)dz — u(z)dz
JBr(w) ) JBr(y) )
|Br(z) & Br(y)|

<M
|Br |
—0 as r — +00.
Thus u(z) = u(y) and we conclude that w is a constant from the arbitrariness of x,y € R™. O

F1GURE 1. Illustration of the argument in the alternative proof of Corollary 2.1.

Lect. 3, 24.09 We can also prove a derivative estimate in terms of the L'-norm of w.

THEOREM 2.6. Let us suppose that u € C%(Q) is harmonic in the open set Q = R™ and
B.(z) €Q. Then, for any 1 < j < n,

lu(z)| < pow lul 21 (B, (z)) (2.3)
2n+1n
|0, u(z)| < WHUHL%BT@))- (2.4)

PRrOOF. By the mean-value property,

1
u(y)d
po JBM) (y) dy

|u(e)] =

1 1
< dy = ,
o JBr(w) lu(y)| dy " “u”Ll(Br(a;))
which yields (2.3).

8 This result is called Liouville’s theorem, after Joseph Liouville. Actually, this statement first appeared in
[Boc03] and was later rediscovered in [Pic24]. On the other hand, Liouville, in [Lio80], proved that “A doubly periodic
function without poles is identically constant”. Finally, the statement of Liouville’s theorem about holomorphic
functions is actually due to Augustin-Louis Cauchy [Cau44], in response to [Lio80].
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To show (2.4), note that d,;u is harmonic. Thus, by the divergence theorem, we have
1

—an f axju(y) dy
an (5)" B,

2"’L
j u(y)v; dS(y)
an~/2 (z)

anpr™
<z f lu(y)| dS(y)
< u(y Y).
Qpr™ 0B, /2(x)

Within the integral, we can apply (2.3) over B, 5(y), obtaining

2m 2n
onulo) < s | i 2 (5,0) 45

apT™ z) OnT™

|8xju(:£)| =

22n
= — dS(y).
azran LBr/z(x) [l 215, 2() 45 W)

Since B, 2(y) < By(z), we have HuHLl(BT/Q(y)) < |ul L1 (B, (2)), which leads to

22n 22n
Op,u(7)| < 5= =) 450) = 55 v W
| Ju(x)| 047217"2n LBr/z z ”u”Ll(BT( ) (y) Q%TQn HUHLI(BT( ))L r/2(@) !

The claim follows by observing that

ryn—1 ryn—1
f dy=wn(3)  =naa(3)
(‘/’BT/Q(w)

We can extend the estimate in Theorem 2.5 to higher-order derivatives.

THEOREM 2.7 (Estimate on higher derivatives). Let us suppose that u € C%() is harmonic
in the open set Q and B,(x) € Q. Then for any multi-index o € N} of order k = |a,

nkek—1k!
——— max |ul.

o <
|[0%u(z)| i max

PROOF. We prove the result by induction on |a| = k.

Base case: From Theorem 2.5, the result is true when k£ = 1.

Induction step: Let us suppose that the result is true when |a| = k. We will prove it for
la| =k + 1.

If |a| = k + 1, we may write 0% = 0,,0” where 1 <i < n and |3| = k. For 0 < 6 < 1, let
p = (1 —0)r. Then, since ¢°u is harmonic and B,(x) € €, Theorem 2.5 implies that

10%(z)| < ~ max |0Pu(z)|.

P zeB,(x)
Let y € B,(x). Then B,_,(y) < B,(x), and, using the induction hypothesis, we get
k k—lk! k k—lk!
107 u(y)| < neik max |u| < MT max |ul.
(r—p)* B, (») &0 Br(a)
We then deduce that
. k1 gk—1p
Choosing 0 = k/(k + 1) and, using the inequality
! = 1+1 k(k+1)< (k+1)
gR1—6) k s ’
we get
" nFtlek(k +1)!
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A consequence of this estimate is that the Taylor series of u converges to u near any point.

THEOREM 2.8 (Harmonic functions are analytic). If u € C?(Q) is harmonic in an open set )
then u is real-analytic in €.

PROOF. Suppose that z € Q and choose r > 0 such that Bg,.(x) € Q. Since u € C*(Q), we
may expand it in a Taylor series with remainder of any order k € N to get

u(x—i—h) = Z aaZi!(x)ha"‘Rk(xah)v

lal<k—1
where we assume that |h| < 7.
The remainder? is given by

0%u(x + Oh)
al

Ri(x,h) = )]

la|=k

he,

for some 0 < # < 1. We have to show that R, — 0 as k — 400 (for a sufficiently small |h|). To
estimate the remainder, we use Theorem 2.7:
nFeF~1k!

|0%u(z + 6h)| < p

_max |ul.
By (z+0n)

Since |h| < r, we have B,.(z + 6h) < Ba,(x); so, for any 0 < 6 < 1, we have

max |u| <M, M= max) |l

B,.(z+0h) By (z

and then
MnFeF—1k!
[0%u(z + 6h)| < %

Since |h%| < |h|¥ when |a| = k, we deduce

MnFeF=1|n|F k! Z 1

| Ry (z, h)| < F

The multinomial expansion

la|=k la|=k
shows that
>4
1kl
amr @ k
In conclusion, we have
M (n2elh|\"
|Rk(x,h)|<( | |>
e r
and, thus, Ry (z,h) — 0 as k — oo provided that |h| < —. O

2.3. Maximum principles. We present now a second important property of harmonic and
sub/super-harmonic functions, the mazimum principle.

9 Let us recall Taylor’s theorem: If u € C¥ (B,(z)) and h € B,(0), then

aa
u(z + h) = Z u'(x) h* + Ry(z, h),
|| <k—1
where the remainder is given by
0“u(x + 0h) ho
al

Ry(z,h) = )

|a|=k

for some 0 < 6 < 1. We also recall that, for a multi-index a € N{J, the factorial is defined as a! = a1!... ay!
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2.3.1. Strong mazimum principle. First, we present the strong mazimum principle, which
states that a sub/super-harmonic function which attains an interior maximum/minimum is a trivial
constant function.

THEOREM 2.9 (Strong maximum principle for sub-harmonic functions). Let us suppose that
Q < R" is a connected open set and u € C?(QQ). If u is sub-harmonic and attains a global mazimum
value in 2, then u is constant in Q.

PROOF. By assumption, u is bounded from above and attains its maximum in §2. Let
M = maxu
Q

and consider
F={zxeQ:ulx) =M}

Then F is non-empty (by assumption, since the maximum is attained) and relatively closed in Q
(since u is continuous). If x € F and B, (z) € 2, then the mean value inequality for sub-harmonic
functions implies that

F ol - u@ldy= £ ul)dy—u) >0,
B, (z) B, (x)
Since u attains its maximum at z, we have u(y) — u(xz) < 0 for all y € 2, and it follows that
u(y) = u(z) in By(z). Therefore, F' is open as well as closed. Since Q is connected, and F' is
non-empty, we must have F' = ), so u is constant in (2.

If © is not connected, then u is constant in any connected component of {2 that contains an

interior point where u attains a maximum value.
|

EXAMPLE 2.15. The function u(z) = |z|? is sub-harmonic in R™. It attains a global minimum
in R™ at the origin, but it does not attain a global mazimum in any open set @ < R™. It does,
of course, attain a mazimum in any bounded closed set Q, but the attainment of a mazimum at a
boundary point instead of an interior point does not imply that a sub-harmonic function is constant.

It follows immediately that super-harmonic functions satisfy a minimum principle, and har-
monic functions satisfy a maximum and minimum principle.

THEOREM 2.10 (Strong maximum principle for harmonic functions). Let us suppose that € is
a connected open set and u € C%(Q). If u is harmonic and attains either a global minimum or
mazimum in €, then u is constant.

PROOF. Any super-harmonic function u that attains a minimum in € is constant, since —u
is sub-harmonic and attains a maximum. A harmonic function is both sub-harmonic and super-
harmonic. (]

ExXaMPLE 2.16. The function
u(z,y) = 2* —y?

is harmonic in R2. It has a critical point at 0, meaning that Du(0) = 0. This critical point is a
saddle-point, however, not an extreme value. Note also that

1 27
][ udrdy = —J (00520—sin2 9) do =0,
B,-(0) 21 Jo

as required by the mean-value property.

2.3.2. Weak mazimum principle. Theorem 2.10 leads to a weak mazimum principle for har-
monic functions, which states that the function is bounded inside a domain by its values on the
boundary. In physical terms, this means for example that the interior of a bounded region which
contains no heat sources or sinks cannot be hotter than the maximum temperature on the boundary
or colder than the minimum temperature on the boundary.
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THEOREM 2.11 (Weak maximum principle). Let Q be bounded and u € C?(Q2) n C°(Q) with
—Au <0 (resp. —Au =0 )in Q. Then

max u(z) = max u(z) ( resp. minu(x) = min u(x))
z€e) €00 ze) xe0f)

In particular, if u is harmonic in §2, then

i < < , VxeQ
gégU(y) u(x) rygggglt(y) x

PROOF. Suppose u sub-harmonic in Q and let M = max,cq u(z) which is finite since u €
C°(Q). If there exists y € Q such that u(y) = M, then u is constant by strong maximum principle
and the thesis follows. If there is no such y € , then u(y) < M = max,esq u(x) for all y € Q.

O

EXAMPLE 2.17. The harmonic function u(x) = x1 on the half-space {x € R™ : x1 > 0} is equal
to zero on the boundary, but is positive in the domain. We cannot apply the mazimum principle
because the domain is unbounded.

REMARK 2.5. The maximum principle s a second-order phenomenon. The function u :
[0,1] — R defined as u(x) = 3z — 42® satisfies $4u( x) =0 but x = 1/2 is an interior maz-
mum.

COROLLARY 2.2. Let u and v be harmonic and sub-harmonic in a bounded domain §2, respec-
tively. If u = v on 090, then u = v in Q.

PROOF. We observe that v — u is sub-harmonic in €2, and that v —u < 0 on 0€2. By the weak
maximum principle, maxq(v — u) < 0, and the claim follows. O

2.3.3. Alternative proof of the weak mazimum principle. We present also a proof by contra-
diction, which does not use the strong maximum principle and generalizes easily to more general
second-order elliptic equations.

ALTERNATIVE PROOF OF THEOREM 2.11. We will split the proof into two cases.
Case 1: —Au < 0 (with strict inequality). Let us consider the case —Au < 0. Let us assume,
for the sake of finding a contradiction, that

>
max u(x) max u(x).

Then there exists y € Q such that u(y) = M = max,.qu(z) and, since u € C%(Q), we have
02 u(y) <0 for i = 1,...,n, which contradicts —Au(y) < 0.

Case 2: —Au <0. In this case, we introduce an auxiliary function v € C2(Q) which satisfies
—Av(z) < a <0 for all z € Q and some a > 0. For instance, we can take

v(z) = |z|* = Zx

Then, for any € > 0, the function u. = u + v satlsﬁes

—Au. < —2ne <0 in

and (by the analysis in Case 1)

max ue(x) = max ue ().

Since € is bounded, there exists R > 0 such that |z| < R for all x € Q. Then
max v < max u, < maxu, < maxu + eR?,
Q Q o9 Fle)
and, letting € N\, 0, we conclude. Finally, we note that the statement for super-harmonic functions,
—Au > 0 is proved in the same way (considering that, if « is sub-harmonic, then —u is super-
harmonic).
In particular, for harmonic functions, we conclude

i = mi < < = , forall x € Q.
;gégU(y) r;lglgﬂ(y) u(x) ?E%U(y) ;I;%U(y) or all z
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2.3.4. Application to the study of uniqueness for the Laplace equation. The weak maximum
principle can be used to prove uniqueness of solutions of the Dirichlet problem in bounded domains.
Indeed, let us assume that two solutions u; and us exist. Then, v = u; — uy satisfies the problem

—Av =0, in €,
v =0, on o).

By the weak maximum principle, we have v = 0, hence u; = us.
The same principle can be used to establish stability estimates for the solution. Indeed, if u is
a solution of the Dirichlet problem with boundary data g € C°(02), then

i < < . forall z e Q,
min o(y) < u(z) < maxg(y), forallze

which implies
lullcoqy < lgllcoany,
i.e., the C%-norm of the solution is controlled by the C°-norm of the data.
Similarly, if u4, and wug, solve the problems

—Aug, =0, e, d —Aug, =0, €,
an
Ug, = g1, x € 092, Ugy = G2, x € 01,

with g1, g2 € C°(09) and [g1 — g2]co(oq) < €, then

lug, — ug, HCO(Q) < lgr — g2]coan) < e
i.e., small perturbations on the data imply small perturbations on the solution. Equivalently, the
solution depends continuously on the data (the map g — ug4 is continuous in the C° topology).

2.3.5. Uniqueness via energy methods. We mention also an alternative way, based on the so
called energy estimates, to establish uniqueness of solutions for either the Dirichlet, the Neumann,
or the Robin problems.

Energy estimates are obtained by multiplying the equation —Awu = 0 by u on both sides,
integrating over the domain and integrating by parts. If uy, us € C?(£2) are two classical solutions
of the boundary value problem and we apply the procedure to their difference, w = u; — us, which
also satisfies the equation —Aw = 0, we obtain

O=J- wAwdx=—J Vw-dex—l—J wd,wdS (2.5)
Q Q o0

(1) Dirichlet problem: Since w = 0 on 09, from (2.5) yields

f |Vw|? = f wo,w = 0
Q o9

Since © is connected, this implies that w is constant in €2 and being w = 0 on 02 we
conclude w = u; — us = 0 in €.
(2) Neumann problem: Since dw = 0 on 02,

f |Vw|? = f wd,w = 0.
o o0

hence, again, w is constant in 2. However, this time the value of the solution on the
boundary is not fixed, so the only conclusion that we can draw is that any two solutions
u1, usg differ for a constant value or, equivalently, the solution to the Neumann problem is
unique up to an additive constant. We note, on the other hand, that the boundary datum
h cannot be chosen arbitrarily for the solution to exist and has to satisfy a compatibility

condition
f h = oyu = J Au = 0.
oQ o Q

(3) Robin problem: Since d,w + cw = 0 on 012,

f |Vwl|? +o¢f w? =0,
Q o0

which yields [Vw| = 0 in Q and w = 0 on 09, hence again w = u; —uy = 0 in Q and
uniqueness of solutions.
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2.3.6. Alternative proof of the strong mazimum principle. Next we present another proof, based
on a key lemma due to'® Hopf!! [Hop27] and Oleinik!'? [Ole52] (see also [AN16; Naz12; PS04b;
PS04a] for further discussion) which does not rely on the mean-value property.

LeEMMA 2.1 (Zaremba-Hopf-Oleinik’s boundary point lemma). Let us suppose thatu € C?(Q)n
CY(Q) is sub-harmonic in an open set Q and u(x) < M for every x € Q. If u(z) = M for some

T € 002 and Q satisfies the interior sphere condition*® at T, then d,u(z) > 0, where 0, is the
derivative in the outward unit normal direction to a sphere that touches 02 at T.

PROOF. By the interior sphere condition, there is a ball Br(z) c Q with & € 0Br(z). Let
M = Maxg, . (p) U < M and define e := M — M’ > 0. We consider a perturbation

w=u+ev—M,

of u, where v € C? (R™) to have the following properties:

(1) v =0 on 0Bg(x);

(2) v=1o0n dBg(x);

(3) 0yv <0 on 0Bg(x);

(4) —Av <0 in Br(z)\Bpg/2(x).

Then w < 0 on dBg(z) and 0Bgjs(x), and —Aw < 0 in Bgr(z)\Bpg/2(x). The weak maximum

principle for sub-harmonic functions in Theorem 2.11 implies that w < 0 in Br(z)\B ry2(z). Since
w(Z) = 0, it follows that d,w(Z) > 0. Therefore,

oyu(T) = 0,w(ZT) — ed,v(T) > 0,

which proves the result.
Let us give an explicit example of the perturbation v (considering Bg(0), without loss of
generality):

v(z) =c [e‘“‘””l2 - e_“Rz] ,
where ¢, a are suitable positive constants. We have v(z) = 0 on |z| = R, and by choosing

1

c= e—aR?/4 _ o—aR?’

we ensure that v(R/2) = 1. We compute

—ala|?

o,v(x) = —2calz|e <0 on|z|]=R.

and
2

Av(z) = 2ca [2alz* — n] e~ ozl

Thus, by choosing a > %, we obtain —Av < 0 for R/2 < |z| < R.

ALTERNATIVE PROOF OF THEOREM 2.10. As before, let

M = maxu
Q

and define
F={reQ: ulz)= M}

Then F' is non-empty by assumption, and it is relatively closed in €2 since u is continuous.

10 A particular case, for the Laplace equation in a 3-dimensional domain, of this lemma is due to Stanistaw
Zaremba [Zar10].

11 Eberhard Hopf (known for the Hopf maximum principle, the Hopf bifurcation theorem, the Wiener—Hopf
method in integral equations, and the Cole-Hopf transformation for solving the viscous Burgers equation), not to
be confused with Heinz Hopf (known for the Hopf-Rinow theorem, the Hopf fibration, and Hopf algebras.

12 Olga Oleinik.

13 We say that an open set 2 satisfies the interior sphere condition at T € 9 if there is an open ball B, (z)
contained in 2 such that & € 0B,(z). Note that the interior sphere condition is satisfied by open sets with a
C?-boundary, but it need not be satisfied by open sets with a C'-boundary, and in that case the conclusion of the
Hopf lemma may not hold.
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Let us suppose, for the sake of finding a contradiction, that F' # . Then
G=0\F

is non-empty and open, and the boundary 0F n Q) = 0G n 2 is non-empty (otherwise F' and G are
open and (2 is not connected).

Choose y € dG n  and let d = dist(y, &) > 0. Then choose x € G such that |z — y| < 4 and
let r = dist(z, '), which satisfies 0 < r < 2, so B.(z) = G. Moreover, there exists at least one
point T € 0B, (x) n 0G such that u(z) = M.

We therefore have the following situation: w is sub-harmonic in an open set G where u < M,
the ball B, (x) is contained in G, and u(z) = M for some point & € ¢B,(z) N éG. Lemma 2.1 then
implies that

o,u(Z) >0

where 0, is the outward unit normal derivative to the sphere 0B, (x).

However, since T is an interior point of 2 and v attains its maximum value M there, we have
Vu(Z) = 0, so d,u(Z) = Vu(Z) - v = 0, which is a contradiction.

If © is not connected, then u is constant in any connected component of 2 that contains an
interior point where u attains a maximum value. (]

2.4. Harnack’s inequality. The maximum principle gives a basic pointwise estimate for
solutions of Laplace’s equation. Harnack’s inequality'* is another useful pointwise estimate. It
states that if a function is nonnegative and harmonic in a domain, then the ratio of the maximum
and minimum of the function on a compactly supported subdomain is bounded by a constant
that depends only on the domains. This inequality controls, for example, the amount by which a
harmonic function can oscillate inside a domain in terms of the size of the function.

THEOREM 2.12 (Harnack’s inequality). Suppose that Q' cc Q is a connected open set that is
compactly contained in an open set Q. There exists a constant C, depending only on Q and €V,
such that if u € C'(Q) is a non-negative function with the mean-value property (i.e., a non-negative
harmonic function), then

supu < C'inf u. (2.6)
Q @

PrROOF. Step 1. First, we establish the inequality for a compactly contained open ball. Sup-
pose that x € Q and Byg(x) cc £, and let © be any non-negative function with the mean-value
property in Q. If y € Bg(x), then

u(y) = ][ udr < 2”][ udz,
Br(y) Bar(z)

since Br(y) < Bar(z) and w is non-negative. Similarly, if z € Br(z), then

2 n
u(z) = ][ udz > (> ][ udz,
Bsr(?) 3 Bag(z)

since B3g(z) D Bag(x). It follows that

sup v < 3" inf wu.
Br(z) Br(z)

Step 2. Suppose that Q' cc Q and 0 < 4R < dist (Y, 9Q). Since (¥’ is compact, we may cover
Y by a finite number of open balls of radius R, where the number N of such balls depends only
on ' and Q. Moreover, since €’ is connected, for any z,y € 2 there is a sequence of at most N
overlapping balls {By, Ba, ..., B} such that B; n B;11 # & and « € By, y € By. Applying the
above estimate to each ball and combining the results, we obtain that

supu < 3"V inf u.
o 94

14 Named after Carl Gustav Axel Harnack.
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Harnack’s inequality leads to an important convergence theorem for harmonic functions known
as Harnack’s principle or Harnack’s convergence theorem. Consider a monontone sequence of
continuous functions on §2. The pointwise limit of such a sequence need not behave well—it could
be infinite at some points and finite at other points. Even if it is finite everywhere, there is no
reason to expect that our sequence converges uniformly on every compact subset of 2. Harnack’s
principle shows that this kind of pathologies cannot occur for a monotone sequence of harmonic
functions.

THEOREM 2.13 (Harnack’s convergence theorem). Suppose § is connected and {tm }men is
a pointwise increasing sequence of harmonic functions on Q. Then either {um,}men converges
uniformly on compact subsets of Q to a function harmonic on Q, or u,(x) — o for every x € Q.

Proor. Replacing u,, by u,, —u; + 1, we can assume that each wu,, is positive on 2 (since
{tm }men 18 monotone increasing). Set u(z) = lim,, o um () for each x € Q.

Case 1. First suppose u is finite everywhere on 2. Let K be a compact subset of Q2. Fix x € K.
Harnack’s inequality shows there is a constant C € (1,00) such that

Um(y) - uk(y) < O(Um(x) - uk(x))

for all y € K, whenever m > k. This implies (u,,) is uniformly Cauchy on K, and thus u,, — u
uniformly on K, as desired. Thanks to Problem 1 in Exercise Sheet 2, we have that the limit
function u is harmonic on €.

Case 2. Now suppose u(x) = oo for some z € Q. Let y € Q. Then Harnack’s inequality, applied
to the compact set K = {x, y}, shows that there is a constant C' € (1, c0) such that u,, (2) < Cunm(y)
for every m. Because u,(x) — o0, we also have u,,(y) — o0, and so u(y) = oo. This implies that
u is identically oo on 2. O

3. An interlude about distributions

The theory of distributions'® is a powerful theory that allows one to extend the definition of
derivative of a function beyond the classical sense.

Let us consider a function f € C1(2) and ¢ € C*(Q), where C*(2) denotes the space of C®
functions compactly supported in 2. The integration by parts formula gives in this case

Of e — e
J-Q awigpdx = sz&ci dx (3.1)

where the boundary term disappears since ¢ vanishes on 0Q. If now f ¢ C'(Q), the idea is to

define gj via (3.1), i.e., we define % as an object that, when integrated (tested) against smooth

functions with compact support, returns

of L o
<(917,;’(p> = JQ f@xi dx.
f

The symbol {-,-) is used here to denote the action of the derivative 577 on the test function ¢.

DEFINITION 2.4 (Space of test functions). We denote by D(QQ), called the space of test func-
tions, the space CL () of infinitely smooth functions with compact support in ), endowed with the
following notion of convergence: given {vr}ren < D(Q) and ¢ € D(Q), we say that v — ¢ in
D(Q) as k — o if

(1) there exists a compact subset K < Q such that supp(pr) < K for all k € N;
(2) D%p — D%p uniformly in K, for all o € N™.

One can construct a topology 7 on D(€) which is consistent with the notion of convergence
given in Definition 2.4. The topological space (D(f2),T) is (sequentially) complete, however non-
metrizable.

DEFINITION 2.5 (Distribution). A distribution T in Q is a functional T : D(2) — R that
satisfies the following properties:

o linearity: (T, + B = a(T, ) + BT, 0, for all o, € D(Q), a, B € R;
o sequential continuity: (T, ory — {T, vy whenever o, — @ in D(Q).

15 Laurent Schwartz was awarded the Fields Medal for his work on distributions in 1950 [Sch50; Sch51; Sch66].
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The set of all distributions is denoted by D’ ().
We say that two distributions T3, Ty € D' (Q) are equal if
(T, @) = T2, ), for all p € D(Q).

One can show that linear functionals on (D(2),7) are continuous if and only if they are
sequentially continuous. The space D’(2) thus coincides then with the topological dual of D(f2).

EXAMPLE 2.18. As a first example of distribution, let us consider a locally integrable function
fe L (). Toit, we can associate a distribution Ty : D(Q) — R defined as

loc

Ty, @) = JQ fodz, for all ¢ € D(Q).

The distribution T is clearly a linear functional. It is also sequentially continuous in D(Q). Indeed,
let o, — ¢ in D(Q); in particular, there exists K cc Q such that supp ¢, < K, for all k. (Here
A cc B means that A has compact closure in B) and o — ¢ uniformly in K. It follows that

[Ty 1) = Ty )| = UQ flor = @) da) < | florolor = oloe) =0 ask — o0

With some abuse of notation, we will denote by f both the function in L}OC(Q) and the corre-
sponding distribution Ty € D'(§2).

EXAMPLE 2.19. As a second example of distribution, we define the Dirac mass or Dirac dis-
tribution at y, denoted d,: it is the distribution that satisfies

by, ) =¢(y),  forall p e D().

Again, the functional 6 : D(Q) — R is clearly linear. It is also sequentially continuous in
D(Q) since, for o — ¢ in D(Q), it holds

Oy, k) = ok(y) = @(y) = by, ).
We conclude then that 6, € D'(§2).
On the space of distributions, we can introduce the following notion of (weak) convergence.

DEFINITION 2.6 (Convergence in distribution). Let {Ty}reny < D'(Q) and T € D'(Q). We say
that T, — T in D'(Q) as k — o0 if

(T, o) = T,p),  forallpeD(Q).
We now introduce the notion of distributional derivative.

