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Abstract 

We establish the uniqueness of  the positive, radially symmetric solution to 
the differential equation A u - - u  + u p =  0 (with p >  1) in a bounded or 
unbounded annular region in R" for all n ~ 1, with the Neumann boundary 
condition on the inner ball and the Dirichlet boundary condition on the outer 
ball (to be interpreted as decaying to zero in the case of an unbounded region). 
The regions we are interested in include, in particular, the cases of a ball, the 
exterior of  a ball, and the whole space. For  p---- 3 and n ---- 3, this a well- 
known result of COFF~AN, which was later extended by McL~oD & SERRIN to 
general n and all values of  p below a certain bound depending on n. Our result 
shows that such a bound on p is not needed. The basic approach used in this work 
is that of COFF~AN, but several of the principal steps in the proof  are carried 
out with the help of Sturm's oscillation theory for linear second-order differential 
equations. Elementary topological arguments are widely used in the study. 

1. Introduction 

The interesting semilinear elliptic differential equation 

Au + f(u) ----- O, x E  R", (1.1) 

arises in many areas of applied mathematics including astrophysics, fluid mechanics, 
and population genetics. If  a solution exists in the whole space R", satisfying 

u(x) ~ 0 as I x [ --~ c~, (1.2) 

it is called a ground state, One natural question to ask is whether the ground 
state is unique or not. This is an extremely difficult problem to tackle in general. 
The classical work of GXDAS, NI, & NIRENBERG [4, 5] tells us that with some mild 
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conditions on f ,  all ground states are radially symmetric. This allows us to shift 
our study to the ordinary differential equation 

n - - 1  
u" + u' + f (u)  ----- 0, r > 0 (1.3) 

g 

u'(O) = O, u(r) ~ 0 as x -+ co. (1.4) 

Still this is a sufficiently difficult problem that few general results are known. 
One exception is the recent result of  PELETIER & SERRIN [13], which provides 
uniqueness for t hose f t ha t  satisfy a starlike condition for large u and are essentially 
more negative than positive for small u. See also [6] for an improvement on this 
result. 

COFFMAN [3] established uniqueness for the ground state of  the equation 
with the particular choice of  n = 3 and 

f =  u 3 -- u. (1.5) 

The result for the problem on the whole of  R n is deduced from that of the corre- 
sponding problem on a finite interval [0, b]. The main part of  the proof  is a study 
of the zeros of  the function 

~u(x) 
w(x) - -  0o~ " (1.6) 

where u is considered as a function of both r and the parameter or = u(0). Very 
clever identities are used to show that w(x) changes sign exactly once in [0, b]. 
The required conclusion then follows. COFFMAN attributed the approach, especially 
the use of special identities, to KOLODNER [8]. KOLODNER was concerned with a 
more general nonlinear eigenvalue problem (rather than just the uniqueness of  
the ground state) for some sublinear equation arising from the study of  the rota- 
tion of  a heavy string. COrrMAN remarked that the proof  he gave in [3] did not  
extend to other choices of  n or other powers of u in fs ince  some of the clever identi- 
ties no longer hold. 

When f takes the more general form 

f =  u p -- u, p > 1, (1.7) 

there is the added complication of  the non-existence of solutions i fp  exceeds or is 
equal to the critical value (n + 2 ) / ( n -  2); see, for instance, [1, 2]. 

Improving on COFFMAN'S method, MCLEOD & SERRIN [10] were able to estab- 
lish a rather general result that includes COFFMAN'S. In particular, for the special 
f above, uniqueness holds for 

p < o o  (1 ~< n_< 2), 

n 
p < ~  ( 2 <  n < 4), 

= n - - 2  = 

8 
p < - -  ( 4 <  n <  8). 

n 

Slightly sharper results are also available for p close to 1. 
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In this paper  the expected result for all values o f p  up to the critical exponent 
is confirmed. In addition, we also study the ground state solutions for a bail, an 
annulus, and the exterior of  a ball. In the cases when the origin is not included, 
uniqueness is established for all p > 0. 

The approach used in this paper is basically the same as that  of  COFFMAN. 
Instead of  using KOLODNER-type identities we resort to STURM comparison tech- 
niques in the oscillation theory of  linear second-order differential equations. The 
two methods are essentially equivalent, but the latter seems to make the proofs 
more transparent. In the present case, the main difficulty lies in the choice of  the 
suitable comparison equation and in the proof  that the equation has the correct 
oscillatory behavior. See the survey paper [9] for a more detailed explanation of 
our  modification of COrrMAN'S method and its use to obtain earlier uniqueness 
results. 

For  some recent success of  SaXJRM'S comparison technique in the study of 
another  property of  the EMDEN-FOWL~R equation, see [7]. 

In the spirit of  COFFMAN'S paper, the result is presented only for the particular 
choice o f f  given by (1.7). We refrain from stating the theorem for more general 
f (although it appears not hard to do so), in order to keep the ideas of  the proof  
clear. 

The related results of  N1 [11] and NI & NUSSBAUM [12] should be mentioned. 
They established uniqueness for the Dirichlet problem on a finite interval [a, hi, 
0 < a < b < 0% for a class of  f including the choice f =  u v. They also showed 
the possibility of  non-uniqueness under perturbations of  f by a different power 
of  u. 

The outline of  the paper is as follows. In Section 2, the STURM comparison 
theorem and related lemmas that are needed in the sequel are stated. 

In the next two sections we assume that the interval in question does not con- 
tain the origin. In Section 3, we give a first at tempt to classify the solutions, which 
are regarded as continuous functions of two parameters, the initial height and the 
dimension of  R". Simple topological arguments play a role. In Section 4, we 
introduce the functions w and 0 ---- --ru'/u, which are used to prove the main 
theorem. 

In the last section we complete our study by letting the left endpoint of  our 
interval approach the origin. 

The whole proof  is very involved, and I do not deny that a shorter p roof  might 
be found. 

Acknowledgment. I thank Professor JAMES B. SERR|N and Professor KEWN B. MCLEOD 
for many useful discussions on the subject. 

2. Some Stnrmian Theory 

The form of Sturm's comparison theorem found in most  textbooks is not 
strong enough for our purpose. The following formulation can be found, for in- 
stance, on p. 229 in INCE'S classical book, Ordinary Differential Equations, Dover,  
1956. By a solution we always mean a nontrivial solution. 
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Lemma 1 (Sturm). U and V are, respectively, solutions of the following equa- 
t ions: 

U"(x) + f(x)  U'(x) + g(x) U(x) = O, x E (a, b), (2.1) 

V"(x) + f(x)  V'(x) -k G(x) V(x) ---- O, x E (a, b), (2.2) 

where f ,  g, and G are continuous (actually, only local integrability is needed). Let 
(t~, v) be a subinterval in which V(x) ~= 0 and U(x) =~ O, and in which the com- 
parison condition 

G(x) >= g(x) for all x E (/~, v) (2.3) 

holds. Suppose further that 

Then 

V'(/z) < U'(/0 (2.4) 
V(/O = u 0 , )  

W(x) U'(x) 
< for all x E (tz, v). (2.5) 

V(x) = V(x) 

Equality in (2.5) can occur only i f  U-~ V in ~ ,  x]. I f  either tt or r is a zero of U 
or V, then the fractions in (2.4) and (2.5) are interpreted as oo. 

From this lemma follows the usual assertion that between any two consecutive 
zero of U(x), there must be at least one zero of V(x). In fact, V(x) may have more 
than one zeros in that interval. It is only natural to say that V(x) oscillates faster 
than U(x). 

