
EPFL, Printemps 2025 Equations différentielles ordinaires François Genoud, SMA

Série 8

1. Soit f ∈ C0([0,∞)× Rn,Rn) une fonction telle que l’équation

x′ = f(t, x) (1)

admette une unique solution x = x(t; t0, x0) pour toute condition initiale x(t0) = x0, t0 ⩾ 0. Soit
ϕ(t) une solution de (1), définie sur un intervalle [t⋆,∞), t⋆ ⩾ 0. Prouver le résultat suivant.
Si, pour tout t0 ⩾ t⋆ il existe δ1 = δ1(t0) tel que

|x0 − ϕ(t0)| < δ1 =⇒ lim
t→∞

|x(t; t0, x0)− ϕ(t)| = 0,

alors ϕ est stable.
Remarque : Ainsi, si l’on a unicité pour le problème de Cauchy associé à (1), il est redondant
d’imposer que ϕ est stable dans la définition de stabilité asymptotique.
Solution : Soit ε > 0. Par hypothèse (stabilité asymptotique), pour t0 ≥ 0 fixé, il existe δ1 =
δ1(ε, t0) > 0 et T = T (ε, t0) ≥ t0 tels que si |x0 − ϕ(t0)| < δ1, alors |x(t; t0, x0)− ϕ(t)| < ε pour tout
t ≥ T . Par ailleurs, sur l’intervalle [t0, T ], on utilise la continuité par rapport à la donnée initiale
assurée par le théorème 4.2. Sans l’unicité de la solution dépendant de la condition initiale, on ne
pourrait pas utiliser cet argument. On sait donc que la fonction

(t; t0, x0) 7→ x(t; t0, x0)− ϕ(t)

est continue sur [t0, T ]×K, où K est n’importe quel voisinage compact de (t0, ϕ(t0)) dans R×Rn.
De ce fait, elle est uniformément continue sur [t0, T ]×K. Donc il existe δ2 = δ2(ε, t0) tel que pour
tout (t1, t̃1, x1), (t2, t̃2, x2) ∈ [t0, T ]×K satisfaisant

∣∣(t1, t̃1, x1)− (t2, t̃2, x2)
∣∣ < δ2, alors :∣∣x(t1; t̃1, x1)− ϕ(t1)− x(t2; t̃2, x2) + ϕ(t2)

∣∣ < ε.

Donc si |x0 − ϕ(t0)| = |(t, t0, x0)− (t, t0, ϕ(t0))| < δ2, avec (t, t0, x0), (t, t0, ϕ(t0)) ∈ [t0, T ]×K :

|x(t; t0, x0)− ϕ(t)| = |x(t; t0, x0)− ϕ(t)− x(t; t0, ϕ(t0)) + ϕ(t)| < ε,

où on a utilisé que ϕ(t) = x(t; t0, ϕ(t0)) par unicité de la solution.
Il en résulte que si |x0 − ϕ(t0)| < min{δ1, δ2}, cela implique que :

|x(t; t0, x0)− ϕ(t)| < ε,

pour tout t ≥ t0. Donc ϕ est stable.

2. On considère l’équation scalaire

x′ = a(t)x,

où a ∈ C0([0,∞),R). Prouver les résultats suivants sur la stabilité de la solution nulle x ≡ 0.

(a) La solution nulle est stable si et seulement si

∃M ⩾ 0,∀t ⩾ 0,

∫ t

0
a(s) ds ⩽ M.

(b) La solution nulle est uniformément stable si et seulement si

∃M ⩾ 0, ∀ 0 ⩽ t0 ⩽ t,

∫ t

t0

a(s) ds ⩽ M.
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(c) La solution nulle est asymptotiquement stable si et seulement si lim
t→∞

∫ t

t0

a(s) ds = −∞.

On considère alors l’exemple a(t) = sin(ln t)+cos(ln t)−α, avec 1 < α <
√
2. Montrer que, dans

ce cas, la solution nulle est asymptotiquement stable mais pas uniformément stable.

Indication : Construire deux suites {t0n}, {tn} telles que
∫ tn
t0n

a(s) ds → ∞.

Solution : On commence par noter que la remarque 8.2(ii) permet de se ramener au cas de la
stabilité de la solution triviale ϕ ≡ 0, si la solution triviale est une solution de l’EDO. La définition
8.1 se simplifie alors en :
Si ϕ(t) ≡ 0 est solution de (E), définie sur un intervalle [t∗,∞), t∗ ≥ 0. On note x(t; t0, x0) une
solution de (E) avec CI x(t0) = x0, où t0 ≥ t∗,x0 ∈ Rn.
(a) On dit que ϕ est stable si pour tout ε > 0, pour tout t0 ≥ t∗, il existe δ = δ(ε, t0) > 0 tel que si

|x0| < δ cela implique que |x(t; t0, x0)| < ε, pour tout t ≥ t0.
(b) On dit que ϕ est uniformément stable si ϕ est stable et qu’on peut choisir δ indépendant de t0.
(c) On dit que ϕ est asymptotiquement stable si ϕ est stable et que pour tout t0 ≥ t∗, il existe un