DEFINITION 2.7 (Distributional derivatives). Given a distribution T, for a € N", the a-
distributional derivative D*T € D'(Q) is defined as

(DT, @) = (=1)I®I(T, DY), for all p € D(Q).

EXAMPLE 2.20. In the particular case f € L}, (), the distributional partial derivative 0, f €
D'(Q) is defined as

Oz, frp) = — Lz fOu, pda, for all p € D(Q).

PROPOSITION 2.1. Let (T}), - be a sequence in D'(Q) that converges to T € D'(Q2). Then, for
all a € N", (09T )~ converges to 0“T in D'(K2).

PROOF. Let p € CX(Q). For all ke N,
(0T, ) = (=1)1 Ty, 0%p)—(=1) KT, 0%¢) = (*T, ) s k — 0.

Lect. 5, 08.10
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EXAMPLE 2.21. The distributional derivative of the Heaviside function'®
1 ifx >0,
Hy =10 e
0 ifx<0,
1s given by the Delta distribution dg. Indeed,

(H',p) = — .[R H(z)¢ (x)de = — J:O ' (z) dz = ¢(0), for all ¢ € D(Q).

EXAMPLE 2.22. The function defined for x # 0 by f(x) = log|z| and assigned any arbitrary
value at 0 belongs to L (R). Therefore, it can be associated with a distribution Ty € D'(R). Let

loc
us compute its distributional derivative. For ¢ € CP(R), we have

o)==y == | oglal ¢/ (@) do
Due to the integrability of the logarithm at 0, we have

f‘[ log |z] - ¢’ () dz = — lim log |z] - ¢/ (z) dz
R

e—0 ‘I‘ZE

= —lim (J_E log(—z) - ¢'(x)dz + JOO log(x) - ¢ () dx)

e—0 — o c

Integrating by parts yields

| toglal- @ as
|z|=e

B fl > @ dz + ¢(—¢) log(e) — ¢(e) log(e)
— [ D g gy (£ 1O
le% x d — 2elog(e) ( 2e ) .

Since log(e) = 0 as e — 0 and ¢’ is bounded, we conclude that

So=—tm | sl ey
r|=e

1
= lim L(g’") dx =: <p.V- () ,90>-
e—0 le|=e xT x

The expression p.v. stands for principal value. If f has an isolated singularity at the origin
but is C* away from it, then the principal-value distribution of f is defined by

P-v.(f), ¢y = lim f@)e(x)dz,  for all p € D(Q).
=20 Jrm\B.(0)
Such a limit may not be well-defined, or, being well-defined, it may not necessarily define a distri-
bution. It is, however, well-defined if f is a continuous homogeneous function of degree —n.

EXAMPLE 2.23. Let u € L (R), and define, for x € R, v(z) = §ju(t)dt. Then v is a
continuous function on R and v’ = u in the sense of distributions.
Let us first show the continuity of v. Let xg € R and let {xk}n>0 be a sequence converging to

xg. We have, for alln =0,
o) = | Xown (u(t)
R

By Lebesque’s dominated convergence theorem, the sequence (v(xg))nso0 converges to
SR X(0,z0) (t)u(t) dt = v(x0), proving the continuity of v at xo, and thus on R.

16 Named after Oliver Heaviside.



3. AN INTERLUDE ABOUT DISTRIBUTIONS 23

Let p € CP(R) and assume that supp(p) < [—A, A]. Using Fubini’s theorem, we have:

W9y = o, sa’>——f4 (]} utar) ') 0o
J f (t)p dtdx+j J z)dtdz
__ L u(t) (f o (z) da ) dt + LA u(t) ( fA o () dx) dt

A 0
- [Cutears | wwewd - [ uweae - .
—A R

0
Thus, v' = u in D'(R).
PROPOSITION 2.2. Let a € C*(Q) and let T € D' (). Then, defining the product aT as
(aT,py =T, ap), for all ¢ € D(Q),
we have 0y, (aT) = (0z,0)T + a0y, T.

EXAMPLE 2.24. The i-th partial derivative of a distribution Ty with f € C1(R™) is the distri-
bution Tp, .

EXAMPLE 2.25. Let f be a piecewise C' function on [a,b]. This means that there exists a
subdivision of [a,b] into intervals [a;, a; 1] such that f is Ct on [a;, a;41]. Suppose that, at every
point where it is not continuous, f admits a right limit and a left limit. To fix notations, we let
ap = a, ant1 =b, and ay,...,an € (a,b). We denote by f(a;) and f(a;) the right and left limits
of f at the point a;, respectively. As a convention, we let f(ay) = f(a}, ;) = 0.

Then, we claim that
n+1

=Ty + 2 (f(a‘?_) - f(az_))(sal
i=1
First, we note that the function f defines a distribution, of which we calculate the derivative,
which we denote by (T¢)'. By definition, for ¢ € C(R), we have
b
()0 = ~Tpe) = = [ fa)e @) do

Thus,
b n a1
J f(2)¢' (z) dx = Z J | f(x)¢ (x) dx.

i=0Yai
Integrating by parts, we get

Ja”l f@)¢(2) dz = [f(z)p(@)]e " — faiﬂ f'(@)p(x) da,

a;

which yields

b n
- [ f@e @ s = 3 [feheteh) ~ fam)sten] + [ P @

a =0

Hence,
{Ty) @y =Ty o) + flag)play) — flag)elag) + Z(f(a?) — flai))e(ai),

which implies our claim.

REMARK 2.6. To regularize a distribution, we can use the convolution with the standard mol-
lifier: if T € D'(Q), then

(T xne,pp ={Tyme(—) *p),  forall p e D(N).
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It can be shown that the convolution of a smooth, compactly supported function and a distribution
18 a smooth function, namely

z = (T xne)(x) = (T, (- — x)).
Furthermore, we note that

Tsn. —T in D'(Q) as e — 0.

REMARK 2.7. The standard mollifier n. from Definition 2.2 converges in distribution to the
Dirac delta as e — 0: for every p € D(Q) and y € Q, we have

ve(y) = L Ne(x —y)p(z)dr — p(y) ase—0;

hence
(- =)0 = ¢e(y) = #(y) = {8y, ) ase—0.

i.e., n:(—y) — 9y in D'(Q).

PROPOSITION 2.3. Let T € D'(R?), p e C*(RY), and o € N¢. Then,

0T ) = (0°T) % p =T = (0%p).
More generally, for any decomposition of the multi-inder o = a1 + aip, we have
0T = p) = (0T = (0*%¢).
PROPOSITION 2.4. Let T € D'(R). We have T' = 0 if and only if T is constant.

PROOF. If we assume that T is constant, it is clear that 77 = 0 since ¢ has compact support.
Conversely, suppose that 77 = 0. Then, for all ¢ € C*(R),

<T/’ <P> = _<T7 30/> =0.

Thus, T vanishes on all functions of the form ¢’, where ¢ € CP(R). Let us characterize these
functions. We show that

(¥ =¢', with pe CP(R)) < <w € CF(R) and J}Rd)(x) dz = O> . (3.2)

The direct implication is clear because ¢ has compact support. Conversely, we set ¢(z) =
§° ,w(t)dt with suppe € [-M,M]. Then ¢ € C*(R). If 2 < —M, then ¢(z) = 0 (since ¢
vanishes on | — o0, z] in this case). If z > M, then (since S:OO Y(t)dt = 0 and §, () dt = 0 by
assumption),

+00

o(z) :L 1/1(t)dt+0=f D) dt + ¢(t>dt:JR¢(t)dt=o.

x

Thus, supp ¢ < [-M, M] and ¢ € CX(R) and, of course, ¢) = ¢'.
We will use the equivalence (3.2) to conclude the proof. Let x € C(R) with {; x(z)dz = 1.
Let ¢ € CP(R). Let us define

v@) = ola) - ([ e0at)x@).  wer

Then ¢ € CX(R) and {; ¥ (¢) dt = 0. Consequently, there exists ¢ € CZ(R) such that 1) = ¢ and
(T,v) = 0. Thus, by the linearity of T

(T, 0) =T, ij) de = C-(1,0) = (C, 0

with C = (T, x) being a constant. Thus, we conclude that 7" is constant. O
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4. Distributional Laplacian and Weyl’s lemma

Thanks to Definition 2.7, we can say that any distribution admits distributional derivatives of
any order. In particular, the distributional Laplacian of T € D'(2) will be defined as

(AT, ) =T, Ayp), for all ¢ € D(Q).
We will say that a distribution u € D'(Q) is a distributional solution of the Laplace equation if
(Au, ) =0 for all p € D(Q).

We conclude by stating the fundamental lemma of the calculus of wvariations. This tool is
typically used to transform the distributional formulation of a differential problem into the strong
formulation using a priori knowledge on the regularity of the distributional solution.

LEMMA 2.2 (Fundamental lemma of the calculus of variations). Let Q < R™, and suppose
feC(Q). Suppose also that

J fodz =0
Q
for every o € CF(Q). Then f =0 on Q.

REMARK 2.8. One could state a more general version of the fundamental lemma of the calculus

of wvariations without requiring continuity, e.g., assuming f € Li _(Q) and reach the conclusion

f =0 almost everywhere. The argument is done by approzximation, but we skip the details.

PROOF. For the sake of finding a contradiction, suppose that f is strictly positive at some
point & € Q). By continuity, there exists some neighborhood U = |z — Z|| <  where f is positive.

Consider the function
o) = 0, if x ¢ U,
1, e~ V(@i=2)*  ifzeU,

which is continuous and infinitely differentiable on R™, and satisfies ¢(x) = 0 for = € 09, so it
satisfies the hypotheses required above. Furthermore,

Lz fodr = JQ fedz >0,

which is a contradiction. O

EXAMPLE 2.26. If u € C*(Q) is a distributional solution of the Laplace equation, then, for
every ¢ € D(Q),

(A, ) = (u, Ag) = f uApdz — f A da
Q Q
1

where we first used some abuse of notation to identify the distribution u with the Ly,
and then we integrated by parts. By Lemma 2.2, we now conclude that Au = 0 in €.

function u

We can now strengthen the regularity result for harmonic functions shown in Section 2.1 and
prove Weyl’s lemma,'” which states that every distributional solution of Laplace’s equation is
smooth.

THEOREM 2.14 (Weyl’s lemma). Let u € D'(Q2) and suppose that (Au, p) = 0 for all p € D(Q).
Then u e C*(Q) and is harmonic in .

PROOF. Let 7. be the standard mollifier and consider u. = u * .. Then u. € C* and
Au. = (Au) =, = 0. So u., being smooth and harmonic, satisfies the mean-value property.
Hence, arguing as in the proof of Theorem 2.4,

JOO P I(r) drj us(z —ry) dS(y)

0 8B (0)

Ue * 77(3:)

nte@) [t dr = ) [ atway

0 n
= u.(x)

17 Named after Hermann Weyl [Wey40]. See also [Str08].
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(recall that here 7 denotes the standard mollified with e = 1). Letting ¢ — 0, we get u = uxn € C®.
Moreover, by the fundamental lemma of the calculus of variations, —Au = 0 (i.e., u is harmonic
in the classical sense). (]

ALTERNATIVE PROOF OF THEOREM 2.14. Let {n.}.~¢ be the standard mollifier. Recall that
n(z) = n(|z|) = 6(|z|?) Fix ' < Q and put g9 = dist(£’, Q). For each z € Q' and € € (0,2¢) the
function

y—n:(z —y)
belongs to D(2) and so we may consider {u, n:(x — -)).

We compute

d ( —-n (.ﬁ—y)) —n—1 (x_y> —-n (.Z‘—y) r—y
— e "n| — = —ne n —e "Vn .
de € € € €

Defining

we note that
and then we arrive at

(e (220)) st (220 (222)) - (e ((222))).

Since, by assumption, u is harmonic in the sense of distributions, we deduce

()

Now, by considering difference quotients, we see that

L ma(e =) = <u, D~ .)> - <u,Ay (51—"9 ((m - y)2)>> —0.

Integrating between ¢ and &1 (such that €, &1 € (0,¢9)), we deduce

Qs ne (@ = -)) = Cus e, (= )

For p € D(Y), we have

ey = | e = D)t = | Gun (@ = Ppla) da.

Hence, as 1. * ¢ — ¢ in D(Q) as ¢ — 0T, we get

ey = | o= (o) do
Consequently, ulg € C* ('), and since Q' was arbitrary, this concludes the proof. O

5. Fundamental solution of the Laplace equation

Motivated by the fact that harmonic functions are invariant under rotations (Problem 4 in
Exercise Sheet 1), we want to construct a radially symmetric solution u(z) = v(|z|), with v :
R, — R, to the Laplace equation in R™.

We denote by r = |z| = 4/}, 27 the radial coordinate and note that

Hence,
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Then the Laplace equation is reduced to

¢ -1
Au(z) = Z 2 u=1"(r)+ v’(r)n = 0. (5.1)
o "
If v' # 0, we can solve the ODE (5.1) by noticing that
v 1-n
o
which yields
Inv' = (1—n)lnr,
that is
, C
= pn—1"
Integrating once more, we conclude that (5.1) admits the non-constant solutions of the form
Cir + Cy ifn=1,

v(r) =< Cilogr + Cy, ifn=2,
017"2_n + 027 if n > 3.

We define the fundamental solution or free-space Green’s function ® : R™ — R of the Laplace
equation'® by
—3lzl, ifn=1,
®(z) == { —5 log|z], ifn=2, (5.2)
ifn > 3.

1
n(n—2)ay,|z|"=2"
The fundamental solution satisfies
—Ad = §

in the sense of distributions in R™, as we will show in Theorem 2.15.

REMARK 2.9 (Some properties of the fundamental solution). We collect here some properties
of the fundamental solution ® of the Laplace equation.

(1) ® is smooth away from the origin: ® € C*(R™\{0}). In particular, for x # 0, we compute

that
1
0y D(z) = ——— 1L 5.3
o) =~ (5.3
. 5o
82 P _ Zilj _ ) 5.4
R R T o4
(here
0, dfi#jy,
dij = e
1, ifi=j.

is the Kronecker'® delta).
(2) From (5.4), we deduce that

AD =0 ifz 0,

so @ is harmonic in any open set that does not contain the origin.
(8) The function ® is homogeneous of degree —n + 2, its first derivative is homogeneous of
degree —m + 1, and its second derivative is homogeneous of degree n.

181 general, the fundamental solution ® of a linear partial differential operator £ is the distributional solution
of L& = J§g. The existence of fundamental solutions for every linear partial differential equation with constant
coefficients was first proved independently by Bernard Malgrange [Mal56, Th. 1] and Leon Ehrenpreis [Ehr54,
Th. 6]. Before 1950, when the first edition of [Sch50] appeared, the question about the existence of a fundamental
solution was not even raised, since there did not exist a generally accepted definition of a fundamental solution. By
now there are several proofs of Malgrange—Ehrenpreis’ theorem, which can be roughly classified into three categories:
(1) non-constructive proofs using Hahn-Banach’s theorem; (2) constructive proofs via explicit formulae; (3) proofs
by solving a “division problem”. See [OW96; Ros91; Wag09] for further information.

19 Named after Leopold Kronecker.

Lect. 6, 15.10
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(4) © is unbounded as x — 0 with ®(x) — oo as |x| — 0. Nevertheless, ® and V® are locally
integrable. For example, the local integrability of 0;® follows from (5.3) by noticing that
Cn

Op, @ < ,
0, 0@ < T

holds and that |z|"~! is locally integrable on R™.
(5) The second partial derivatives of ® are not locally integrable, however, since they are of
the order |x|™™ as x — 0.
(6) For x # 0,
1 1
Vo = — (5.5)

o] nay Jzrmt

Thus we get the following surface integral over a sphere centered at the origin with normal
x .

v=Z
|]

—f Ve -vdS = 1. (5.6)
B,(0)

(7) As follows from the divergence theorem and the fact that ® is harmonic in Br(0)\B,(0),
the integral (5.6) does not depend on r. The surface integral is not zero, however, as
it would be for a function that was harmonic everywhere inside B,(0), including at the
origin.

(8) The normalization of the flux integral in (5.6) to one accounts for the choice of the mul-
tiplicative constant in the definition of ®.

THEOREM 2.15. We have
—Ad = §
in the sense of distributions, i.e.,
—(®, Ap) = (0o, )
for all ¢ € D(R™).

We will prove Theorem 2.15 for n > 2. The case n = 1 is left as an exercise. Indeed, it
follows directly from Problem 4 of Exercise Sheet 4: after computing the distributional derivatives
(T}.)) = Tsign and (Ty)" = do (Where H = X[0 4+ is the Heaviside function), one only has to notice
the relationship between sign and Heaviside function, namely sign = 2H — 1, to conclude that

1
() -

PROOF. Let Ty be the distribution associated with the fundamental solution ® (which is an
L} -function). That is, let T : D(R™) — R be defined as

in the sense of distributions.

Tp,g9) = O(z)g(x)dx, for all g e D(R™).
R"L

We want to show that
<T<I>a Ag> = 7<507g> = 79(0)7
which means —A® = §y in R™ in the sense of distributions.
By definition,
(ATg,g) ={Tp,Ag) = O(z)Ag(z) dz.
Rn
Now we would like to apply the divergence theorem, but ® has a singularity at x = 0. We get
around this by breaking up the integral into two pieces:

Ty, Ag) = J O(x)Ag(z) dz

= J O(x)Ag(z)dx + J O(z)Ag(z)dz
B;5(0) R"\B;(0)
=1+J
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f In|z|dz
Bs(0)

27 o
gC’J J [Inr|rdrdé
o Jo

6
=C’J [Inr|rdr
0

Step 1. We look first at term I. For n = 2,

1
—f — In |z| Ag(z) dx
Bs(0) 2

< ClAg peo ey

= C5%|Iné|.

For n > 3,

1
<C 180l |

Bs(0) |7|" 2

0 1
<C f f L a5 ) ar
0 < 0B, (0) [y 2 )

1 1
Ag(x)dx
fBé(o) n(n —2)ay, |z|"—2 (=)

Therefore, as § — 0%, |I| — 0.
Step 2. Next, we look at term J. Applying the divergence theorem, we have

J O(z)Arg(z)dr = f AP (2)g(x)dx
R™\B;(0) R™\B;(0)

=0

- J 0, P(x)g(x) dS(x) + D(x)0,g(x)dS(x)
o(R™\B;(0)) d(R™\B;(0))

- f 0,®(2)g(x) dS(z) + B(2)0,9dS(x)
o(R"\Bs(0)) O(R™\B5(0))

= J1 + Ja,

using the fact that A, ®(z) = 0 for x € R™\Bs(0).

Step 2a. We first look at term J;. Since g vanishes as |z| — o0, we only need to calculate the
integral over 0B;s(0) where the normal vector v is the outer normal to R™\B;(0). From (5.3), we
have

x
V,®(zr) = ——.
() nag | z|?

The outer unit normal to R™\B;s(0) on Bs(0) is given by v = —17a7» S0 the normal derivative of @

on Bs(0) is given by

5 B x T 1
o = e . R - @@
v noy, |z|™ || nay,|z|v1

(as in (5.5)). Therefore, J; can be written as

1 1
_L ﬁg(aﬁ) dS(z) = ———— J{}Bé(o) g(z)dS(z).

—1
By (0) N |T N, 0™

Since g is a continuous function, then we conclude

—][ (@) dS(z) — —g(0) as §0.
0B;5(0)
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Step 2b. Lastly, we look at term Js. Using the fact that g vanishes as || — o0, we only need
to integrate over 0Bs(0). Since g € D(R™), we compute

| o@ogla)dS@)| < l0glmeon | [B@IdS@ <[ )]s
0B5(0) 0B5(0) 0Bs(0)
For n = 2,
[ je@las@=c| fmldlds
0B;(0) 0Bs(0)
|1n5|f
0B;(0)
= C|Iné|(2md) < Cd|1Ind|.
For n > 3,
1
[ e@iase -c| lasw)
2B;(0) 0B, (0) |7

=1
< — dsS(x
6"=2 JaB,(0) )

= %nané’l_l < C).

In both cases, we have |J2| — 0 as 6 \, 0.
Step 3. Combining these estimates, we see that

|| 2@asgo)do = tim (14 1+ ) = ~900),

which concludes the proof. (Il

5.1. Solution of the Poisson equation. We can use the fundamental solution ® to build
a solution to the Poisson equation.

THEOREM 2.16. Suppose that f € CP(R™), and let
u=>oxf
where ® is the fundamental solution (5.2). Then uw e C*(R™) and
—Au=f i R™.

PRrROOF. By a change of variables, we write
uw) = [ -y = | ey dy

Let e¢; == (...,0,1,0,...) be the unit vector in R™ with a 1 in the i*" slot. Then

u(x—i—h(Z)—u(sc) :fn@(y) [f(x—l—hei—}ill/)_f(x—y)} dy.

Now f € C? implies
[z +hei —y)— f(z—y)

— 0y, f(x —y), as h— 0, uniformly in R™.

Therefore,
Similarly, we also obtain

In particular,
Boule) = [ @W)AS@-p)dy = | 2w)AH =)y
Since f € D(R"™), we apply Theorem 2.15 and conclude that
—Au = {8z, f) = f().
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CHAPTER 3

Classical solutions to the Dirichlet problem

1. Dirichlet problem for the Laplace equation

The fundamental solution ® of the Laplace equation studied in Section 5 can be used to derive
a representation formula for the point value of a C?(2) function in terms of its Laplacian and
boundary values.

THEOREM 3.1 (Green’s representation formula). Let Q@ ¢ R™ be a bounded domain with C*
boundary. For any u € C?(Q) and y € Q, we have

uly) = f B — y)(~Au(x)) de
@ (1.1)

- j ayzm—y)u(mdsmﬁ (e — y)d,ulz) dS(x),
oQ o0

where 0, denotes the normal derivative with respect to the x variables, i.e. 0, (-) = V,(-)-v =

pI %()Vz

The starting point of the proof is Green’s integration by parts identity,

J (vAu —uAv)dx = J (vdyu — ud,v)dS. (1.2)
Q o0

which holds for every u,v € C?(Q) and a bounded domain with C' boundary. Now fix y € Q. To
prove the (1.1), the idea is to take v = ®(- — ) in (1.2). However, z — ®(z — y) is not C%(Q)
and, in particular, a singularity occurs at x = y. So we need to be more careful: to circumvent
this difficulty, we write the identity on the domain Q. = Q\B.(y), with & small enough so that
B.(y) € Q, and let ¢ — 0.

PRrOOF. Exploiting the fact that ®(z — y) € C%(Q.) and A, ®(z — y) = 0 in ., we have

)

J Au(z)®(x — y)dz — J (Opu(z)®(x —y) — u(x)0,@(x —y)) dS(z)
QE OQ
=:C

= f oyu(z)®(z —y) dS(z) — f u(x)0,®(x — y)dS(x).
9B:(y) 9B:(y)

N N
~~

=A =B

We show now that A — 0, B — u(y), and C — {, Au(z)®(z — y)dz as ¢ — 0.
For A, we estimate

|A] = |®(e)] < |®(e)|e" w, sup |Vu| — 0 as e — 0.

Be(y)

J- o,udS
0B:(y)

33
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For B, we estimate the difference |B — u(y)|:

|B —u(y)| =

L o (1) Ty 4 ) - (=) A0 ) A () ity

uly) ( j 0,8z — ) dS(x) - 1)
0B:(y)

=0

j Vuly + 0.z —y)) - (& — 9)2,®(x — y) dS(x)
0B (y)

<

9

+

< sup |Vu|£f |0, ®(x —y)|dS(z) — 0 as € — 0..
Be(y) 0B (y

Notice that, in the second line, the fact that SaBE(y) 0, ®(z —y)dS(xz) = 1 is due to v being the

normal outgoing vector to the domain Q\Bc(y), hence the normal ingoing vector to Be(y).
Finally, for the term C, since ®(z — y) is integrable in 2 for any y € €2, we have

‘C — JQ Au(z)®(x —y)dz

J Au(x)®(x — y) dz
Be(y)

< swp [Auf [ [B@—y)|ds
B:(y) Be(y)
€
< sup |Aul | 8" w,|®(s)|ds — 0 as € — 0.
Be(y) 0

O

REMARK 3.1. In these notes, we will use also the notation ®(x,y) = ®(z —y) = ®(|z — yl),
as needed.
Applying Green’s representation formula to a test function ¢ € D(Q), we obtain

o) = f B(z,y) Ap(r) da

that is,
Amq)(xa y) = 5ya
which is consistent with Theorem 2.15.
We may draw the following consequence from the Green representation formula: If one knows
Aw, then u is completely determined by its values and those of its normal derivative on 0. In
particular, a harmonic function on 2 can be reconstructed from its values on 0f2. One may then

ask conversely whether one can construct a harmonic function for arbitrary given values on 02 for
the function and its normal derivative.

DEFINITION 3.1 (Green function). A function G = G(z,vy), defined for x,y € Q, with x # vy,
1s called a Green function for C if

(1) G(z,y) =0 for xz € 09,
(2) h(z,y) = G(z,y) — ®(z,y) is harmonic in x € Q (thus in particular also at the point
r=y).
Roughly speaking, (if it exists) G(z,y) = ®(x,y) + h(x,y), where h solves
{—Axh@:,y) =0, =zeq,

h(z,y) = —=®(z,y), e (1.3)

In other words, G solves, for y € €,

*AxG(:C,y) = 50(I - y)7 TE Qa
G(z,y) =0, x € 09
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We now assume that a Green function G(z,y) for 2 exists and put v(x) = h(x,y) in Green’s
identity (see Appendix 2) and subtract the result from (1.1), obtaining

u(y) = _J:m w(x)0,,G(z,y) dS(x J G(z,y)Au(z) dx (1.4)

We call K(z,y) = —0,,G(z,y) the Poisson kernel of .

