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Abstract

We establish the uniqueness of the positive, radially symmetric solution to
the differential equation Adu — u+ #? =0 (with p> 1) in a bounded or
unbounded annular region in R” for all » =1, with the Neumann boundary
condition on the inner ball and the Dirichlet boundary condition on the outer
ball (to be interpreted as decaying to zero in the case of an unbounded region).
The regions we are interested in include, in particular, the cases of a ball, the
exterior of a ball, and the whole space. For p=3 and »n =3, this a well-
known result of CorFFMAN, which was later extended by McLeop & SERRIN to
general n and all values of p below a certain bound depending on »n. Our result
shows that such a bound on p is not needed. The basic approach used in this work
is that of CorFFMAN, but several of the principal steps in the proof are carried
out with the help of Sturm’s oscillation theory for linear second-order differential
equations. Elementary topological arguments are widely used in the study.

1. Introduction

The interesting semilinear elliptic differential equation
Au+ fu) =0, xcR, (1.1)

arises in many areas of applied mathematics including astrophysics, fluid mechanics,
and population genetics. If a solution exists in the whole space R", satisfying

wx)~>0 as |x|—>oo, (1.2)

it is called a ground state. One natural question to ask is whether the ground
state is unique or not. This is an extremely difficult problem to tackle in general.
The classical work of Gipas, NI, & NIRENBERG [4, 5] tells us that with some mild
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conditions on f, all ground states are radially symmetric. This allows us to shift
our study to the ordinary differential equation

n—1

uII +

W+ f@w=0 r>0 (1.3)

r
w0)=0, u(r)—-0 as x—>o0, (1.4)

Still this is a sufficiently difficult problem that few general results are known.
One exception is the recent result of PELETIER & SERRIN [13], which provides
uniqueness for those f that satisfy a starlike condition for large » and are essentially
more negative than positive for small «. See also [6] for an improvement on this
result,

CorrMAN [3] established uniqueness for the ground state of the equation
with the particular choice of » =3 and

f=u®—u. (1.5)

The result for the problem on the whole of R is deduced from that of the corre-

sponding problem on a finite interval [0, #]. The main part of the proof is a study

of the zeros of the function

du(x)
o ’

where u is considered as a function of both r and the parameter &« = u(0). Very
clever identities are used to show that w(x) changes sign exactly once in [0, b].
The required conclusion then follows. COFFMAN attributed the approach, especially
the use of special identities, to KOLODNER [8]. KOLODNER was concerned with a
more general nonlinear eigenvalue problem (rather than just the uniqueness of
the ground state) for some sublinear equation arising from the study of the rota-
tion of a heavy string. CoFFMAN remarked that the proof he gave in [3] did not
extend to other choices of # or other powers of u in f'since some of the clever identi-
ties no longer hold.
When f takes the more general form

f=uP—u, p>1, 1.7

there is the added complication of the non-existence of solutions if p exceeds or is
equal to the critical value (n + 2)/(n — 2); see, for instance, [1, 2].

Improving on CoFrmMaAN’s method, McLeoD & SERRIN [10] were able to estab-
lish a rather general result that includes CoFFMAN’S. In particular, for the special
f above, uniqueness holds for

p < oo 1=n=x2),

(1.6)

w(x) =

n
< <
p=-—sp (@2<n=9,

8
p<—’7 4<n<y.

Slightly sharper results are also available for p close to 1.
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In this paper the expected result for all values of p up to the critical exponent
is confirmed. In addition, we also study the ground state solutions for a ball, an
annulus, and the exterior of a ball. In the cases when the origin is not included,
uniqueness is established for all p> 0,

The approach used in this paper is basically the same as that of COFFMAN.
Instead of using KOLODNER-type identities we resort to STURM comparison tech-
niques in the oscillation theory of linear second-order differential equations. The
two methods are essentially equivalent, but the latter seems to make the proofs
more transparent. In the present case, the main difficulty lies in the choice of the
suitable comparison equation and in the proof that the equation has the correct
oscillatory behavior. See the survey paper [9] for a more detailed explanation of
our modification of CorFMAN’s method and its use to obtain earlier uniqueness
results.

For some recent success of STURM’s comparison technique in the study of
another property of the EMDEN-FOWLER equation, see [7].

In the spirit of COFFMAN’S paper, the result is presented only for the particular
choice of f given by (1.7). We refrain from stating the theorem for more general
f (although it appears not hard to do so), in order to keep the ideas of the proof
clear.

The related results of NI [11] and N1 & NussBauM [12] should be mentioned.
They established uniqueness for the Dirichlet problem on a finite interval [a, &},
0 << a<< b << oo, for a class of f including the choice f= u”. They also showed
the possibility of non-uniqueness under perturbations of f by a different power
of u.

The outline of the paper is as follows. In Section 2, the STURM comparison
theorem and related lemmas that are needed in the sequel are stated.

In the next two sections we assume that the interval in question does not con-
tain the origin. In Section 3, we give a first attempt to classify the solutions, which
are regarded as continuous functions of two parameters, the initial height and the
dimension of R". Simple topological arguments play a role. In Section 4, we
introduce the functions w and 0 = —ru'/u, which are used to prove the main
theorem.

In the last section we complete our study by letting the left endpoint of our
interval approach the origin.

The whole proof is very involved, and I do not deny that a shorter proof might
be found.

Acknowledgment. 1 thank Professor JaMes B. SERRIN and Professor KeviNn B. McLEoD
for many useful discussions on the subject.

2. Some Sturmian Theory

The form of Sturm’s comparison theorem found in most textbooks is not
strong enough for our purpose. The following formulation can be found, for in-
stance, on p. 229 in INCE’s classical book, Ordinary Differential Equations, Dover,
1956. By a solution we always mean a nontrivial solution.
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Lemma 1 (Sturm). U and V are, respectively, solutions of the following equa-
tions:

U'(x) +fx) U(x) +gx) Ux) =0, x€(ab), @1
V'(x) +f(x) V(%) + Gx) V(x) =0, x€(a,b), (2.2)

where f, g, and G are continuous (actually, only local integrability is needed). Let
(1, v) be a subinterval in which V(x) &0 and U(x) =0, and in which the com-
parison condition

G(x) = g(x) for all x€ (u,») (2.3)

holds. Suppose further that

V(W) _ U'(w)
V() = Up) @9
Then
Ve U (%) Jor all x€ (u,7). (2.5)

V(ix) = U(x)
Equality in (2.5) can occur only if U=V in [u, x]. If either u or v is a zero of U
or V, then the fractions in (2.4) and (2.5) are interpreted as co.