Sometimes it is more convenient to replace the comparison conditions (2.1), 
(2.2) and (2.3) by the equivalent conditions 

U"(x) 6-f(x)  U'(x) + h(x) U(x) >~ O, U(x) > 0 in (,u, v), (2.1') 

V"(x) + f (x)  V'(x) + h(x) V(x) <= O, V(x) > 0 in (#, v). (2.2') 

If either U or V is negative, the corresponding inequality has to be reversed. 
A simple consequence of Sturm's theorem is the following. 

Lemma 2. 

(i) I f  in addition to all the hypotheses of  Lemma 1, we have 

0 < V(/,) < f ( ~ ) ,  

then 

V(x) <= U(x) for all x E (/~, v). 

(2.6) 

(2.7) 

(ii) I f  in addition to all the hypotheses 

lim U(x) = • oo. 
X ~ V  

of  Lemma 2, lim V(x) = ! o~, then 
X ~ v  
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Proof. The conclusion follows from an integration of  (2.5). [ ]  
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Suppose that equation (2.1) has solutions that do not  vanish in a neighborhood 
of the point b. The largest neighborhood of  b, (c, b), on which there exists a solu- 
tion of (2.1) without zeros is called the disconjug~tcy neighborhood of b, or, in 
short, the disconjugacy interval of (2.1). It follows from Sturm's theorem that no 
non-trivial solution can have more than one zero in (c, b). On the other hand, 
unless c = a, any solution of  (2.1) that has a zero before c must have another 
zero in (c, b). The following is another corollary of  Sturm's theorem. 

Lemlna 3. Consider the same two equations, (2.1) and (2.2), satisfying the com- 
parison condition (2.3). In addition, we assume that U ~ V in any neighborhood 
of b. l f  there exists a solution V of(2.2) with a largest zero at the point ~, then the 
disconjugacy interval of (2.1) is a strict superset of  (~, b). 

We need another comparison lemma that handles equations with different 
second terms. It is not usually included in the classical Sturm theory. It can be 
proved easily using results from the theory of  differential inequalities. See [9] for 
the proof  of a related result. 

Lemma 4. Suppose instead of  (2.2), V satisfies the differential equation 

V"(x) -k F(x) V'(x) + G(x) V(x) = O, x E (a, b), (2.8) 

and the comparison condition 

F(x) >= f(x)  >= 0 for all x E (/~, v). (2.9) 

The conclusions of  Lemma 1 or Lemma 2 still hold provided that either 

U'(x)>=O for all xE(/t,~,) (2.10) 

o r  

V'(x) >= 0 for all x E (/z, ~,). (2.1 i) 

Proof. Let us assume that (2.10) holds; the proof  for the case in which (2.11) 
holds is similar. Define r ( x ) =  U'(x)/U(x)>: 0 and R ( x ) =  V'(x)/V(x). They 
satisfy 

r'(x) = --(f(x) r(x) -k g(x) q- r2(x)) ~ --(F(x) r(x) -k G(x) q- rZ(x)), 

and 

R'(x) = --(F(x) R(x) -k G(x) q- R2(x)). 

We also have the initial comparison condition r ( / z ) ~  R(#). From the theory 
of differential inequalities, we can then conclude that r(x) >: R(x) for all x in 
(m~). [] 
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The next lemma, though not a direct consequence of Sturm's theorem, is 
definitely motivated by it. It is well known that if U is a solution of a second-order 
ordinary differential equation such as (2.1), then at a zero of U, the derivative U" 
cannot vanish. If  z satisfies a second-order ordinary differential inequality in such 
a way that z oscillates more than U, then intuition tells us that the tangent line 
to the graph of  z is being bent more strongly towards the x-axis than that of  U. 
Hence the derivative o fz  at a zero cannot vanish. A convenient reference for a proof  
of  this fact has not been found. Reproduced here is the short proof that was given 
in [7]. 

Lemma 5. Suppose a function z(t) is positive (negative) in an interval (p, r), 
either z(#) = 0 or z(r) ~- O, and it satisfies the inequality 

z"(t)  + f ( t )  z'(t) -k g(t) z(t) ~ ( ~ )  O, in (I ~, ~), (2.12) 

where f and g are any continuous functions. Then z ' ~ )  4= 0 (z'(~) =~ 0). 

Proof. We give the proof  only for the case z(t) >= 0 and z(/z) ~- 0; the other 
cases can be proved similarly. We may assume without loss of generality that 
f ( x )  = 0, since an equation of  the more general form can be reduced to this parti- 
cular case using a change of independent variable. Equation (2.12) now takes the 
form 

z'" + g(x) z ~- --P(x),  x > O, (2.13) 

where P(x) >~ O. Let Zl(X) and z2(x) be independent solutions of the homogeneous 
equation associated with differential equation (2.13), satisfying the initial conditions 

z~(#) ---- O, z~(/~) = 1, 

t 

z2(/z) : 1, z2(~) : 0. 

Suppose that the conclusion of  the lemma is false, namely, that z'(#) = 0. By 
the formula of  variation of  constants 

x 

z(x) = f [zl(~) z:(x) - z~(x) z2(s)] e(s)  ds. (2.14) 

Let h(s, x) = [zl(s)z2(x) -- zl(x) z2(s)]. At x = s, Oh(s, x)Ox, being the Wron- 
skian of zi (x) and z2(x), is --1. By continuity 8h(s, x)/8x is therefore negative in 
a neighborhood of  (0, 0). At x = s, h(s, x) = 0. Thus for x > s and x suffi- 
ciently close to s, h(s) < 0. It then follows that the integrand in (2.14) is negative 
for x > / ~  but sufficiently close to/~. This then implies that z(x) is negative, con- 
tradicting our assumption that it is positive in ~ ,  v). [ ]  

I f  the inequality sign in (2.12) is strict at the point x --/z,  then the conclusion 
follows trivially from the facts that z has a minimum a t /z  so that z"(/z) => 0, 
contradicting (2.12). The proof for Lemma 5 is needed to handle the general case. 
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Next are established some asymptotic properties of  the solutions of  the linear 
equation 

U" W m U" q- g(x) U - -  O, x ; > O ,  (2.15) 
X 

where m > 0 is a constant and g is continuous with lim g(x) = --2k z, for some 
k >  O. ~'-~ 

Lemma 6. Let (c, co) be the disconjugacy interval o f  (2.15). Every solution o f  
(2.15) with a zero in (c, co) is unbounded. 

Conversely, i f  the last zero o f  an unbounded solution of(2.15) is ~, then ~ is an 
interior point of  the disconjugacy interval. In the other words, ~ > c. 