In particular, formula (1.4) implies that a harmonic u is already determined by its boundary
values u|an. This construction now raises the converse question. If we are given functions g : 0Q —
R and f: € — R, can we obtain a solution of the Dirichlet problem for the Poisson equation

{ Au(z) = f(z), v€Q
g9(z),

(x) = x € 09, (1.5)

by the representation formula

M@=—LQ()%G@de ff (1.6)

derived above? One implication is already proven: if u is a solution, it does satisfy this formula.
For the other implication (namely, if u satisfies the formula (1.6), then it is a solution of (1.5)), we
will see that, essentially, the answer is yes, under suitable hypotheses.

We start our analysis by first considering the case f = 0 and then extending it to a general f.
In special domains, the Green function can be explicitly constructed.

1.1. Dirichlet problem for the Laplace operator in a ball. We start with the case
Q = Bg(0) and consider the problem

—Au(z) =0, e Bgr(0),
u(z) = g(z), x e dBgr(0).

The idea is to construct h by a proper reflection of ®(- — y).

For y € R™, we put
R? .
< {ylzy lfy # 0,

0 ify =0,

(1.7)

(7 is the point obtained from y by reflection across 0Bgr(0).) We then put
Oz —y|)— @ (Yz—g|), ify=o0,

o) = (P - @ (Rl —il), ity L3
o (|]) — B(R), ity = 0.

For  # y, G(x,y) is harmonic in z, since, for y € Bgr(0), the point § lies in the exterior
of Bg(0). The function G(z,y) has only one singularity in Br(0), namely, at = y, and this
singularity is the same as that of ®(z,y). The formula

121yl 1/2
G(x,y)—<I>((|m|2+|y2—2x-y)l/2)—(I)((' |R|29| +R2_2x.y>

then shows that for € dBg(0), i.e., |z| = R, we have indeed G(z,y) = 0.
Therefore, the function G defined by (1.8) is the Green function of Br(0). Equation (1.8) also
implies the symmetry

G(z,y) = Gy, z).
We compute the partial derivatives of the Green function:

1 s n=2 . _ .
@ﬁmw=(”l%+3 x@?)

wa \ lz—yl™  |yl"2 | —gn

since %\x — g| = |x — y| whenever z € dBg(0), we have, in particular,

0z, G(z,y) = —(M)xl, z € 0BR(0).

wn|x - y|n
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Finally, since z - v = R, for x € dBg(0), we have

R? — |y|?

0v, G(,y) = TRy

x € 0Br(0), y € Br(0).

In conclusion, we construct then a candidate solution to the Dirichlet problem (1.7) on the
ball Br(0) with the formula

R? — IyIQJ g(z)
u(y) = —— ————dS(z). 1.9
(@) wy R dBRr(0) |z —y|" (@) (1.9)
The function
RZ — |y 2
K(z,y) = =0,,G(z,y) = wR|x|—|y|”

is called the Poisson kernel for the ball Bg(0) and formula (1.9) is called the Poisson integral
formula for the ball Br(0).

THEOREM 3.2. Given g € C° (0Bg(0)), the function

uly) = LBR(O) K(z,y)g(z)dS(z), ye Bg(0),

9(y), y € 0BR(0),

belongs to C?(Bgr(0)) n C°(Br(0)) and is the unique solution of (1.7).

PROOF. In the proof we use the shorthand notation Br = Bgr(0). Since G(z,y) = G(y, z) for
all z,y € Bg, with = # y, the function y — G(x,y) is harmonic in Bg for any = € dBg, and so is
y — 0,,G(x,y). It follows that u is harmonic (and C*) in Bp.

To prove that u € C° (Bg), we first observe that

f K(xz,y)dS(z) =1, for all y € Br(0).
0BRr
We want to show that, for all yo € 0Bg, we have limp,,5y—y, u(y) = g (0)-

Since g is continuous at yo, we have: for all € > 0, there exists 6. > 0 such that |g(z) — g (yo)| <
¢ for any x € dBpg such that | — yg| < d.. Then

lu(y) — g (yo)| =

[ ) -t as@
S ﬁB K(2,y) l9(x) = g (yo)| dS(x)

= J K(z,y)l9(x) — g (y0)| dS(x)
0BrNBs_ (yo)

=:A

+J K(z,y)l9(x) — g (yo)| dS(z),
0BRr\Bs, (yo0)

~
=B

where we have dropped the absolute value on the Poisson kernel since K(z,y) > 0 for y € Br and
S &BR
The first term can be bounded as

Agsj K(z,y)dS(z) <k, for all y € Bg
5BR('\B55 (yO)

For the second term, we take |y — yo| < 6 < 8./2 and |z — yo| = 6. Then |z —y| > 6./2 and,

since |yo| = R, also R — |y| < |y — yo| < d so that

2 [,2 B " "
B~y _ (R+[yD(R—yl)2" _ 2R2"0

K = < bl
(@.y) wp Rz —y|™ Ruw,, 67 Ruw,, 67

for all « ¢ Bs_ (v0), ¥ € B;s (yo)
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and, setting M = ||g|co(opy), we have

2n+2MRn—1 _
B<2M K(z,y)dS(z) < —————4.
0BRr\Bs, (yo) 56

. % . 5"
Taking now § < min {%E, W} we conclude that

lu(y) — g (vo)| < 2e if |y —wol < 5,

which proves the continuity of w in yo. ]

1.2. Dirichlet problem for the Laplace operator in a half-plane. Let Q := R} =
{z = (z1,---,2,) e R" : x, > 0}. We want to build the Green function of the Laplacian in R} .
Again, the idea is to construct the function h by suitable refleciton of ®(- — y). For any

n

Yy = (yla sy Yn—1, yn) € Ria we define the reflected pOiIlt g = (y17 oy Yn—1, _yn) ¢ R+'
We claim that h(z,y) = —®(x — ) solves

—Ah(l‘,y) =0, xER’i’
h(z,y) = —(I)(JZ - y)a TE aRia

and G(z,y) = ®(z —y) — ®(x — ) is the Green function of the Laplace equation in R}.
Moreover, since

1 o . 0, if ¢ # n,
&ULG(%Z/) = [_ o y:l + i »Ey;j| = 2Yn e
Wn ‘x - y| |$ - y| nlz—y[™? ifi = n,
the Poisson Kernel is
2yn
K(z,y) = —0,,G(x,y) = 0, G(x,y) = —————,
(@) (.9) = 00, Glay) = SV

and a candidate solution to the Dirichlet problem in R”} is given by the following Poisson integral
formula

u(y) = | K(z,y)g(x)dS(z).
aR™

We report these results in the following theorem (whose proof is left as an exercise in Exercise
Sheet 6 for n = 2).

THEOREM 3.3. Let g € C? ((9]1%1) and define
2
ﬂf g(x)ndx, yeRrY,
u(y) == § Wn Jorn |z — yl

9(y), y € JRY.

Then, u e C? (R’}r) nCO (@) is the unique solution to the Dirichlet problem

—Au =0, zeRY,
u =g, x € ORY,
hm|x|ﬂw u(x) =0.

Lect. 7, 29.10

NB: 22.10 is in the
1.3. Dirichlet problem for the Laplace operator in a general domain via Perron’s

method. We now consider an open bounded set 2 € R™ and the Dirichlet problem

—Au=0, ze,
U =g, x € 0f).

semester break

(1.10)

In general, we will not be able to find a closed form expression for the Green function. However,
we can still ask a more fundamental question whether the solution to such Dirichlet problem exists
for any g € C°(092). Observe that by the weak maximum principle, if a solution of this problem
exists, it is unique (see Section 2.3.4).
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If the answer to the existence question is positive, this will, in particular, ensure the existence
of the Green function for the domain 2. To answer this question, we construct a solution using
Perron’s method.*

1.3.1. Sub-harmonic functions and harmonic lifting. As a first step, we revisit the characteriza-
tion of sub-harmonic functions via the mean-value property by suitably generalizing Theorem 2.4.2

PROPOSITION 3.1. Let ue C(Q). Then the following properties are equivalent.

(1) For all x € Q and B,(x) cc Q,

u(x) < fB RO

(2) For all B c< Q and for all h : B — R which satisfies
—Ah =0, xe€B,
h = u, x € 0B,

we have h(x) = u(z) for all x € B.
(8) For all x € Q and B.(z) cc Q,

ul(z) < ]éBr(m) u(y) dS(y).

(4) For all x € Q and for all ¢ € C*() such that u — ¢ has a local mazimum in x, then
—A¢(z) <0.

Proor. (1) = (2). We have that u — h is a sub-harmonic function in B such that u —h < 0
in 0B. We conclude by the weak maximum principle.
(2) = (3). Let x € Q@ and B,(x) c< 2 and let h be the solution to

—Ah =0, ye B.(x),
h = u, y € 0B,(x).
Then by the Poisson integral formula (or by the property of spherical mean for harmonic functions)
h(z) = f(’)BT(r) h(y)dS(y). Moreover by (2), h(z) = u(x), so we conclude.
(3) = (1). Let x € Q and B,(z) c< Q. Then, by the formula of integral over spheres and
by (i)
f u(y)dy = f J u(y)dS(y)ds = f w(z)nw,s"tds = u(z)w,r"”,
B, (z) 0 JoBs(x) 0
which gives the conclusion.

(3) = (4). Let z € Q, ¢ € C*(Q) and B,.(z) < Q such that u(y) — ¢(y) < u(z) — ¢(z) for all
y € B,(z). Since the inequality holds for every y € B,.(z) we get, by (3), that, for all s € (0,r),

u<w>—¢<x>>][ u(y) dS(y) — f o(y) dS(y) > u(x) - f o(y)dS(y).  (L11)

B.(x) 2B.(x) 9B, (z)
We define, for s € (0,7),

b(s) = ][,335(@ b(y) dS(y) = ][531(0) oz + 52) dS(2).

We note that lim,_,o+ ¥(s) = ¢(z) and so, owing to (1.11),
d(z) = ¥ (0) < Y(s), for all s € (0,7). (1.12)

Moreover, we compute, using the divergence theorem,

"(s) = T+ 8z) 2z z) = 1
¥(s) = JéBl(o)D‘/)( +52) - 2dS(2)

nwps" 1

S

f Ad(y)dy = > ][ Ad(y) dy.
B, (x) B, (x)

n

Let us assume now by contradiction that (4) is not verified, then there exists § > 0 such that
—A¢(x) > 26 > 0. By continuity, there exists s > 0 such that —Ag¢(y) > 6 for all y € Bs(z). This

I Introduced by Oskar Perron [Per23].
2 Point (iv) in Proposition 3.1 may be restated as “u is sub-harmonic in €2 in the sense of viscosity solutions”,
where we refer to the theory of viscosity solutions introduced in [CL83; CEL84; CIL92]|.
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gives that ¢'(t) < —dt/n for all t < s, so ¥(t) > 1(s) for all ¢t € (0,s) and then, integrating in
te (0,s), ¥(s) —¥(0) < —% < 0, which contradicts (1.12).
(4) = (3). Assume by contradiction that (3) is not verified. So there exists x € Q and there
exists 7 > 0 such that
u@) > £ uly)ds().
0B, (x)

Let us fix ¢ > 0 sufficiently small such that

u(zx) — ]iBr(m) u(y)dS(y) > cr”. (1.13)

Let U € C%*(B,(z)) n C(B,(z)) to be the unique solution to the Dirichlet problem

{—AU= 0, y € B.(z),

Uly) = uly), ye B (x).

Then, U(y) = u(y) on 0B,(x) and (by Poisson’s integral formula) U(x) = f(’)Br(m) u(y) dS(y).
Define

oy) =Uy) +c(r? — |y —al?).

Then u(y) — ¢(y) = 0 if y € dB,.(z), ¢ € C?(B,(x) and u(z) — ¢(x) = u(z) — U(x) — cr? > 0 by the
choice of ¢ in (1.13). Then maxmu(y) — ¢(y) > 0 and there exists a point z € B, (z) (we stress
that the important thing is that z is in the interior of B,.(x)) such that u(z)—¢(z) = maxg-roy u(y)—
#(y). By (4), this implies that —Ag¢(z) < 0, but Ad(z) = AU(z) — cA (|z — z[?) = 0 — 2cn < 0,
and so we reached a contradiction. ]

We now define, given a sub-harmonic function w in €, its harmonic lifting in B < 2.

DEFINITION 3.2 (Harmonic lifting). Let u be a sub-harmonic function in Q and B cc §.
Then the harmonic lifting of u in B is the function U which coincides with v in Q\B and in B
solves the Dirichlet problem

—AU =0, z€B,
U = u, r € 0B.

REMARK 3.2. By weak mazimum principle, we have that u < U in .

REMARK 3.3. Let U be the harmonic lifting of uw in B, then U is a sub-harmonic function.
It is sufficient to show that U satisfies property (2) in Proposition 3.1. Let B’ cc Q and h be a
function satisfying
—Ah =0, zeB,
h>=U, x € B
We consider two cases:

(1) if B'n B = &, then it is true that h = u = U since u is sub-harmonic.

(2) if B' n B # &, we split the domain into two parts: in B'\ (B’ n B), we have h = u =U
(arguing as in the previous case); in B' n B, we have that h and U are both harmonic,
and moreover on ¢ (B’ n B) ,h = U, so we conclude by the weak maximum principle.

(3)
1.3.2. Ezistence result. Let €2 be a bounded open set and g € L*(02). Let us define
Sy = {ve C(Q) : v sub-harmonic in Q and v(z) < g(z) for x € IQ}.

REMARK 3.4. The set Sy is not empty and bounded from above. In fact the constant function
v = infaq g is in Sy. Moreover, by the weak mazimum principle, we get v < sup,q g for allve S,.

THEOREM 3.4. Let Q be an open and bounded set and g € L*(09)). Then the function
Hy(x) == sup v(x)

vES,

18 harmonic in €.
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Proor. Fix z € €. We want to show that H, is harmonic in 2. Let v,, be a sequence in S,
such that v, (z) — Hy(z).

Step 1. Without loss of generality, we can assume that v, is equi-bounded. Indeed, if it is not
the case we consider the sequence ¥,, = max (v, infsq g). Note that v, € Sy, ¥, is equi-bounded
(since infan g < U, < supyq g) and 0, (z) — Hy(x) (since v, (z) < 0p(x) < Hg(x)). So vy, is an
equi-bounded sequence in S, with v, (z) — Hy(z).

Step 2. We fix r > 0 such that B,(z) cc £ and consider for every n the harmonic lifting
Vi, of v, in B.(z). Then V,, € Sy and V,, is equi-bounded (by the weak maximum principle and
the fact that v, is equi-bounded) and V,,(z) — Hy(z). By Ascoli-Arzela’s theorem for harmonic
functions (see Problem 1 in Exercise Sheet 7),® possibly passing to a subsequence (that we still
denote with V},) we get that V,, — V uniformly in B,(x) for every p < r. Moreover, we have that
V' is harmonic in B, (z), V(y) < Hy(y) for every y € B,(x), and V(z) = Hy(x).

Step 3. We claim now that there exists p < r such that V(y) = Hy(y) for every y € B,(x). If
it is true, we are done, since then H, is harmonic in .

We assume that the claim is not true, so for every p we find z € B,(x) such that V(z) < Hy(z).
We prove that this leads to a contradiction.

Take a sequence w,, € Sy such that w,(z) — H,(z). As above, we can assume wlog that w,
is equi-bounded. Moreover we can also assume that w,, = V,, for every n. Indeed, if it is not the
case we consider the sequence W, = max (w,,V,). Note that w,, € Sg, Uy is equi-bounded (since
wy, and V,, are equi-bounded) and Wy, (2) — Hy(z) (since wy,(2) < wn(2) < Hy(2)).

For every n we consider the harmonic lifting W, of w,, in B,(x). Then W,, € S,, W, is equi-
bounded, V,,(y) < W, (y) (in particular V,,(xz) < Wy, (x) < Hy(x)). By Ascoli-Arzela’s theorem for
harmonic functions, eventually passing to a subsequence (that we still denote with W,,) we get that
W,, — W uniformly in B, (x) for every p’ < p. Moreover, W is harmonic in B,(z), V(y) < W(y)
for every y € B,(z), W(x) = Hy(x) = V(z) and W(z) = Hy(z) > V(2).

So, V,W are two harmonic functions in B,(z) such that V' — W < 0, and V(z) — W(x) = 0.
This implies, by the strong maximum principle, that V' = W in B,(z), in contradiction with the
fact that W(z) > V(z). O

1.3.3. Study of the boundary behaviour. In Theorem 3.4, we proved that, for every bounded
function g, there exists a harmonic function Hy; € C*(€2) which solves

—AH; =0, z€
H, > g, x € 05

Now, we assume that g € C(092) and we wonder under which conditions H, is the solution of the
Dirichlet problem (1.10), in particular under which conditions we can prove that, for all z¢ € 09,

Tim Hy(x) = g (x0). (1.14)
Q)
Indeed, if we prove this identity, we get that H, € C*(2) n C(£2) and coincides with g on the
boundary of €.

REMARK 3.5. Observe that in general we cannot expect that (1.14) holds true for every €
bounded. Let Q = {x € R? : 0 < |z| < 1} and g € C(0Q) such that g(x) = 0 for |x| = 1 and
g(0) = 1. Then Hy = 0 (and, in particular, it is not a solution of the Dirichlet problem with
boundary data g since Hyg(0) = 0 # 1). In fact, 0€ S,, so Hy(x) = 0 for every x € Q. Let v e S,.
So, by the weak maximum principle, v(z) < 1 for every xz € Q. Fiz d > 0 and e = £(6) € (0,1) such
that —dlog(e) > 1. Consider now the function ws(x) = —dlog|x|. This is harmonic ine < |z| < 1,
moreover ws(z) = 0 if || = 1 and ws(z) = —dloge > 1 if |x| = €. This implies, by the weak
mazimum principle, that v(z) < ws(x) for every e < |z| < 1. Moreover, ws(x) > 1 = v(z) also
for every |z| < e. Then ws(z) = v(x) for every 0 < |z| < 1 and every v € Sy, which implies that
Hy(z) < —dlog|z| for every 0 < |z| < 1, and every § > 0, which gives the conclusion letting § — 0.

The continuity assumption (1.14) on the boundary is connected with the geometric properties
of the boundary through the concept of barrier.

3 Alternatively, we can define a new sequence Vn = max;<n Vi}n, which is now a non-decreasing sequence;
’ Jsn vy El ’
we can then use Harnack’s convergence theorem.
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DEFINITION 3.3 (Local barrier). Let xg € 02. Then w is a local barrier at xq if there exists a
neighborhood U of x¢ such that we C(Q nU) and
(1) w is super-harmonic in Q N U;
(2) w(xzo) =0 and w(z) > 0 for every x € Q& N U\ {zo}.
A barrier w in xg, is a local barrier with U = R™.

REMARK 3.6. Given a local barrier in xq, it is always possible to construct a barrier in xg as
follows: given r > 0 such that Ba, (x9) =< U and m = inf i1\ B, (z¢))nQ w > 0, let

w(z) = min{m, w(x)}, x € B(xg,2r)nQ,
m, elsewhere.

Then w 1s a barrier in xg.

DEFINITION 3.4 (Regular points). Let 29 € 02. Then xqg is a regular point (with respect to
the Laplacian), if there exists a (local) barrier at xg.

THEOREM 3.5. Let  be an open bounded set, g € L*(0)). Let g € 0Q. If xy is reqular (with
respect to the Laplacian) and g is continuous in xo, then (1.14) holds in xg.

PROOF. Fix € > 0, then there exists § > 0 such that, for all y € 0Q, with |y — zo| < §, we
have |g(y) — g (7o) | < & (since g is continuous). Let M := |g[co(aq). Let w be a barrier in xq. We
have that K := min,cq g, (4 w(2) > 0. Let us define

2M 2M
w(z) = g(§) —€e— 7“’(%)7 w(z) = g(§) +e+ ?w(x).
We have that w is sub-harmonic and, for x € €2, w(x) < g(x). Indeed,

ite— €] <6 w(e) = g(6) — glw) — e~ u(e) + 9la) < 9(a),
<0
ite — €26, w(e) < g(r) e +9(6) — gla) — T ule) < gl).

<0 since w(z)=K

“

Similarly, we can prove that w is super-harmonic and w > g(x) on 9.
In conclusion, w(z) < Hy(x) < w(z), for all z € 2, which implies

2M
[Hy(x) — g(o)| <€+ 7“’(33)
Since w(z) — 0 as  — o, there exists § > 0 such that w(z) < K€ for all [v — 2| < 6, and

lu(z) — g(zo)| < 2€ for all x €  such that |z — xo| < & which proves the continuity of u in .
O

From Theorem 3.4 and Theorem 3.5 we get the following result.

COROLLARY 3.1. For every g € C(092), the Dirichlet problem (1.10) admits a unique solution
ue C%(Q) nC(Q) if and only if all the boundary points of Q are reqular.

Proor. Step 1. If g is continuous and all the points of the boundary are regular, then H, is
a solution of (1.10), and it is unique by weak maximum principle.

Step 2. If (1.10) admits a solution for every continuous boundary data, take xy € 02 and the
solution u to (1.10) with g(z) = |x — x¢|. Then the solution u to (1.10) is a barrier in zg. O

1.3.4. Regular boundary points. It remains open the question: for which domains € all the
boundary points are regular? Sufficient conditions for this property to hold can be stated in terms
of local geometric (for n > 2) or topological (for n = 2) properties of the boundary.*

We mention some of these conditions.

4 The detailed study of this subject was initiated by Norbert Wiener [Wie24], and then extended to uniformly
elliptic divergence-form equations with smooth coefficients by Werner Piischel [Piis32], and then to uniformly elliptic
divergence form equations with bounded measureable coefficients by Walter Littman, Guido Stampacchia, and Hans
Weinberger [LSW63]. We refer also to the useful book [Lan72] for further information and context. For fully-
nonlinear equations (and, in particular, equations not in divergence form), see [LL23] and the references discussed
therein.
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DEFINITION 3.5 (Exterior ball condition). Let Q be a open set of R™. We say that Q has
the exterior ball condition if, at every point x € 0N, there exists y € R™\Q and r > 0 such that
B,(y) €« R\Q and B,.(y) n Q = {x}.

REMARK 3.7. Observe that if Q) is convex, then the exterior ball condition is satisfied, due to
the Hahn Banach separation theorem. Indeed at every point of 02 it is possible to construct an
hyperplane passing through that point and such that € is entirely contained in one of the two half
spaces in which the space is divided by the hyperplane.

Observe that Q of class C' is not sufficient to assure that the exterior ball condition is satisfied.
For exzample, consider Q = {(z1,22) € R? : @y > a?log|z1|}. Then Q is of class C* but in (0,0)
the exterior ball condition is not satisfied. Indeed to prove this, let f(z) = x%log|x| and g(x) =
\Vr2 —a? —r, forr >0 to be fized. Note that f(0) = g(0) = 0. If the exterior ball condition were
satisfied in (0,0), then there would exist r > 0 such that f(x) > g(x) for every x € (—r,r),z # 0.
But this is not the case, since f'(x) < ¢'(z) for x — 0T and f'(z) > ¢'(z) forx — 0.

If Q is of class C?, then we can show that it satisfies the exterior ball condition (also the
interior ball condition,).

PROPOSITION 3.2. Let Q2 be a bounded open set and xg € 02 such that in xo the exterior ball
condition is satisfied. Then xq is reqular (with respect to the Laplacian).

PROOF. Let 2 be a bounded open set and xy € 0f2 such that in zg it is satisfied the exterior
ball condition: there exists yo € R™\Q and 79 > 0 such that B (yo,70) n Q = {zo}. Then z¢ is
regular (with respect to the Laplacian).

It can be checked that a barrier is given by

1

1 1
w(z) = w(r) = {7’"2 lz—yo|™ 2

[z—yol
10g o

n>2
n=2.

O
DEFINITION 3.6 (Exterior cone condition). Let Q be a bounded open set. We say that 2 has

the exterior cone condition if, at every point x € 0Q, there exists a cone® C with int C # & and a
neighborhood U of x such that such that (x + C) n U < R™\Q.

PROPOSITION 3.3. Let Q2 be a bounded open set and xq € d€) such that in xg the exterior cone
condition is satisfied. Then xqo is reqular (with respect to the Laplacian).

REMARK 3.8. It is possible to prove that if Q is of class C*t, then at every boundary point of
Q the exterior cone condition (and also the interior cone condition) is satisfied.

Actually, in order for the (exterior and interior) cone condition to be satisfied it is sufficient
that the boundary of Q) is Lipschitz.

REMARK 3.9. In dimension n = 2, much more irregular domains can be considered. It can
be proved that xo € 0N is a reqular boundary point if it is the endpoint of a single arc lying in the
exterior of §2.

