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SERIE 9

1. Déterminer la stabilité des systeémes suivants, en fonction du parametre o € R :
3

A
(a) T (b) T =€ "T] — T2
o ;o t?
Ty = X1 + axo Ty = pqTl + axy
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Solution :
(a) La linéarisation du probléme est :
() -6 2 ()
T9 1 « To /)
Les coefficients de la matrice sont constants et les valeurs propres sont définies par 1’équation :

0=\ —a\+1.

Le discriminant est
A =a?—4.

at+va?—14
A2 ’

— 2
' a£iv4 — a2
2 b

et les racines sont

la] > 2

la| < 2.

On en déduit alors que :
e si a < 0, les parties réelles des deux racines sont strictement négatives car si |a| > 2 alors

atva? -4
R(A12) = —

est uniformément stable et asymptotiquement stable par le théoréme 8.2.
e si a < 0, alors une forme de Jordan est :

b %)

Les valeurs propres sont dans le bloc diagonal de la forme de Jordan, donc le systeme est
uniformément stable par le théoreme 8.2.

e si @ > 0, par le méme argument que pour le cas o < 0, on en déduit que le systeme est
instable.

o
<0, et si |a| < 2 alors R(A;2) = = < 0. Par conséquent, le systeme

(b) La linéarisation du probléeme est :
/ 0 -1
€2 - €2
t2+1
La stabilité de la linéarisation nécessite la théorie des mesures de Lozinskii, ce qui sort du cadre

de ce cours. Par conséquent, il n’y a pas pas besoin de faire cette partie de I'exercice. Pour les
curieux, cela correspond au chapitre 3.3 du livre de Qingkai Kong.

2. Soit f € C°(R™,R") telle que f(0) = 0. On considere I’équation autonome
¥ = f(a) 1)
On suppose qu’il existe une fonction V € C1(Bg,R) ou Bg := {x € R"; |z| < R}, telle que
V(0)=0

et
Ve € Bg, V(z)>0, VV(z)-f(x)<O0.
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Prouver que x = 0 est uniformément stable pour (1).
Si 'on suppose de plus que

Ve € B\ {0}, V(z)>0, VV(z)-f(z)<DO,

prouver que x = 0 est asymptotiquement stable pour (1).

Remarque : Une fonction V' satisfaisant les propriétés ci-dessus est appelée fonction de Lyapounov.
Solution : La preuve de ce théoréeme se trouve dans le livre de Qingkal Kong, Théoreme 3.5.1 11 est
important de comprendre la preuve, mais pas de la connaitre par coeur.

3. L’équation décrivant les oscillations d’un pendule simple de longueur ¢ est

(9" = —gsin ¢,
ou g 'accélération de gravitation sur terre. Trouver une fonction de Lyapounov pour ce systeme et
en déduire qu'il est uniformément stable. Dessiner les orbites dans le plan (¢, ¢').
Solution : On définit k := % On veut étudier la stabilité de PEDO du second ordre :

¢" = —ksin(¢).
Il est clair que la solution triviale satisfait cette équation. En posant z1 = ¢ et 29 = ¢, on la
transforme en un systeme d’ordre 1 :

<§) - <—ksf§<x1)) = ().

Pour trouver une fonction de Lyapunov, on cherche une fonction V € C (]RQ, ]R) telle que V(0) = 0,
V est strictement positif dans un voisinage Bg\{0} = {z € R? : |z| < R}\{0},0 < R < o0, et :

VV(z)-(x) =0.
Par conséquent, cela revient a résoudre I’équation
oV (z) oV (z) .
r9 — k sin(r1) =0
61’1 2 61'2 ( 1) ’
qui est résolue par exemple par :

8951
oV (x
8.’E2

~—

= Io.

Cela mene a poser
1
V(z) = ix% — kcos(z1) + ¢,

ol ¢ est une constante réelle & définir. La condition V(0) = 0 implique que ¢ = k et donc

1
V(z) = ix% + k(1 —cos(z1)).
Par D'exercice précédent, la solution nulle x = 0 est uniformément stable.

Les orbites dans le plan (¢, ¢') = (21, x2) sont perpendiculaires au gradient de V car VV - ¢ = 0.
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FIGURE 1. Orbites de 'EDO dans le plan (¢, ¢')

4. Esquisser les portraits de phase des systémes suivants :

Y =z y=x-1

= — = — ¥ =a2’—z
<a>{ y <b>{ vtz <c>{

Solution :

(a) Le probleme est :

z\’ (0 =1\ (=

y) \1 0/)\y)’
L’équation caractéristique est A2 + 1 = 0. La partie réelle des valeurs propres est nulle, par
conséquent on est dans le cas 4, & = 0. Voir la figure (2).

2\ (0 =1\ [z e
y) \1 0 Yy -1/
C’est une simple translation du probléeme précédent. En effet, la solution générale est de la forme :

() = (S £2) e (),

. . R , 1 .
avec c1,co € R. De ce fait, le portrait de phase est le méme, translaté par le vecteur <2> Voir

(b) Le probléeme est :

la figure (3).

(c¢) La linéarisation du systeme est
2\ (2 0\ [z L (!
y)  \2 2/ \y -1/
L’équation caractéristique est A2 — 4\ + 2 = 0. La partie réelle des valeurs propres

M2 =2+V2.

est strictement positive, par conséquent on est dans le cas 1 instable.
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FIGURE 3. Portrait de phase du systéme b)
On remarque que la linéarisation du systéme ne satisfait pas les conditions du théoréme 9.1, ce
qui explique les différences des portraits de phases. Voir les figures (4) et (5).

Les diagrammes ont été réalisé a ’aide de :

URL: https://homepages.bluffton.edu/ nesterd/apps/slopefields.html
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FIGURE 4. Portrait de phase du systeme c) linéarisé
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FIGURE 5. Portrait de phase du systéme c¢) non-linéarisé