Proof. We have to show that equation (2.15) is non-oscillatory, so that the dis- 
conjugacy interval is well defined. Let # be so large that g(x)<= - - k  2, and 
mix ~ 2k for x E ~ ,  c~). We compare (2.15) with the equation 

V'" -I- 2kV" --  k2V  = O, x ~  [#, ~ ) ,  (2.16) 

using Lemma 4 in the form of Lemma 2. We can conclude that for the solutions 
Ua and V1 of  (2.15) and (2.16), respectively, that satisfy the initial conditions 

U~) = V,(/z)= 1, U;~) = V;(/z)= 1, (2.17) 

the inequality 

Vl(x) -<_- U~(x), x > I z, (2.18) 

holds. Since V1 is non-oscillatory and unbounded, so is U~. If  all solutions of  
(2.15) are unbounded, then our lemma is true. Thus suppose there is a bounded 
solution U2. Then U~ and U2 are linearly independent, and all other solutions are 
of  the form U = cx 0-1 -}- c2 U2, with constants ct and c2. It follows that any solu- 
tion that is not  a multiple of U2 is unbounded. Let us show that U2 cannot have 
a zero in the disconjugacy interval, from which the assertion of  the lemma follows. 
Suppose that U2 does have a zero at 9 C (c, co). Let U be the solution of  (2.15) 
that satisfies the initial conditions, U(9 q- 1) = U2(~ -}- 1) and U'(9) = U~(~) --  e 
with e > 0. By taking e small enough, we ensure that U has a zero so close to 
that it falls in the disconjugacy interval. Thus U cannot have another zero beyond 

q- 1. In other words, U remains positive in [~ -I- 1, oo). By Lemma 2, U(x) <= 
U2(x), for x ~ 9 + 1. It follows that U is bounded, but this contradicts the fact 
that U is not a multiple of U2. [ ]  

Lemma 7. I f  U is a solution of(2.15) such that U'(x) < 0 for all x sufficiently 
large, then --U'(x)[U(x) >= k .for all x sufficiently large. 

Proof. Let R ( x ) =  --U'(x)/U(x).  It satisfies the Riccati equation 

m 
R" =-- R 2 --  m R q- g(x) < R 2 + g(x). (2.16) 

X 

If  R(x) < k for some large x, for which g(x) is close to its limit --2k 2, then R'  
will remain strictly negative, eventually causing R to change sign. This contradic- 
tion proves the lemma. [ ]  
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3. Classification of Solutions 

In this section and the next, we study our differential equation in an interval 
not containing the origin, in order to avoid having a singular term in the equation. 
Let p > 1 and m > 0 be any constants, and (a, b) be a bounded or unbounded 
open subinterval of  [0, o~), with a > 0. We are concerned with the following 
boundary value problems: 

u " ( r )  -}- m u ' (r)  -+- u p - -  u = O, 
r - - 

u'(a)  : :  O, 

u(r) > O, r C (a, b), (3.1) 

(3.2) 

u(b) = 0 (3.3) 

o r  

lim u(x) = 0 if b = ~x~. (3.4) 
r - ~ -  o o  

These come from corresponding boundary value problems for the semilinear 
equation (1.1) on an annulus a <~ Ix] < b, with the Neumann condition on the 
ball ]x I = a and the Dirichlet condition on the outer ball Ix] = b. The constant 
m is one less than the dimension n of  the Euclidean space R n in which (1.1) holds. 
In this section, we take m to be any positive constant, not necessarily integral. Our 
main theorem asserts the uniqueness of  the solution to any of the above boundary 
value problems. Since the question of existence has been answered in the affirma- 
tive, a unique solution always exists. 

In this section we discuss the classification of solutions of (3.1). Some of the 
lemmas stated here are well known, but we prefer to give complete proofs. The 
proof  of  the main theorem is complicated enough that it is perhaps better to make 
the paper as self-contained as possible. Trying to adopt notations from other 
sources would only add to the confusion. 

Following KOLODNER and COFFMAN, instead of considering directly the bound- 
ary value problems, we look at u as the solution of an initial value problem, (3.1), 
together with the initial conditions 

u(a) - -  ~ > 0 ,  u'(a)  - O. ( 3 . 5 )  

The solution u now depends on o~ as a parameter. In addition, u depends on the 
constant m. Besides, we think of  u = u(r, o~, m )  as defined for all values of  r ~ 0 
extending beyond the interval [a, b]. 

In other words, we are shooting out a solution u(r, o~, m)  from the point r = a 
and hope that with the correct choice of  the initial height o~, the solution will land 
on the right spot r = b. Rather than regarding b to be a preassigned fixed point, 
we let b(o~, m) be the first point where u(r, ~, m)  intersects the r-axis, and study the 
dependence of b on or and m. The point b is not always defined. This happens, for 
instance, if for a fixed m, o~ is small enough; the solution u(r, o~, m)  will not cross 
the r-axis. 
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We divide the set of  solutions into three subsets: 

1. Solutions that eventually takes on some negative values. These are the ones 
for which b(o;, m) are defined. Let N be the set of  (0~, m) for which the corre- 
sponding solutions belong to this class. 

2. Solutions that remain positive and satisfy lim u(r) = 0. Let G (stands for 
r ---> oo 

"ground state") be the set of  (o~, m) for which the corresponding solutions 
belong to this class. 

3. Solutions that remain non-negative but do not belong to case 2. Let P (stands 
for "positive") be the corresponding set of  (0~, m). The term "posit ive" is 
justified because, as Lemma 5 shows, no solutions of  an ordinary differential 
equation can be tangent to the r-aixs. 

The sets N, G, and P partition the "quadrant"  (0, ~ ) x  [0, oo) into three 
mutually disjoint subsets. Sometimes, for convenience, we say that a solution 
belongs to N, G, or P when we should have said that the corresponding (o~, m) 
belongs to the appropriate set. Also whenever there is no danger of  confusion, we 
suppress the explicit mention of the variables o~ and m in functions such as u and b. 

From the classical theory of ordinary differential equations, we know that, 
in any compact r-interval, solutions of  (3.1)-(3.5) depend continuously on the 
parameters o~ and m. 

As is well known, we can obtain a lot of  information about the solutions from 
the Energy or Lyapunov function 

u'2(r) u~+J(r) uS(r) 
E(r) : ~ d- P +-----i- 2 (3.6) 

The inequality E'(r)  = --mu'2/r <: 0 implies that E decreases to a finite constant 
E(cx~) as r--> ~x~. It  follows that all solutions must be bounded. 

Obp+ 1 0(2 
Lemma8 .  I f  E(a) --  - -  ~ 0, then (~, m) E P 

p + l  2 : 
( _ ~ )  l/(p- 1) 

words, (0, ?) x [0, o0) C P, where ~ = 

for any m. In other 

Proof. Since E is decreasing, E(r) ~ E(a) ~= O, for r > a. The solution can- 
not cut the r-axis; otherwise at a point of  intersection E(r) = u'2/2 > 0 contra- 
dicting our previous assertion. [ ]  

Lemma 9. I f  u E P, then it is oscillatory about the value 1 in the following 
sense. The sets o f  its local maxima (a = ro < r2 < . . . }  and local minima (rl < 
r3 < ...) interlace and, unless u ~ 1, 

and 

u(ro)> u ( r 2 ) >  u(r4)> . . . >  1 (3.7) 

u ( r l ) <  u(ra) < u(rs) < ...  -~ 1. (3.8) 
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Proof.  We claim that  u cannot  be monotone .  Suppose this is not  true. We know 
that  u has a local max imum at r : a, because u"(a) < 0. Thus u can only be 
mono tone  decreasing. Let the limit lim u(x) be denoted by u(oo). We have 

y---> oO 

lim u ' / ( r ) =  lim ( - -  --m u/ - -  uP -~ u) : - -  uP (oo) --]- u(oo) . 
r- ,~ r-*~o r 

This is incompatible with the monotonic i ty  o f  u unless the limit is zero, which 
implies that  u(c~) = 1. Let  v : u - -  1 > 0. I t  satisfies the differential equation. 

v,,+mv, + (u'-- r \ u - - l ]  v = O "  

Note  that  the fraction inside the parentheses is larger than or  equal to p - -  1 
(for u > 1). We use Sturm's  comparison theorem to conclude that  v oscillates 
faster than the solutions of  

U" + m g "  + ( p - -  O U = O .  
r 

I t  is well known that  all solutions U of  this differential equation are oscillatory, 
bu t  this contradicts the fact that  the more oscillatory v remains positive for  all r. 