2. Dirichlet problem for the Poisson equation
We consider now the Dirichlet problem for the Poisson equation

{—Au—f, zeQ,

2.1
u =g, x € 0. 1)

We could again take inspiration from the Green representation formula and construct a candidate
solution as

uly) = j Gl y) () dz — L ,.C(z,y)g(x) dS(x),

where G is the Green function of the Laplace equation for the domain 2. We know already by
maximum principle that if a solution exists it is unique. However, for an arbitrary domain, we do
not have, in general, the exact expression of the Green function. We proceed therefore in a slightly

5 We recall that C € R"™ is a (convez) cone if, for every x,y € C, then  + y € C and Az € C for every A > 0.
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different way. We consider first the function w : R® — R, called the Newtonian potential of f,
given by

w(y) = f O(r—y)f(x)dz,  yeR", (2.2)

where @ is the fundamental solution of the Laplace equation.
We will argue that, for a sufficiently smooth f, we have

weC*(Q) nC'(Q), and —Aw=finQ; (2.3)
next, we consider the problem
Aug = 0, x € ),
uyg =g —w, x€Oof,
which has a unique solution provided 2 is bounded with all boundary points regular and g — w €
C°(092), thanks to the results in Section 1.3. It follows that u = ug + w is the unique solution of
the original problem (2.1).

In summary, the sudy of the well-posedness of (2.1) boils down to showing that the Newtonian
potential of f satisfies (2.3).

THEOREM 3.6. Let Q be a bounded domain and f € C*(Q). Then, the Newtonian potential
(2.2) of f satisfies w e C? (R") and —Aw = f in Q.

_ PROOF. Since f has compact support in 2, its extension by zero outside (2, which we denote
f, is still a C? function. We can then rewrite the Newtonian potential as

wiy) = | S —s@de = | @@-pf@de= [ G+

Since f € C2 (R") and ® is locally integrable we have that w € C? (R") and

~dul) = - [ e@aferydi =~ | a-pAfds

Br(0)

where Bg(0) is any sufficiently large ball that contains €. Green’s representation formula yields

F(y) = j (o — y)(—Af(x)) dz
BRr(0)

| e i@ ds@ s | et 9).f@) s
0BRr(0) 0BRr(0)
since f € C2? (Bg(0)), the boundary terms vanish and we conclude that —Aw(y) = f(y) = f(y) for
all y e Q. O

COROLLARY 3.2. Let {2 be a bounded domain with all boundary points regular, g € C°(0%2) and
f€C2(Q). Then there exists a unique solution u € C*(Q) n C°(Q) of (2.1).

REMARK 3.10. One could generalize the theorems above and show that, if f € C%®, the New-
tonian potential satisfies w € C%(Q) N CY(Q) and —Aw = f. If Q is a bounded domain with
all boundary points reqular and g € C°(0R2), then the Dirichlet problem for the Poisson equation
admits a unique solution u € C%(Q) n C°(Q) and, moreover, u e C**().

Here, we recall that a function f : @ < R — R is locally Holder continuous in 2 with
exponent a € (0,1] if, in any compact set K < €,

e sy VO =IWL

x,yeK, |x_y‘a
TH#Y

and C%(Q) denotes the space of locally a-Hélder continuous functions in ).






CHAPTER 4

Sobolev spaces and weak solutions to second-order elliptic
PDEs

1. Sobolev spaces

1.1. L? spaces. Let = R™ be a domain and denote by L'(9) the space of Lebesgue inte- Lect. s, 5.11
grable functions from ) to R, where, as usual, two functions are identified if they coincide almost
everywhere, i.e., L(£2) is the space of equivalence classes where two functions are equivalent if the
set where they differ has zero Lebesgue measure.

We recall the definition of LP spaces.!

DEFINITION 4.1 (LP spaces). For 1 < p < o0, we define
LP(Q) = {f: Q — R, measurable, s.t. |f|’ € L'(Q)}
and, for p = o0,
L*(Q) = {f: Q — R measurable, s.t. there exists C >0 s.t. |f| < C a.e. in Q}
For p e [1,:0], we denote define
LY (Q)={f: Q>R st feLP(K) for any K cc Q}.

For a function f € L?(Q) and p € [1, 0], we denote

1/p
ey = ([ 1r@pac) . 1<p<
£z = esss(tzlp\f(xﬂ =inf{C: |f| < C a.e. in Q}.

xTe

We recall (without proof) some fundamental properties of L? spaces.

Completedness: With the definitions above, the normed vector space (LP(2),] - |1r(0)) is a
Banach space? for any 1 < p < 0, i.e., every Cauchy sequence {fatnen © LP(2) has a
limit in LP(€2). We recall, moreover, that every Cauchy sequence {f,}, .y © LP(£2) has
a sub-sequence converging pointwise a.e. in 0. For p = 2, the space L?(Q) is a Hilbert
space® with inner product (f,g)r2(q) = §, f9-

Holder inequality: * Let f e LP(Q) and g € L(Q), with 1/p + 1/¢ = 1. Then fg e L'(Q2) and

| 109 dz < 1l @ lalzoco
More generally, if f; € LPi(2), for i = 1,--- ,r with >,;_, 1/p; = 1, then [],_, f; € L*(Q)

and ; .
| T < 11l
Q=1 i=1

Embeddings: Let Q be bounded. For any 1 < p < g < o, if f € L(Q), then f € L?(Q2) and
1/p—1
[flzr ) < 19 /P /quHLq(Q)-
If f € L®(S), then f € LP(Q) for all 1 < p < o and | flzeg) < Y710
Moreover, limp .o [[f| o) = |f]L=(0)-

I Sometimes also called Lebesgue spaces, after Henri Lebesgue, although they were first introduced by Frigyes
Riesz [Riel0] (see [Pie07, Section 1.1.4] for further historical discussions).

2 Named after Stefan Banach (see [Pie07, Chapter 1] for further historical information).

3 Named after David Hilbert (see [Pie07, Chapter 1, Section 1.5]).
4 Named after Otto Holder [H6189], but previously proven by Leonard James Rogers [Rog88]. See [Mal98].
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Thus, the embedding LP(Q)) — L7(Q) is continuous. This result is not true if the
measure of € is infinite, but in general we have the following interpolation result: if
1<p<gq<r,then LP(Q) n L"(Q) — LI(Q) and

0 —0
I£la < IFIRIF1R7,

where 0 < 0 <1 is given by % = % + 1:9.
Dual of LP and reflexivity: We recall that the (topological) dual of a Banach space (V,| - |v),
denoted V', is the space of linear and bounded functionals G : V' — R. It is also a Banach

space when endowed with the norm |G|y~ = sup % For 1 < p < o0, the dual space
fev =
fio
of LP(2) can be identified with L9(Q2) with ¢ = ;Z;: for any functional G € (LP(Q)),
there exists a unique function g € L?(Q) such that

Gf) = L o(@) f(z)dz,  for all f e LP(S).

Moreover, |G| (Lr()y = |9lra(e).- Thanks to this identification, the spaces LP(€) for

p € (1,0) are reflexive, i.e., the “double dual” (LP(Q))” can be identified with LP()
itself. This property does not hold for p = 1,00 and, in fact, (L*(Q)) > L'(Q) with
strict inclusion.

Density of continuous functions and separability: C?(Q) is dense in LP(Q2) for any 1 < p <
0, i.e., for any f e LP(Q) and € > 0, there exists g € C2(Q) such that |f — g[ 1) <.
Such density result is not true, however, in L% (). From this result it also follows that all
LP(Q) spaces with 1 < p < o are separable, i.e., they have a countable dense subspace.®

Mollification: Let 7, denote the standard mollifier and, for any f € L] (©2) and € > 0, denote by
fe : Q¢ — R the e-mollification of f:

fo(@) = (nex ) (@) = L (e —9)f)dy,  zeQ

with Q. == {y € Q : dist(y,0Q) > €}. Then f. € C*(Q,) for any € > 0. Moreover,
if fe L}, (), with 1 < p < oo, for any V << Q, we have | fe[ o) < | flze(v) and

loc
lim._,q H.f - fE”LP(V) = 0.
Density of C*(Q): Using e-mollification, we can show that C® () is dense in LP(Q), for any
1<p<oo.
Fundamental lemma of the calculus of variations: Let 2 < R"™ be an open set and f €
Li,. (Q). It §, fo = 0 for all p € CX(€2), then f =0 a.e. in Q.

loc

1.2. Weak derivatives and Sobolev spaces. In Section 3, we presented the notions of
distribution and of distributional derivative of a distribution (which always exist). Here we present
the notion of weak derivative, where we require some additional integrability.

DEFINITION 4.2 (Weak derivative). Let u € L} (Q) and o € N* be a multi-index. We say
that u has o'

weak derivative if its distributional derivative satisfies D%u € Li (), i.e., there
ezists v € L}, (Q)such that

loc
J vpdr = (—1)'6“'[ uD%¢dxz,  for all ¢ € D(Q).
Q Q

LEMMA 4.1 (Uniqueness of weak derivative). An a'-weak derivative of u € L} (), if it exists,
18 uniquely defined up to a zero measure set.

th_weak derivatives v, € LL () such that

PROOF. Suppose that there exist two «

L v = (—1)lel L uD%¢ = L o¢,  for all ¢ € D(Q).

Then §, (v —10)¢ = 0 for all ¢ € D(Q), which implies v = ¥ a.e. in Q by the fundamental lemma of
the calculus of variations. ]

5 To show this, it is enough to take a sequence of compact subdomains Q,, cc Q such that = U?Z:l Qpn, and
the spaces P, of polynomials in €2, extended by zero on €2, , having rational coefficients. Then P = Ufi:l Py, is
countable and dense in C2(Q) hence in LP(Q2) as well.
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REMARK 4.1. Ifue C*(Q), then the classical a-th derivatives D%u,|a| < k, coincide with the

a-th weak derivatives. Indeed, if we denote by v, € L}OC(Q) the a-th weak derivative, we have

J v dr = (— )'“'f uD*¢dx = f D%ug¢dx,  for all ¢ € D(Q),
Q Q

which implies D*u = v, a.e. in Q and, since D“u is continuous, v, admits a continuous version
coinciding with D*u. Hence, the notion of weak-derivative extends that of classical derivative and,
for this reason, we use the same symbol D*u to denote either classical or weak (or distributional)
derivative depending on the context.

The next lemma extends another familiar result, stating that the weak derivative of a limit
coincides with the limit of the weak derivatives.

LEMMA 4.2 (Convergence of weak derivatives). Consider a sequence of functions f, € Li. ().
For a fired multi-index «, assume that each f, admits the weak derivative g, = D*f,. If f,, = f
and g, — g in L (Q), then g = D*f.

PRrOOF. For every test function ¢ € C*(Q), a direct computation yields

f goda = lim f gnéda = lim ( 'alf fD%¢dx
— (1| fD70ds

By definition, this means that ¢ is the a-th weak derivative of f. O

We are now ready to define Sobolev spaces.

DEFINITION 4.3 (Sobolev spaces). For 1 < p < o0, we define
WHhP(Q) == {f € LP(Q) : D*f € LP(Q), for all a € N, |a| < k}.
For p = 2, the space W*2(Q) is denoted by H*(Q) and, for k =0, WoP(Q) = LP(Q). Finally, we
define
wp

loc

On the space WP (Q), we define the semi-norms

P={f:Q>Rst fe WH(K) for all K cc Q}.
7

1/p

| flwrn (o) = Z Q|D°“f|p ) forl1<p< oo,
la|=k

| flwr.e(q) = max sup D f,
lal=k @
and the norms
1/p

ooy = | 3 | 10717

lal<k

>~ Z ID“f v () =~ max 1D fll e (0, for1<p<oo,

la|<k

© = ) Da ~ Da w©
£ w0 2y max sup f Z 1D fll = ()

lal<k

We recall that two norms |- || and |-| on a vector space X are equivalent if there exist constants

¢1, ¢ € (0,00) such that
2| < cilz] < eafz| forall ze X

In this case, we often write (as above) ||| ~ |-|. Note that the property of a set to be open, closed,
compact, or complete in a normed space is not affected if the norm is replaced by an equivalent
norm.

We will often use the shorthand notation |-
arises.

|k,p,0 or simply |||k, for |- Hwk,p(ﬂ), if no ambiguity

6 Named after Sergei Sobolev [Sob91] (see also the discussion in [Nau02]).
7 A seminorm g on a vector space has all the properties of a norm except that ¢g(f) = 0 need not imply f = 0.
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LEMMA 4.3. The application || - |k, : W*P(Q) — R, is a norm for any 1 < p < 0.

PROOF. The proof relies on the fact that | - 1oy and || - |z»@m) are norms. Indeed, clearly,
[Afllkp = Al flg,p for any A € R; moreover, | f|k,, = 0 implies, in particular, |f||z» = 0, hence
f =0ae. in Q. Concerning the triangular inequality, for all f,g € W*?(Q) and 1 < p < o, we
have

1/p
If +glkp = | D) IDf+ D],
la|<k
1/p

<[ X UD*flpw + D% 0)"

lo| <k

1/p 1/p

<| X IDsl | +( X ID%gl%,

la|<k la|<k
= Hf|k,p + Hg|k,p~

Similarly, for p = oo, we have

I + gloo = max | D + D gl 120

o

< max (I1D° fl e oy + 1D n ) < I ko + oo

|a|<k
Hence | - |, satisfies all the properties of a norm. O
LEMMA 4.4. The normed vector space (W*P(Q),| - [xp) is a Banach space for every k € N

and 1 < p < o0. In particular, the space H*(Q) = W*2(Q) is a Hilbert space, for every k € N,
with inner product

()= Y L Df - Dgda,

|a|<k

PROOF. Let {f,};-_, be a Cauchy sequence in W*P(Q), i.e., for all € > 0, there exists N > 0
such that
1/p

[fo = Fmlep = | D) ID%fu=Dfml”| <e  foralln,m=N.
|a|<k
As a consequence, for each o € N", |a| < k, the sequence {Da]"’n}f:1 is Cauchy in LP(Q)). Since
LP(Q) is complete, there exists f, € LP such that D*f,, — f, in LP(Q2). In particular, for
a=(0,---,0), fn L, fo,--,0) =: f- We claim that f, = D°f, for all |a| < k. Indeed,

J fD% = lim f fuD% = lim (-1)'“'{ Daf,L¢:(—1)|a|f fo®,  for all ¢ € D(Q).
Q n—o0 Q n—0o0 Q O

The fact that one can exchange the limit and integration is just a consequence of Holder inequal-
ity since D¢ € L9(Q) with 1/g+1/p = 1 and |§ fD¢ — § f,D%¢| < | f— fu |L# ]| DY¢| e == 0.
The same argument applies to show that lim,, 4 SQ Def,¢ = SQ fa®. Therefore, D*f,, L, Def,
for all || < k, implying that f,, — f in WP,

Finally, the bilinear form (-,-) g+ induces the norm | - |52 and it is immediate to verify that it
satisfies all the assumptions of an inner product (thanks to the fact that SQ f- g is an inner product

in L*(9)). O
REMARK 4.2. The inner product in Lemma 4.4 induces the norm
1/2
a2
v = | 3 [ 157
laf<k V2

while the equivalent norm 3}, <), |D f|r2(q) is not induced by a scalar product.
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LEMMA 4.5 (Properties of weak derivatives). Let f,g € W*P(Q) and o € N*,|a| < k. The
following properties of the a'-weak derivatives hold.

Linearity: For all A\, € R, we have \f + ug € W*P(Q) and
DY(\f + pg) = ADYf + uD%g.
Commutativity: For all o, 8 € N such that |o| + |8| < k, we have
DF (D*f) = D*(DPf) = D**F§.

Leibniz’s® rule: For all £ € C*(Q), we have £f € WiP(Q) and

loc

DEf) = ). (;)D%Daf’f.

B<a

LEMMA 4.6. Let f € WFP(Q), with 1 <p < 0, and f.:==ne* f: Q — R, Thenf€-—>f mn
L?(Q) and f. 9 fin WkP(K), for any K cc Q.

PROOF. We know already that fo — f in LP()) when € — 0, so we are left to prove that

Def. 2% pafin LP(K) for any a € N, |a| < k and K cc Q. We first show that D f, = n.xD® f
in Q. = {y € Q, dist(y, Q) > €}, where D*f, is a classical derivative since f. € C® ().), whereas
D% f is a weak derivative. We have indeed Vx € )¢

D*f.(x) = D fm(x— i dy—f Dl — 4)f(y)dy

‘“‘f Dane x—y) fy)dy

B L ne(x —y) D f(y)dy = (e * D f) ().

It follows that D*f. — D*f in LP(K), for all K cc Q. Hence,

=

e—0
Hf - feHWkup(K) = Z HDaf _DafeHip(K) — 0.

|a|<k

O

ExaMPLE 4.1. Consider Q = (0,1) < R and the constant function f = 1 in Q, whose
(classical/weak) derivative is f' = 0 in Q and clearly f € WHP(Q) for any 1 < p < 0. Let

fe(z So Ne(z —y) f(y) dy, whose derivative is

jawnex— ()dy—fo—aynxx—y) dy = ne(z) — ne(x — 1),

We notice that, for € < 5, we have |ne(x) — ne(z — 1)| = ne(x) + ne(x — 1) for all x € [0,1].
We claim that f! » O in L?(0,1) for any p = 1. Indeed,

1 1
2oy 2 Wilisony = |, me@ e+ [ nete = a1

In conclusion, f. —» f in WLP(0,1) for any p = 1. However, we have f/ — 0 in LP(K) for any
K cc (0,1).

Lect. 9, 12.11

1.3. Approximation of Sobolev functions. To begin with, we consider Sobolev functions
defined on all of R”. They may be approximated in the Sobolev norm by test functions.

THEOREM 4.1. For ke N and 1 < p < o0, the space C* (R™) is dense in WkP (R™)
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ProoFr. We will prove the result in two steps.

Step 1. First, we show that C* (R") n Wk? (R™) is dense in W*» (R™).

Let n¢ € C¥ (R™) be the standard mollifier and f € W*? (R"). Then 7¢ + f € C* (R") n
WkP (R") and, for |a| < k,

D*(nfx f) =0 (Df) - Df in LP (R") as e — 0.

It follows that n¢ % f — f in WHP (R") as € — 0.
Step 2. Now we prove that C*(Q) is dense in W*» (R™). Let us suppose that f € C* (R") n
WkP (R"), and let ¢ € CL (R™) be a cut-off function such that

Define ¢ (z) = ¢(x/R) and fF = ¢f'f € C*° (R™). Then, by the Leibnitz rule,

1
DafR:d)RDaf+EhR,

where h® is a function that is bounded in LP uniformly in R. Hence, by Lebesgue’s dominated
convergence theorem

DYff - DYf in LP as R — o,
so f' — fin W*P? (R") as R — oo. This concludes the proof. O

If Q is a proper open subset of R™, then C*(2) is not dense in W*?(Q). Instead, its closure
is the space of functions Wéc P(Q) that “vanish on the boundary 0Q”. We discuss this further in
Section 1.5. The space C*(Q) n WkP(Q) is dense in W*P(Q) for any open set Q (cf. [MS64]),
so that W*P(Q) may alternatively be defined as the completion of the space of smooth functions
in 2 whose derivatives of order less than or equal to k belong to LP(€2). Such functions need not
extend to continuous functions on € or be bounded on €.

1.4. Embedding theorems. Can we estimate the L? (R™) norm of a smooth, compactly
supported function in terms of the LP (R™)-norm of its derivative?

1.4.1. 1 < p <n. We will show that, given 1 < p < n, this is possible for a unique value of g,
called the Sobolev conjugate of p. We are looking for an estimate of the form

[ flza@ny < CIDf|Le@n) for all fe CF (R"), (1.1)

for some constant C = C(p,q,n). For A > 0, let f) denote the rescaled function

h@ =1 (3)-

Then, changing variables x — Az in the integrals that define the LP, L? norms, with 1 < p,q < o0,
and using the fact that

Dfy = 5D

1/p 1/p
(J |Df,\|”dx> —WNU |Df|pdm) ,
]Rn ]Rn
1/q 1/q
(f m*’dx> :A"/q(f |dew) .
R™ R™

These norms must scale according to the same exponent if we are to have an inequality of the
desired form, otherwise we can violate the inequality by taking A — 0 or A — 0. The equality of
exponents implies that ¢ = p* where p* satisfies

1 1 1

p* p n
Note that we need 1 < p < n to ensure that p* > 0, in which case p < p* < 0. We assume that
n = 2. From this, we motivate the following definition.

we find that
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DEFINITION 4.4 (Sobolev conjugate exponents). If 1 < p < n, then the Sobolev conjugate p*

of p is
¥ _ P
n—p
Thus, an estimate of the form (1.1) is possible only if ¢ = p*; we will show that (1.1) is, in
fact, true when ¢ = p*.
This result was obtained by Sobolev [Sob38] for 1 < p < n and by Emilio Gagliardo and Luis

Nirenberg independently up to the endpoint p = 1 (see [Nir59; Gag58])

THEOREM 4.2 (Gagliardo—Nirenberg—Sobolev’s inequality). Let 1 < p < n, where n > 2, and
let p* be the Sobolev conjugate of p given in Definition 4.4. Then

£l gy < CIDflpoqanys  for all f € CF (R™,

C(mp)—p(n_l)- (1.2)

2n \n—p

REMARK 4.3 (Optimal Sobolev constant). The constant stated in Theorem 4.2 is not optimal.
Instead, for p =1, the best constant is

where

1

1/n’
nomn

C(n,1) =

where oy, is the volume of the unit ball, or
1 n\11/n
Cn,1 :—[F(H—)]
(n, 1) n/m 2
where T' is the Euler Gamma function. Equality is obtained in the limit of functions that approach
the characteristic function of a ball. This result for the best Sobolev constant is equivalent to
the isoperimetric inequality that a sphere has minimal area among all surfaces enclosing a given
volume.
For 1 < p <mn, the best constant is

1 (p=—1\"""[ T@+n2Tm) 1"
nl/Py/m \n—p L(n/p)L (1 +n —n/p)
and equality holds for functions of the form

1-n/
F@) = (a+plap/o-0) T

C(’I’L,p) =

where a, b are positive constants, which are called Aubin—Talenti bubbles.’

EXAMPLE 4.2. The Sobolev inequality in Theorem 4.2 does not hold in the limiting case p —
n,p* — 0. If ¢(x) is a smooth cut-off function that is equal to one for |x| < 1 and zero for |z| = 2,
and

f(z) = ¢(z)loglog (1 n ;) ,
then Df € L™ (R™), and f € W™ (R), but f ¢ L® (R™).

Before describing the proof, we introduce some notation, explain the main idea, and establish
a preliminary inequality.
Forl1<i<nandz= (z1,22,...,2,) € R", let

wh=(zy,..., 8. xn) e RPTE

where the ‘hat’ means that the i-th coordinate is omitted. We write = (z;,2}) and denote the
value of a function f: R™ — R at x by

flx)=f (ﬂﬁz,x;) :

If f is smooth with compact support, then the fundamental theorem of calculus implies that
f@) = [ ous () dt
—o0

9 Named after Thierry Aubin [Aub76] and Giorgio Talenti [Tal76].
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Taking absolute values, we get

< [ Jout ()

We can improve the constant in this estimate by using the fact that
Q0
J Oz, f (t,2}) dt = 0.
—o0

LEMMA 4.7. Let us suppose that g : R — R is an integrable function with compact support
such that §gdt = 0. If

then
|f(z)] < %f|g(t)|dt.

PRrROOF. Let ¢ = gy — ¢g— where the nonnegative functions g,,g_ are defined by g, =
max(g,0),9— = max(—g,0). Then |g| = g+ + g— and

1
Jg+dt = Jg_dt =35 J lg|dt.

f@< [ gmar< [ guwar= g [ila

It follows that

r@ == [ gwaz—{ g wi-—3 gl

—00

which proves the result. O

Thus, for 1 < i < n we have

[f(2)] < ff_ |00, f (t,2%)| dt.

The idea of the proof is to average a suitable power of this inequality over the i-directions
and integrate the result to estimate f in terms of Df. In order to do this, we use the following
inequality, which estimates the L'-norm of a function of z € R™ in terms of the L™ '-norms of n
functions of o} € R"~! whose product bounds the original function pointwise.

Thus, for 1 < i <n we have

()] < ,J_ |00, f (t,2})] dt.

The idea of the proof is to average a suitable power of this inequality over the i-directions
and integrate the result to estimate f in terms of Df. In order to do this, we use the following
inequality, which estimates the L'-norm of a function of x € R" in terms of the L™ '-norms of n
functions of o} € R"~! whose product bounds the original function pointwise.

LEMMA 4.8 (Gagliardo’s product inequality). Let us suppose that n = 2 and
{gieCP (R :1<i<n}

are non-negative functions. If we define g € C (R™) by
i=1

then

jgdm< lill, (1.3)
=1

i
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REMARK 4.4. If n = 2, Lemma 4.8 states that

ng (x2) g2 (z1) dzq dze < (ng (x2) dzg) <jgg (1) dx1> )

which follows immediately from Fubini’s theorem.
If n =3, Lemma 4.8 states that

f 01 (@2, 23) g2 (21, 23) g3 (01, 22) day day drs

1/2 1/2
< (J g% (22, 23) dxo dx3> (Jg% (1, x3) day dxg,) <fg§ (1, 22) day d:r:g)

To prove the inequality in this case, we fix x1 and apply Cauchy—Schwartz’ inequality to the xoxs-
integral of g1 - g2g3. We then use the inequality for n = 2 to estimate the xoxs-integral of gogs,
and integrate the result over x1. An analogous approach works for higher n.

