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1.

SERIE 8

Soit f € C?([0,00) x R™,R™) une fonction telle que I’équation

o' = f(t, ) (1)

admette une unique solution = = x(¢;to, xg) pour toute condition initiale z(tg) = =g, to = 0. Soit
¢(t) une solution de (1), définie sur un intervalle [t,,00), ¢, > 0. Prouver le résultat suivant.
Si, pour tout to > t, il existe d; = d1(tp) tel que

lzog — ¢(to)| < 61 = tlgglo |z (t; to, z0) — @(t)| = 0,

alors ¢ est stable.

Remarque : Ainsi, si 'on a unicité pour le probleme de Cauchy associé a (1), il est redondant
d’imposer que ¢ est stable dans la définition de stabilité asymptotique.

Solution : Soit € > 0. Par hypothese (stabilité asymptotique), pour to > 0 fixé, il existe d; =
d1(e,to) > 0et T =T(e,t9) > to tels que si |zg — ¢(to)| < 01, alors |z(t; to, zo) — ¢(t)| < € pour tout
t > T. Par ailleurs, sur 'intervalle [tg, 7], on utilise la continuité par rapport & la donnée initiale
assurée par le théoreme 4.2. Sans I'unicité de la solution dépendant de la condition initiale, on ne
pourrait pas utiliser cet argument. On sait donc que la fonction

(t; to, SUQ) — SU(t; to, xO) - ¢(t)

est continue sur [tg,T] X K, ou K est n'importe quel voisinage compact de (tg, ¢(t9)) dans R x R"™.
De ce fait, elle est uniformément continue sur [tg,T] x K. Donc il existe do2 = da(e, tg) tel que pour
tout (tl,tl,:cl), (tg,tg,xg) € [to,T] x K satisfaisant ‘(tl,tl,:cl) - (tg,tg, 152)‘ < 09, alors :

|z(tr;tr, 1) — @(t1) — a(ta; by, 2) + G(t2)| < .
Donc si |1:0 - ¢(t0)| = |(t7t07$0) - (t7t07¢(t0))| < 527 avec (t,t(],lL‘()), (t7t07¢(t0)) € [t(]aT] X K :
[z(t;t0, w0) — ()| = |z(t;t0, m0) — H(t) — z(t;t0, d(t0)) + ¢(t)| <,

ou on a utilisé que ¢(t) = x(¢;tg, #(to)) par unicité de la solution.
Il en résulte que si |zg — ¢(to)| < min{di, J2}, cela implique que :

|£B(t;t0, ZL'(]) - ¢(t)| <g,

pour tout ¢t > ty. Donc ¢ est stable.

On considere I'équation scalaire
/
' =a(t)z,

ot a € CY([0,00),R). Prouver les résultats suivants sur la stabilité de la solution nulle z = 0.

(a) La solution nulle est stable si et seulement si

t
dM > 0,Vt > 0, / a(s)ds < M.
0

(b) La solution nulle est uniformément stable si et seulement si

t
dM >0, VO <ty < t, /a(s)dng.

to
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¢
(c) La solution nulle est asymptotiquement stable si et seulement si lim [ a(s)ds = —oc.

t—o00 to
On considere alors I'exemple a(t) = sin(Int) +cos(Int) — a, avec 1 < a < /2. Montrer que, dans
ce cas, la solution nulle est asymptotiquement stable mais pas uniformément stable.
Indication : Construire deux suites {ton}, {t,} telles que ftt(; a(s)ds — oo.

Solution : On commence par noter que la remarque 8.2(i7) permet de se ramener au cas de la

stabilité de la solution triviale ¢ = 0, si la solution triviale est une solution de 'EDQO. La définition

8.1 se simplifie alors en :

Si ¢(t) = 0 est solution de (F), définie sur un intervalle [t.,00),t, > 0. On note x(t;tg,zp) une

solution de (E) avec CI z(ty) = zp, ol tg > t.,x9 € R™.

(a) On dit que ¢ est stable si pour tout € > 0, pour tout ¢ty > t., il existe & = d(g,ty9) > 0 tel que si
|zo| < & cela implique que |z(t; o, xo)| < €, pour tout ¢t > t.

(b) On dit que ¢ est uniformément stable si ¢ est stable et qu’on peut choisir § indépendant de ty.

(¢) On dit que ¢ est asymptotiquement stable si ¢ est stable et que pour tout ty > t,, il existe un
01 = 601(to) tel que si |zg| < 01 cela implique que limy, o0 |(¢; 20, z0)| = 0.