Hence we know that  u has at  least one local minimum. Let rl  be the first 
o f  them. We cannot  have u(r~) : 1, for  then E(rl) attains the lowest possiblie 
value that  E can take. This means that  E(r) : E(rO for  all r > r~, and we 
have the case u ~ 1 In all other cases, since r~ is a local minimum, u'(r 0 = 0 
and u"(rl) : u(rO -- uV(rl) ~ O. This can hold only if u(ra) < 1. I t  follows 
that  E(rl) < O. The same arguments  as above show that  u cannot  be mono tone  
increasing in (r~, cx~). Repeating the arguments  then gives two infinite sequences 
o f  critical points as asserted. The strict inequalities in (3.7) and (3.8) are due to 
the fact that  E ' : - - - u ' 2 / 2  cannot  vanish identically in any subinterval o f  
(a, b). [ ]  

L e m m a  9 has the following corollary 

Lemma 10. Suppose a solution does not belong to N. Then it belongs to G i f  and 
only i f  E ( ~ )  : O, and it belongs to P i f  and only i f  E ( ~ )  < O. 

Proof. I f  u E G ,  then l i m u ( r ) : l i m u ' ( r ) : 0 .  Thus E ( ~ ) : 0 .  On the 
r---~ o o  r - . ~  o o  

other  hand, if u E P, then E(rl) < 0 because u(r 0 < 1. Thus E(oo) < E(ra) 
<0.  [] 

Lemma 11. Let u belong to either N or G. Then u'(r) < 0 in (a b(o~, m)] or 
(a, cx~), respectively. 

Proof.  Suppose u'(e) vanishes in an interior point  c E (a, b). Then u(c) ~ 1, 
lest u ~ 1. I f  u(c) < 1, then E(c) < 0, contradicting the assumption that  u 
belongs to N LJ G. Finally, if u(c) > 1, then u"(c) < 0, so that  c is a local maxi- 
mum.  Between the two local maxima r = a and c there must  be a local minimum, 
at which u " ~  0, and this reduces to the previous case. 
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The derivative u'(b) cannot vanish at the endpoint b, because this contradicts 
the uniqueness of  initial value problem for (3.1); the trivial solution is the only 
solution of (3.1) that can vanish at b with a double zero. [ ]  

Lemma 12. For (~, m) E iV, b(0~, m) is a continuous function o f  o~ and m. 

Proof. This is a simple consequence of  the fact that a solution u can never be 
tangent to the r-axis at a zero. [ ]  

Lemma 13. The sets N and P are open subsets of  (0, oo) x [0, oo). 

Proof. Let (~x0, mo) be a point in N. The corresponding solution u takes a nega- 
tive value at some point r = c. By continuity, there is a neighborhood of (ao, mo) 
for which u(c, ~, m) < 0 for each (o~, m) in the neighborhood. Thus all such solu- 
tions belong to N. Let (ao, mo) be a point in P. Then E(c) < 0 for some r ---- c. 
Continuity again yields a neighborhood for which E(c) < 0 for each of the solu- 
tions belonging to the neighborhood. It follows that E(oo) < E(c) < 0 for each 
of  these solutions, and so they must all belong to P. [ ]  

An immediate consequence of  this lemma is that for each fixed m, the sets 
Nm and Pm (the intersections of N and P with the straight line (., m)) are open 
subsets of (0, o~). Each is therefore a union of countably many open intervals. 
The boundary points of N or P belong to G. The following lemma is a straight- 
forward consequence of Lemmas 8 and 13. 

Lemma 14. For a f ixed m, the boundary value problem (3.1)-(3.4) has a unique 
solution i f  and only i f  the sets Pm and N m are both open intervals of  the form (0, o~m) 
and (o~m, oo), respectively, with one single common endpoint or E Gin. 

We call a point m regular if it satisfies the conditions of Lemma 14. For  each 
regular m, there is therefore a unique o~(m) = ~,~ as asserted. This is, in fact, a 
continuous function of  m within any interval of regularity. As a first step towards 
establishing that fact, we prove that give any fixed ~ > 0, the set of  points in G 
with m =< ~ is bounded. 

Lemma 15. For any given ~ > O, there exists an ~ > 0 such that G Q (0, ~-) 
x [0, ~].  

Proof. It  suffices to show that for some ~, [~, oo) x [0, ~ ]  C N. 
comparison equation 

U " + - -  ~ U ' +  U p -  U = O  on [a, oo). 
a 

Consider the 

(3.9) 

Since the coefficient of  the second term is a constant, the equation can be explicitly 
solved, at least in theory. It is then not hard to see that there exists an ~ > 0, 
such that if U(a) ~ ~, U'(a) = 0, then U(r) cuts the r-axis at some point, say b. 
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Using as new variables S = U'2(r) and x = U(r), we can rewrite (3.9) as 

dS 2 ~  - 
- -  I / S - t -  f ( x ) ,  S(o 0 = 0, (3.10) 

dx a 

where f (x)  = 2(x p - -  x).  Similarly, we can rewrite (3.1), using s = u'Z(r) and 
x = u ( r ) ,  a s  

ds _ 2m l~ s §  < 2m l/s -+-f(x), s(o 0 = O. (3.11) 
dx r = a 

An application of the theory of differential inequalities gives 

S(x)  <_ s(x),  for all 0 ~ x ~ 0~. (3.12) 

In other words, U'2(rl) ~ u'2(r2), whenever x = U(rO = u(r2); see Figure 1. 
Since both u' and U' are negative, we have 

0 > O ' ( r l )  ~ u ' ( r2) .  (3.13) 

This implies that u must cut the r-axis before b. It follows that (~, m) E N. [ ]  

I I ', I \  \ 

Fig. 1 

Lemma 16. I f  all points m C (ml, mz) are regular, then ~m is a continuous 
funct ion o f  re. The set o f  limit points o f  the curve {offm) : ml  ~ m ~ m2} that lie 
on each o f  the lines m = ma and m = m2 are thus connected closed intervals. 
In case one o f  the endpoints is also regular, the corresponding limit set  reduces to 
the single point  c~(ma) or o~(m2). 

Proof. Let mo E (ml, m2). Suppose lim offm) is not o~(mo). By compactness, 
m - +  ,'Tlo 

there exists a sequence of points {re(i)} Q (ml ,  m2), re(o-+ mo, but 0%o = 
lim ~(m(i)) 4= o~(mo). Then o~o~ belongs either to N or to P, contradicting the fact i-+ oc~ 
that both are open sets. The other assertions are obvious. [ ]  

4. Main Result, a > 0 

The main result is established through a careful study of the signs of the func- 
tion values in [a, b(~, m)) of the function 

~U 
w(r, o~, m) = - ~  (r, o~, m) .  (4.1) 
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We are interested only in those w that come from solutions in either N or G, 
and we are concerned only with their behavior in the interval [a, b) (we interpret 
b to be oo in case u E G). When there is no danger of confusion, we suppress the 
variables ~ and m in the function notation. 

By differentiating (3.1) and (3.5), we derive the following initial value problem 
for w: 

w" q- m w '  + (pu p-I -- 1) w : 0, (4.2) 
r 

w(a) ---- 1, w'(a) = 0. (4.3) 

Equation (4.2) is a "l inear" equation in w if we regard u as a known function. 
An immediate consequence is that w cannot be tangent to the r-axis. As r goes 
through a zero of  w, w has to change sign. 