From this lemma follows the usual assertion that between any two consecutive
zero of U(x), there must be at least one zero of ¥(x). In fact, ¥(x) may have more
than one zeros in that interval. It is only natural to say that V(x) oscillates faster
than U(x).

Sometimes it is more convenient to replace the comparison conditions (2.1),
(2.2) and (2.3) by the equivalent conditions

U'x) - Ux)+hx) U =0, Ux)>0 in (u,»), (2.1)
V') + ) V() + A V(x) <0, V(x)>0 in (u,7). 2.2)

If either U or V¥ is negative, the corresponding inequality has to be reversed.
A simple consequence of Sturm’s theorem is the following.

Lemma 2.
(i) If in addition to all the hypotheses of Lemma I, we have

0< M) = U, (2.6)
then

V(x) < U(x) for all x€ (u,7). 2.7

(i) If in addition to all the hypotheses of Lemma 2, lim V(x) = + oo, then
lim U(x) = -+ oo. )
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Proof. The conclusion follows from an integration of (2.5). [J

Suppose that equation (2.1) has solutions that do not vanish in a neighborhood
of the point b. The largest neighborhood of b, (c, b), on which there exists a solu-
tion of (2.1) without zeros is called the disconjugacy neighborhood of b, or, in
short, the disconjugacy interval of (2.1). It follows from Sturm’s theorem that no
non-trivial solution can have more than one zero in (¢, ). On the other hand,
unless ¢ = @, any solution of (2.1) that has a zero before ¢ must have another
zero in (c, b). The following is another corollary of Sturm’s theorem.

Lemma 3. Consider the same two equations, (2.1) and (2.2), satisfying the com-
parison condition (2.3). In addition, we assume that U == V in any neighborhood
of b. If there exists a solution V of (2.2) with a largest zero at the point g, then the
disconjugacy interval of (2.1) is a strict superset of (g, b).

We need another comparison lemma that handles equations with different
second terms. It is not usually included in the classical Sturm theory. It can be
proved easily using results from the theory of differential inequalities. See [9] for
the proof of a related result.

Lemma 4. Suppose instead of (2.2), V satisfies the differential equation
V7(x) + F(x) V'(x) + G(x) V(x) =0, x¢€(a,b), (2.8)
and the comparison condition
Fx)Zf(x)=0 for all xc(u,v). 2.9)
The conclusions of Lemma 1 or Lemma 2 still hold provided that either

Ux)=0 for all xc(u,») (2.10)
or
Vi(x)=0 for all xe (u,»). (2.11)

Proof. Let us assume that (2.10) holds; the proof for the case in which (2.11)
holds is similar. Define r(x) = U'(x)/U(x) = 0 and R(x) = V'(x)/V(x). They
satisfy

r'(x) = —(f(x) r(x) -+ glx) + r’(x)) = —(F) r(x) + Gx) + ri(x)),
and

R(x) = —(F(x) R(x) + G(x) + R*(x)).

We also have the initial comparison condition r(u) = R(x). From the theory
of differential inequalities, we can then conclude that r(x) = R(x) for all x in

(w»). O
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The next lemma, though not a direct consequence of Sturm’s theorem, is
definitely motivated by it. It is well known that if U is a solution of a second-order
ordinary differential equation such as (2.1), then at a zero of U, the derivative U’
cannot vanish. If z satisfies a second-order ordinary differential inequality in such
a way that z oscillates more than U, then intuition tells us that the tangent line
to the graph of z is being bent more strongly towards the x-axis than that of U.
Hence the derivative of z at a zero cannot vanish. A convenient reference for a proof
of this fact has not been found. Reproduced here is the short proof that was given
in [7].

Lemma 5. Suppose a function z(t) is positive (negative) in an interval (u,v),
either z(u) =0 or z(v) =0, and it satisfies the inequality

2O+ fO)Z@) + g) z2(1) = (2) 0, in (), (2.12)
where f and g are any continuous functions. Then z'(u) =0 (zZ(») == 0).

Proof. We give the proof only for the case z(#) = 0 and z(u) = 0; the other
cases can be proved similarly. We may assume without loss of generality that
Jf(x) = 0, since an equation of the more general form can be reduced to this parti-
cular case using a change of independent variable. Equation (2.12) now takes the
form

Z"+g(x)z=—P(x), x>0, (2.13)

where P(x) = 0. Let z,(x) and z,(x) be independent solutions of the homogeneous
equation associated with differential equation (2.13), satisfying the initial conditions

z (@) =0, Z;(,”) =1,
B =1, zju=0.

Suppose that the conclusion of the lemma is false, namely, that z'(x) = 0. By
the formula of variation of constants

z(x) = fx [2:(5) 2:(%) — z1(x) 25(5)] P(s) ds. (2.14)

Let A(s, x) = [2,(5) zo2(x) — z,(x) z,(s)]. At x =5, 0h(s, x)0x, being the Wron-
skian of z;(x) and z,(x), is —1. By continuity dA(s, x)/0x is therefore negative in
a neighborhood of (0,0). At x =, A(s,x) =0. Thus for x> s and x suffi-
ciently close to s, /(s) << 0. It then follows that the integrand in (2.14) is negative
for x > p but sufficiently close to u. This then implies that z(x) is negative, con-
tradicting our assumption that it is positive in (u,»). []

If the inequality sign in (2.12) is strict at the point x == g, then the conclusion
follows trivially from the facts that z has a minimum at u so that z"(u) =0,
contradicting (2.12). The proof for Lemma 5 is needed to handle the general case.
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Next are established some asymptotic properties of the solutions of the linear
equation

m

U”—i—?U’ﬁ—g(x) U=0, x>0, (2.15)

where m > 0 is a constant and g is continuous with lim g(x) = —2k2, for some
X=> 00

k> 0.

Lemma 6. Let (c, o0) be the disconjugacy interval of (2.15). Every solution of
(2.15) with a zero in (¢, o0) is unbounded.

Conversely, if the last zero of an unbounded solution of (2.15) is p, then o is an
interior point of the disconjugacy interval. In the other words, o > c.