δ1 = δ1(t0) tel que si |x0| < δ1 cela implique que limt7→∞ |x(t; t0, x0)| = 0.
(d) On dit que ϕ est instable si ϕ n’est pas stable.
Avec ces caractérisations, et en se rappelant que la solution de l’EDO est de la forme :

x0e
∫ t
t0

a(s)ds
.

on peut utiliser les définitions suivantes, comme la solution triviale est solution de l’EDO.
(a) Soit ε > 0 et t0 ≥ 0. La définition de la stabilité implique qu’il faut trouver δ = δ(ε, t0) tel que

pour tout 0 < |x0| < δ :

|x0| e
∫ t
t0

a(s)ds
< ε,∀t ≥ t0,

ou de manière équivalente :∫ t

t0

a(s)ds < ln

(
ε

|x0|

)
= M(ε, t0), ∀t ≥ t0.

Par arbitrarité de t0, cela implique que ϕ est stable si et seulement si l’intégrale est bornée,
c’est-à-dire : ∫ t

0
a(s)ds < M, ∀t ≥ t0,

pour une constante M ∈ R.
(b) Un développement similaire à la première partie du point précédent donne directement que∫ t

t0

a(s)ds < M(ε),∀t ≥ t0,

c’est-à-dire que M ne dépend pas de t0 dû à la définition de stabilité uniforme.
(c) De même, la solution explicite de l’équation implique que si ϕ est asymptotiquement stable,

alors étant donné t0 ≥ 0 et un δ1(t0) > 0, |x0| < δ1, la condition est :

lim
t7→∞

|x0| e
∫ t
t0

a(s)ds
= 0.

Comme cela doit être valable pour tout t0(avec un δ1 qui dépend de t0) il en résulte que ϕ est
asymptotiquement stable si et seulement si∫ t

0
a(s)ds = −∞,

par les propriétés de l’exponentielle.
Par rapport à l’exemple, il est clair que l’intégrale converge vers −∞ et que la solution nulle
est asymptotiquement stable. Pour montrer que la solution n’est pas uniformément stable, nous
envoyons le lecteur à l’exemple 3.1.4(qui est technique) du livre de Qingkai Kong, il y a une image
qui aide à comprendre quel est le phénomène sous-jacent. L’idée est que les deux suites définies
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contredisent l’hypothèse (b) de l’exercice, car il est possible que l’intégrale tende vers −∞ lorsque t
tend vers +∞, tout en admettant des sous-intervalle où l’intégrale converge vers +∞.

3. On considère l’équation autonome
x′ = f(x),

où f ∈ C0(Rn,Rn). Prouver que la solution nulle x ≡ 0 est uniformément stable si et seulement si
elle est stable.
Solution : Comme abordé en cours, la première constatation est que si x(t) est une solution sur
(a, b), alors pour tout α ∈ R, x(t+ α) est une solution sur (a− α, b− α) :

d

dt
(x(t+ α)) = x′(t+ α) · d(t+ α)

dt
= f(x(t+ α)).

Par définition, si la solution nulle est uniformément stable elle est stable, donc il reste à montrer
que la stabilité implique la stabilité uniforme. Supposons donc que x ≡ 0 est stable, soit ε > 0 et
t0 ≥ 0. Par définition, il existe δ = δ(ε, t0) tel que |x0| := |x(t0)| < δ implique |x(t; t0, x0)| < ε. En
particulier, il existe δ0 := δ(ε, 0) tel que |x(0)| < 0 impliqe |x(t; 0, x(0))| < ε. Dès lors pour tout
t0 ≥ 0, soit y(t) une solution de l’EDO satisfaisant |y(t0)| <≤ δ0 et définissons z(t) = y(t + t0).
Alors par la première constatation z(t) est une solution de l’ED0 et satisfait |z(0)| < δ0. De ce fait,
|z(t)| < ε pour tout t ≥ 0, ce qui implique que |y(t)| < ε, pour tout t ≥ t0. Comme δ0 a été choisit
indépendamment de t0, cela montre la stabilité uniforme et conclut la preuve.

4. Soit k ∈ R, |k| ≤ 1/
√
2. Déterminer dans les cas suivants si le système x′ = A(t)x est stable,

uniformément stable, asymptotiquement stable :

(a) A(t) =

(
−1

t
sin t
t

cos t
t −1

t

)
; (b) A(t) =

(
1 k sin t

k cos t 1

)
; (c) A(t) =

(
sin t− 1 cos t

t2

sin t 1
t2
− 1

)
.

Solution : Il est compliqué de trouver une matrice fondamentale ou la matrice principale pour être
en mesure d’utiliser le théorème 8.1 qui caractérise les différentes stabilités. Cet exercice nécessite la
théorie des mesures de Lozinskii, ce qui sort du cadre de ce cours. Par conséquent, il n’y a pas pas
besoin de faire cet exercice. Pour les curieux, cela correspond au chapitre 3.3 du livre de Qingkai
Kong.
Nous nous excusons de cette erreur.