Lemma 17. For u E G k )N ,  w has to change sign at least once in [a, b). 

Proof. Rewrite (3.1) as 

~U p -  U~ 
( u -  1 ) " - - m ( u -  1 ) ' +  \ u -  11 ( u -  1)-----0, (4.4) 

and view it as a "l inear" equation in (u - -  1), with the expression inside the large 
parentheses as the coefficient of  the last term. Since this coefficient is smaller than 
the corresponding one in (4.2), when u ~ 1, we conclude from Sturm's comparison 
theorem that w oscillates faster than (u - -  1), so w must vanish before the first 
zero of ( u - -  1), namely, before the point ~E (a ,b)  at which u(~) = 1. [ ]  

Our ultimate aim is to show that w cannot change sign more than once in 
[a, b). We say that (0r m) is admissible if this is true, more precisely, when 

(0~, m) E G k) N, and w(r, oc, m) has exactly one zero in [a, b). (4.5) 

If, in addition, 

o r  

w(b, o~, m) < O, for (~, m)E N,  (4.6) 

lim w(r, o~, m) = - -  c~, for (0~, m) E G, (4.7) 
~---+ o o  

we say that (0r m) is strictly admissible. The following well known lemma connects 
the concepts of  admissibility and regularity and is the key idea in the KOLODNER- 
COFFMAN method. 

Lemma 18. Let m be fixed. I f  (~, m) E N is strictly admissible, then in a neigh- 
borhood of ~, b is a strictly decreasing function of  ~. 
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~U 
Proof. By assumption, ~ (b(o0, or = w(b(~)) < O. Hence, for e > 0 small 

enough, u(b(oO, &) < 0 for all 3r E (o~, 0~ + e). By the Intermediate Value theo- 
rem, u(r, ~) must have a zero in (a, b(00). Therefore, b(&) < b(o0. It is not hard 
to see that this local monotonicity together with the continuity of b (Lemma 12) 
implies monotonicity in a neighborhood of  o~. [ ]  

The following lemma complements Lemma 18. 

Lemma 19. I f  for (o~, m)E G, ~im w(r) = -- c~ (cx~), in particular i f  (o~, m) 
is strictly admissible, then there exists a right (left) neighborhood of  o~ that belongs 
to N. 

Proof. Let r be the largest zero of w in [a, b). By Lemma 6, the disconjugacy 
interval (c, ~ )  of equation (4.2) contains ~-. Suppose first that w is negative after r .  
Take a point ~ E (c, 1-) and a point 2 E (~, cx~). Since w(() > 0 and w(2) < 0, 
for e ~ 0 small enough, u(~, 3r > w(o~), and u(2, S~) < w(oO, for all & E (0~, e~ + e). 
In case w is positive beyond ~, the same is true for all S~ in a left neighborhood 
(o~ -- e, o~) instead. So h(r) = u(r, S~) must intersect w(r) at a point Z in (~, 2). 
This point is therefore within the disconjugacy interval (c, ~ ) .  We claim that h(r) 
must intersect the r-axis in (Z, cx~). Suppose that this is not true. Then u(r, 3r 
remains positive in (Z, ~ ) -  It lies below the graph of w in a right neighborhood 
of  the point Z. Let us suppose that it catches up with w at a point ~7 ~ Z. Then in 
(Z, ~), the function z ( r )=  u ( r ) -  h(r) is positive and satisfies the differential 
equation 

z " + m z ' + ( u ~  - ~ p  ) - -  . - -  1 z : 0 .  ( 4 . 8 )  
r - - u  

Observe that the coefficient of the last term is less than that in (4.2). Hence z 
oscillates less than the solutions of (4.2). But the disconjugacy interval of (4.2) 
being (c, ~ )  means that the solutions of (4.2) cannot have two zeros in the inter- 
val [Z, ~]. It follows that the less oscillatory z cannot have two zeros in the same 
interval, contradicting the assumption that z(z ) = z(~) ---- 0. Thus fi remains be- 
low u throughout (Z, ~ ) .  Then the coefficient of (4.8) is less than that of (4.2) in 
the whole interval (Z, cx~), implying that z is less oscillatory than the solutions of  
(4.2) in (Z, ~ ) .  Since Z is in the disconjugacy interval of (4.2), by Lemma 6, a 
solution of (4.2) that vanishes at Z must be unbounded. By Lemma 2, the less 
oscillatory z must also be unbounded. This contradicts the fact that h(r) < u(r) -+ 0 
as r ~ cx~, unless h intersects the r-axis. Thus u(r) ~ u(r, -~) belongs to N for 
a l l ~  in (or or (o,--e,c~) as asserted. [ ]  

Now if we can show that all points (~, m) in the union G LJ N are strictly admis- 
sible, then we have uniqueness for the boundary value problems (3.1), (3.2), (3.3) 
and (3.1), (3.2), (3.4). Let us follow the development as ~ increases from 0. By Lem- 
ma 8, we first have solutions in P. As the first boundary point 0% of G is reached, 
we have a solution in G. By Lemma 19, a right neighborhood of or m belongs to _IV. 
By Lemma 18, as e, continues to increase from ~,~, the point b(c~) moves strictly 
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towards the lefthand side without retracing any previous locations. Thus all 
o~ > o~,~ belongs to N, and no two values of  o~ can solve the boundary value prob-  
lem (3.1), (3.2), (3.3) for the same b. 

The desired claim (that all members of  G kJ N are strictly admissible), al- 
though valid, is by no means easy to verify. 

We introduce the function 

O(r) = --ru'(r)/u(r), r E [a, b), (4.9) 

for a solution u E G k) N. 

Lemma 20. The function 0 is continuous in [a, b) ,  O(a) = 0 and lim O(r) = ~ .  
r-+ b 

Proof .  The last assertion for the case b = cx~ is the only non-trivial one. By 
Lemma 7, --ru'(r)/u(r) > kr for large r. The conclusion then follows. [ ]  

We draw a horizontal line of height fl ~ 0 above the r-axis. I t  can interact  
with the graph of 0 in any one of  the ways depicted in Figures 2-4. 

a b a b 

0/. 

a b 
Fig. 2 Fig. 3 Fig. 4 

With the given/3, we define the function 

va(r) = ru'(r) + flu(r), rE [a, b]. (4.10) 

The next lemma relates the properties of  v to the way 0 interacts with the hori- 
zontal line. We omit the simple proof. The last assertion is nothing more than the 
elementary Inverse Function theorem. 

Lemma 21. v(r) = ( > ,  < ) 0  / f  and only i f  0 intersects (is below, is above) the 
straight line at r. 

v is tangent to the r-axis at r i f  and only i f  0 is tangent to the line at r. 

The smallest zero o f  v (the first intersection point o f  O with the straight line), 
denoted by O = ea is a non-decreasing function of  fl. I f  0'(0~) =~ O, then the func- 
tion ~ is continuous at ft. 

It is easy to verify that v satisfies the differential equation 

v" + m v '  + (pp- i  _ 1) v = --2(u p -  u) + f l (p - -  1) u p . 
r 

(4.11) 
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Let us define 

4~(u) = --2(u p - -  u) + fl(p - -  1) u p. (4.12) 

The right-hand side of (4.11) is then the following composite function 

~(r )  = qb(u(r)). 

Lemma 22. For any /3 >= O, there exists a unique point ~ = g0 E [a, b) such 
that 

q)(r) < 0 for  r < a and ~ ( r )  > 0 for  r > ~. (4.13) 

The point ~r is a continuous non-decreasing function of/3. 