Proof. We have to show that equation (2.15) is non-oscillatory, so that the dis-
conjugacy interval is well defined. Let x4 be so large that g(x) < —k2%, and
mfx = 2k for x¢€ [u,o0). We compare (2.15) with the equation

V"' 2kV — KBV =0, x€[u,0), (2.16)

using Lemma 4 in the form of Lemma 2. We can conclude that for the solutions
U, and ¥, of (2.15) and (2.16), respectively, that satisfy the initial conditions

Uw) =) =1, U = Vi) =1, (2.17
the inequality
Vi = Ui, x>u, (2.18)

holds. Since V; is non-oscillatory and unbounded, so is U,. If all solutions of
(2.15) are unbounded, then our lemma is true. Thus suppose there is a bounded
solution U,. Then U, and U, are linearly independent, and all other solutions are
of the form U = ¢, U; -+ ¢, U, , with constants ¢, and c,. It follows that any solu-
tion that is not a multiple of U, is unbounded. Let us show that U, cannot have
a zero in the disconjugacy interval, from which the assertion of the lemma follows.
Suppose that U, does have a zero at g € (c,0). Let U be the solution of (2.15)
that satisfies the initial conditions, U(p + 1) = U,{p + 1) and U’(¢) = U;(p) —¢
with &> 0. By taking ¢ small enough, we ensure that U has a zero so close to g
that it falls in the disconjugacy interval. Thus U cannot have another zero beyond
¢ + 1. In other words, U remains positive in [¢ + 1,0). By Lemma 2, U(x) =
U (x), for x = ¢ + 1. It follows that U is bounded, but this contradicts the fact
that U is not a multiple of U,. [J

Lemma 7. If U is a solution of (2.15) such that U’(x) < 0 for all x sufficiently
large, then —U’'(x)/U(x) = k for all x sufficiently large.

Proof. Let R(x) = —U’(x)/U(x). Tt satisfies the Riccati equation
R =R — =R+ g() < R + g(®). (2.16)
If R(x)< k for some large x, for which g(x) is close to its limit —2k?, then R’

will remain strictly negative, eventually causing R to change sign. This contradic-
tion proves the lemma. []
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3. Classification of Solutions

In this section and the next, we study our differential equation in an interval
not containing the origin, in order to avoid having a singular term in the equation.
Let p> 1 and m = 0 be any constants, and (a, ) be a bounded or unbounded
open subinterval of [0, oc), with @ > 0. We are concerned with the following
boundary value problems:

W) + i,fu'(r) L uw—u=0, ur)>0, rc(ab), G.1)
W(a) =0, (3.2)
ub) =0 3.3)
or
lim u(x) =0 if b= oco. (3.4)

These come from corresponding boundary value problems for the semilinear
equation (1.1) on an annulus @ < |x| < b, with the Neumann condition on the
ball |x| = a and the Dirichlet condition on the outer ball |x| = b. The constant
m is one less than the dimension # of the Euclidean space R" in which (1.1) holds.
In this section, we take m to be any positive constant, not necessarily integral. Our
main theorem asserts the uniqueness of the solution to any of the above boundary
value problems. Since the question of existence has been answered in the affirma-
tive, a unique solution always exists.

In this section we discuss the classification of solutions of (3.1). Some of the
lemmas stated here are well known, but we prefer to give complete proofs. The
proof of the main theorem is complicated enough that it is perhaps better to make
the paper as self-contained as possible. Trying to adopt notations from other
sources would only add to the confusion.

Following KoLODNER and COFFMAN, instead of considering directly the bound-
ary value problems, we look at u as the solution of an initial value problem, (3.1),
together with the initial conditions

wa)=x>0, u(a)=0. (3.5)

The solution # now depends on « as a parameter. In addition, # depends on the
constant m. Besides, we think of u = u(r, x, m) as defined for all values of # > 0
extending beyond the interval [a, b].

In other words, we are shooting out a solution u(r, &, m) from the point r =
and hope that with the correct choice of the initial height «, the solution will land
on the right spot r = b. Rather than regarding b to be a preassigned fixed point,
we let b(xx, m) be the first point where u(r, «, m) intersects the r-axis, and study the
dependence of b on « and m. The point b is not always defined. This happens, for
instance, if for a fixed m, « is small enough; the solution u(r, x, m) will not cross
the r-axis.
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We divide the set of solutions into three subsets:

1. Solutions that eventually takes on some negative values. These are the ones
for which b(«, m) are defined. Let N be the set of (x, m) for which the corre-
sponding solutions belong to this class.

2. Solutions that remain positive and satisfy rlg{.lo u(ry = 0. Let G (stands for

“ground state’) be the set of (x, m) for which the corresponding solutions
belong to this class.

3. Solutions that remain non-negative but do not belong to case 2. Let P (stands
for “positive’”) be the corresponding set of (x, m). The term “‘positive” is
justified because, as Lemma 5 shows, no solutions of an ordinary differential
equation can be tangent to the r-aixs.

The sets N, G, and P partition the “quadrant” (0, c0)x[0,00) into three
mutually disjoint subsets. Sometimes, for convenience, we say that a solution
belongs to N, G, or P when we should have said that the corresponding (e, m)
belongs to the appropriate set. Also whenever there is no danger of confusion, we
suppress the explicit mention of the variables x and m in functions such as « and b.

From the classical theory of ordinary differential equations, we know that,
in any compact r-interval, solutions of (3.1)—(3.5) depend continuously on the
parameters « and m.

As is well known, we can obtain a lot of information about the solutions from
the Energy or Lyapunov function

WAr)  wPTNr)  uR(r)
E) == +3T1 2

(3.6)

The inequality E’(r) = —mu'?/r =< 0 implies that F decreases to a finite constant
E(oo) as r—oco. It follows that all solutions must be bounded.

p+1 2
Lemma 8. If E(a)=p T 1—7§ 0, then (x,m)E€ P for any m. In other
1\ -1
words, (0,y)x[0,00) C P, where y = (%_) .

Proof. Since E is decreasing, E(r*) =< E(a) = 0, for r > a. The solution can-
not cut the r-axis; otherwise at a point of intersection E(r) = «’?/2 > 0 contra-
dicting our previous assertion. []

Lemma 9. If u€ P, then it is oscillatory about the value 1 in the following
sense. The sets of its local maxima {a = ro <r, < ...} and local minima {r, <
r3 < ...} interlace and, unless u= 1,

uro) > ul(ry) > u(rg) > ... > 1 3.7
and
w(r) < u(ry) << ulrs) < ...< 1. (3.8)
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Proof. We claim that u cannot be monotone. Suppose this is not true. We know
that u has a local maximum at r = a, because u’’(@) << 0. Thus u can only be
monotone decreasing. Let the limit lim u(x) be denoted by u(cc). We have

r—>o0

lim «”(r) = ILIEO (—— -’; u — u? + u) = —u?(c0) -+ u(c0).

This is incompatible with the monotonicity of # unless the limit is zero, which
implies that u(co) = 1. Let v = u — 1 > 0. It satisfies the differential equation.