1/2

REMARK 4.5. Note that under the scaling g; — Ag;, both sides of (1.3) scale in the same way,

Jgdx — <H /\i> Jgdib, 1_[ HgiHn_l = (n >\z’> H HgiHn—l
i1 i1 i=1 i=1

as must be true for any inequality involving norms. Also, under the spatial rescaling r — Az, we

have
Jgda: — A" Jgdx

[ Tlgil, = 22" TTlgl,

i=1 i=1

while | gi, — A~(n=D/p lgill,» so

Thus, if p = n — 1 the two terms scale in the same way, which explains the appearance of the
L™ Y-norms of the g; ’s on the right hand side of (1.3).

PRrROOF. We argue by induction. We have the claim for n = 2 owing to Remark 4.5. Supposing
that it is true for n — 1 where n > 3, we want to prove it for n.
For1<i<mn,let g;: R"' - R and g : R® — R be the functions given in the theorem. Fix

71 € R and define g, : R"* — R by
Gor (1) = g (21, 21)
For 2 <i<mn,let 2} = (21,2 ;) where
ah = (&1,...,&i,...w,) ER*T?
Define g; ;, : R"? > R and §; ,, : R"™! > R by
Gixq (I'“) = Gi (Il,ﬂfllﬂv) .
Then

n
gxl (x/l) = gl (xll) Hgi,ml (xll,l) :
1=2

Using Hoélder’s inequality with ¢ =n —1 and ¢’ = (n — 1)/(n — 2), we get

fgwl dx/l = ng (H i,z (-773’1)) dl'll
=2
n (n—1)/(n—2)
<oy | [ (ngm (xg,i)) !
=2

(n—2)/(n—1)
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The induction hypothesis implies that

n (n=1)/(n—2) n
J (n 9i,x, (x/1,1)> dl‘ < H N2
i=2

Hug |2
1,T1

=2

n
j PR P e N [
1=2

Integrating this equation over z; and using the generalized Holder inequality with py = p3 =
-=p, =n—1, we get

J oo <1l | (H |gi,x1|n_1> an,
=2
n 1/(n—1)
n—1
<1l (Hjlgi,mlln_l dxl)
=2

91(7;11 /(n—2)

Hence,

Thus, since

-1
= ||gz‘HZf1

n
j gde < lgil,_,
=1

we find that

We are now ready to prove Theorem 4.2.

PROOF OF THEOREM 4.2. First, we prove the result for p = 1 and then for 1 < p < n.
Case 1: p= 1. For 1 <i < n, we have, by Lemma 4.7,

@< 5 [10af ()] a

Multiplying these inequalities and taking the (n — 1)-th root, we get

— 1 1 - q
‘f|n/(n D« W% with g == Hgi»
i=1

1/(n=1)
( J |0, f (t, )| dt) :

n
j gds <[ lgil,_,
i=1

1/(n—1)
Iy = ( [1e..s dx) ,

X N 1/(n—1)
f\f|n/("_1) dr < /=T (Hflamfl dx) :
i=1

Note that n/(n — 1) = 1* is the Sobolev conjugate of 1.

where g;(x) = g; (¢) with

Lemma 4.8 implies that

So, since

it follows that
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Using the arithmetic-geometric mean inequality,

<H ai) < Ei;am

n n/(n—1)
1
J 1 de < <2n 3 J1en dx) 7

1
I£1ie < 5 IDf1s.

Case 2: 1 < p <n For any s > 1, we have

we get

ie.,

*dl |° ignzfe|*”!
xz|® = ssignzx|x .
dz &
Thus,

|f(@)]®

ji o, |f (ta)[" dt

—00

SJ ‘f (t, x;)’kl sgn [f (t,x;)] Oz, f (t,z;) dt

—0
Using Lemma 4.7, it follows that
Q0
F@F <5 [ 1 () 0 () ar
—o0

and multiplication of these inequalities gives

P < (3) T 15 () 2t (1) .
i=1v—®0

Applying Lemma 4.8 with the functions

o) = | [ iy ens ) at

Y

:| 1/(n—1)

we obtain
n
s

Iy < 5 LIS 20t
i
By Holder’s inequality, we have
|£= 0w £, < 17

On the other hand,
Hfs—l

=PIy

Choosing s > 1 so that
sn

p(s—1)=

9

n—1
n—1 sn "

s=p — =p*,
n—op n—1

n 1/n
17 < 3 (H |amf|,,> .

i=1
Using the arithmetic-geometric mean inequality, we get

n 1/p
s
Hf“p* < omn (Z (9zif|§> )
i=1

which proves the result. O

which holds if

then

We can use the Sobolev inequality to prove various embedding theorems.
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DEFINITION 4.5. We say that a Banach space X is continuously embedded (or embedded for
short) in a Banach space Y if there is a one-to-one, bounded linear map 1: X — Y.

We often think of ¢ as identifying elements of the smaller space X with elements of the larger
space Y; if X is a subset of Y, then 2 is the inclusion map. The boundedness of  means that there
is a constant C' such that |wuz|y < C|z|x for all x € X, so the weaker Y-norm of 2z is controlled by
the stronger X-norm of . We write an embedding as X < Y or as X < Y when the boundedness
is understood.

Theorem 4.2 does not, of course, imply that f € LP (R™) whenever D f € L? (R™), since constant
functions have zero derivative.

To ensure that f € r* (R™), we also need to impose a decay condition on f that eliminates the
constant functions. In the following theorem, this is provided by the assumption that f e LP (R™)

THEOREM 4.3. Suppose that 1 < p <n and p < g < p* where p* is the Sobolev conjugate of p.
Then WHP (R™) < L%(R") and | f|Ls@n) < C|flwremny for all f € WHP (R™) for some constant
C=C(n,p,q).

REMARK 4.6. Let us present an heuristic argument for the lower bound q = p. Let us consider
the function f(z) = (1 + |z|)™%, with « > 0. Then f € L"(R") if ar > n. So, if WHP(R") —
L1(R™), then ap > n should imply ag > n for every a > 0, but this yields p < q (otherwise there
would exist a > 0 sauch that ¢ < n/a < p.

PROOF. Step 1. If f € WP (R"), then, by Theorem 4.1, there is a sequence of functions
fn € CZ (R™) that converges to f in WP (R™). Theorem 4.2 implies that f,, — f in r* (R™). In
detail: {Df,} converges to Df in LP so it is Cauchy in LP; since

| fr = fml e < CIDfr = Dfml,

then {f,} is Cauchy in LP*; therefore f, — f for some f € LP* since LP" is complete; and f
is equivalent to f since a subsequence of {f,} converges pointwise a.e. to f, because of the r*
convergence, and to f, because of the LP-convergence. Thus, f € Lr* (R™) and

[fllp+ < CID S

Step 2. Since f € LP (R™), using the interpolation between LP spaces, we have, for p < ¢ < p*,

Ifllq < IFIIFISY
where 0 < 6 < 1 is defined by

+
¢ p ¥
Therefore, using Theorem 4.2 and the inequality
b= < [07(1 — 0)101"7 (P + )P
we get
Ifla < CPUFIRI DA °
_ _p11/ 1/
<" =) 0T (I + IDSIE) T
<1071 - 0) 1" |l
O

Instead of the assumption that f € LP (R™), we can impose the following weaker decay condi-
tion.

DEFINITION 4.6. A Lebesgue measurable function f:R™ — R vanishes at infinity if for every
€ > 0 the set {x € R™ : |f(x)| > €} has finite Lebesgue measure.

The Sobolev embedding theorem remains true for functions that vanish at infinity.

THEOREM 4.4. Suppose that f € Li _(R") is weakly differentiable with Df € LP (R™) where

loc

1 < p<n and f vanishes at infinity. Then f € r* (R™) and
1 ey < CIDS lgogery

where C is given in (1.2).
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REMARK 4.7. If f € L? (R™) for some 1 < p < o0, then [ vanishes at infinity. Note that this
does not imply that lim, o f(z) = 0.

EXAMPLE 4.3. Define f : R — R by
1
f:ZXIn7 In=|:nan+n2:|

neN
where x1 is the characteristic function of the interval I. Then
1
fdz = — <
JR ,%:\] n?
so f e LY(R). The limit of f(x) as |x| — 00 does not exist since f(x) takes on the values 0 and 1

for arbitrarily large values of x. Nevertheless, f vanishes at infinity since for any e < 1,

R @) >l = Y .

neN
which is finite.

EXAMPLE 4.4. The function f: R — R defined by

1 fr =2,
Rt

vanishes at infinity, but f ¢ LP(R) for any 1 < p < 0.

1.4.2. p > n. If the weak derivative of a function that vanishes at infinity belongs to L? (R™)
with p < n, then the function has improved integrability properties and belongs to r* (R™).
Even though the function is weakly differentiable, it need not be continuous. In this section, we
show that if the derivative belongs to L? (R™) with p > n then the function (or a pointwise a.e.
equivalent version of it) is continuous, and in fact Holder continuous.

The following result is due to Charles Bradfield Morrey jun. (see [Mor40; Mor66]). The main
idea is to estimate the difference |f(x) — f(y)| in terms of Df by the mean value theorem, average
the result over a ball B, (z) and estimate the result in terms of |Df], by Holder’s inequality.

THEOREM 4.5 (Morrey’s inequality). Let n <p < o0 and

a=1- E,
p
with o = 1 if p = 0. Then there are constants C = C(n,p) such that
[fla < CIDfp for all f € CF (R™)
Sup | f| < | f .o for all f e CF (R"), (1.5)
where [-]o denotes the Hélder seminorm [-]o, g, i.e€.,
) —
o = s PO I
x, yeR™, |l‘ - yl
TH#Y

PRrROOF. Step 1. First we prove that there exists a constant C, depending only on n, such
that, for any ball B, (z),

- DIl
f o-swasc| APy, o)

Let w € 0B1(0) be a unit vector. For s > 0,

flz+sw) — f(z) = f: %f(m—l—tw)dt = LSDf(a:+tw) -wdt,

and, therefore, since |w| =1,

|f(z+ sw) = f(z)] < JOS |Df(z + tw)| dt.

Lect. 10, 19.11



58 CHAPTER 4. SOBOLEV SPACES AND WEAK SOLUTIONS TO SECOND-ORDER ELLIPTIC PDES

Integrating this inequality with respect to w over the unit sphere, we get

Lm ) = fla -+ su)|asw) < | . ([[ 10560+t ar) st

Changing the order of integration yields

f (J |Df(x+tw)dt> dS(w) =J wtn_ldtdsw)
8B (0) \Jo 2B1(0) 3

D
=f | Wy,
B () |z -y

|IDf(y)| dy

o) [T =yt

Thus,
J |f(x) — f(x + sw)| dS(w) <J
3B (0) 5

Using this inequality, we can also estimate

T

[f(z) = fy)ldy = [f(x) = fz + sw)|dS(w) | s" ' ds
JBT(I) Jo <LBl(O) )
SRRt

<[ b,

Ton B.(x) |7 —y["!

where we estimated the integral over B,(z) by the integral over B,(x) for s < r. This gives (1.6)

with €' = (nay) ™"

Step 2. To prove (1.4), let us suppose that z,y € R". Let r = |z — y| and Q = B,.(x) n B,.(y).

Then averaging the inequality

[f(@) = f)l < [f (@) = F()] + [f(y) = f(2)]

with respect to z over §2, we get

@)= 1)1 < f 1£@) = 1]z + £ 1) = )]
From (1.6) and Holder’s inequality,
f(z )| d f(z) = f(z)|d
A 2)ldz < J{W' (2) — £(2)] dz

D
T
B, (x) |x_y|n

1/p d 1/p'
Br(z) Br(r) “r - Z|p "
l/p/ T n—1 1/1”
diz =C ﬂ = Crl-n/p
B, (2) |q; — Z|Pl(”_1) 0 7“10/("_1) ’

where C' denotes a generic constant depending on n and p. Thus,

f F(@) — £(2)]dz < Cr""?|Df | Logan,

We have

(1.7)

with a similar estimate for the integral in which x is replaced by y. Using these estimates in (1.7)

and setting r = |z — y|, we get

[f(x) = f()] < Cle = y[' P Df|| o @n),
which proves (1.4)

(1.8)
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Step 3. Finally, we prove (1.5). For any « € R", using (1.8), we find that

(@) < fB ) = fwldy + f F)ldy

Bl(a:)
< C|Dfllrr@ny + ClfllLe (i (@)
< O flwrwgny

and taking the supremum with respect to =, we get (1.5). O
Combining these estimates for

|flcoe = sup|f] + [f]a

and using a density argument, we can prove the following theorem. We denote by C’g “(R™) the
space of Holder continuous functions f whose limit as * — o0 is zero, meaning that for every ¢ > 0
there exists a compact set K < R™ such that |f(z)| < € if x € R"\ K.

THEOREM 4.6. Letn <p <o and « =1 —n/p. Then
W (R") — Gy (R")
and there exists a constant C = C(n,p) such that
Iflcoe < Clflwre  forall feCZ(R")
For p = o0, we have that f € W* (R") is globally Lipschitz continuous, with
[f11 < C|Dfllp»mn

A function in W1 (R™) need not approach zero at infinity. We have in this case the following
characterization of Lipschitz functions.

THEOREM 4.7. A function f € Li_(R™) is globally Lipschitz continuous if and only if it is
weakly differentiable and D f € L* (R™).

When n < p < o0, the above estimates can be used to prove that the pointwise derivative of a
Sobolev function exists almost everywhere and agrees with the weak derivative.

THEOREM 4.8. If f € Wﬁ)’f (R™) for some n < p < oo, then f is differentiable pointwise a.e.
and the pointwise derivative coincides with the weak derivative.

1.4.3. General embedding theorem. More generally, we state the following result.
THEOREM 4.9. Let m € N*, 1 < p < o0. We have:
o Ifkp <n: WFP(R") — LI(R"), forp < q< -2
<

n—kp’.
o Ifkp=n: WFP(R") — LI(R"), for p < q < ©;

o Ifkp>n: WEP(R?) < O™ (R), with { ' [k - EJ 4= {k - 5}’ iy e,
m:k—%—l,azl, zf%eN,
where |-| denotes the integer part function and {-} the fractional part function.

EXAMPLE 4.5. There exists a function u € H* (]RQ) but u ¢ L* (]RQ). Let ¢ € D (RQ) such

that 0 < <1 and
il < 4,
P(x) = . 3
0 iflx] >3

The desired counterezample is given by

(@) = |Infz||]*¢(z), 0<a< %

Since there is a logarithmic pole at © = 0, the function is not in L* (R2). We show that
ue H (R2). It follows that uw e L? (RQ), since

3

1
f |u(m)|2dm<J |ln|x||2°‘dx=27rf I1n p|2p dp.
R2 |z|<2 0
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There are no issues with the integrability of the given function. Observe that u is C* for
x # 0. Therefore, for x # 0, the function admits classical derivatives. We show that these
derivatives belong to L?.

J \Dju()|? dxéj (a|ln|x|a_21n|x|
R2 R2

2
1 z; a
Ly Inlal a%.wos)) da
1@
FREE

The second integral is evidently finite. For the first integral, we switch to polar coordinates:

1 2(a—1) 3 1 2(a—1) 1 20-171%
f %dmzzﬂf Mdpzzﬂ[(nm] .
lz|< 8 |z 0 p 20 -1 |,

dz+2\|V¢H§OJ |In |2]|?* da.
T<lz|<2

< 20[2J |In |2~ 1)
|lz|<%

Since a < %, the integral converges as p — 0. To conclude that u € H! (Rz), we must show that
these classical derivatives coincide with the distributional derivatives, which is non-trivial because
x = 0 is a singular point of the derivative. Let ¢ € D (RQ). We want to prove that

Dijugpdr = —J- ua—d)dx.
R2 R2 &l’j

Starting from the second term:

0 0
J u—(bdleim u—(bdx.
R2 T e—0 R2\ B, (0) (9.’)3‘]‘
This identity holds as a consequence of the dominated convergence theorem. QOutside the origin,
we can integrate by parts using classical derivatives:

J uﬁdleim —J a—ugi7dsr3+J upr;do | .
Rz OT; =0\ Jre\B.(0) 075 2B.(0)

Here, v; is the j-th component of the outward normal vector. Using Lebesgue’s theorem again
for the first term, we have

f U a—dj dr = — a—ud)dx + lim ugv; do.
R

2 6xj R2 6xj e—0 2B.(0)

To conclude, we must show that

lim ugv; do = 0.
e=0JaB.(0)

For e <1, we have u|p_0) = |Ine[*¢(e) = [Ine|*. Thus,

J ¢l/j do
0B (0)

e

< [ne|”|]u2me.

J ugyjdo = |Ine|®
9B:(0)

loc
in any open subset of R%, not merely at a single point as in the previous proof.

Let u be a positive function in H* (RZ) such that lim,_,g u(x) = 4+00. For instance, one can
choose the function defined in the previous proof. Let {x,} be a dense sequence in R?, and consider
the series

EXAMPLE 4.6. There exists a function in H' (RQ) but not in LY (]RQ) , meaning it is unbounded

+o0
Z 27 Fu (z — xp) .
k=0

We show that this series converges in H' (]R2). Indeed, since the H' (RQ)—norm is invariant
under translations, we have

+00 +00
D27 — 2@y = O, 2 Flula @) = 2ulm g2)-
k=0 k=0

Since H* (RQ) is a Banach space, any normally convergent series also converges. Denote by
w the sum of the series in the sense of H' (RQ).
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On the other hand, by the construction of u, the series has positive terms, so at each point, the
series either converges or diverges positively. Observe that w is also the pointwise limit. Indeed,
convergence in H' (Rg) to w implies convergence in L> (Rg) to w, which in turn implies the
pointwise convergence almost everywhere of a subsequence of the partial sums to w.

Fiz h € N, and consider lim,_,,, u(x —xp) = +00. Therefore, at every point xp, we have
limg_,,, w(z) = +c0.

However, since the given sequence is dense in R2, the function w € H' (RQ), but it is not
bounded on any open subset of R2.

1.5. Boundary values of Sobolev functions. Let 2 < R™ be a bounded domain. Let
keNand 1 < p < o0. After noticing that D(Q) € W*P(Q), we can define

Wéc,p(Q) — @H”kﬁ
(the closure of D(£2) with respect to the norm |- ,). We also use the notation H¥(€2) := Wi?(Q).

_PROPOSITION 4.1. Let §2 be an open set with Cl boundary and 1 < p < . If f e WHP(Q) n
C(Q), then
u|aQ =0 < ue Wol’p(Q).

REMARK 4.8. To generalize this result to the case k > 1, we need to ask Q to be of class C*
and one proves that all the derivatives up to m — 1 order are null at the boundary. In other words,
one should not confuse Wy W2 with WP .

We have already discussed that, if @ = R”, then WP (R™) = W*2(R"). On the other hand,
the following results hold.

THEOREM 4.10 (Meyers—Serrin’s theorem). Assume 2 is bounded and let u € WFP(Q), with
1 < p < oo. Then there exist functions u, € C®(2) n W*P(Q) such that

U, — U in WEP(Q) as m — .
In other words, C*(Q) n W*P(Q) is dense in WEP((Q).
THEOREM 4.11. Assume ) is bounded and 02 € C'. Let ue W*P(Q), with 1 < p < . Then

there exist functions u,, € C*(Q) such that
Uy — U in WEP(Q) as m — .
In other words, C*(Q) is dense in WP (Q).

1.5.1. Eaxtension operator. We consider now the question whether, given a function f €
WHkP(Q), it is possible to construct an extension f € WP (R™) such that f 0 = f and

||f||Wk,p(Rn) < O| flwr.»(q) for some C > 0 independent of f.

For f € LP(f2), we can take the simple extension by zero outside the domain: f=finQ
and f = 0 in Q°. Such extension clearly satisfies f € L? (R") and | f|rgn) = | fllzr(o for any
p € [1,0].

When it comes to functions in W*P(Q), k > 1, however, the extension by zero outside © does
not lead, in general, to a function in W*? (R™) so the procedure to construct an extension operator
is more delicate.

DEFINITION 4.7 (Extension operator). We say that E : W*P?(Q) — W¥P (R") is an extension
operator if
(1) E is linear, i.e., E(af + Bg) = aEf + BEg for all f,g € W*P(Q) and for all a, B € R;
(2) E is bounded, i.e., there erists C' > 0 such that |Ef|lwrrmn)y < C|flwrrq) for all
fewkr(Q);
(3) Ef = f a.e. in Q for all f e WEP(Q);
(4) if Q is bounded, E(f) is compactly supported for all f € WFP(Q).

THEOREM 4.12 (Extension theorem). Let 2 be a domain in R™ with bounded boundary 0Q of
class C%. Then there exists an estension operator E : W*P(Q) — WP (R") for any 1 < p < oo.
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1.5.2. Trace theorems. Let 2 € R™ be a domain with nonempty bounded and smooth boundary
09, say of class C'. We recall that a function f € LP(Q) is defined only up to zero measure sets
(i.e., it is defined only almost everywhere). Since |0Q] = 0, it is meaningless to talk about the
“boundary value” of f since we can modify the value of f on 02 without changing the equivalence
class to which f belongs. We ask now whether for a function f € W*P(Q), with k > 1, the picture
changes, i.e., whether it makes sense to talk about the value of f (also called the trace) on 0.

It turns out that the answer is yes. The way to proceed is the following: since C*(Q) is
dense in W*?(Q), given f € W*P(Q) we can find a sequence f;, € C®(f2) such that fy, Joo, f
in W*P(Q). For each fy, the trace Jrlsq is uniquely defined, so that we define the trace of f on
0 as limy_,o0 fr|5q. The crucial question is whether such limit exists and with respect to which
topology. The following theorem answers this question.

THEOREM 4.13 (Trace theorem). Let Q < R™ be a domain with bounded boundary 02 of class
C'. Then there exists a linear and bounded operator T : W'P(Q) — LP(0Q), 1 < p < 0 such that
Tf = flaq for any f e C°(Q) n WhP(Q).

From this, we may deduce the following result.

THEOREM 4.14 (Trace-zero functions in W1P). Let us assume that Q is bounded and 0 is
CL. let us suppose, furthermore, that u € W1P(Q). Then u € Wol’p(Q) if and only if Tu = 0 on
09Q.

1.6. Compactness results. A Banach space X is compactly embedded in a Banach space Y,
written X <—><— Y or X €Y, if the embedding 2 : X — Y is compact. That is, 2 maps bounded
sets in X to precompact sets in Y; or, equivalently, if {z,,} is a bounded sequence in X, then {x,,}
has a convergent subsequence in Y.

An important property of the Sobolev embeddings is that they are compact on domains with
finite measure. This corresponds to the rough principle that uniform bounds on higher derivatives
imply compactness with respect to lower derivatives. The compactness of the Sobolev embeddings,
due to Franz Rellich [Rel30] and Vladimir Iosifovich Kondrashov [Kon45].

THEOREM 4.15 (Rellich-Kondrashov’s compact embedding theorem). Suppose that 2 is a
bounded open set in R™ with C' boundary, k,m € N with k > m, and 1 < p < 0.
(1) If kp < n, then
WENQ) € LUQ)  for 1 < q < np/(n — kp);
WHhP(Q) € LU(Q)  for g = np/(n — kp)
More generally, if (k —m)p < n, then
WhP(Q) € Wma(Q)  for 1 < q < np/(n— (k— m)p)
Who(Q) c Wma(Q)  for g = np/(n — (k —m)p)
(2) If kp = n, then
WhEP(Q) € LY(Q)  for1<q<o
(3) If kp > n, then
WHP(Q) € C™M(Q)
forO<p<k—n/pifk—m/p<1, forO<pu<1lifk—n/p=1, and for p =1 if
k—n/p>1; and
WhP(Q) c CO*(Q)
foru=k—n/pifk—n/p<1.
More generally, if (k —m)p > n, then
Whe (@) € o (9)
forO<pu<k—m-—n/pifk—m—-n/p<l, forO<p<1lifk—m—n/p=1, and for
w=1ifk—m—n/p>1; and
WkEP(Q) c C™H(Q)
foru=k—m—n/pifk—m—n/p=0. These results hold for arbitrary bounded open
sets Q if WhP(Q) is replaced by WEP(Q).
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EXAMPLE 4.7. If u € W™ (R™), then u € Cy (R™). This can be seen from the equality

u(z J J o1+ )da:l . dz),

which holds for all w e CF (R™) and a density argument. In general, however, it is not true that
u € L* in the critical case kp = n.

1.7. Poincaré’s inequalities. In some cases, the norm of W,?(Q) may be simplified using
Poincaré inequality [Poi90], which allows one to obtain bounds on a function using bounds on its
derivatives and the geometry of its domain of definition.

THEOREM 4.16 (Poincaré’s inequality). Suppose that Q is an open subset of R bounded in
one direction.'® Then there is a constant Cpy; > 0 (depending only on p and Q) such that, for any
we WJP(Q), with p e [1,0),

|ullr ) < Croill Vu| Lo (o)

REMARK 4.9. Finding the optimal constant in Poincaré’s inequality, sometimes called the
Poincaré constant for the domain €, is, in general, a difficult that depends on the value of p and
the geometry of the domain Q. For example (and without pretense of completeness), we refer to
[AD04; PW60] for the cases p =1 and p = 2 in bounded, convex, Lipschitz domains.

PrOOF. Without loss of generality, we write x = (z1,2’) with 2’ = (z9,...,,) and suppose
that €2 is bounded in the direction of x4, i.e., there exists a, b > 0 such that, for all = € €2, we have
x1 €la, b|.

We assume that u € C2(£2). This will be sufficient since, for any u € W,"*(£2), there exists

a sequence {uy}, < C () such that uy A%, 0 in WLP(). Therefore, if we prove Poincaré’s
inequality for C'®° functions, we can then pass to the limit and recover the statement for VVO1 P
functions. We extend u to the whole space R™ by setting u(z) = 0 for x ¢ Q.