Proof. If  /3 (p- -  1 ) - - 2 > ~ 0 ,  then a : a .  If  /3 (p- -  1 ) - - 2 < 0 ,  4~(u) is a 
concave function of u. It therefore has exactly one zero Uo distinct from 0. Then g 
is the unique (since u is strictly decreasing) point for which u(g) : Uo in case 
Uo < o~ and is a otherwise. The continuity of  g follows from the continuity of Uo 
on/3 and the continuity of the inverse of u. Finally, the monotonicity of g follows 
from the positivity of  the term containing/3 in (4.12.) [ ]  

Let us follow the movement of ~ and a as/3 increases. For /3 : 0, p ---- 0 and 
a > 0. Thus at this starting moment, the point r is positioned to the left of the 
point tr. As we increase fl, ~ moves to the right while a moves to the left. For  fl 
large enough, ~ will be very close to b while g will be very close to a. Thus a switch- 
ing of the positions of Q and a is bound to occur. If it is not for the possibility of a 
discontinuous jump of 0, we can conclude at once that for some suitable value of/3, 
the two points ~ and tr meet head-on. Nevertheless, this assertion is still true. 

Lemma 23. There exists a /30 > 0 at which ~ ---- o. 

Proof. We need to affirm the impossibility of a discontinuity of r (by Lemma 21, 
we have only to show that 0'(r =4= 0) before the meeting of the points takes place. 
Suppose, then, /3 > 0 is such that ca ~ %. By the definition of a, ~( r )  =< 0 for 
r ~ aa. In particular, q~( r )~  0 in the interval [a, r Hence, in this interval, 
v is non-negative and satisfies the differential inequality 

v'" + my" + (pu p-I -- 1) v ~ O. (4.14) 
r 

By Lemma 5, v'(~a) @ 0. This is equivalent, by Lemma 21, so the fact 0'(Oa) =4= 0, 
as desired. ['7 

What do 0 and v and their properties have to do with our goal ? We answer 
this question with the following lemma. 

Lemma 24. I f  0 intersects the straight line 0 : flo exactly once, then the cor- 
responding u, or more precisely, the corresponding (o~, m) is strictly admissible. 
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Proof. The hypotheses imply that v-----vao has exactly one zero in (a, b). 
Note that in case b 4= 0% v(b) = bou'(b) < 0. Thus v has exactly one zero in [a, hi. 
In (a, ~), v is positive and satisfies inequality (4.14), while w satisfies the equation 
(4.2). At a, 

v'(a) = (1 + flo) u'(a) q-/3oau"(a) =/3oau"(a) <~ O, 

so that the comparison conditions for the initial point is verified. By Lemrna 1, 
v oscillates faster than w, so that ~, the first zero of v is less than v, the first zero of  
w. In the interval (v, b), v is negative and satisfies the reverse differential inequality 

m 
v" -Jr- ~ Jr- (pu t'-I 1) V > 0. (4.15) 

r 

Thus v again oscillates faster than w in (v, b). By assumption v has no more zeros 
beyond v, so w cannot have any zero beyond ~ either. In case b <~ co, we conclude 
that w(b) 4= O, and so (o~, m) is strictly admissible. When b = co, using Lemma 3, 
we see that the disconjugacy interval for (4.2) is a proper superset of  (r, b). By 
Lemma 6, w is thus unbounded, and (or m) is strictly admissible. [ ]  

Our next lemma tells us that we can even start out with less and yet end up 
with more than we expect. 

Lemma 25. Let ~ be the only point in (a, b) at which u(~) ----- 1. I f  O(r) >= t3o 
for all r E [~, ~], then O'(r) > 0 for all r E [a, b). As a result the corresponding 
(o~, m) is strictly admissible. 

Proof. We first prove that O'(r) >= 0 in [~, b) in any case. Suppose this is not 
true. Then there exist local minima in (~, b), since lim O(r) = oo. We draw a 

r---~b 

horizontal line of height/3 to touch the lowest of  all such minima, say at the point 
c E (~, b). The corresponding va is then negative in (c, b) and has a double zero 
at r ---- c. In [~, b), q~(r) ~ 0, so v~ satisfies differential inequality (4.15). This 
contradicts Lemma 5. 

Together with the hypotheses, we now have O(r) >= flo for all r E [r b). As 
already established in the proof  of Lemma 23, O'(r )~  0 for r E [a, q]. Let us 
derive a contradiction by assuming that O'(r) < 0 for r > ~. Under this assump- 
tion, 0 has local minima in (Q, b). Since O(r) >= t3o in (r, b), such minima have height 
above/3o. Let us raise the horizontal line f rom height 13o to a height fl to touch 
the smallest of these local minima, say at a point c > 9. Then vp is negative in 
(e, b), and has a double zero at c. Since fl ~/30,  Ca ~ %, implying that q~(c) => O. 
Again this contradicts Lemma 5. [ ]  

For  convenience, we say that the point (0~, m) is normal if the hypotheses o f  
Lemma 25 is satisfied. In particular, if 0 is monotone, or alternatively if 0' ~ 0, 
then (o~, m) is normal. Such a 0 must in fact be strictly montone. An important 
corollary of Lemma 25 is that normality is "contagious". 
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Lemma 26. Suppose that (~, m) E G kJ N is normal. There exists a neighborhood 
o f  (-~, m) within which all members o f  G kJ N are normal. 

On the other hand, any limit point o f  a set o f  normal points is normal. 

Proof. Let ~ = ~(~). Pick a point ~1 E (if, b(~)). We first find a neighborhood 
of  ~ ,  ~ )  small enough that for all its members (o~, m), ~e(~) < ~ /<  b(00" This is 
possible because of  the continuity of ~e and b on o~. By Lemma 25, O'(r, ~) > 0 
for all r E [a, ~]. The continuity of 0 on r, ~, and m implies that given any r in 
this interval, there exists a neighborhood of r and a neighborhood of (~, ~ )  such 
that O'(r, ~, m) > 0 for all r and (o~, m) in these neighborhoods. A compactness 
argument gives a neighborhood of (o~, m) in which 0 ' >  0 for all rE [~:, 71]. 
By Lemma 25, all members of G W N in this neighborhood must be normal. 

For any sequence of normal points, 0' > 0 for all r E [a, b). After taking 
limit, 0' ~ 0 for each point in the domain of the limit function. Thus the limit 
point must be normal. [ ]  

Ths lemma has some useful repercussions. The first is the connectedness 
property of sets of normal points. 

Lemma 27. Let C be a connected subset o f  G ~J N. I f  one o f  its members is 
normal, then all it members are normal. 

Proof. The set of normal points in C is both relatively open and relatively 
closed in GkTN. [ ]  

Lemma 28. We f i x  an m. I f ~  is known to be normal, then there exists an 0% ~ 
such that ~o E Gin, (O~o, oo) C Nm, and all o~ ~: O~o are normal. For some e ~ O, 
the interval (o~ o -- e, O~o) is disjoint from G m kJ Nm. 

Proof. Let C be the largest connected component of G m k.J N m containing E. 
Since C is a closed set, it has a least element ~o- By Lemma 27, all members of C, 
in particular O~o, are normal. By Lemma 24, each member of C, in particular 0~o, 
is strictly admissible, and so by Lemma 19, a right neighborhood of O~o belongs to 
N. By Lemma 18, the point b(o0 is decreasing in or Thus as we increase o~ from o%, 
we remain in N. It follows that (O~o, oo) C N. The last assertion in the lemma is a 
consequence of  the fact that a member of a connected component cannot be a 
limit point of  other components. [ ]  

As required in the hypotheses of Lemma 27, we need to get hold of some nor- 
mal points before we can start things rolling. In fact, we have many normal 
points. 