17 m ’ up_u
v —{—TU +( )v=0.

u—1

Note that the fraction inside the parentheses is larger than or equal to p — 1
(for u > 1). We use Sturm’s comparison theorem to conclude that v oscillates
faster than the solutions of

U"+1”r—U'+(p—1)U=0.

It is well known that all solutions U of this differential equation are oscillatory,
but this contradicts the fact that the more oscillatory v remains positive for all r.

Hence we know that u has at least one local minimum. Let r, be the first
of them. We cannot have u(r,) = 1, for then E(r,) attains the lowest possiblie
value that E can take. This means that E(r) = E(r,) for all r> r;, and we
have the case =1 In all other cases, since r, is a local minimum, «'(r;) =0
and #”(ry) = u(ry) — u"(ry) = 0. This can hold only if u(r,) << 1. It follows
that E(ry) << 0. The same arguments as above show that u cannot be monotone
increasing in (r,, o0). Repeating the arguments then gives two infinite sequences
of critical points as asserted. The strict inequalities in (3.7) and (3.8) are due to
the fact that E’ = —u’?/2 cannot vanish identically in any subinterval of

(a,0). O

Lemma 9 has the following corollary

Lemma 10. Suppose a solution does not belong to N. Then it belongs to G if and
only if E(oco) =0, and it belongs to P if and only if E(co) << 0.

Proof. If uc€ G, then 11)1210 u(r) = lin}o u'(r) = 0. Thus E(co) = 0. On the

other hand, if € P, then E(r;) << 0 because u(r,)<<1. Thus E(co) << E(r,)
<0. O

Lemma 11. Let u belong to either N or G. Then u'(r) << 0 in (ab(x, m)] or
(a, 00), respectively.

Proof. Suppose u(¢) vanishes in an interior point ¢ € (a, ). Then u(c) +1,
lest u=1. If u(c) << 1, then E(c) << 0, contradicting the assumption that u
belongs to N/ G. Finally, if u(c) > 1, then u”(c) << 0, so that c is a local maxi-
mum. Between the two local maxima r = a and c there must be a local minimum,
at which «” = 0, and this reduces to the previous case.
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The derivative #'(b) cannot vanish at the endpoint b, because this contradicts
the uniqueness of initial value problem for (3.1); the trivial solution is the only
solution of (3.1) that can vanish at b with a double zero. []

Lemma 12, For (x,m)€ N, b(x, m) is a continuous function of « and m.

Proof. This is a simple consequence of the fact that a solution # can never be
tangent to the r-axis at a zero. []

Lemma 13, The sets N and P are open subsets of (0, 00)x [0, c0).

Proof. Let (o, m,) be a point in N. The corresponding solution u takes a nega-
tive value at some point r = ¢. By continuity, there is a neighborhood of (a,, m,)
for which u(c, x, m) << 0 for each (x, m) in the neighborhood. Thus all such solu-
tions belong to N. Let (ag, mo) be a point in P. Then E(c) << 0 for some r = c.
Continuity again yields a neighborhood for which E(c) << 0 for each of the solu-
tions belonging to the neighborhood. It follows that E(co) << E(c) << 0 for each
of these solutions, and so they must all belong to P. []

An immediate consequence of this lemma is that for each fixed m, the sets
N,, and P, (the intersections of N and P with the straight line (., m)) are open
subsets of (0, o0). Each is therefore a union of countably many open intervals.
The boundary points of N or P belong to G. The following lemma is a straight-
forward consequence of Lemmas 8 and 13.

Lemma 14. For a fixed m, the boundary value problem (3.1)-(3.4) has a unique
solution if and only if the sets P,, and N,, are both open intervals of the form (0, »,,)
and (»,,, 00), respectively, with one single common endpoint «,, € G,,,.

We call a point m regular if it satisfies the conditions of Lemma 14. For each
regular m, there is therefore a unique ofm) = x,, as asserted. This is, in fact, a
continuous function of m within any interval of regularity. As a first step towards
establishing that fact, we prove that give any fixed m > 0, the set of points in G
with m < m is bounded.

Lemma 15. For any given m > 0, there existsan « > 0 such that G C (0, x)
x [0, m].

Proof. It suffices to show that for some x, [x,o0)x [0, m] C N. Consider the
comparison equation

u” +% U+ U?P—U=0 on [a00). (3.9

Since the coefficient of the second term is a constant, the equation can be explicitly
solved, at least in theory. It is then not hard to see that there exists an « > 0,
such that if U(a) = x, U’(@) = 0, then U(r) cuts the r-axis at some point, say b.



254 M. K. KwONG

Using as new variables S = U’?(r) and x = U(r), we can rewrite (3.9) as

as 2m
dx a

=Vs+19, S@=0, (3.10)
where f(x) = 2(x? — x). Similarly, we can rewrite (3.1), using s=u'2(r) and
x =u(r), as

ds 2m ,- 2m -

e — <L — = U. 11

= SO ==V 1@, s@=0 (3.11)
An application of the theory of differential inequalities gives

S(x)=s(x), forall 0=x=«. (3.12)

In other words, U’*(r,) < u'*(r,), whenever x = U(r{) = u(r,); see Figure I.
Since both #' and U’ are negative, we have

0> U'(r) = u'(ry). (3.13)
This implies that # must cut the r-axis before b. It follows that (x,m)€ N. []

)

|

|

|

!
rzq\b'

Lemma 16. If all points m¢€ (my, my) are regular, then «,, is a continuous
Junction of m. The set of limit points of the curve {o(m): m, < m < m,} that lie
on each of the lines m = m, and m = m, are thus connected closed intervals.
In case one of the endpoints is also regular, the corresponding limit set reduces to
the single point «(m,) or o(m;).

Proof. Let mq € (my, m,). Suppose lim «(m) is not x(m,). By compactness,

there exists a sequence of points {mg} C (m;, my), mg—my, but a,, =
lim a(m;) == x(m,). Then o, belongs either to N or to P, contradicting the fact

that both are open sets. The other assertions are obvious. []

4. Main Result, a > 0

The main result is established through a careful study of the signs of the func-
tion values in [a, b(x, m)) of the function

w(r, &, m) = g—; (r, o, m). 4.1)
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We are interested only in those w that come from solutions in either N or G,
and we are concerned only with their behavior in the interval [a, b) (we interpret
b to be oo in case u# € G). When there is no danger of confusion, we suppress the
variables x and m in the function notation.

By differentiating (3.1) and (3.5), we derive the following initial value problem
for w:

w"—}—ﬂrw'%—(pu""l —Dw=0, 4.2
wa@y=1, wi(a) =0. 4.3)
Equation (4.2) is a “linear” equation in w if we regard v as a known function.