Step 1. We start with the case p = 2 (just because it is somewhat simpler). Using the variables
x = (x1,2') with 2’ = (22,...,2,), we compute

X1

u? (z1,2) = J 2udy,u (t,2") dt.

a

An integration by parts yields

b 1
iz = [ @ar= [ [ ([ 2uon o) @) anas
" a

J J — x1) 2ulp, u (21,2") day da’ < 2(b— a)f |u| |0y, u| dx
R" 1 Rn
— a)lull 2 |0, u] 2 -

Dividing both sides by |u| L2, we obtain the result with Cpe; = 2(b — a).
Step 2. For p € [1, ), with p # 2, we the argument is similar and we leave it as an exercise. [

A generalization of this inequality to W(f P is available, due to Kurt Otto Friederichs [Fri27].
In particular, Poincaré’s inequality holds true if €2 is supposed to be bounded. This result has
the following important consequence.

COROLLARY 4.1. If Q) is bounded in one direction or has a finite measure, then in Wol’p(Q) the
norm HfHWOl,p(Q) = |Df| e is equivalent to the norm || f|w1.»(q), i-e., there exist two constants

C1,Cy > 0 such that
Cilflwer @y < 1flwrr@) < Collflwer @)

10 An open set < RY is said to be bounded in one direction if there is e € RV, |e| = 1, and two real numbers
a,b € R such that
z - e €la, b, for any = € Q.

Lect. 12, 03.12
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PROOF. For every f e Wy*(Q), we have HfH’L’p(Q) < Cf,oiHDfH’ip(Q) which implies
HfH;I.jVLIJ(Q) = HfHZZ/P(Q) + HDfHI[),p(Q) < (1 + Cf’oi) HngVol’p(Q)
and this proves the second inequality with Cy = (1 + Cf;oi)l/ P The first inequality trivially holds

In particular, Poincaré’s inequality also implies that we may use as an equivalent inner-product
on Hi an expression that involves only the derivatives of the functions and not the functions
themselves.

COROLLARY 4.2. If Q is an open set that is bounded in some direction, then HZ () equipped
with the inner product

(u,v)g = J Du - Dvdz, (1.9)
Q
is a Hilbert space, and the corresponding norm is equivalent to the standard norm on H} ().

PROOF. We denote the norm associated with the inner-product (1.9) by

1/2
luligior = ( [ D)

and the standard norm and inner product by

1/2
el a1 0y = (J [u? + |Duf?] dx)
Q

(u,v); = jﬂ(uv + Du - Dv)dz.

Then, using Poincaré’s inequality, we have
lull 20y < [ulmr@) < (C+ 1)M2|ullo.
Thus, the two norms are equivalent; in particular, (H{, (-,-)o) is complete since (Hg,(:,-)1) is
complete, so it is a Hilbert space with respect to the inner product (1.9). ]

For functions that do not vanish at the boundary, we can still prove an inequality of this type,
attributed to Henri Poincaré and Wilhelm Wirtinger: as an application of the compact embedding
theorem, we can prove an estimate on the difference between a function v and its average value on
a domain (2.

THEOREM 4.17 (Poincaré-Wirtinger’s inequality). Let Q < R™ be a bounded, connected, open
set with C1 boundary, and let p € [1,0]. Then there exists a constant C' > 0 (depending only on
p and ), such that

u—][udm
Q

PROOF. Let us suppose, for the sake of finding a contradiction, that the conclusion is false.
Then we could find a sequence of functions uy € WHP(Q) with

uk—][ukdx
Q

Then the renormalized functions

< C|Vu| ey for every u e WhHP(Q).
Lr(Q)

> k[ Vur| oo for every k € {1,2,...}.
Lp(Q)

up — o, up dz

- ke — o dzHLP(Q)

Vg -

satisfy
1
][ vpdz =0, [vklpo) =1, [Dvklps(q) < iz for ke {1,2,...}. (1.10)
Q
Since the sequence (vg),; is bounded in W'?(Q), if p < o0, we can use the Rellich-Kondrachov’s

compactness theorem and find a subsequence that converges in LP(€2) to some function v. If
p > n, then the functions v are uniformly bounded and Hélder continuous. Using Ascoli-Arzela’s
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compactness theorem, we can thus find a subsequence that converges in L*(2) to some function
.

By (1.10), the sequence of weak gradients also converges, namely Vv, — 0 in LP(Q). By
Lemma 4.2, the zero function is the weak gradient of the limit function v.

We now have

][vdxz lim v dz = 0.
Q

k—ow [o
Moreover, since Vv = 0 € LP(Q2), then the function v must be constant on the connected set
Q; hence v(x) = 0 for a.e. x € . But this is in contradiction with

H’UHLP(Q) = kh_)ﬂgo H’UkHLp(Q) =1
|
1.8. Dual Sobolev spaces. By duality, we can now define Sobolev spaces of negative order.
DEFINITION 4.8. Let k > 0 and p € [1,00). Let Q2 be an open set in R™. We define the space
, ’
W=kP(Q) = (Wéﬁp (Q)) with % + % =1 (for p = 2, we write H*(Q) := W=%2(Q)), equipped
with the norm

T,
HT”W*’V’P(Q) = sup M
weW(f’P'(Q) HwHWk,p/(Q)

Identifying L”(€2) with the dual space of L¥' (), we infer that LP(Q) < W ~%2(2). Moreover,
one can check that any element T'e W~%?(Q) is a distribution.

EXAMPLE 4.8. The Dirac mass at a point x € Q belongs to WP (Q) if kp' > n.

THEOREM 4.18. Let p € [1,00). Let Q be an open bounded set in R™. For all f € W=1P(Q),
there exist functions {g;} s belonging to LP(Q), such that | fw-1.»() = MaxXeqo,... n} |9l
and

i=1,.e Lr(Q)

{fyvy = f govdz + ZJ 9i0x,;v dz, for allveWOl’p/(Q).
Q i=1 Q
More generally, for all m € N, we have f € W™"P(Q) if and only if f = Z‘a‘gm 0%g. for some
go € LP(Q).

For future use, we focus on the particular case k = 1 and p = 2. The space of bounded
linear maps f : H}(Q) — R is denoted by H=1(Q) = (HZ(£2))’, and the action of f € H~1(Q) on
¢ € H}(Q) by {f,¢). The norm of f e H~(Q) is given by

Kf )l
[

A function f € L?() defines a linear functional Fy € H=(Q) by

= =sup{ L be HY 6 # 0}.

(Ff,v)y = JQ fode = (f,v)> for all v e H} ()

Here, (-,)> denotes the standard inner product on L?(2). The functional F is bounded on
H}(Q) with |Ff|, , < |f|r2 since, by Cauchy-Schwarz’ inequality,'’

[KEps o)l < [ fllezlvllz < 1flzzlvl

We identify Fy with f, and write both simply as f. Such linear functionals are, however, not
the only elements of H~1(£2). As shown in Theorem 4.18, H~'(£2) may be identified with the space
of distributions on € that are sums of first-order distributional derivatives of functions in L?((2).
Thus, after identifying functions with regular distributions, we have the following triple of Hilbert
spaces

HYQ) — LAQ) — (@), H'(Q) = (H}(Q)

L1 Also called Cauchy-Bunyakovsky—Schwarz’ inequality, after Augustin-Louis Cauchy [Cau2l], Viktor Bun-
yakovsky [Bunb9], and Hermann Schwarz [Sch88].
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Moreover, if f € L2(Q) ¢ H71(Q) and u € H (L), then
<f7 u> = <f7u)L27

so the duality pairing coincides with the L2-inner product when both are defined.

2. Weak solutions of elliptic PDEs

Let us consider the Dirichlet problem for the Laplacian with homogeneous boundary conditions
on a bounded domain € in R",

{—Au —f zeQ, 21

u =0, x € 0N

First, suppose that the boundary of  is smooth and u, f : Q — R are smooth functions.
Multiplying the PDE —Au = f by a test function ¢ € D(f), integrating the result over 2, and
using the divergence theorem, we get

J Du-D¢dx = J fodx for all ¢ € CL (). (2.2)
Q Q

The boundary terms vanish because ¢ = 0 on the boundary. Conversely, if f and Q are smooth,
then any smooth function v that satisfies (2.2) is a solution of the Dirichlet problem (2.1).

Next, we formulate weaker assumptions under which (2.2) makes sense. By the Cauchy—
Schwartz inequality, the integral on the left-hand side of (2.2) is finite if Du belongs to L?(Q), so
we suppose that u € H'(Q). Moreover, we impose the boundary condition v = 0 on 09 of (2.1) in
a weak sense by requiring that u € Hg (). The left hand side of (2.2) then extends by continuity
to ¢ € Hi (Q) = C2 (). The right hand side of (2.2) is well-defined for all ¢ € H}(Q) if f € L?(),
but this is not the most general f for which it makes sense; we can define the right-hand for any
f in the dual space of H}(Q).

DEFINITION 4.9 (Weak solutions of the Dirichlet problem (2.1)). Let Q be an open set in R™
and f € H~Y(Q). A function u: Q — R is a weak solution of (2.1) if u e H}(Q) and

J Du-Dédx = (f,¢)  for all € HX().
Q

REMARK 4.10. If Q is smooth and g : 02 — R is a function on the boundary that is in the
range of the trace map T : HY(Q) — L?*(09), say g = 7w, then we obtain a weak formulation of
the inhomogeneous Dirichet problem

(2.3)

—Au=f, xze,
u=g, x € 010,

by requiring u — w € Hg () instead of uw € HE(Y). The definition is otherwise the same. One
can prove that the range of the trace map on H*(Q2) for a smooth domain Q is the fractional-order
Sobolev space H'/?(052).

REMARK 4.11 (Distributional solutions of the Poisson equation). Let us comment on some
other ways to define weak solutions of Poisson’s equation. If we integrate by parts again in (2.2),
we find that every smooth solution u of (2.1) satisfies

—f uA¢dr = f fodx for all p € CF(Q). (2.4)
Q Q

This condition makes sense without any differentiability assumptions on w, and we can define a
locally integrable function uw € L}, () to be a weak solution of —Au = f for f € L (Q) if it
satisfies (2.4). One problem with using this definition is that general functions u € LP(2) do not
have enough regularity to make sense of their boundary values on 0S2.

More generally, we can define distributional solutions T € D'(Q2) of Poisson’s equation —AT =
| with feD'(Q) by

—(T,A¢) = (f,¢) forall p € CL(S).

While these definitions appear more general, owing to some elliptic reqularity results they turn out
not to extend the class of weak solutions we consider in Definition 4.9 if f € H-1(f2).
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3. Existence of weak solutions for elliptic PDEs via Riesz’ representation theorem
In this section, we establish the existence and uniqueness of weak solutions to (2.1).

THEOREM 4.19 (Well-posedness of weak solutions to the Dirichlet problem (2.1)). Suppose
that Q is an open set in R™ that is bounded in some direction and f € H=1(Q). Then there is a
unique weak solution u € HE(Q) of —Au = f in the sense of Definition 4.9.

The main tool is Riesz’ representation theorem, which states that a Hilbert space can be
identified with its dual.'?

THEOREM 4.20 (Riesz representation of linear functionals). Let (H, (-,-)) be a Hilbert space.

(1) For every x € H, the map y — (y,x) is a continuous linear functional on H.
(2) Let y — Ay be a continuous linear functional on H. Then there exists a unique element
a € H such that Ay = (y,a) for every y € H.

PROOF OF THEOREM 4.19. We equip H}(Q2) with the inner product (1.9). Then, since (2
is bounded in some direction, the resulting norm is equivalent to the standard norm, and f is
a bounded linear functional on (HE(R), (-,-)o). By Riesz’ representation theorem, there exists a
unique u € H}(Q2) such that

(u,¢)o = (f, ¢y forall ¢ € Hy(€),

which is equivalent to the condition that u is a weak solution. O

The same approach works for other symmetric linear elliptic PDEs, as we will see below.

3.1. Inhomogeneous Dirichlet problem. Let f € H=(Q)) and g € H!(Q2). For the inho-
mogeneous Dirichlet problem (2.3), we consider the closed convex set

KQ)=H;(Q)+g:={we H(Q): w—ge H}Q)}.
A function u € K () is a weak solution of (2.3) if

J Vu-Vqum:f fodx, for all ¢ € Hj(Q).
Q Q

REMARK 4.12. Let f € C(Q) and ue C%(Q) nC(Q). Then u is a weak solution of (2.3) if and
only if u is a classical solution of (2.3).

To show the existence and uniqueness of weak solutions to (2.3), we apply Riesz’ representation
theorem to the linear functional G : H}(Q) — R defined by

~“¢JWV¢

Then there exists a unique w € HJ () such that G(¢) = (Vw,-V¢)o. Then u := w + g is the
unique function in K () such that

| woevo=] s

Q Q

REMARK 4.13. Uniqueness can be established a priori via energy methods. Let uq, us € K(£).
Then, for all ¢ € HE(), we have

i.e., the unique weak solution of (2.3).

J V(Ul —’LLQ) V(ZS =0.
Q

In particular, letting ¢ = uy — ug, we conclude u; = ug a.e.

12 This result is also known as Riesz—Fréchet representation theorem, after Frigyes Riesz [Rie07] and Maurice
René Fréchet [Fré07].
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3.2. Homogeneous Dirichlet problem for —A + I. Consider the Dirichlet problem

—Autu=f xeQ,
u =0, x € 09).

Then u € H}(Q) is a weak solution if

f (Du- D¢ +up)dr = (f,¢)  for all ¢ € Hy(Q).
Q
This is equivalent to the condition that

(u,0)1 =(f,¢p  forall ¢ e Hy(9),

where (-, -); is the standard inner product on H{ (2). Thus, Riesz’ representation theorem implies
the existence of a unique weak solution.

REMARK 4.14. Note that in this example we do not use the Poincaré inequality, so the result
applies to arbitrary open sets, including Q = R™. In that case, H} (R™) = H' (R™), and we get
a unique solution u € H* (R™) of —Au +u = f for every f € H-*(R"). Moreover, using the
standard norms, we have |u|gr = | f|g-1. Thus the operator —A + I is an isometry of H' (R™)
onto H=1 (R™).

3.3. Homogeneous Dirichlet problem for —A + pl. Let > 0. A function u € H}(Q) is
a weak solution of
—Au+pu=f, ze,
{u =0, x € 0f),
if
(u, @), ={f, ¢y  for all ¢ € Hj(Q),

where
(u,v), = j (puv + Du - Dv) dx
Q

The norm | - |, associated with this inner product is equivalent to the standard one, since
1
Sl < lulf < Cllul
C

where C' = max{p,1/u}. We therefore again get the existence of a unique weak solution from
Riesz’ representation theorem.

EXAMPLE 4.9. Consider the last example for p < 0. If we have a Poincaré inequality ||ul/p2 <
C||Du| g2 for §, which is the case if 2 is bounded in some direction, then

(s = | o+ |Duf?) do > (1= Clu) [ Dufdo
Q Q

Thus |ul, defines a norm on H}(SY) that is equivalent to the standard norm if —1/C < p <0,
and we get a unique weak solution in this case also, provided that |u| is sufficiently small.

For bounded domains, the Dirichlet Laplacian has an infinite sequence of real eigenvalues
{\}lnen such that there exists a monzero solution u € HE(Q) of —Au = A\,u. The best constant
i Poincaré’s inequality can be shown to be the minimum eigenvalue A1, and this method does not
work if p < —X\1. For u = —\,, a weak solution of does not exist for every f € H-1(), and if
one does ezist it is not unique since we can add to it an arbitrary eigenfunction. Thus, not only
does the method fail, but the conclusion of Theorem 4.19 may be false.

3.4. Homogeneous Dirichlet problem for symmetric elliptic operators. Let us con-
sider the operator

Lu=— Z O (aijé’mju) ,
i,j=1
where the coefficients are assumed to be bounded, symmetric (a;; = aj;), and satisfy the uniform
ellipticity condition. That is, for some 6 > 0,
Z aij(7)&€; = 016> for all z € Q, and all £ € R™.

i,j=1
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The function u € H}(Q) will be a weak solution of the Dirichlet problem for this operator,

Lu=f, xeQ,
u=0, xedfd
if
o, 8) = {f,¢) for all ¢ € HY(Q),

where a : H}(Q) x H}(€2) — R is the symmetric bilinear form associated with the operator, and is
given by

n
a(u,v) = Z f 0z ; U0z, v AT
i,j=1v8

If Q is bounded in some direction, then boundedness of a;;, uniform ellipticiy, and Poincaré’s
inequality will imply that the symmetric bilinear form a defines an inner product on HE (),
with the induced norm being equivalent to the standard norm of Hg(£2). This will again imply
that f € H~! is a bounded linear functional on the Hilbert space (H{(f),a), and hence Riesz’
representation theorem will imply the existence of a unique weak solution of the Dirichlet problem
for this operator.

REMARK 4.15. The bilinear form a of course arises from integration by parts of the left hand
side of the equation after multiplying by the function v. Thus, having the derivative in front of
the entire term a;;0,,u is crucial, since we are not assuming that the coefficients a;; are weakly
differentiable. In such cases, we will say that the elliptic operator is in the divergence form.

3.5. Homogeneous Neumann problem for —A+I1. Let 2 be an open, connected, bounded
set with C! boundary. If f € L?(Q), u is a weak solution of

{—Au—i—u—f, x €,

(3.1)
oyu =0, r € 09,

J Vu.v¢+f up = f fo, for all ¢ € H'(Q).
Q Q Q
This is equivalent to the condition that

(w,0)1 =(f,¢p  forallpe H' (),

where (-,-); is the standard inner product on H'(). Riesz’ representation theorem yields the
existence of a unique weak solution.

REMARK 4.16. Let f € C(Q). If ue C%(Q) n CY(Q) is a classical solution, then it is a weak
solution of (3.1).

Viceversa, if u € C*(Q) n C*(Q) is a weak solution, then it is a classical solution of (3.1). To
check this, let us consider a test function v € D(Q) < H*(Q). Since u is a weak solution, using
Gauss—Green’s formulas, we have

J fv:f Vv-Vu—l—J uv:J(—Au)v+ a—uvdS—i—f uv:J(—Au)v—&-J uv.
Q Q Q Q o0 OV Q Q Q

In the last equality, we used the assumption on the support of v. Therefore, for every v € D(Q),
we have

J.Q(—Au +u— flv=0.

By the fundamental lemma of the calculus of variations, (—Au+u— f) = 0 almost everywhere
in Q, but since u and f are continuous, this equality holds for every x € ().

It remains to prove that

0
a—z =0 on .
Let v e C*(Q) ¢ HY(Q). We know that u satisfies (—Au +u — f) = 0 and is also a weak

solution of the Neumann problem (3.1). From this, we deduce that

ou ou
VU'VU=J —Au)v + —vdS=J —u + v—l—J —uvdS.
JQ Q( ) o0 OV Q( f) o0 OV
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That is,
J a—uvdS Vu Vv+fuv—ffv—0
Q

o0 ov
It can be shown that the set {v‘m TVE C°O } is dense in L?(09). Therefore, by continuity,

f ydS =0 for allve L2(0Q),
o0 aV

since a e L%(09) is orthogonal to a dense subspace. Ultimately, o,u = 0 on 0S).

It 1s said that the Neumann boundary value problem has natural boundary conditions, because
the space in which the weak solution is defined does not explicitly contain information about 0, u,
but this condition is automatically satisfied.

3.6. Homogeneous Neumann problem for the Poisson equation. Let 2 be an open,
connected, bounded set with C' boundary. Let f € L?*(Q) and consider

{Auzf, x €,

(3.2)
oyu =0, x € 0N).

Let f e L?(2). We say that u € H(Q2) is a weak solution of (3.2) if
J Vu- Ve =J fo,  forall g H'(Q).
Q Q

THEOREM 4.21. If a weak solution of (3.2) exists, then il is unique up to additive constants.

PROOF. Let ug, uz € H'(Q) be two weak solutions of (3.2). Then, for every ¢ € HY(Q), we
have

J V(u1 7’(1,2) qu = O
Q

Choosing, in particular, ¢ = u; — ug, yields V(u; — ug) = 0 a.e., and so u; = ug + ¢ (for some
constant ¢ € R), since {2 is connected. ]

THEOREM 4.22. There exists a weak solution of (3.2) if and only if fQ z)dx = 0.

PROOF. Step 1. If a weak solution exists, then we pick ¢ = const. in the weak formulation
and deduce §, f(x)dz = 0.
Step 2. Let us suppose fQ f(z)dx = 0 and define

V={ueH1(Q): ]iudx=0}.

This is a closed subspace of H!(Q) (for example, one can see this as V is the kernel of the linear
continuous functional (1,-) € L?(§2). By Poincaré-Wirtinger’s inequality, V' is a Hilbert space with
norm |Vu|r2(qy. Since weak solutions are unique up to an additive constant, we may assume that
they lie all in V' (otherwise, we subtract the average). It suffices to test weak solutions with ¢ € V.

Indeed, since £, f = 0, we have
f¢f=f<¢][¢)f.

Applying Riesz’ representation theorem on the Hilbert space V', we get existence of a unique weak
solution of (3.2) in V. O

4. Existence of weak solutions for elliptic PDEs via variational methods

We have established the existence of a weak solution by use of Riesz’ representation theorem.
In this section, we use a different approach, via wvariational methods. The Riesz representation
theorem is, however, typically proved by a similar argument to the one used in the direct method
of the calculus of variations, so in essence the proofs are equivalent.
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DEFINITION 4.10. A functional J : X — R on a Banach space X is differentiable at x € X if
there is a bounded linear functional A : X — R such that

lim |J(z + h) — J(x) — Ah| _

0
h—0 [h]x

If A exists, then it is unique, and it is called the differential of J at x, denoted DJ(zx) = A.

This definition expresses the basic idea of a differentiable function as one which can be ap-
proximated locally by a linear map. If J is differentiable at every point of X, then DJ : X — X*
maps = € X to the linear functional DJ(x) € X* that approximates J near .

A weaker notion of differentiability is the existence of directional derivatives

[J(x + €h) — J(x)

€

dJ(x;h) = lim

e—0

] = %J(x + €h)

e=0

If the directional derivative at x exists for every h € X and is a bounded linear functional on
h, then 6J(z; h) = §J(x)h where 6.J(z) € X*. We call §J(z) the Géteaur derivative of J at x. The
derivative DJ is then called the Fréchet derivative to distinguish it from the directional or Gateaux
derivative. If J is differentiable at z, then it is Gateaux-differentiable at z and DJ(z) = §J(x),
but the converse is not true.

EXAMPLE 4.10. Define f : R> — R by f(0,0) = 0 and

xy?
2 + yt

e = ( ) i (#,9) # (0,0).

Then f is Gateauz-differentiable at 0, with 6f(0) = 0, but f is not Fréchet differentiable at 0.

If J: X — R attains a local minimum at x € X and J is differentiable at x, then for every
h € X the function Jy;, : R — R defined by J,.,(t) = J(z + th) is differentiable at ¢ = 0 and
attains a minimum at ¢ = 0. It follows that
dJg:n
dt

(0) =dJ(z;h) =0 for every h e X.

Hence DJ(z) = 0.

We say that an elliptic problem is in variational form if its weak solutions are critical points
of a suitable functional.

If we have a variational problem, in the direct method of the calculus of variations, we prove the
existence of a minimizer of J by showing that a minimizing sequence {u,} converges in a suitable
sense to a minimizer u. The direct method of the calculus of variations is encoded in the proof of
the (generlized) Weierstrass theorem.'?

THEOREM 4.23 ((Generlized) Weierstrass’ theorem). Let X be a reflexive space, F : X — R be
a coercive and weakly lower-semicontinuous functional. Then infx F' > —o0 and it is a minimum.,
i.e., there exists T € X such that F(Z) = infx F. Moreover, if F is strictly convez, then the
minimum point 1S unique.

REMARK 4.17. Let X be a Banach space, we recall that F : X —] — o0, +0] is called

o weakly lower-semicountinous if, for every x € X and every x, — x, we have
liminf, o F(z,) = F(x);
e weakly lower-semicountinous if, for every x € X and every x, — x, we have
liminf, o F(x,) = F(x);
e coercive if limyg) o F(x) = +00;
o convez if, for every x,y € X and every t € [0,1], we have F(tz + (1 — t)x) < tF(z) +
(1 —-t)F(x).
We also recall that, if F is convexr and lower-semicountinuous, then it is weakly lower-
semicontinuous.

13 Named after Karl Theodor Wilhelm Weierstrass.
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4.1. Homogeneous Dirichlet problem for the Poisson equation. Given f € H~1(Q),
we define a quadratic functional J : H}(Q) — R by

() = %L Dl de — (f, ). (4.1)

PROPOSITION 4.2. The functional J : H(Q) — R in (4.1) is well-defined and differentiable.
Its derivative DJ(u) : H(2) — R at u e H}(Q) is given by

DJ(u)h = J Du-Dhdz —(f,h  for h e HL ().
Q
PROOF. Given u € H} (), define the linear map A : H} () — R by
Ah:f Du- Dhdz — (f, ).
Q

Then A is bounded, with |A| < |Dulzz + | f||z-1, since
|AR| < [Dul 2| Dhf2 + | fla-2 1Al my < (IDullzz + 1Flz-2) 2]
For h € H} (), we have

J(u+h)—J(u) — Ah = % J |Dh|? dz.
Q

It follows that 1
|J(u+h) — J(u) — Ah| < 5%“?{37

and therefore
|J(u+ h) — J(u) — Ah| _

lim 0
h=0 1]
which proves that J is differentiable on Hg (2) with DJ(u) = A. O

Note that DJ(u) = 0 if and only if u is a weak solution of the Dirichlet problem Poisson’s
equation

{—Au —f 2eQ, )

u =0, x € 010,

in the sense of Definition 4.9. Thus, we have the following result.