Lemma 29. For any m E [0, 1], all members o f  G L/ N are normal. 
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Proof. In the interval [a, ~], 

( - - ru ' ( r ) ) '  = - - r u " ( r )  - -  u'(r) = --(1 - -  m ) u ' ( r )  + r(uP(r) - -  u(r)) ~ O. (4.16) 

Thus - - ru ' ( r )  is non-decreasing in r in [a, ~]. Since u is decreasing, the quotient 
O(r) = - - ru ' ( r ) /u (r )  is non-decreasing in [a, ~]. Thus the solution is normal.  [ ]  

This lemma yields our main result for the values m 6  [0, 1]. McLEoD & 
SERRIN of course have obtained this part  for the case [a, b) ---- [0, ~ )  using a differ- 
ent method. We are now ready to make some progress concerning other values 
of  m. 

Lemma 30. I f  all  po in ts  m E [0, ~ )  are regular, then our main  result  holds, 
namely ,  that all the boundary value problems we are interested in have unique solu- 
tions. 

Proof.  By Lemma 16, if all m are regular, the curve of the function 0~(m) is 
continuous on [0, ~ ) .  The set G ~J N coincides with the set {(or m) : 0~ ~ ~(m)} 
of  points on or above the curve. This is a large, connected piece. By Lemmas 27 
and 29, every member  of  this set is normal. By Lemma 24, they are all strictly 
admissible, and our main result follows. [ ]  

To establish our main result, we assume that the hypothesis of  this lemma is 
not true and derive a contradiction. Thus let us suppose that there is a largest 
connected interval of  regularity [0, ~) ,  ~ < ~ .  

Let us first dispose of the possibility that ~ is regular. Suppose it is. Then by 
Lemma 16, the curve of 0~(m) is continuous up to the endpoint ~ .  There exists a 
sequence of irregular points mi > m (i = 1, 2, .), such that lim m i = ~ .  For  

i ~ o o  

each i, let off be the smallest member  of  G on the line m ~ mi. Just as in the 
proof  of  Lemma 16, it can be shown that the sequence 0r cannot has a subsequence 
converging to a point in G or N. It  follows that lim c~i = e~(~). Some of these 

i -~  oo 

o~ i must enter into the normality neighborhood of (~(~), ~ )  constructed in Lem- 
ma 16. Such ~i are therefore normal. By Lemma 28, all o~ ~ 0r on the line 
m = mi must be in N. This contradicts the irregularity of  m i with o~ being the 
smallest but not the unique member  of  G. It  remains to show that the other possi- 
bility, that ~ is irregular, is also void. It  takes several more lemmas. First of  all, 
let us see how the sets G,,, Nm, and Pm look like on the line L : m = ~ .  The curve 
of ~(m) for m < ~ must be continuous up to the endpoint ~ ,  lest by Lemma 16, 
the limit point set of  the curve on L is a non-degenerate closed interval, a possibili- 
ty excluded by Lemma 18. Let So = lira_ offm). By Lemma 26, O~o must be normal 

I , l ~ n l  

and, since it belongs to G, must coincide with the 0r found in Lemma 28. Hence 
the part  of  L above o~o belongs to N7~. The set under the graph of o~(m), m < ~ ,  
shown as the shaded area in Figure 5, belongs to G. The part  of L below Or 
shown as the dotted line in the figure, cannot contain any members of  the open 
set N, lest every neighborhood of such a member  will intrude into the shaded area 
and therefore cannot be made up of points in N alone. 
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Fig. 5 

Lemma 31. Let O~o be the largest member o f  GT, as described above, and ~1 
be the next member o f  G smaller than O~o. Let ~o denote the largest zero o f  the func- 
tion w(r, ~ ) .  Then for all o~ < Or and o~ ~ o~1, u(% ~) < u(% oq). 

Proof.  By Lemma 28, 0~o cannot  be a limit point  o f  smaller members  o f  G. 
Thus 0q exists. The existence o f  a largest zero o f  w (i.e., w is non-oscillatory near oo) 
follows f rom the fact that  w satisfies differential equation (4.2), which is o f  the 
form considered in Lemma 6. To simplify the notations, we use u to represent 
the solution corresponding to the parameter  or and u~ that  corresponding to ~ .  
Suppose for some ~ the conclusion of  the lemma is not  true; in other words, we 
have instead 

u(~0) ~ ua(w). (4.17) 

We claim that  the two solutions u and ut cannot  intersect at a point  in (% oo). 
The arguments  we use are similar to those in the p roo f  of  Lemma 19. Suppose the 
solutions do intersect, for  the first time at r = # > ~o. In view of  (4.17), u is 
below u~ in a right ne ighborhood of  the point /z .  Suppose the former catches up 
with the latter at some point  beyond/~. Let ~ be the next point  where the two 
solutions intersect again. In the interval [/z, r], u ~ u~ and the function z = 
u~ - -  u satisfies the differential equation 

("f- ) z " §  - 1 z ~ - O .  
r \ u l  -- u 

(4.18) 

Notice that  the coefficient in the last term is smaller than that  in equation (4.2) 
for  w(r, oq). Therefore, w oscillates more than z. Since z is zero at the endpoints 
of  [/~, ~,], w must  have at least one zero in the interval, contradicting the choice 
o f  ~p as the last zero of  w. Thus u must  remain below ul in ~ ,  oo). In this inter- 
val, the coefficient o f  the last term o f  (4.19) is smaller than that o f  (4.2). Hence 
the disconjugacy interval of  (4.19) is larger than that o f  (4.2), which is (% oo). 
Since z has a zero within the disconjugacy interval, by Lemma 6, z is unbounded,  
contradicting the fact that  u is being trapped between u I and the r-axis. 

Thus we have 

u(r) > ul(r), for all r ~> ~o. (4.19) 

In  the interval [% oo), the same function z as defined above satisfies (4.18), but  
this time the coefficient in the last term is larger than that in (4.2). Since z does 
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not  vanish in [% c~), the disconjugacy interval o f  (4.18), and hence also that  o f  the 
less oscillatory (4.2), is a proper  superset o f  [% oo). Hence, by L e m m a  6, 

l im w(r, s t )  = -4- oo.  (4.20) 

By Lemma 19, a right or  left ne ighborhood  of  c~ belongs to N, contradicting the 
fact that  no  point  below So can be in N. [ ]  

Lemma 32. The solutions Uo = u(r, Or and ut = u(r, oq) cannot intersect 
more than once. 

Proof.  The technique used in the p roo f  o f  Lemmas  19 and 31 applies. The 
funct ion z = Uo --  ul satisfies the differential equation 

, , m ,  ) 
z q- r -k 1 z = O ,  (4.21) 

\Uo - -  ut 

which oscillates faster than (3.1) for  u(r, So) but  slower than (4.2) for  w(r, So), 
as long as Uo > u~. Thus  z must  have a zero in [a, oo), after the only zero 3 o f  
w(r, s0). Suppose z has more  than one zero, contrary to the conclusion of  the 
Lemma.  Then after the second zero, 32, (4.21) again oscillates more  slowly than the 
equation for  w. Since the disconjugacy interval of  the equation for w must  be at 
least [3, oo), that  o f  the "less oscil latory" (4.21) must  b~ at least [32, c~). By Lem- 
ma  6, z is therefore unbounded,  an obvious contradiction.  [ ]  

Lemma 33. For all or E (s l ,  So), the solutions u = u(r, s )  and ut = u(r, oq) 
cannot intersect more than once in [a, ~p]. 