An immediate consequence is that w cannot be tangent to the r-axis. As r goes
through a zero of w, w has to change sign.

Lemma 17. For u¢€ G\J N, w has to change sign at least once in [a, b).

Proof. Rewrite (3.1) as

u? —

u — 1)"+—’;l—(u— 1y +( ") (w—1)=0, (4.4)

u—1

and view it as a “‘linear”” equation in (¥ — 1), with the expression inside the large
parentheses as the coefficient of the last term. Since this coefficient is smaller than
the corresponding one in (4.2), when # = 1, we conclude from Sturm’s comparison
theorem that w oscillates faster than (¥ — 1), so w must vanish before the first
zero of (u — 1), namely, before the point £€ (g, b) at which «() =1. [

Our ultimate aim is to show that w cannot change sign more than once in
[a, b). We say that (x, m) is admissible if this is true, more precisely, when

(x,m)¢ GUN, and w(r,«, m) has exactly one zero in [a, b). 4.5)

If, in addition,
w(b, o, my<< 0, for (x,m)EN, 4.6)
or
lim w(r, x,m) = — oo, for (x,m)€ G, @.7
we say that (x, m) is strictly admissible. The following well known lemma connects

the concepts of admissibility and regularity and is the key idea in the KOLODNER-
CorrMAN method.

Lemma 18. Let m be fixed. If («x, m) € N is strictly admissible, then in a neigh-
borhood of x, b is a strictly decreasing function of «.
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é
Proof. By assumption, é;—(b(oc), «) = w(b(s)) << 0. Hence, for ¢ > 0 small

enough, u(b(x),x) < 0 for all x€ (x,x + ¢). By the Intermediate Value theo-
rem, u(r, &) must have a zero in (a, b(x)). Therefore, b(x) << b(x). It is not hard
to see that this local monotonicity together with the continuity of » (Lemma 12)
implies monotonicity in a neighborhood of «. [

The following lemma complements Lemma 18.

Lemma 19. If for (x, m)€ G, lim w(r) = — oo (c0), in particular if (x, m)

is strictly admissible, then there exists a right (left) neighborhood of x that belongs
to N.

Proof. Let T be the largest zero of w in [q, b). By Lemma 6, the disconjugacy
interval (¢, o0) of equation (4.2) contains 7. Suppose first that w is negative after 7.
Take a point (¢ (c,7) and a point A€ (z,00). Since w({) > 0 and w(d) < 0,
for £ > 0 small enough, u(,x) > w(a), and u(1,x) < w(x), for all &€ (x,« + &).
In case w is positive beyond 7, the same is true for all & in a left neighborhood
{0 — &, «) instead. So u(r) = u(r, x) must intersect w(r) at a point y in (¢, A).
This point is therefore within the disconjugacy interval (¢, o). We claim that &(r)
must intersect the r-axis in (y, o0). Suppose that this is not true. Then u(r, x)
remains positive in (y, c©). It lies below the graph of w in a right neighborhood
of the point y. Let us suppose that it catches up with w at a point > y. Then in
(x,n), the function z(r) = u(r) — u(r) is positive and satisfies the differential
equation

P __ P
z"+ﬁz'+(” v 1)z=0. (4.8)
r u—u
Observe that the coefficient of the last term is less than that in (4.2). Hence z
oscillates less than the solutions of (4.2). But the disconjugacy interval of (4.2)
being (c, oo) means that the solutions of (4.2) cannot have two zeros in the inter-
val [y, #]. It follows that the less oscillatory z cannot have two zeros in the same
interval, contradicting the assumption that z(yx) = z(n) = 0. Thus # remains be-
low u throughout (y, o). Then the coefficient of (4.8) is less than that of (4.2) in
the whole interval (y, o©), implying that z is less oscillatory than the solutions of
(4.2) in (y,00). Since yx is in the disconjugacy interval of (4.2), by Lemma 6, a
solution of (4.2) that vanishes at y must be unbounded. By Lemma 2, the less
oscillatory z must also be unbounded. This contradicts the fact that a(r) << u(r)— 0
as r— oo, unless u intersects the r-axis. Thus u(r) = u(r,x) belongs to N for
all x in (x, +¢) or (o — ¢, &) as asserted. []

Now if we can show that all points (x, m) in the union G\/ N are strictly admis-
sible, then we have uniqueness for the boundary value problems (3.1), (3.2), (3.3)
and (3.1), (3.2), (3.4). Let us follow the development as « increases from 0. By Lem-
ma 8, we first have solutions in P. As the first boundary point «,, of G is reached,
we have a solution in G. By Lemma 19, a right neighborhood of «,, belongs to N.
By Lemma 18, as o continues to increase from «,,, the point b(«x) moves strictly
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towards the lefthand side without retracing any previous locations. Thus all
& > «,, belongs to N, and no two values of « can solve the boundary value prob-
lem (3.1), (3.2), (3.3) for the same b.

The desired claim (that all members of G\/ N are strictly admissible), al-
though valid, is by no means easy to verify.

We introduce the function

60y = —rd(Ofu(r),  r€la,b), 4.9)
for a solution u¢€ G\J N.

Lemma 20. The function 0 is continuous in [a, b), 8(a) = 0 and li_r)rll, B(r) = oo.

Proof. The last assertion for the case b = oo is the only non-trivial one. By
Lemma 7, —ru'(r)/u(r) > kr for large r. The conclusion then follows. []

We draw a horizontal line of height 8 = 0 above the r-axis. It can interact
with the graph of 0 in any one of the ways depicted in Figures 24,

4 6 4 8 i 6
Br—————Am——- Br—f————————— Br+-Yo——A-fFf-+—-
[ N |
a b a b a b
Fig. 2 Fig. 3 Fig. 4

With the given g, we define the function
v(r) = r/(r) + pu(r), rela,bl. (4.10)

The next lemma relates the properties of » to the way 6 interacts with the hori-
zontal line. We omit the simple proof. The last assertion is nothing more than the
elementary Inverse Function theorem.

Lemma 21. v(r) = (>, <<)0 if and only if 0 intersects (is below, is above) the
straight line at r.
v is tangent to the r-axis at r if and only if 0 is tangent to the line at r.

The smallest zero of v (the first intersection point of 0 with the straight line),
denoted by ¢ = g5 is a non-decreasing function of 8. If 6'(0g) &= 0, then the func-
tion g is continuous at f3.

It is easy to verify that v satisfies the differential equation

v”—|——:_£v'—f—(p”’1 —Do= -2 —u) +p(p — Du”. (4.11)
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Let us define
) = =2 — w) + p(p — D u’. 4.12)
The right-hand side of (4.11) is then the following composite function

B(r) — $(u(r)).-

Lemma 22. For any f =0, there exists a unique point ¢ = a4€ [a, b) such
that

Dry<O0 forr<o and D)>0 forr>o. (4.13)
The point o is a continuous non-decreasing function of B.

