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SERIE 5

1. Soit A € C%(a,b),R™") et f € C°(a,b),R"). Prouver que toute solution de
¥ =Alt)x + f(t)

est définie sur (a,b).

Solution : La premiere observation est que la Jacobienne de la fonction G(t,x) = A(t)z + f(t)
est A(t). Par conséquent, cette fonction est dérivable en x et donc localement Lipschitzienne. Le
théoreme de Picard nous assure alors que la solution est unique sur son domaine d’existence. De
plus, pour tout intervalle («, 8) contenant gy tel que a < a < 8 < b, la fonction é(t) = G(t,z(t))
est bornée car les fonction A et f sont bornées sur (a, ) et on a :

+ /()]

)] < 14@) fz0 + /t 2(5)ds

to

< JA®)] ol + ()] + / G(s)| ds

ce qui implique par Gronwall

Gt z(®))] < (JA®)] |zo] + [£(1)]) - e,

Par le corollaire 3.1, on a donc existence sur («, 3). Par arbitrarité de cet intervalle, la solution est
définie sur (a,b).

2. Prouver la proposition 5.2. On rappelle I’énoncé : Soit A € C° ((a,b), R™ x R™). Alors :
(a) X (t) est une solution matricielle de de (H) si et seulement si
X'(t) = A(t)X (t),Vt € (a,b).
(b) X (t) est une matrice fondamentale de (H) si et seulement si
X'(t) = A(t)X (t) et det(X(t)) #0,V € (a,b).
(c) Soit X (t) une matrice fondamentale de (H). Alors x(t) est solution de (H) si et seulement s’il
existe ¢ € R™ tel que z(t) = X(t)c, Vt € (a,b). Explicitement, ¢ = X ~1(tg)z(to).
(d) Il existe une unique matrice principale de (H) a t = .
Solution :

(a) Evident de la définition d’une solution matricielle.

(b) Par le point erécédent X (t) satisfait 1’équation matricielle, et les colonnes sont linéairement
indépendantes si et seulement si le déterminant est non-nul.

(c) Soit x(t) est une solution de (H) et définissons y(t) = X (t)X ~1(to)x(to). Alors x(tg) = y(to) et
y'(t) = X'(t) X (to)z(to) = A()X ()X (to)a(to) = A(t)y(t).

Par conséquent, y(t) est aussi solution de (H) et satisfait la méme condition initiale que z(t).
Par unicité, z(t) = y(t). L’argument montre aussi que si z(t) = X ()¢, avec ¢ € R", alors z(t)
est solution de (H).
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(d) La preuve du théoreéme 5.2 construit et assure 'existence d’une matrice principale X (¢). Sup-
posons que Y (t) = (y1(t)...yn(t)) soit une autre matrice principale a t = tg, avec y;(t) € R"
pour tout ¢ = 1,...n. Par le point précédent et en utilisant que X (t9) = Y (t9) = I,,, on obtient
Iégalité pour tout t € (a,b) :

= (X t yl(tO) PN X(t)yn(to))

3. Prouver le théoreme de Liouville (théoréeme 5.3).
Solution : On rappelle (série 4, exercice 3) que pour toute matrice inversible M(t) € GL,(R) on a
que.
d
9 (et (X(1) = det (X ()T ((X(0) 7 X'(1))
Par comséquent,

W' (t) det (X (¢)))

== (
= det(X(1))Tr (X (6) ' X'(1))
= WO ((X(1) " AOX ()
= W (1) Tr(A(1)).

ot on a utilisé la propriété Tr(AB) = Tr(BA) pour des matrices carrées A, B € M,,(R). En résolvant
cette équation différentielle déja rencontrée, on trouve bien que :

W (#) = W (to)elio ™A i 4 ¢ (a,b).

4. Considérons I'équation linéaire du deuxieme ordre y” — ty’ + (1 +t)y = 0.
(a) Ecrire cette équation comme un systéme du premier ordre.
(b) On fixe maintenant les données initiales de deux solutions y(t), §(t) :
y(0)=1, y'(0)=0; §(0)=1, §'(0) =3.
Déterminer le wronskien W (t) des solutions y(t),3(t) (i.e. le wronskien des solutions correspon-

dantes du systéme du premier ordre).
Indication : Utiliser le théoreme de Liouville.

Solution :

(a) On définit y; = y et yo = . L’équation se réécrit alors :

@;) - (ty2 - (y12+t)y1) B (—(10+ t) llt) @) ‘

(b) Les conditions initiales permettent de calculer le Wronskien en ¢ty =0 :

W(0) = det ((é ;)) _3.

Le théoreme de Liouville permet donc de trouver le Wronskien :

W(t) = W (tg)elo AN _ 365 sds _ 3et/2