COROLLARY 4.3. If J : H}(Q) — R defined in (4.1) attains a minimum at u € HE(Q), then u
is a weak solution of —Au = f.

PROOF. Let us define g(t) = J(u + tv) for v € H}(Q). We know that g has a minimum point
at t = 0. In particular,

g(t) = J(u+tv) = %L |V (u + tv)]? dz — L fu+tv)dx

1 t2
= ,J |Vul? dz + *J \Vv|2dx+tJ Vu'Vvdfc—J fudx—tf fudz.
2 Jo 2 Ja Q Q 0
Then, the condition ¢’(0) = 0 ensures
J Vu~Vvdx—J fodx =0.
Q Q
]

Finally, we can prove that J has one and only one minimum. Indeed, we can show that .J is co-
ercive, strictly convex, and lower-semicontinuous (which proves the claim owing to Theorem 4.23).

Coercivity: We aim to estimate J(v) from below:

1 1 1
J(v) = 5“”“%{5(9) - JQ fo= 5“””?{5(9) — [ fll2llvll2 = iHvH?qg(Q) - CPHfH2HUHH(}(Q)7

where Cp is the constant from Poincaré’s inequality. Thus, J(v) — +o0 as [v] g1y —
+o0 (since J(v) contains a quadratic polynomial in [[v]g1(q))-
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Strict Convexity: Using the strict convexity of the single-variable function f(z) = 2 (which
follows from f” =2 > 0), we have:

J (tvr + (1 — t)vg) — (tJ(v1) + (1 —t)J(ve))

1
_ §J V01 + (1 — )V |? da —f F(tor + (1= t)vy) da
Q Q
t ) 1—t )
—— | |[Vu|?de — —— | |[Vu|*dz+t| fuude+ (1—1t)| foadx
2 Q 2 Q Q Q

1 t 1-—1t
< J HV0 2 + (1 — £)|Vos|? do — J Vor 2 dz — —f Vos[2 dz = 0.
2 Q 2 Q 2 Q

Lower Semicontinuity: Since the functional J is continuous, it is lower semicontinuous with
respect to the strong topology. Furthermore, since it is convex, it is also weakly lower
semicontinuous.

Thus, by the Weierstrass theorem, there exists a unique u € Hg (£2) that minimizes J.

4.2. Inhomogeneous Dirichlet problem for the Poisson equation. We now turn to the
inhomogeneous Dirichlet problem for the Poisson equation:

{—Auzf, zeQ,

(4.3)
u=g, x € 010,

We will use the notation of Section 3.1.

THEOREM 4.24. Let f € L*(Q) and g € H*(Q) n C(Q). Then there exists one and only one

weak solution of (4.3).
ProOF. Let J : K — R be defined as
J|Vu|2 dz — J-fudx
To this functional, we associate the functional .J : H} () — R, defined by
J(w) == J(w + g).

We aim to prove that J has a unique minimum point. Explicitly, we have

1
J(w) = J(w+ @) = f |Vw|*dz + = f |V<p|2dx+f Vw - -Vedr — fwdx—f foda.
Q Q

Since J is defined on H}(Q), which is a reflexive space, we apply Weierstrass’ theorem to find
the minimum points by proving that J is coercive and weakly lower semi-continuous. In fact, we
will find a unique minimum of .J, which, when shifted back, will correspond to the unique minimum
of J.

To prove the coercivity of J, we use Holder’s inequality:

_ j V- Vods < < [Vwlo| Velo.
Q

J Vw-Vepdz
Q

From Poincaré’s inequality, it follows that

L fwdz < [flalwlz < C|f 2] Vool

Changing the signs in the previous inequalities, we get
~ 1 1
T > 51Vul} + 5196l = [Vl Vels = ClflalVulz - | fods.

Thus, as | Vwl|ls — +00, we have |.J(w)| — 400, since J(w) contains a quadratic polynomial in
IVl N
Next, we show that J is weakly lower semicontinuous. Indeed:
e The term %SQ |Vw|? dz is weakly lower semicontinuous because it represents the norm
squared of the space in question (proof of this fact omitted).
e The terms SQ Vw-Vepdx — SQ fwdzx are weakly continuous because they are linear and
continuous.
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e The terms § §, [Vo|>dz — §, fe da are constant.

Hence, by Weierstrass’ theorem, J has a minimum point. We now prove the strict convexity
of J to ensure the uniqueness of this minimum. Since J contains constant terms and linear terms,
its strict convexity reduces to the strict convexity of the squared HJ-norm. Specifically:

J (twy + (1 — t)ws) — <tj(w1) +(1— t)j(wg))
1
= 5 [t + (1= sy ) — thun g ) — (1= Dlwaly |-

Let wp be the minimum obtained from Weierstrass’ theorem for J on HY(Q). Then ug = wo+¢
is the minimum of the functional J on K. Clearly, up € K. We find that ug is a weak solution,
meaning that for every v e H} (),

f Vug - Vudr = J fovdzx.
Q Q
To see this, we define
g(t) == J (wo + tv) .
We know that g has a unique minimum at ¢ = 0. In particular:

g(t) = J (wy + tv)

1 1
=7J |Vwo|2dx+t27J |Vu|2dx+tf Vug - Vodz
2 Jo 2 Jo Q

1
+7J |Vgo\2d:r+f Vw0~V<pdx+tf Vo -Vedz
2 Ja Q 0

- L fuodx—tfﬂ fodz - L feda.

This is again a quadratic polynomial in ¢. The condition ¢’(0) = 0 ensures

J V’lU()‘V’Ud$+J Vv-Vgodz—J fvdz =0.
Q Q Q
O

4.3. Homogeous Neumann problem for —A + 1. We aim to prove that the weak solution
of (3.1) is the unique minimum of a functional, which can be obtained using the Weierstrass
Theorem. Consider the functional

J:HY(Q) >R, J) = 2J |Vo|? do + = J|v\2dx—f fudz.

We verify the hypotheses of the Weierstrass Theorem:

Coercivity: We estimate .J(v) from below by a quadratic polynomial in |v| g1 (q):

1 1 1
70) = 3lolipiey = | Fode > 3ol = 1ol > 510l = 1 fl2lvln e

Thus, J(v) — +00 as |[v] g1 o) — +0.
Strict Convexity: Due to the linearity of the term J;, we have

J (tvr + (L —t)ve) — (tJ(v1) + (1 — t)J(v2)) = J1 (tvg + (1 — t)ve) — (tJ1(v1) + (1 — ) J1(v2)),
where J; is a squared norm, ensuring strict convexity.
Lower Semicontinuity: We rewrite the functional as
1
7w) = lolfney = | fode = 5w + 20)

The term J; is continuous and convex, hence weakly lower semicontinuous. The term J
is linear and continuous, thus weakly continuous. Therefore, J is weakly lower semicon-
tinuous.
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By the Weierstrass Theorem, there exists a unique u € H'(Q) that minimizes .J. In particular,
for any t € R and any v € H'(Q2), we have J(u) < J(u + tv).

We now show that u is a weak solution of (3.1). Define g(t) = J(u + tv). We know that g has
a unique minimum at ¢ = 0. Specifically:

g(t)

J(u+tv):%f \V(u+tv)|2dx+%f \u+tv|2dx—J fu+tv)de
Q Q Q

1 2
*J |Vu|2dx+ff |Vv|2dx+tf Vu - Vudz
2 Jo 2 Jo Q

1 2
‘*‘*J |u|2dx+t—f \U\QdJH—tJ uvdx—f fudac—tf foda.
2 Ja 2 Ja Q Q Q

The condition ¢’(0) = 0 ensures

f Vu~Vvdx+J uvdx—f fvdx = 0.
Q Q Q

4.4. The Dirichlet eigenvalues of the Laplacian. We consider the Dirichlet eigenvalue
problem for the Laplace operator: Given a bounded open set €2, find A € R such that there exists
a (non-trivial) weak solution u to the problem

—Au = Alu, z€q,
u =0, x € 010,

(4.4)

i.e., there exists u € H}(Q) with u # 0, such that

J- V<,0~Vu=)\J- up, for all ¢ € H} ().
Q Q

The function w is called eigenfunction associated with the eigenvalue .

REMARK 4.18. The eigenvalue problem for the Laplacian arises, for example, when searching
for solutions of the Schrodinger equation

idju+Au=0
that do not decay. Specifically, stationary solutions are sought, i.e., solutions of the form
u(z,t) = eMw(z),
with A > 0. Substituting this ansatz into the equation yields a new equation:
—Aw + Aw = 0.

THEOREM 4.25. Every Dirichlet eigenvalue of —A in € is strictly positive and the associated
eigenfunctions satisfy |u|pz > 0. Moreover, eigenfunctions associated to disinct eigenvalues are
orthogonal with respect to the scalar product of Hg(£2).

PRrROOF. Let A be an eigenvalue, and let u be an eigenfunction associated with A. Taking ¢ = u
in the definition of a weak solution, we obtain

J |Vu|? = )\J |u)?.
o o

Since u # 0, the Poincaré inequality ensures that the first term is strictly positive, and thus
the second term is also strictly positive. Since |ul|3 > 0, the claim follows.

Let Ay # A2 be distinct eigenvalues with corresponding eigenfunctions u; and us. By the
definition of eigenfunctions, we have

)\QJ U2U1 = f Vul . VUQ = )\1\[ UiUl.
Q Q Q

Subtracting side by side, we obtain

(/\1 — )\Q)J UgU1 = O7
Q

‘[ U2U1 = 0.
Q

which implies
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From this, we conclude the result, namely SQ Vuy - Vug = 0.
O

We are now interested in estimating the smallest eigenvalue from below. Let Cp(n,,2) be
the Poincaré constant for Hg(£2), namely,

Jullz < C’p(n Q,2)|Vul2 for all u e H3 ().
Define C(Q) = [Cp(n,2,2)]7>. It follows that

f IVl > (Q)J w2 for all ue HL(Q).
This is equivalent to stating that ’

S [Vul®

§o lul?

Let A be an eigenvalue with corresponding eigenfunction u. We have seen that |[u|3 > 0, and
it satisfies

> C(Q) for all u e H} (), u # 0.

v 2
A=V gy s
Furthermore,
v 2
C(Q) < inf SQ|7UZ| = inf J |Vul?.
werrl(@) g |ul weHL(Q) Jo
u#0 Jul3=1

u

To prove the last equality, it suffices to substitute u with the function v = Tulz

the relation <. The > inequality is straightforward.
Our goal is to show that this infimum is attained by the smallest eigenvalue.

, which gives

THEOREM 4.26. Let

Vul?
A1 == inf SQ|72| = inf J |Vul?.
ueHj () §o lul weH () Jo

HUHLQ(Q):l
Then there exists u € Hg(Q), with |2y = 1 such that \y = §, |Val? (i.e., the infimum is
actually achieved), \y is the smallest Dirichlet eigenvalue of —A in Q.

PROOF. Let {u,} be a minimizing sequence for A;, with u,, € H}(Q), |u,[2 = 1, and

lim f |Vu,|? = A

n—o0 Q

In particular, {u,} is bounded in H}(Q). Since H{ (£2) is reflexive (as a Hilbert space), its bounded
subsets are weakly relatively compact. Therefore, there exists a subsequence {u,, } that converges
weakly in H}(Q):

Up, — U withue H&(Q)
Moreover, u,, — 4 in L?(2) and

il < Jim, | 1V -
We now apply Rellich-——Kondrachov’s theorem for p = ¢ = 2:

(i) If n > 2, then Hj(Q) —— L%(Q) for all g € [1, %)5
(ii) If n = 2, then Hj(Q) —— LI(Q) for all ¢ € [1,0);
(iii) If n =1, then H&(Q) —— Co(Q).

For n > 2,2 < 2% For n = 1, since ) is bounded, Co(Q2) — L*(). In all cases,
HL(9) s L2(Q).

Thus, from {u,, }, we can extract a subsequence that converges strongly in L?(2). This new
subsequence also converges to .
Using the continuity of the norm, we have

|a) L2y = 1.
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Recalling that

A1 = inf f |Vul?,
ueH (Q) Ja
lull2=1

it follows that A\; < HﬁH%{l(Q
meaning A\ is a minimumo, not just an infimum.

Step 2. We now show that \; is an eigenvalue. Let w € H}(Q) such that |w[s = 1 and
So |[Vw|? = A\;. We prove that w is the eigenfunction associated with \;.

Let v e H}(Q) and t € R. By the definition of A1, we have

\ < §o |V (w + tv)|?
L= §, [w + tv|?

) From the weak convergence properties, we deduce \; = HﬂHiﬂ(Q),
0

Define the function g : R — R as

o(t) = JQ IV (w + )2 — Ay L lw + to]?.

Then ¢(¢t) > 0 and g(0) = 0. Thus, ¢t = 0 is the minimum of this function. It follows that ¢’(0) = 0.
Calculating the derivative, we have

g(t)=f \Vw|2+2tj Vw-Vv+t2f Vo2
Q Q Q

-\ f |w|? — 2)\1tJ wo — AthJ [v|?,
Q Q Q
gt = 2f Vw - Vv + QtJ Vo2 — 2\, f woy — 2)\1tf lv|2.
Q Q Q Q
The condition ¢'(0) = 0 is equivalent to
Vw-Vv—/\lf wv = 0,

Q Q

showing that w is the eigenfunction associated with A;.
It remains to prove that A; is the smallest eigenvalue. Let A be another eigenvalue with
associated eigenfunction uy. Using u) in the weak solution formulation for the Dirichlet problem,

we have
J ‘VU)\|2 = )\J |U)\|2.
Q Q

It follows that

This concludes the proof.
|

PROPOSITION 4.3. There exists a strictly increasing sequence of eigenvalues {\,} with finite
multiplicity such that A\, — 0. Associated with this sequence is a corresponding sequence of
eigenfunctions {uy}, which forms a mazimal orthonormal system in H}(Q).

We do not present the proof, but we comment on the main idea. Given Aq,...,A,, one
constructs
Ang1 = min{HVuH% TUuE E,JL‘, [ule = 1},

where E;- is the orthogonal complement of E,, in H}(Q), and E,, is generated by the eigenfunctions
associated with Aq,..., Ay,

EXAMPLE 4.11. Let Q = (0,1). The Dirichlet problem is given by

n" )\ _
u' =0, in (0,1).
u(0) = u(l) =0,
Since u(0) = 0, the solution takes the form u(xz) = csin(v/Az). By choosing ¢ appropriately
depending on A, we ensure |ufs = 1.
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Imposing u(1) = 0, and since u # 0, we find sin(v/A) = 0, which implies X = w>n? for
n € N\{0}.

The eigenvalues are all simple, and the eigenfunctions form a maximal orthonormal system in
HL(0,1) (as follows from the theory of Fourier series).

4.4.1. A nonlinear eigenvalue problem. Let Q be a bounded open subset of R™, with n > 3,
and let 2 < p < 2* = % We aim to show that

SQ |Vul|?

2/
uely (@) (§ [ufr)*"

is a minimum and to determine its value. For p > 2, the problem is nonlinear, whereas for p = 2,
the problem becomes linear and will be revisited in the last section.

Recall that since Q is bounded, the embedding of HJ(f2) into LP(2) is continuous for every
1 < p < 2*. In particular, u € H}(2) has a finite LP(2)-norm. By homogeneity, we can reduce the
problem to finding

M = inff |Vu(z)|? de,
uekE Q

where
E = HNQ) A {ue LP(Q) : [uf, = 1}.

To see the role of homogeneity, observe that if u € E, then

Vu|? dx
|Vul? dz = SQ|7|2 > M.
0 Jull3
Taking the infimum, we obtain M > M;. Conversely, if u € H}(Q),u # 0, then ﬁ € E, and

thus
2

vl dez= M,

H“Hp

SQ |Vu|? dz f
Q

lul?

which implies M7 > M. Therefore, M, = M.

PROPOSITION 4.4. M is finite and is a minimum.

PROOF. Since the functional u — ||Vu|3 is positive, M is finite. Let {u,} be a minimizing
sequence for M, with u,, € H}(Q), |un|, = 1, and

n—00

lim f |Vu,|* = M.
Q

In particular, {u,} is bounded in H}(Q2). Since H}() is reflexive (being a Hilbert space), its
bounded subsets are weakly relatively compact. Thus, there exists a subsequence {u,,} that
converges weakly in Hg (9):

Up, — U with 7 € Hj ().

This implies Vu,, — Vi in L?(Q) and u,, — @ in LP(£2). By the norm convergence property,
il ) < limint || [Vun,? = M.

We now apply Rellich—Kondrachov’s theorem (here, the assumption p < 2* is crucial):
Hg () > LP(Q).

Thus, from {u,,}, we extract a subsequence that converges strongly in LP(£2). Since  is
bounded and p > 2, this subsequence also converges weakly in L2(f2), and by the uniqueness of
the weak limit, its limit is . Using the continuity of the norm, we have |@|z»q) = 1, and hence
@ € E. By the definition of M, we have M < HﬂHié(Q),

we deduce M = HaHle(Q). Thus, M is a minimum, not just an infimum. O
0

but from the weak convergence properties,
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PROPOSITION 4.5. Consider the nonlinear problem for 2 < p < 2* on Q bounded:

—Au = MulP~%u  in Q,
u =0 on 0S2.

It admits a weak solution i € H}(SY) such that ||, = 1 and
f Vﬁ~VU—MJ |a|P~2av = 0 for allve HY(Q).
Q Q

Moreover,

V 2
M =J |V12|2 = miln 7&2' U‘Q/p.
@ "Ei‘iém (SQ |U‘p)

PROOF. Let u e H}(Q) n {ue LP(Q) : |ul, = 1} be such that
M= f V(o) da.
Q
We now show that @ satisfies the following Euler—Lagrange equation (in weak form):

Vi-Vo—M| |[afP2av=0  for all ve Hj(Q).
Q Q

Let v e H}(Q) and t € R. Consider the function g : R — R defined by

o(t) = L V(@ + to) = M <L i+ m|P) "

By the definition of M and @, we have g(¢) = 0, g(0) = 0, and g has a minimum at ¢ = 0. Therefore,
¢'(0) = 0. Differentiating and using the parameter-dependent integral theory, we find

9 2/p—1
() QJ V(i + tv) - Vo — M2 U a + w|p> f pli + to]P2(@ + to)v,
Q P \Ja Q

g'(0) = 2J Vi - Vo — QMJ |a|P~2aw.
Q Q
The condition ¢’(0) = 0 is then equivalent to the weak form of the equation. a

REMARK 4.19. Note that the previous proof does not guarantee uniqueness of the solution.

REMARK 4.20. Is it necessary for the constant in front of the nonlinear term to be M, the
minimum we started from? Clearly not. Let u > 0, and substitute u(x) with pu(x) in the previous
problem. We have

—pAv = MpP~v|P=2v  in Q,
v=20 on 012,

which implies
{—AU = MpP=2w|P~2v in Q,

v=20 on 0S).
For A > 0, setting p = \Y/@=2 M1/ ®=2) 4 solves

—Av = A\p|P~2v  in Q,
v=20 on 0S2.

REMARK 4.21. We cannot consider A < 0, because choosing u = v in the weak solution

definition would yield
Jvul =,

which forces u = 0, violating the condition |ul|, = 1.

Lect. 13, 10.12
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4.5. A semilinear problem. We consider the semilinear problem

—Au = |ulP~tu, zeQ, (4.5)
u =0, r € 00,
THEOREM 4.27. If n 2 3 and 1 < p < Z—fg, then there exists a mon-trivial weak solution

ue HE(Q) of (4.5).
PROOF. We define F,G : H}(Q) — R by

Flu) =f Dulfde,  G(u) =f P da — 1
Q Q

and the admissible set
A:={ue H}(Q): G(u) =0}.
Step 1. We show that G is well-defined on H}(2). By Sobolev’s embedding theorem,
2n n+ 2

HYQ) c LPYHQ)  forall 1 < p < —1=—-——=
0(Q) < ()  fora PS5 m—t

so (G is well defined on H{(Q) for all 1 < p < 2£2,
Step 2. Now that we know the problem is well-defined, we note that F' is Gateaux differentiable
on H(Q) with

dF[u]v = 2J Du - Dvdzx for all u,v e H}(Q)
Q
and that G is C' on H}(Q) with!4
DG(u)v = (p+ 1)J |u|P~ tuv de, for all u,v e H} ().
Q

Step 3. The Lagrange multiplier theorem implies that if ¢ € A is a minimizer of F|,, then
there exists a A € R such that

QJ D¢ - Duvdz = A(p + 1)f |p|P~ puda.
Q Q
for all v € H (), that is, ¢ is a non-trivial weak solution of

—Au = plulP~tu, zeQ,

u =0,z € 09,

where p = w. Note that, taking v = ¢, gives, in particular

2J |D¢|dx = A(p + 1)J l¢|P+ da
Q Q
so that A > 0. However, note that if X = 0 then {, [D¢|*dz = 0 so that ¢ is a constant in Hj(Q),
i.e., =0 a.e. in ), which is a contradiction. Now rescaling ¢ as
w=pP Vg

it follows that w is a non-trivial weak solution of (4.5), as desired.
Step 4. In summary, the existence of non-trivial weak solutions of (4.5) can be established by
showing that the problem

R

has a minimizer in .A. To apply Theorem 4.23 to show that F'|, has a minimizer, we observe that
(1) The functional F is clearly bounded below on H{ ().

14 By Taylor’s theorem,

1
fut o = [+ oot el + P D 2pu ot

for some 0 < 6(z) < e.
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(2) F is coercive on H}(2). Indeed, by Poincaré we have
f u?dr < CJ |Dul?dx = CF(u)
Q Q

for some constant C' > 0, and hence F(u) — o as |u g1 (o) — 0.
(3) F is weakly lower semicontinuous on Hg (€2).

It remains to verify that G : H} (2) — R is continuous with respect to weak convergence. This
follows because Rellich—-Kondrachov’s theorem with p = 2 and n > 3 implies that

2 2
HY(Q) € L7H(@) for all 0< p < 5 — 1 = ZJ_’2

Since G(u) = i, [u[P**da — 1, we have that G is continuous with respect to weak convergence in
HY(Q). In summary, by Theorem 4.23, if 1 < p < Z—i’% then there exists a ¢ € A such that

F(¢) = min F(u)
ueA
and hence ¢ induces a non-trivial weak solution of (4.5). O

4.6. Pohozaev’s identity and a non-existence result for a supercritical semilinear
problem. We conclude this chapter by proving a non-existence result for a semilinear elliptic
problem, with supercritical growth, in star-shaped domains.'®

THEOREM 4.28. Let Q@ < R™ be an open star-shaped set with C! boundary, with n > 3. If
ue C%(Q) is a classical solution of

{—Au = |[ulP72u, z€9, (4.6)

u =0, T € 09,
for some p > 2* = 2n/(n —2), then u=0 in Q.

This result is a consequence of Derrick-Pohozaev’s identity.'® An often used more general
form is due to Henri Berestycki and Pierre-Louis Lions [BL83]. The proof of Derrick—Pohozaev’s
identity is a remarkable calculation initiated by multiplying the —Au = |u[P~'u by x - Du and
integrating by parts.

LEMMA 4.9 (Derrick—Pohozaev’s identity). Let u be a solution of (4.6). Then

-2 1
n J Vul? de + ,J VulPu(z) - zdS() = 2 [ Jup de,
2 Q 2 Joo P Ja

where v(x) denotes the outward-pointing normal vector to x.

PrOOF. We multiply the PDE by = - Du and integrate over 2, to find

[ caneDuyas= [ [uute Duya

=A =B

Step 1. The term on the left is

n
A=— Z f Uz, TjUg; AT
i,j=179
n n
= Z J Uy, (scjuxj)m dx — Z J uwiyixjuwjds
ij=1 ) ij=109
=: A1 + As.

15 An open set Q is called star-shaped with respect to 0 if, for each x € Q, the line segment {Az: 0 < A < 1}
lies in Q. If Q is convex and 0 € Q, then  is star-shaped with respect to 0, but a general star-shaped region need
not be convex.

16 Named after S. 1. Pohozaev [Poh65] and G. H. Derrick [Der64].
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For A, we compute
n

A = 2 f Uz OijUsg; + Uy, TjUy o, dx
ij=1"9

o ([Duf?
= | |Duf® + < zjdx
JQ ggl 2 s
2

(" 2 |[Dul” .
7(1 2>JQ|DU\ dx—&-Lﬂ 5 (v-x)dS

Au=V- -(Vu)=V-f

Here we really used

and
V(z-Vu) = Vu+z- Vu.
On the other hand, since v = 0 on 09, Du(x) is parallel to the normal v(x) at each point
x € dQ. Thus, Du(x) = £|Du(z)|v(z). Using this equality, we calculate

Ag = ff |Dul?(v - x) dS.
o

In summary, we deduce

2—n

A= J\Du|2dx—lf |Dul*(v - ) dS.
2 Ja 2 Jog

Step 2. For B, we compute

n
B:= Z J |u|p*2u:17jumj dz
=174

" p
= 2 f (|u|) zjde = —7?_ 1 f |ul? de.
j=1J0 D/, p Q

Step 3. Putting Step 1 and Step 2 together, we conclude
-2 1
(” ) J |Dul? dz + ff |Dul?(v - z)dS = ﬁJ |ufP da.
2 Q 2 Jo P Ja

We also need a lemma on star-shaped sets.