Proof. If f(p —1)—2=0, then o =a. If f(p—~1)—2<0, $u) isa
concave function of u. It therefore has exactly one zero #, distinct from 0. Then ¢
is the unique (since u is strictly decreasing) point for which u(o) = u, in case
up << o and is a otherwise. The continuity of o follows from the continuity of u,
on 8 and the continuity of the inverse of «. Finally, the monotonicity of ¢ follows
from the positivity of the term containing § in (4.12)) []

Let us follow the movement of g and ¢ as § increases. For § =0, ¢ = 0 and
o> 0. Thus at this starting moment, the point g is positioned to the left of the
point o. As we increase f, o moves to the right while 0 moves to the left. For g
large enough, ¢ will be very close to b while ¢ will be very close to a. Thus a switch-
ing of the positions of g and ¢ is bound to occur. If it is not for the possibility of a
discontinuous jump of g, we can conclude at once that for some suitable value of 3,
the two points ¢ and ¢ meet head-on. Nevertheless, this assertion is still true.

Lemma 23. There exists a o > 0 at which o0 = o.

Proof, We need to affirm the impossibility of a discontinuity of ¢ (by Lemma 21,
we have only to show that 6'(¢) == 0) before the meeting of the points takes place.
Suppose, then, >0 is such that g; < g;. By the definition of o, @(r) <0 for
r < o5 In particular, @(r) =0 in the interval [a, g5]. Hence, in this interval,
v is non-negative and satisfies the differential inequality

v"+i:’-v' 4 (Pt — Do =0. 4.14)

By Lemma 5, v'(gs) # 0. This is equivalent, by Lemma 21, so the fact 6'(gz) = 0,
as desired. [

What do 6 and v and their properties have to do with our goal? We answer
this question with the following lemma.

Lemma 24, If 0 intersects the straight line 0 = B, exactly once, then the cor-
responding u, or more precisely, the corresponding (x, m) is strictly admissible.
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Proof. The hypotheses imply that v = v, has exactly one zero in (g, b).
Note that in case b =00, v(b) = bot'(b) << 0. Thus » has exactly one zero in [a, b].
In (@, 0), v is positive and satisfies inequality (4.14), while w satisfies the equation
(4.2). At q,

v'(a) = (1 + Bo) W' (@) + Boau”(a) = Poau’(a) <O,

so that the comparison conditions for the initial point is verified. By Lemma 1,
v oscillates faster than w, so that g, the first zero of » is less than 7, the first zero of
w. In the interval (z, b), v is negative and satisfies the reverse differential inequality

v+ 2t — oz 0, “1

Thus v again oscillates faster than w in (z, b). By assumption v has no more zeros
beyond 7, so w cannot have any zero beyond 7 either. In case b <C co, we conclude
that w(b) == 0, and so (x, m) is strictly admissible. When b = oo, using Lemma 3,
we see that the disconjugacy interval for (4.2) is a proper superset of (t, b). By
Lemma 6, w is thus unbounded, and (&, m) is strictly admissible. []

Our next lemma tells us that we can even start out with less and yet end up
with more than we expect.

Lemma 25. Let & be the only point in (a, b) at which w(&) = 1. If 6(r) = f,
Sor all r¢ o, &), then 6'(r)> 0 for all re [a,b). As a result the corresponding
(&, m) is strictly admissible.

Proof. We first prove that ¢'(r) = 0 in [, b) in any case. Suppose this is not
true. Then there exist local minima in (&, b), since 1i_)r£1 0(r) = co. We draw a

horizontal line of height § to touch the lowest of all such minima, say at the point
c€ (&, b). The corresponding v, is then negative in (c, b) and has a double zero
at r=c. In [§D),D(r) =0, so v, satisfies differential inequality (4.15). This
contradicts Lemma 5.

Together with the hypotheses, we now have 0(r) = f, for all r€[o,b). As
already established in the proof of Lemma 23, 0'(r) > 0 for r¢ [a,0]. Let us
derive a contradiction by assuming that 6°(r) << 0 for r > ¢. Under this assump-
tion, 6 has local minima in (g, b). Since 0(r) = B, in (r, b), such minima have height
above B,. Let us raise the horizontal line from height 8, to a height § to touch
the smallest of these local minima, say at a point ¢ > g. Then v, is negative in
(c, b), and has a double zero at c. Since 8 = B, 95 == 05, implying that D(c) = 0.
Again this contradicts Lemma 5. []

For convenience, we say that the point (x, m) is normal if the hypotheses of
Lemma 25 is satisfied. In particular, if 6 is monotone, or alternatively if 6" =0,
then (e, m) is normal. Such a 6 must in fact be strictly montone. An important
corollary of Lemma 25 is that normality is “contagious”.
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Lemma 26. Suppose that (x, m)C G\J N is normal. There exists a neighborhood
of (x, m) within which all members of G\ N are normal.

On the other hand, any limit point of a set of normal points is normal.

Proof. Let & = &(x). Pick a point 5 € (£, b(x)). We first find a neighborhood
of (x, m) small enough that for all its members (x, m), &(x) << # << b(x). This is
possible because of the continuity of & and b on . By Lemma 25, 6(r,x) > 0
for all r¢ [a,n). The continuity of # on r, «, and m implies that given any r in
this interval, there exists a neighborhood of r and a neighborhood of (x, m) such
that 0'(r,x, m) > 0 for all r and (x, m) in these neighborhoods. A compactness
argument gives a neighborhood of (x,m) in which & > 0 for all r¢€ [«, 5].
By Lemma 25, all members of GV N in this neighborhood must be normal.

For any sequence of normal points, 8 > 0 for all r¢ [a, b). After taking
limit, "= 0 for each point in the domain of the limit function. Thus the limit
point must be normal. []

Ths lemma has some useful repercussions. The first is the connectedness
property of sets of normal points.

Lemma 27. Let C be a connected subset of G\J N. If one of its members is
normal, then all it members are normal.

Proof. The set of normal points in C is both relatively open and relatively
closed in G N. [J

Lemma 28. We fix an m. If x is known to be normal, then there exists an xy =< x
such that oy € G, (g, 00) CN,, and all x = «o are normal. For some &> 0,
the interval (og — &, ) is disjoint from G, \J N,,.