(d) On dit que ¢ est instable si ¢ n’est pas stable.

Avec ces caractérisations, et en se rappelant que la solution de 'EDO est de la forme :

t
.’L'()eftO a(s)ds '

on peut utiliser les définitions suivantes, comme la solution triviale est solution de 'EDO.
(a) Soit € > 0 et typ > 0. La définition de la stabilité implique qu’il faut trouver & = (e, tg) tel que
pour tout 0 < |zg| <9 :

t
|ZL‘0| efto a(s)ds < e, Vt > to,

ou de maniere équivalente :

t
‘/a@Ms<m<é;>:AﬂamLW2t@
t

0 |0

Par arbitrarité de tp, cela implique que ¢ est stable si et seulement si I'intégrale est bornée,
c’est-a-dire :

t
/ a(s)ds < M,Vt > to,
0

pour une constante M € R.
(b) Un développement similaire & la premiere partie du point précédent donne directement que

¢
/ a(s)ds < M(e),Vt > to,
to
c’est-a-dire que M ne dépend pas de ty di a la définition de stabilité uniforme.
(c) De méme, la solution explicite de 1’équation implique que si ¢ est asymptotiquement stable,
alors étant donné to > 0 et un d1(tg) > 0, |xo| < 01, la condition est :

t
lim |z elio @8 _ ¢,
t—o00
Comme cela doit étre valable pour tout ¢g(avec un d; qui dépend de tp) il en résulte que ¢ est
asymptotiquement stable si et seulement si

Al@mz—w

par les propriétés de ’exponentielle.
Par rapport a I'exemple, il est clair que l'intégrale converge vers —oo et que la solution nulle
est asymptotiquement stable. Pour montrer que la solution n’est pas uniformément stable, nous
envoyons le lecteur a 'exemple 3.1.4(qui est technique) du livre de Qingkai Kong, il y a une image
qui aide a comprendre quel est le phénomeéne sous-jacent. L’idée est que les deux suites définies
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contredisent 1’hypothese (b) de I’exercice, car il est possible que 'intégrale tende vers —oo lorsque ¢
tend vers +o00, tout en admettant des sous-intervalle ou l'intégrale converge vers -+oo.

3. On considere I’équation autonome
2’ = f(),

ott f € C°(R™,R"). Prouver que la solution nulle x = 0 est uniformément stable si et seulement si

elle est stable.

Solution : Comme abordé en cours, la premiére constatation est que si z(t) est une solution sur

(a,b), alors pour tout a € R, z(t + «) est une solution sur (a — a,b — ) :
4t ra) =t +a)- N pap 4 a)),

dt dt

Par définition, si la solution nulle est uniformément stable elle est stable, donc il reste & montrer
que la stabilité implique la stabilité uniforme. Supposons donc que x = 0 est stable, soit € > 0 et
to > 0. Par définition, il existe § = d(g, ty) tel que |xo| := |x(to)| < 0 implique |z(t;to, z0)| < . En
particulier, il existe &y := d(e,0) tel que |z(0)| < 0 implige |z(¢;0,2(0))| < . Des lors pour tout
to > 0, soit y(t) une solution de 'EDO satisfaisant |y(to)| << g et définissons z(t) = y(t + to).
Alors par la premiere constatation z(¢) est une solution de 'EDO et satisfait |z(0)| < dp. De ce fait,
|z(t)] < e pour tout t > 0, ce qui implique que |y(t)| < €, pour tout t > tyg. Comme &y a été choisit
indépendamment de tg, cela montre la stabilité uniforme et conclut la preuve.

4. Soit k € R, |k| < 1/4/2. Déterminer dans les cas suivants si le systéme 2’ = A(t)x est stable,
uniformément stable, asymptotiquement stable :

@a0= (i T ) ®a0=(pay T @an= (M F).

kcost sint

¢ ¢
Solution : Il est compliqué de trouver une matrice fondamentale ou la matrice principale pour étre
en mesure d’utiliser le théoreme 8.1 qui caractérise les différentes stabilités. Cet exercice nécessite la
théorie des mesures de Lozinskii, ce qui sort du cadre de ce cours. Par conséquent, il n’y a pas pas
besoin de faire cet exercice. Pour les curieux, cela correspond au chapitre 3.3 du livre de Qingkai
Kong.

Nous nous excusons de cette erreur.



