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Série 9

1. Déterminer la stabilité des systèmes suivants, en fonction du paramètre α ∈ R :

(a)

{
x′1 = −x2
x′2 = x1 + αx2

(b)

{
x′1 = e−tx31 − x2

x′2 =
t2

t2+1
x1 + αx2

Solution :

(a) La linéarisation du problème est :(
x1
x2

)′
=

(
0 −1
1 α

)(
x1
x2

)
.

Les coefficients de la matrice sont constants et les valeurs propres sont définies par l’équation :

0 = λ2 − αλ+ 1.

Le discriminant est
∆ = α2 − 4.

et les racines sont

λ1,2 =


α±

√
α2 − 4

2
, |α| ≥ 2

α± i
√
4− α2

2
, |α| < 2.

On en déduit alors que :
• si α < 0, les parties réelles des deux racines sont strictement négatives car si |α| ≥ 2 alors

ℜ(λ1,2) =
α±

√
α2 − 4

2
< 0, et si |α| < 2 alors ℜ(λ1,2) =

α

2
< 0. Par conséquent, le système

est uniformément stable et asymptotiquement stable par le théorème 8.2.
• si α < 0, alors une forme de Jordan est :(

i 0
0 −i

)
.

Les valeurs propres sont dans le bloc diagonal de la forme de Jordan, donc le système est
uniformément stable par le théorème 8.2.

• si α > 0, par le même argument que pour le cas α < 0, on en déduit que le système est
instable.

(b) La linéarisation du problème est :(
x1
x2

)′
=

 0 −1
t2

t2 + 1
α

(
x1
x2

)
.

La stabilité de la linéarisation nécessite la théorie des mesures de Lozinskii, ce qui sort du cadre
de ce cours. Par conséquent, il n’y a pas pas besoin de faire cette partie de l’exercice. Pour les
curieux, cela correspond au chapitre 3.3 du livre de Qingkai Kong.

2. Soit f ∈ C0(Rn,Rn) telle que f(0) = 0. On considère l’équation autonome

x′ = f(x). (1)

On suppose qu’il existe une fonction V ∈ C1(BR,R) où BR := {x ∈ Rn ; |x| ⩽ R}, telle que

V (0) = 0

et
∀x ∈ BR, V (x) ⩾ 0, ∇V (x) · f(x) ⩽ 0.



EPFL, Printemps 2025 Equations différentielles ordinaires François Genoud, SMA

Prouver que x = 0 est uniformément stable pour (1).
Si l’on suppose de plus que

∀x ∈ BR \ {0}, V (x) > 0, ∇V (x) · f(x) < 0,

prouver que x = 0 est asymptotiquement stable pour (1).

Remarque : Une fonction V satisfaisant les propriétés ci-dessus est appelée fonction de Lyapounov.
Solution : La preuve de ce théorème se trouve dans le livre de Qingkäı Kong, Théorème 3.5.1 Il est
important de comprendre la preuve, mais pas de la connâıtre par coeur.

3. L’équation décrivant les oscillations d’un pendule simple de longueur ℓ est

ℓϕ′′ = −g sinϕ,
où g l’accélération de gravitation sur terre. Trouver une fonction de Lyapounov pour ce système et
en déduire qu’il est uniformément stable. Dessiner les orbites dans le plan (ϕ, ϕ′).

Solution : On définit k :=
g

l
. On veut étudier la stabilité de l’EDO du second ordre :

ϕ′′ = −k sin(ϕ).
Il est clair que la solution triviale satisfait cette équation. En posant x1 = ϕ et x2 = ϕ′, on la
transforme en un système d’ordre 1 :(

x1
x2

)′
=

(
x2

−k sin(x1)

)
:= ψ(x).

Pour trouver une fonction de Lyapunov, on cherche une fonction V ∈ C0
(
R2,R

)
telle que V (0) = 0,

V est strictement positif dans un voisinage BR\{0} = {x ∈ R2 : |x| ≤ R}\{0}, 0 < R <∞, et :

∇V (x) · ψ(x) = 0.

Par conséquent, cela revient à résoudre l’équation

∂V (x)

∂x1
x2 − k

∂V (x)

∂x2
sin(x1) = 0,

qui est résolue par exemple par :

∂V (x)

∂x1
= k sin(x1)

∂V (x)

∂x2
= x2.

Cela mène à poser

V (x) =
1

2
x22 − k cos(x1) + c,

où c est une constante réelle à définir. La condition V (0) = 0 implique que c = k et donc

V (x) =
1

2
x22 + k (1− cos(x1)) .

Par l’exercice précédent, la solution nulle x = 0 est uniformément stable.
Les orbites dans le plan (ϕ, ϕ′) = (x1, x2) sont perpendiculaires au gradient de V car ∇V · ψ = 0.
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Figure 1. Orbites de l’EDO dans le plan (ϕ, ϕ′)

4. Esquisser les portraits de phase des systèmes suivants :

(a)

{
x′ = −y
y′ = x

(b)

{
x′ = −y + 2

y′ = x− 1
(c)

{
x′ = x2 − x

y′ = (2x− 1)y

Solution :

(a) Le problème est : (
x
y

)′
=

(
0 −1
1 0

)(
x
y

)
.

L’équation caractéristique est λ2 + 1 = 0. La partie réelle des valeurs propres est nulle, par
conséquent on est dans le cas 4, α = 0. Voir la figure (2).

(b) Le problème est : (
x
y

)′
=

(
0 −1
1 0

)(
x
y

)
+

(
2
−1

)
.

C’est une simple translation du problème précédent. En effet, la solution générale est de la forme :(
x
y

)
= c1

(
cos(t) + 1
sin(t) + 2

)
+ c2

(
− sin(t) + 1
cos(t) + 2

)
,

avec c1, c2 ∈ R. De ce fait, le portrait de phase est le même, translaté par le vecteur

(
1
2

)
. Voir

la figure (3).

(c) La linéarisation du système est(
x
y

)′
=

(
2 0
2 2

)(
x
y

)
+

(
−1
−1

)
.

L’équation caractéristique est λ2 − 4λ+ 2 = 0. La partie réelle des valeurs propres

λ1,2 = 2±
√
2.

est strictement positive, par conséquent on est dans le cas 1 instable.
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Figure 2. Portrait de phase du système a)

Figure 3. Portrait de phase du système b)

On remarque que la linéarisation du système ne satisfait pas les conditions du théorème 9.1, ce
qui explique les différences des portraits de phases. Voir les figures (4) et (5).

Les diagrammes ont été réalisé à l’aide de :

URL: https://homepages.bluffton.edu/~nesterd/apps/slopefields.html
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Figure 4. Portrait de phase du système c) linéarisé

Figure 5. Portrait de phase du système c) non-linéarisé