Proof. Let C be the largest connected component of G,,\/ N,, containing x.
Since C is a closed set, it has a least element «;. By Lemma 27, all members of C,
in particular x,, are normal. By Lemma 24, each member of C, in particular «,,
is strictly admissible, and so by Lemma 19, a right neighborhood of x, belongs to
N. By Lemma 18, the point b(«) is decreasing in «. Thus as we increase & from o,
we remain in N. It follows that (&g, 00) C N. The last assertion in the lemma is a
consequence of the fact that a member of a connected component cannot be a
limit point of other components. []

As required in the hypotheses of Lemma 27, we need to get hold of some nor-
mal points before we can start things rolling. In fact, we have many normal
points.

Lemma 29. For any m¢€ [0, 1], all members of G\J N are normal.
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Proof. In the interval [a, &],
(—=rd(r)) = —rd’(r) — /()= —(1 —m)u'(r) + r(@”(r) — u(r)) = 0. (4.16)

Thus —ru/(r) is non-decreasing in  in [a, £]. Since u is decreasing, the quotient
0(r) = —ru'(r)/u(r) is non-decreasing in [a, £]. Thus the solution is normal. []

This lemma yields our main result for the values m¢ [0,1]. McLeop &
SERRIN of course have obtained this part for the case [a, b) = [0, co) using a differ-
ent method. We are now ready to make some progress concerning other values
of m.

Lemma 30. If all points m<c [0,00) are regular, then our main resuit holds,
namely, that all the boundary value problems we are interested in have unique solu-
tions.

Proof. By Lemma 16, if all m are regular, the curve of the function x(m) is
continuous on [0, oc). The set G/ N coincides with the set {(x, m): x = a(m)}
of points on or above the curve. This is a large, connected piece. By Lemmas 27
and 29, every member of this set is normal. By Lemma 24, they are all strictly
admissible, and our main result follows. []

To establish our main result, we assume that the hypothesis of this lemma is
not true and derive a contradiction. Thus let us suppose that there is a largest
connected interval of regularity [0, m), m << co.

Let us first dispose of the possibility that m is regular. Suppose it is. Then by
Lemma 16, the curve of «(m) is continuous up to the endpoint m. There exists a
sequence of irregular points m;> m (=1, 2,.), such that i]irg m; = m. For

each i, let &, be the smallest member of G on the line m = m;. Just as in the

proof of Lemma 16, it can be shown that the sequence «; cannot has a subsequence

converging to a point in G or N. It follows that lim «; = a(m). Some of these
>0

o; must enter into the normality neighborhood of (x(in), m) constructed in Lem-
ma 16. Such «; are therefore normal. By Lemma 28, all « > «; on the line
m = m; must be in N. This contradicts the irregularity of m; with «, being the
smallest but not the unique member of G. It remains to show that the other possi-
bility, that m is irregular, is also void. It takes several more lemmas. First of all,
let us see how the sets G,,, N,,, and P,, look like on the line L:m = m. The curve
of a(m) for m < m must be continuous up to the endpoint #, lest by Lemma 16,
the limit point set of the curve on L is a non-degenerate closed interval, a possibili-
ty exctuded by Lemma 18. Let «o = lim «(m). By Lemma 26, &, must be normal

nm—nt

and, since it belongs to G, must coincide with the &, found in Lemma 28. Hence
the part of L above «, belongs to N-. The set under the graph of a(m), m << m,
shown as the shaded area in Figure 5, belongs to G. The part of L below oy,
shown as the dotted line in the figure, cannot contain any members of the open
set N, lest every neighborhood of such a member will intrude into the shaded area
and therefore cannot be made up of points in N alone.
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Fig. 5

Lemma 31. Let oo be the largest member of G, as described above, and o,
be the next member of G smaller than no. Let w denote the largest zero of the func-
tion w(r, «,). Then for all o« << xy and o =F x;, u(yp, ) << u(y, x,).

Proof. By Lemma 28, x, cannot be a limit point of smaller members of G.
Thus «, exists. The existence of a largest zero of w (i.e., w is non-oscillatory near o)
follows from the fact that w satisfies differential equation (4.2), which is of the
form considered in Lemma 6. To simplify the notations, we use u to represent
the solution corresponding to the parameter « and u, that corresponding to «;.
Suppose for some « the conclusion of the lemma is not true; in other words, we
have instead

u(y) = ui(y). @.17)

We claim that the two solutions » and #; cannot intersect at a point in (y, co).
The arguments we use are similar to those in the proof of Lemma 19. Suppose the
solutions do intersect, for the first time at » = pu > u. In view of (4.17), u is
below u, in a right neighborhood of the point x. Suppose the former catches up
with the latter at some point beyond u. Let » be the next point where the two
solutions intersect again. In the interval [u,»], # =< u; and the function z =
u, — u satisfies the differential equation

,  m uf — u?
z'—l——;—z +(————1)z:0. (4.18)

Notice that the coefficient in the last term is smaller than that in equation (4.2)
for w(r, «,). Therefore, w oscillates more than z. Since z is zero at the endpoints
of [u,»], w must have at least one zero in the interval, contradicting the choice
of p as the last zero of w. Thus # must remain below u; in (4, o0). In this inter-
val, the coefficient of the last term of (4.19) is smaller than that of (4.2). Hence
the disconjugacy interval of (4.19) is larger than that of (4.2), which is (p, o).
Since z has a zero within the disconjugacy interval, by Lemma 6, z is unbounded,
contradicting the fact that u is being trapped between u; and the r-axis.
Thus we have

u(r) > uy(r), for all r> y. 4.19)

In the interval [y, o0), the same function z as defined above satisfies (4.18), but
this time the coeflicient in the last term is larger than that in (4.2). Since z does
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not vanish in [y, 00), the disconjugacy interval of (4.18), and hence also that of the
less oscillatory (4.2), is a proper superset of [¢, c0). Hence, by Lemma 6,

11_)11("1‘7 w(r, ;) = 4 oo, (4.20)

By Lemma 19, a right or left neighborhood of « belongs to N, contradicting the
fact that no point below a4 can be in N. []

Lemma 32. The solutions u, = u(r, xo) and wu, = w(r,x,) cannot intersect
more than once.

Proof. The technique used in the proof of Lemmas 19 and 31 applies. The
function z = u, — u, satisfies the differential equation

7’ m 7 ug_uI;
z —l——r—z +(———1 z=0, “.21)

Uo — Uy

which oscillates faster than (3.1) for u(r, &) but slower than (4.2) for w(r, «,),
as long as wy > u,. Thus z must have a zero in [a, o0), after the only zero 7 of
w(r, x0). Suppose z has more than one zero, contrary to the conclusion of the
Lemma. Then after the second zero, t,, (4.21) again oscillates more slowly than the
equation for w. Since the disconjugacy interval of the equation for w must be at
least [t, o©), that of the “less oscillatory” (4.21) must be at least [7,, o0). By Lem-
ma 6, z is therefore unbounded, an obvious contradiction. []

Lemma 33. For all € (x,,xo), the solutions u = u(r,x) and u;, = u(r, )
cannot intersect more than once in [a, y].