Proof. As we vary the parameter  s f rom So towards s~, we have a cont inuous  
deformation o f  the solution curve u over the closed interval [a, ~p]. At  the left 
endpoint  r = a, the curve u stays clear above that  o f  ut, while at the right end- 
point  r - -  ~, the former  stays clear below the latter. We start out  with one single 
point  of  intersection, when s = 0%. The number  can increase only if at some point  
o~, the curve o f  u bulges up or down somewhere to touch the curve o f  ut. But 
this is impossible because the function z = ul - -  u satisfies a " l inear"  second-or-  
der differential equation, namel,y (4.19), and so cannot  have a double zero. [ ]  

Lemma 34. The point ( s l ,  ~ )  is admissible. 

Proof .  Since ~p has been chosen to be the last zero o f  w(r, s l ) ,  we need to show 
that  w has no other zeros before W, in order to satisfy the definition of  admissi- 
bility. 

Let us first show that  there cannot  be more  than one zero before ~p. Suppose 
this is no t  the case. Then for  a point /z  between the first and second zeros, w ~ )  = 
~u(u)/~s < O. Likewise for  a point  �9 between the second and third (which may  
be ~0) zeros w(~) = ~uO,)/6s > O. We can choose an 0~ > s l  sufficiently close to 
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oq, that  u ( /~)>  ul(/z) but  u(~,)< u~(~). By the Intermediate  Value Theorem,  
u must  intersect ul at  least once in (a, #)  and another  t ime in (~, ~), contradict ing 
L e m m a  33. 

Next  we show that  w cannot  have exactly one zero before ~p. Suppose it does;  
then for  c between the two zeros of  w, w(c) < 0. Hence,  for  o~ < o% but  close to 
O~o, u(c) > ul(c). I t  follows that  u must  intersect u~ at  least twice, once in (a, c) 
and once in (c, ~0). A continuity a rgument  as in the p roo f  of  L e m m a  33 shows that  
all solutions u with or < ~ must  intersect ua at  least twice. But this contradicts  
the obvious fact that  the solution u(r, 1 ) ~  1 intersects u~ only once. [ ]  

The  last l emma we need turns out  to be the most  surprising. 

Lemma  35. Admissibility implies normality. 

Proof .  Suppose the point  in question is not  normal .  Then the graph of  0 inter- 
sects the line at height flo more  than once in [~, ~], as shown in Figure 6. 

F,g. 6 

Let  ~ be the next point  of  intersection after r Using L e m m a  5 as in the p r o o f  
of  L e m m a  25, we see that  0 cannot  be tangent  to the straight line at  ~. We now 
lower the horizontal  line to a height fl~ when it touches the first point  2 to the right 
o f  ~" at which 0'(2) = 0. Our  useful L e m m a  5 shows that  ira, > 2. In the interval 
[~', 2] the function 0 is strictly monotone ,  so that  the inverse function is con- 
t inuous.  In other  words, the point  o f  intersection of  the graph with the line 0 = / 3  
is a cont inuous  function of/3. As t3 varies f rom t31 to t3o a switching of  posit ions of  
the poin t  of  intersection with the curve in [~, 2] and the point  tr has taken place. 
Thus,  by continuity,  there is a t32 at which a coincides with the point  o f  intersection 
in [~', 2]. Let  us focus on the line 0 =-/32. In the interval (r tr), ~ ( r )  < 0 but  v is 
negative so tha t  equat ion (4.11) oscillates less than equat ion (4.2). This imply that  
w must  have a zero in between the two zeros, ~ and (r, o f  v. Since 0 tend to cx~ near  
b, the g raph  of  0 must  intersect the line one more  t ime after (r, say a t  ~. In the inter- 
val (tr, x), ~ ( r ) >  0 but  v is positive so that  again (4.11) oscillates less than 
equat ion (4.2). As a result, w must  have another  zero between the two zeros, 
tr and z of  v. This contradicts  the admissibili ty of  the solution. [ ]  

We can now complete  the p roo f  of  our main theorem by observing that  Lem-  
mas  34 and 35 imply that  the point  oq is normal .  But by L e m m a  28, the point  
0% > 0q will be in N~, obviously contradict ing the definition of  0~o. 
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The fact that there is a critical exponent for boundary value problems on 
finite intervals [0, b] is a reminder of  the presence of  the singular term mu' /r  in 
the differential equation. The singularity is, however, more benign than it first 
appears. For any fixed m, the solution u still depends continuously on the para-  
meters ~, at least in any compact  subinterval of  [0, b). F rom now on we fixed an 
m that is less than the critical exponent, so we no longer think of u as depending 
on m. Instead, we affix the initial point a, at which (3.5)is imposed, to the parameter  
list. Now u = u(r, 0r a) is continuous in a at each fixed point on the r-axis except 
the origin. 

Instead of considering the (or m) plane as before, we now have the (0~, a) 
quadrant  (0, oo) • [0, oo). We define the same sets N, G, and P as before but with 
a in place of  m. The two sets N and P are still open. Since for each a > 0, uni- 
queness holds for all the boundary value problems in question, each vertical line 
through an a > 0 contains exactly one point (~(a), a) in G. The function at(a) 
gives a continuous curve that must converge to a single limit point or on the line 
a = 0. All the lemmas on admissibility and normality holds with m replaced by a. 
Thus all the arguments in the last section can be repeated. In particular, the point 
~x(0) is normal since it is the limit point of  the curve ~(a), which consists of  normal 
points. The half line (0if0), oo) coincides with N. We must verify that the other half 
line (0, o~(0)) cannot contain members of  G. That  is done by use of  lemmas ana- 
logous to Lemmas 31 through 35. 

We summarize our results in one main theorem. 

Theorem. Under any one o f  the following conditions: 

1. a > 0 ,  m ~ 0 ,  p > l ,  a < b ~ o o ,  

2. a = 0 ,  0 ~ m ~ = l ,  p > l ,  0 < b ~ e o ,  

m + 3  
3. a = 0 ,  m > l ,  l < p <  0 < b < o o ,  

m - - l '  

here is exactly one positive solution to the boundary value problem 

u"(r)  + m  u'(r) + u p - -  u = O, u ( r ) >  O, r C ( a , b ) ,  (5.1) 
r 

u ' ( a ) =  O, (5.2) 

u(b) = 0 ( 5 . 3 )  

o r  

lira u(x) = 0 i f  b = co.  (5.4) 
r---~ o o  

For a f i x e d  endpoint a, ~ = u(a), the value o f  the solution at a, is a strictly 
decreasing function o f  the other endpoint b. Let  o~o be the initial height o f  the solu- 
tion o f  the boundary value problem when b = oo. No solutions with initial height 
below o~o can intersect the r-axis. 
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Equivalently, under one o f  the three conditions listed above, there exists a 
unique positive radially symmetric solution o f  the reaction-diffusion equation 

Au  q- u v - u : O, a <  lxl < b, (5.5) 

with the Neumann boundary condition at Ix I : a i f  a ~= O, and the Dirichlet 
boundary condition at I x I : b (or u(x) --> oo as Ix I ~ co i f  b : oo). 

Although we have made no attempt to seek the most general nonlinearity that 
our method can handle, it is obvious that the concavity of the function u v --  u 
plays a crucial part. It is interesting to see if that alone is sufficient. 
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