LEMMA 4.10 (Normals to a star-shaped region). Let Q be an open star-shaped set in R™ with
C' boundary. Then z-v(x) = 0 for all z € 0 (where v(z) denotes the unit outward normal to 05
at x).

PROOF. Since 0Q is C1, if z € 90 then for each € > 0 there exists 6 > 0 such that |y — x| < ¢

and y € U imply v(z) - (\Z:il) < €7 In particular

limsup v(z) - v =) <0.
y—u ly — 2
yeQ

Let y = Az for 0 < A < 1. Then y € €, since Q is star-shaped. Thus, noticing that
Ar — (A—=1x x

o=zl A=1fla] e
as A€ (0,1), we deduce
x ) Az —x)
N RN
v(z) - o7 = = limov(@) - o=

1TWe write Q = F~1(—00,0) and 92 = F~1(0) and v = VF for a C' function F. We are then claiming that,
for any € > 0, there is a § > 0 such that if |y — z| < § and F(y) < F(z), then
y—x
< €.

VF(z) - —
ly — =|
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ProOF OoF THEOREM 4.28. Using Lemma 4.9 and Lemma 4.10, we have
-2

o f Vul? dz < @f P da.
2 P Jo

But, since we assumed that u is a (classical) solution, we have

J |Vul|? dz = J |u|P dz.

Combining these two observations implies

-2
(n _n)f |ulP dz < 0.
2 P/ Ja

Hence, if u = 0, it follows that "7’2 — %

0, that is, p < . This yields u = 0 if p > 2*.
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CHAPTER 5

General second-order elliptic PDEs

1. Maximum principles for uniformly elliptic operators

In this section, we revisit the weak and strong maximum principles established earlier for har-
monic functions. Specifically, we will apply the methods outlined in Section 2.3.3 and Section 2.3.6
to extend these results to uniformly elliptic operators of the form

Lu(z) = — Z aij(x)aiﬂju(x) + Z bi(2) 0z, u(z) + c(z)u(x), (1.1)

acting on functions u :  — R, where 2 = R" is an open set. Let us introduce the matrix valued
function z — A(x) = (ai; (m))ZJ.:l and the vector valued function x — b(z) = (b;(z));_, so that L
can be written in more compact form as

Lu(z) = —A(x) : D*u(z) + b(x) - Du(z) + c(z)u(x),

where D?u denotes the Hessian of u, Du its gradient and, for matrices A, B € R"**, we have used
. k
the notation A: B =" | >0 | Ai;Bij.
We say that the operator L is elliptic if the matrix (a;;) is positive definite (this is consistent
with Definition 1.6).

DEFINITION 5.1 (Uniformly elliptic operator). The operator L in (1.1) is said to be uniformly
elliptic in Q if there exist A\, A € Ry such that

0< M <eTA()E <A, forallzeQ and € e R™. (1.2)
In what follows, will also assume that there exist constants B, C' > 0 such that
[b(x)| < B, 0<c(z) <C, for all z € €. (1.3)

ExXaAMPLE 5.1. The Laplacian operator L = —A s uniformly elliptic on any open set, with
0=1.

ExXAMPLE 5.2. The Tricomi operator
L= y@i + 65

1s elliptic in y > 0 and hyperbolic in y < 0. For any 0 < € < 1, L is uniformly elliptic in the strip
{(z,y): e <y <1}, with 0 = ¢, but it is not uniformly elliptic in {(x,y): 0 <y < 1}.

REMARK 5.1. We recall a linear algebra result that will be helpful going forward. Let A € R™*™
be a positive definite matrix (i.e., T A& > 0 for all # £ € R") and D € R™*" be a positive semi-
definite symmetric matriz. Then

A:D =% Ai;Dy; > 0.

2%}

Indeed, D can be diagonalized as D = ;" Ao® (v(l))T where A\; = 0 are the (real) eigenvalues
of D and v € R™ the corresponding eigenvectors. Then

A:D= i A i vgl)AijUJ(-l) = i by (v(l))T Av®D > 0.
=1 ij=1 =1

85

Lect. 11, 26.11
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1.1. Weak maximum principle. As a first result, we generalize the weak maximum principl
to the case of an elliptic operator on a bounded domain. We start from the easier case ¢ = 0.

THEOREM 5.1 (Weak maximum principle for uniformly elliptic operators (case ¢ = 0)). Let
be a bounded domain, L a uniformly elliptic operator in Q and u e C*(2) n C°(Q).
(1) If Lu <0 and ¢ = 0 in ), then max,cq u(x) = max,con u(z).
(2) If Lu 2 0 and ¢ = 0 in Q, then min, g u(x) = mingesq u(x).

PROOF. We will prove only (1) (while the proof of (2) is analogous).

Step 1: Lu < 0. We consider first the case Lu < 0 and prove the statement by contradic-
tion. Suppose that max,cq u(x) > maxzeon u(z). Then, there exists xg € Q such that u (zg) =
max,.q u(r) and, since u € C?(Q2), we have that —D?u (z¢) is a symmetric and positive semi-
definite matrix and Du (xg) = 0. This implies (recalling Remark 5.1)

Lu (x0) = —A (z0) : D*u(20) +b(20) - Du (x0) = 0,

_

=0 =0
which contradicts the assumption.
Step 2: Lu < 0. Consider now the case Lu < 0 and the auxiliary (comparison) function
¢(z) == e with v > £ (where B is the constant in (1.3)). Since a11(z) = e] A(z)e; > A, we
have

Lo(z) = —y2a11(2)e?™ 4+ yby(2)e7™ < y(—y\ + B)e?™ < 0.
Then, for any € > 0, we define v.(x) := u(z) + ep(x), which satisfies Lv. < 0 in Q. Hence, by
Step 1, maxg ve = maxpq ve. Letting € — 0, this yields maxg u = maxaq u. O

In the case ¢ = 0, the result has to be slightly weakened.

THEOREM 5.2 (Weak maximum principle for uniformly elliptic operators (case ¢ > 0)). Let
be a bounded domain, L a uniformly elliptic operator in  and u € C?*(2) n C°().
(1) If c 20 and Lu < 0 in Q then
max u(r) < maxu™ (),
z€ef) e
where ut = max{u, 0}.
(2) If c =0 and Lu = 0 in Q) then

. o (-
I;lelélu(a:) > 016161(131(11( u(z)),

where u~ = —min{u, 0}.
(8) In particular, if Lu = 0 in Q, then max,cq |u(z)| = maxzeaq |u(z))|.

PRrROOF. We prove (1) (as the proof of (2) is analogous).

Let Q, == {x € Q: u(z) >0} and Lou = —A : D?>u+b- Du. If Q; = &, the result is true.
Otherwise, in Q4 , we have

Lou=Lu—_ cu <0,
—
>0

so, by Theorem 5.1, M := max,cq, u(z) = maxzeon, u(z) and M > 0.

On the one hand, ma’X:eQ u(z) = max,eq, u(z). On the other hand, let xg € dQ4 be such that
u(xog) = M. If g € Q, then M = 0 (by the continuity of u) and if zg € 98, then M = u(xp) =
maxgq u. Hence,

_ +
rgrclggu(w) maxu ().

Finally, to prove (3), we note that, if Lu = 0 in Q then, in particular,

Lu<0 and w(y) < maxzesnu™ (z) < maxgeon [u(z)
Luz=0 and wu(y) > mingesn (—u™ () = — maxgeaq |u(x)|.

Hence, |u(y)| < maxzesq [u(x)| for all y € Q, which yields (3). O
From Theorem 5.2, we can deduce a comparison/positivity principle.

COROLLARY 5.1 (Comparison principle). Let L be uniformly elliptic and ¢ = 0 in Q.
(1) If ue C*(Q) n C°(Q) satisfies Lu < 0 in Q,u <0 on 0, then u <0 in Q.
(2) If u,v e C%(Q) N C°(Q) satisfy Lu < Lv in Q,u < v on 0Q, then u < v in Q.
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1.1.1. A priori bound on the solutions of the Dirichlet problem. The maximum principle allows
us also to derive a simple a priori bound on the solutions of the Dirichlet problem

{Lu—f, x €,

1.4
u=g, x€Ood (14)

In turn, this bound immediately gives uniqueness of solutions to the Dirichlet problem (1.4).

PROPOSITION 5.1 (A priori bounds for the Dirichlet problem). Let u € C%(Q) n C°(Q) be
a solution of the Dirichlet problem (1.4), with Q bounded, L uniformly elliptic in Q with ¢ > 0,
feC%(Q) for some a € (0,1) and bounded, g € C°(62). Then

|ul oy < llglco@ay + Csug |f ()],
xTre

with C = %62(%“)[), where A\, B are as in (1.2)—(1.3), and D = sup,eq |z|-
PROOF. Let Lou := —A : D?u+ b- Du and take a comparison function ¢ that satisfies
Lop < —a, |@p|<p inQ,

for some «, 5 > 0. For instance, we can take the comparison function @(z) := €7** considered in the
proof of Theorem 5.1, for which we have already established the bound Lop(z) < v(—yA+ B)e¥™1.
Therefore, if we take v =1 + %, we have

Lo@(x) < =A™ < =X P = —a, |@(x)] <P =5, for all z € Q
Let us now set G = | g[co(aq), F' = supq | f|, and consider another comparison function
F

p(r) =G+ (B —o@)—,

e
which satisfies ¢ > 0 in 2, ¢ > ¢ on 02, and

F
Lpo=Lop+cp=—Lop—+ cp =F
(O
>0
Hence,
Lip—uw)=2F—f(x)=0, ¢o—u=0 on 00
>

and, by the weak maximum principle, ¢ —u > 0 in Q. This yields

2
u(x) <G+ EﬁF .
The lower bound can be obtained by taking —¢ instead of . |

1.2. Strong maximum principle. The strong maximum principle holds as well for a uni-
formly elliptic operator on a domain 2.

THEOREM 5.3 (Strong maximum principle). Let L be uniformly elliptic in Q (with Q not
necessarily bounded) and u € C%(Q) n C°(Q).

(1) If ¢ = 0 and Lu < 0 (resp., Lu = 0) in Q and there exists y € Q such that u(y) =
max,.q u(x) (resp., u(y) = min,.q u(x)), then u is constant in €.

(2) If c 2 0 and Lu < 0 (resp., Lu = 0) in Q and there exists y € Q such that u(y) =
max,cqu(z) and u(y) = 0 (resp., u(y) = mingep u(x) and u(y) < 0), then u is constant
in

For the proof of Theorem 5.3, we need first to establish, as an auxiliary result, a generalization
of Lemma 2.1.

LEMMA 5.1 (Zaremba—Hopf-Olemik’s boundary point lemma). Let L be uniformly elliptic in
Q, ¢c>0, and u € C?(Q) n CHQ) such that Lu < 0 and maxpqu > 0 if ¢ # 0. If there exists
xo € 02 mazimizing u in Q0 such that
(1) w(xo) > u(z) for all x €
(2) 0Q satisfies an interior sphere condition at xg, i.e., there exists y € Q and r > 0 such
that B(y) < Q and B,(y) n dQ = {zo},

then d,u (xg) > 0 (with strict inequality).
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Proor. Let p € (0,7) and consider the annular region ¥ := {z € B.(y) : 0 <p <[z —y| < r},
and X N 0Q = {xo}.

We define the auxiliary function ¢(z) = e—lz—yl®

or

—e” 2, which satisfies ¢ = 0 in ¥ and

2

—|r— 2 —Qar
Lp(x) = e~olevl —2%34042 (i — i) (x; —y;) + Z 200 (ag; — by (x; —y3)) +¢| —ce
i B

< el 402Nz — y|? + 2a(nA + [bl|z — y]) + ]
< el [4a?p?\ + 2a(nA + Br) + C].

Taking « large enough we can make Ly < 0 in X. Since u(z) — u (xg) < 0 in €, hence on
0B,(y) which is compact, we have max,eap, (y) (u(r) — u (70)) < 0 and there exists € > 0 such that
v(z) = u(z) —u(xo) + ep(r) < 0 on dB,(y).

On the other hand, ¢ = 0 on dB,(y), therefore v < 0 on dB,(y) U 0B,(y) = dX and Lv <
—cu (zg) < 0.

So, by the weak maximum principle, v < 0 in . Being v (zg) = 0 it follows that d,v (z¢) = 0
and

O (z0) = —€dup (20) = —eeelmo—ul® |zo —y| > 0.

O

PROOF OF THEOREM 5.3. Let Lu < 0 in € and assume by contradiction that u is non-
constant and achieves its maximum M in the interior of  (with M > 0if ¢ # 0). Let Qp == {y €
Q:uly)=M}and Q™ = {ze Q: u(z) < M}.

Let us consider z € Q~ such that r = dist (2, Q) < dist(z, 092), so that B,.(zZ) € Q~ and there
exists xg € 0Qs such that zg € 0B,.(2).

Then we can apply Lemma 5.1 in B,.(zZ). Indeed, all the hypotheses are verified: namely,
Lu < 0 in B.(2),u(x0) > u(x), for all z € B,(Z) (with u(xg) = M > 0 if ¢ # 0), and B,(2)
satisfies an interior sphere condition at xg. We conclude therefore that d,u (z¢) > 0 but this leads
to a contradiction since g is an interior maximum and Du (zg) = 0. g

Beside needed to prove the strong maximum principle, Lemma 5.1 is also useful to establish
uniqueness of solutions for Neumann problems.

COROLLARY 5.2 (Uniqueness for the Neumann problem). Let u,v € C?(Q) n C*(Q) be two
solutions of the Neumann problem

Lu=f xeq,
dyu=nh, xze€df,

with L uniformly elliptic in Q and Q satisfying an interior sphere condition at each point of 0S).
If ¢ =0 in Q, then u — v is constant in Q. If ¢ > 0 at some point in ), then u = v.

PROOF. Suppose that w = u — v is not constant in €. Since Lw = Lu — Lv = 0 in €2, then,
by the strong maximum principle, either w or —w achieves a non-negative maximum M at a point
xg € 002 and is strictly less than M in €.

By Lemma 5.1, d,w (z¢) # 0 (either strictly positive or strictly negative), contradicting the
boundary condition d,w = 0 on 9. Hence, w is constant in Q and, if ¢ # 0 in €, we have
w = 0. (]

2. Well-posedness of weak solutions of linear second-order elliptic PDEs

For 1 € R, we consider the Dirichlet problem for L + pl,

Lu+pu=f, xel, (2.1)
u =0, x € 09.
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Here, I denotes the identity and we consider a uniformly elliptic operator L in the (divergence)
form

Lui=— Y\ 0a, (aij00,u) + Y. &, (bu) + cu, (2.2)
1,5=1 i=1
where
aij, bi, c€ L*(Q),  ai = aji (2.3)
and we assume that there exists some constant 8 > 0
n
3 ai(@)giE; = 0¢, (2.4)
Q=1

for almost every = € 2 and every £ € R™.
We say that u € Hg () is a weak solution of (2.1)

J { i aijaﬂfiuaqus_ i biuly, ¢ + Cu¢} dx"’ﬂf updr = (f,¢)
Q Q

ij=1 i=1

for all ¢ € H}(Q). To write this condition more concisely, we define a bilinear form
a: H}(Q) x H(Q) - R

by

a(u,v) = J { Z 0, U0z, V — Zbiuﬁziv + cuv} dz. (2.5)
£ i

4,j=1

DEFINITION 5.2 (Weak solution of (2.1)). Let that Q = R™ be an open set, f € H-1(Q), and
L be the differential operator (2.2). Then u: Q — R is a weak solution of (2.1) if u e H}(Q) and

a(u, @) + p(u, )2 = {f, ¢) for all g € HY (D).

REMARK 5.2. The form a is well-defined and bounded on H}(Q). However, it is not symmetric
unless b; = 0. We have
a(v,u) = a*(u,v),

where

a*(u,v) = J { Z Oz, U0z ;U + Zbi (Op,u) v + cuv} dx (2.6)
Q i

ij=1

is the bilinear form associated with the formal adjoint L* of L,

L*y = — Z O, (aijamju) — Z b0z, u + cu. (2.7)

ij=1 i=1

REMARK 5.3. Notice that L* is the operator we considered in Section 1. We stress that,
although L* is not of exactly the same form as L, since it first derivative term is not in divergence
form, the same proof (up to minor changes) of the existence of weak solutions for L, which we will
give below, applies to L* with a in (2.5) replaced by a* in (2.6).

In the proof of the mazimum principles in Section 1, we used L* for the sake of convenience
(using L instead would have required somewhat more attention).

The proof of the existence of a weak solution of (2.1) is similar to the proof for the Dirichlet
Laplacian, with one exception. If L is not symmetric, we cannot use a to define an equivalent inner
product on H{(£2) and appeal to the Riesz representation theorem. Instead we use a result due
to Peter Lax and Arthur Milgram (see [LM54] and also [Bab71]) which applies to non-symmetric
bilinear forms.

We begin by stating the Lax-Milgram theorem for a bilinear form on a Hilbert space. Af-
terwards, we verify its hypotheses for the bilinear form associated with a general second-order
uniformly elliptic PDE and use it to prove the existence of weak solutions.
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THEOREM 5.4 (Lax-Milgram’s theorem). Let H be a Hilbert space with inner-product (-,-) :
HXxH—->R, and let a : H x H — R be a bilinear form on H. Assume that there exist constants
C1,Cy > 0 such that

Chlul? < alu,u), |a(u,v)| < Colull|v]  for all u,v e H.
Then, for every bounded linear functional f : H — R, there exists a unique u € H such that
{f,v) =a(u,v) for allveH.
We omit the proof of this result, and instead we see how to apply it to the bilinear form in
(2.5).

THEOREM 5.5. Let a be the bilinear form on HJ(Q) defined in (2.5), where the coefficients
satisfy (2.3) and the uniform ellipticity condition (2.4) with constant 8. Then, there exist constants
C1,Ca > 0 and v € R such that, for all u, ve H}(Q),

Cullul?,y < alu,u) +ylulZs, (2.8)
lau, )| < Coflu] gy lolay- (2.9)

Ifb =0, we may take vy == 0 —co, with ¢y := infq c and, if b # 0, we may take v :== 55 >, Hb1||2L°" +
g — Cp.

REMARK 5.4. Equation (2.8) is a crucial estimate of the H}-norm of u in terms of a(u,u),
using the uniform ellipticity of L, and is called Gérding’s inequality.*. We notice that the expression
for v given in Theorem 5.5 is not necessarily sharp. For example, as in the case of the Laplacian,
the use of Poincare’s inequality gives smaller values of v for bounded domains.

Equation (2.9) states that the bilinear form a is bounded on H{.

PROOF OF THEOREM 5.5. Step 1. For any u,v € HZ (), we have

n n
la(u,v)| < Z J |00, uly V| dx+ZJ |b;wdy, v] da:+f |cuv| dx
4,j=17% =178 @

n

< 2 il 10s,ull 2 02,0 o

ij=1
n
+ 3Bl oo [l 22 102,0] 12 + el 2o ul 22 0] 22
i=1
n n
<C ( D7 Nl + X 1Bl + CILso) Il £y 0] £z
ij=1 i=1

which yields (2.9).
Step 2. Using the uniform ellipticity condition (2.4), we have

0| Dul?. = 0J | Dul|? dx
Q

n
< Z f 0z, u0z; u dT
Q

t,j=1

< alu,u) + Z J biuly, udr — J- cu’ da
i=1Y8 Q

< alu,u) + Z j |biudy,ul dz — COJ u? dz
i=1Y8 Q

n

< alu,w) + Y bl [ullze |0sul e — collul e
i=1

< a(u,u) + Blull | Dul Lz — colul 2,

1 Named after Lars Géarding [G&r53]; cf. also [Hor18].
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where ¢(z) = ¢p a.e. in Q, and 3 = (Z?:1 |\bi|\2Loo>1/2 :
If 8 =0, we get (2.8) with
")/220700, 01 =0.
On the other hand, if 3 > 0, by Youngs’s inequality? with €, we have, for any € > 0,

1
[ull 2 | Dull 2 < €| Dulffs + ZEHUH%z-

Hence, choosing € = 6/23, we get

4 2 B
SIDul?s < a(uu) + (55— co ) ulze,

and (2.8) follows with
B0 _ 0
’y_%—i_i CO, Cl.—*.
O
THEOREM 5.6 (Application to the Dirichlet problem). Suppose that 2 is an open set in R™,
and f € H71(Q). Let L be a differential operator (2.2) (with coefficients satisfying (2.3)), and let
v € R be a constant for which Theorem 5.5 holds. Then, for every u = ~y, there exists one and only
one weak solution of the Dirichlet problem (2.1).
PROOF. For p € R, let us define a,, : H} () x H} () — R by
CLH(U, U) = a(u7 U) + ,LL(U, U)L2a
where a is defined in (2.5). Then u € Hg () is a weak solution of Lu + pu = f if and only if

au(u,¢) = (f,¢) forall ¢ € Hy(Q).
We want to apply Lax—Milgram’s theorem (Theorem 5.4) to establish the existence of one and
only one such weak solution.
We rely on Theorem 5.5. From (2.9), we get

lan(u, )| < Collulgglvlmy + lullulcz vz < (Co + |ul) lul g lol
so a,, is bounded on H}(f2). From (2.8),
Cillulfy < a(u,w) +yulis < au(u,u)

whenever p > 7.

Thus, the assumptions of Lax—Milgram’s theorem are satisfied and we can conclude that, for
every f € H™(Q), there is a unique u € H} () such that {f, ¢) = a,(u, ¢) for all v e Hj(£2). This
concludes the proof. O

2 Named after William Henry Young [Youl2].






APPENDIX A

Some background information

1. Some notation

Let R™ be n-dimensional Euclidean space. We denote the Euclidean norm of a vector x =
(z1,29,...,2,) € R™ by

2
|| = (x%+a?§+-~-+xi)1/
and the inner product of vectors = = (x1,z2,...,2,),y = (y1,Y2,-..,Yn) by

Ty =2T1Y1 + Tay2 + -+ Tnln

We denote Lebesgue measure on R™ by dz, and the Lebesgue measure of a set £ < R™ by |E|.
If £ is a subset of R™, we denote the complement by £ = R™\E, the closure by F, the interior
by E° and the boundary by 0E = F\E°. The characteristic function xyg : R” — R of E is defined

by
@y {1 TeeE,
) =
X 0 ifzr¢FE.

A set E is bounded if {|z| : z € E} is bounded in R. A set is connected if it is not the disjoint
union of two non-empty relatively open subsets. We sometimes refer to a connected open set as a
domain.

We say that an open set ' < R™ is compactly contained in an open set 2, written Q' cc Q
(or Q' € Q), if U < Q and € is compact. If Q' < Q, then

dist (Q’,@Q) = inf{|:1: —yl:xeQ ye 89} > 0.
This distance is finite provided that Q' # ¢ and Q # R™.

2. Integration by part formulas

We denote by B.(x) < R"™ the open ball of radius r and center =z : B,.(z) =
{yeR™: ||y — z| < r} with respect to the Euclidean norm, and we will often use the shorthand
notation B, = B,.(0). With R} we denote the half-plane R} = {(z1,...,2,) € R" : 2, > 0}.

DEFINITION A.1. Given a domain Q c R™, we say that 09 is of class C* if, for each y € 09,
there exists 7 > 0 and a C* function ¢ : R"~! — R such that, upon relabeling and reorienting the
coordinates axis if necessary, we have

QB (y) ={zeBr(y) :zn > (21, ,Tn-1)}

i.e. locally, in a neighborhood of y € 090, the boundary can be expressed as the graph of a C*
function and the domain € lies only on one side of the graph. If 0 € C', then Yy € 0Q the
outward pointing normal vector is well defined and denoted v(y) = (v1(y), - ,vn(y)).

We recall an equivalent characterization of a domain with C* boundary.
PROPOSITION A.1. Let Q  R™ be a domain with 02 of class C*. Then for each x € 0S) there
exists an open set Vi, 3 x and a C*-diffeomorphism ¢, : V, — By < R™ satisfying:
(1) ¢ (Vo n Q) =B =By nR%,
(2) ¢z (Vz N aQ) =B n aR:L-’
(3) b2 € C*(Va), ¢;' e C*(B).
We say that each mapping ¢, straightens locally the boundary.

With the notion of the outward normal unit vector, we can now recall the Green—Gauss and
integration by parts formulas.
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Gauss—Ostrogradsky’s formula: Let 2 = R" be a bounded set with 0Q = C'. For u e C*(Q),

| wn@ae = [ uwm@ase. i-1en

o0
For more historical information of the divergence theorem, see [Kat79]. ~
Integration by parts formula: Let 2 = R™ be a bounded set with 0 = C!. For u,v € C1(Q),

|t de = - [ v @de+ | u@r@r)asw, =1
Q Q oQ

or, in vectorial form,

jﬂ Vu(z)v(z)de = — J.Q u(z)Vo(z)dz + J u(y)v(y)v(y) dS(y)

o0
Green’s identities: Let = R™ be a bounded set with 0Q = C'. For u,v € C?(),

J Audzx = dyudS,
Q o)
with 0,u = Vu - v being the normal derivative of u, and

J vAudx = ff Vu - Vodx +J vo,udS = J uAvdx +J (vo,u — ud,v) dS.
Q Q o) Q oQ

All previous identities are valid also if the boundary 09 is only Lipschitz continuous (since
Lipschitz functions are differentiable everywhere but a set of points of Lebesgue measure zero).
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