Proof. As we vary the parameter « from «x, towards «,, we have a continuous
deformation of the solution curve u over the closed interval [g, ]. At the left
endpoint r = a, the curve u stays clear above that of u,, while at the right end-
point r — 1y, the former stays clear below the latter. We start out with one single
point of intersection, when & = x4. The number can increase only if at some point
«, the curve of u bulges up or down somewhere to touch the curve of u,. But
this is impossible because the function z = u; — u satisfies a “linear” second-or-
der differential equation, namel,y (4.19), and so cannot have a double zero. []

Lemma 34. The point (x,, m) is admissible.

Proof. Since y has been chosen to be the last zero of w(r, &), we need to show
that w has no other zeros before y, in order to satisfy the definition of admissi-
bility.

Let us first show that there cannot be more than one zero before . Suppose
this is not the case. Then for a point ;s between the first and second zeros, w(u) =
du(u)jéx < 0. Likewise for a point » between the second and third (which may
be ) zeros w(¥) = du(»)/dx > 0. We can choose an « > «, sufficiently close to
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oy, that w(u) > u;(u) but u(») < u(»). By the Intermediate Value Theorem,
u must intersect ¥, at least once in (g, ) and another time in (¥, ¢), contradicting
Lemma 33.

Next we show that w cannot have exactly one zero before y. Suppose it does;
then for ¢ between the two zeros of w, w(c) << 0. Hence, for & < oy but close to
oo, u(c) > ui(c). It follows that ¥ must intersect u, at least twice, once in (a, ¢)
and once in (¢, ). A continuity argument as in the proof of Lemma 33 shows that
all solutions u with « < &, must intersect #, at least twice. But this contradicts
the obvious fact that the solution u(r, 1)= 1 intersects u; only once. []

The last lemma we need turns out to be the most surprising.

Lemma 35. Admissibility implies normality.

Proof. Suppose the point in question is not normal. Then the graph of 6 inter-
sects the line at height f, more than once in [g, £], as shown in Figure 6.

Let £ be the next point of intersection after . Using Lemma 5 as in the proof
of Lemma 25, we see that § cannot be tangent to the straight line at {. We now
lower the horizontal line to a height 8, when it touches the first point 4 to the right
of £ at which 6’(2) = 0. Our useful Lemma 5 shows that oz > A. In the interval
[£, 4] the function 0 is strictly monotone, so that the inverse function is con-
tinuous. In other words, the point of intersection of the graph with the line 6 =
is a continuous function of 5. As § varies from 8, to f, a switching of positions of
the point of intersection with the curve in [{, 2] and the point ¢ has taken place.
Thus, by continuity, there is a ff, at which o coincides with the point of intersection
in [£, A]. Let us focus on the line 6 =g,. 1In the interval (g, ¢), @(r) << 0 but v is
negative so that equation (4.11) oscillates less than equation (4.2). This imply that
w must have a zero in between the two zeros, ¢ and ¢, of v. Since 4 tend to co near
b, the graph of 6 must intersect the line one more time after ¢, say at ». In the inter-
val (g, %), P(r) > 0 but » is positive so that again (4.11) oscillates less than
equation (4.2). As a result, w must have another zero between the two zeros,
¢ and » of v. This contradicts the admissibility of the solution. []

We can now complete the proof of our main theorem by observing that Lem-
mas 34 and 35 imply that the point «, is normal. But by Lemma 28, the point
&g > o will be in N, obviously contradicting the definition of x.

m?
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5. Main Result, a = 0

The fact that there is a critical exponent for boundary value problems on
finite intervals [0, 5] is a reminder of the presence of the singular term mu’/r in
the differential equation. The singularity is, however, more benign than it first
appears. For any fixed m, the solution u still depends continuously on the para-
meters «, at least in any compact subinterval of [0, b). From now on we fixed an
m that is less than the critical exponent, so we no longer think of « as depending
on m. Instead, we affix the initial point a, at which (3.5)is imposed, to the parameter
list. Now u = u(r, x, @) is continuous in a at each fixed point on the r-axis except
the origin.

Instead of considering the (x, m) plane as before, we now have the (x, a)
quadrant (0, o0) X [0, 00). We define the same sets N, G, and P as before but with
a in place of m. The two sets N and P are still open. Since for each > 0, uni-
queness holds for all the boundary value problems in question, each vertical line
through an @ > 0 contains exactly one point (x(a), @) in G. The function «(a)
gives a continuous curve that must converge to a single limit point x(0) on the line
a = 0. All the lemmas on admissibility and normality holds with m replaced by a.
Thus all the arguments in the last section can be repeated. In particular, the point
x(0) is normal since it is the limit point of the curve «(a), which consists of normal
points. The half line (x(0), o) coincides with N. We must verify that the other half
line (0, x(0)) cannot contain members of G. That is done by use of lemmas ana-
logous to Lemmas 31 through 35.

We summarize our results in one main theorem.

Theorem. Under any one of the following conditions:
l.a>0, m=0, p>1, a<b<oo,
2.a=0, 0=m=1, p>1, 0<<bhb =00,

m-3
3.a=0, m>1, l<p<m—'_—‘1‘, 0<b < o0,

here is exactly one positive solution to the boundary value problem

W)+ d @)+ u —u=0, w(r)>0, re(ab), (5.1)
u'(a) = 0, (5.2)
uby=20 (5.3)
or
ango ux)=0 if b=o0. (5.4

For a fixed endpoint a, « = u(a), the value of the solution at a, is a strictly
decreasing function of the other endpoint b. Let o, be the initial height of the solu-
tion of the boundary value problem when b = oco. No solutions with initial height
below &q can intersect the r-axis.
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Equivalently, under one of the three conditions listed above, there exists a

unique positive radially symmetric solution of the reaction-diffusion equation

Au+u? —u=0, a<|x|<b, (5.5)

with the Neumann boundary condition at |x| = a if a==0, and the Dirichlet
boundary condition at |x|=1b (or u(x)—>oo as |x|—>o0 if b=o0).

Although we have made no attempt to seek the most general nonlinearity that

our method can handle, it is obvious that the concavity of the function u? — u
plays a crucial part. It is interesting to see if that alone is sufficient.

10.

1L,

12.

13.
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