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Série 4

1. Soit D ⊂ R× Rn × R un ouvert et f = f(t, x;µ) ∈ C1(D,Rn). Pour (t0, x0;µ) ∈ D, prouver que la
solution x = x(t;µ) du problème de Cauchy

x′ = f(t, x;µ), x(t0) = x0,

est de classe C1 en (t;µ) sur son domaine de définition et que ∂µx(t;µ) satisfait

y′ = g(t, x(t, µ);µ) y + ∂µf(t, x(t;µ);µ), y(t0) = 0,

où
g(t, x(t, µ);µ) = ∂xf(t, x(t;µ);µ).

Solution : Tout d’abord, rappelons comment dériver une fonction dont les variables dépendent du
paramètre par rapport auquel on dérive. Ecrivons

f(t, x;µ) =

f1(t, x;µ)
...

fn(t, x;µ)

 , fi : D ⊂ R× Rn × R → R.

Alors (revoir le cours d’analyse II pour plus de détail) :

∂

∂µ
(f(t, x;µ)) =

∂

∂µ
f(t, x;µ) · ∂µ

∂µ
+

n∑
k=1

∂

∂xk
f(t, x;µ) · ∂xk

∂µ
+

∂

∂t
f(t, x;µ) · ∂t

∂µ

=
∂

∂µ
f(t, x;µ) +

n∑
k=1

∂

∂xk
f(t, x;µ) · ∂xk

∂µ

=

∂µf1(t, x;µ)
...

∂µfn(t, x;µ)

+
n∑

k=1

∂xk
f1(t, x;µ) · ∂µxk(t;µ)

...
∂xk

fn(t, x;µ) · ∂µxk(t;µ)


=

∂µf1(t, x;µ)
...

∂µfn(t, x;µ)

+

∂x1f1(t, x;µ) · · · ∂xnf1(t, x;µ)
...

. . .
...

∂x1fn(t, x;µ) · · · ∂xnfn(t, x;µ)

 ·

∂µx1(t;µ)
...

∂µxn(t;µ)


= ∂µf(t, x;µ) + ∂xf(t, x;µ) · ∂µx(t;µ)

où ∂µf, ∂µx ∈ Rn et la Jacobienne de f = ∂xf ∈ Rn×n. Pour tout µ fixé, il existe une solution
unique maximale car f ∈ C1(D,Rn), donc localement lipschitzienne en x. Le théorème de Picard
nous assure que la solution x(t;µ) est différentiable par rapport à t. Par rapport à µ, remarquons
que :

∂

∂µ
(x(t;µ)) =

∂

∂µ

(
x0 +

∫ t

t0

f(s, x;µ)ds

)
=

∫ t

t0

∂

∂µ
(f(s, x;µ)) ds

où on justifie la dernière égalité par le fait que f ∈ C1(D,Rn) et que l’on intègre sur un intervalle
borné. Comme l’intégrande appartient à C0(D,Rn), on en déduit que ∂µx(t;µ) est continue et que
x est de classe C1 en (t;µ). Grâce au rappel précédent, on trouve :

d

dt
(∂µx(t;µ)) =

d

dt

(∫ t

t0

∂

∂µ
(f(s, x;µ)) ds

)
=

∂

∂µ
(f(t, x;µ))

= ∂µf(t, x;µ) + ∂xf(t, x;µ) · ∂µx(t;µ),
ce qui est le résultat attendu.
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2. Considérons le problème de Cauchy dépendant du paramètre µ ∈ R

x′ =
t

1 + eµx2 , x(0) = 1.

(a) Montrer que, pour tout µ ∈ R, la solution xµ(t) est unique et globale.

(b) Déterminer limµ→0 xµ(t) en justifiant rigoureusement votre réponse.

Solution :

(a) Soit D = R × R. Pour µ ∈ R, soit fµ : D → R définie par fµ(t, x) =
t

1 + eµx2 . Attention, ici

l̂ındice µ ne veut pas signifier la dérivée par rapport à µ, mais simplement que l’on considère le
problème de Cauchy pour un µ fixé. Les fonctions fµ ∈ C1(D,R), donc localement lipschitzienne
en x. Le théorème de Picard nous assure une solution unique. De plus, f est bornée sur tout
ouvert DT = (−T, T ), T > 0. Par le corollaire 3.1, la solution existe sur DT , et par arbitrarité
de T on en déduit que la solution est globale.

(b) Pour µ = 0, il est clair que l’unique solution globale est x0(t) =
t2

2
+ 1. La fonction f(t, x;µ) et

différentiable sur R3, donc satisfait les conditions du théorème 4.1 (ou 4.2 aussi).Par conséquent,
la continuité de x(t;µ) nous donne :

lim
µ→0

xµ(t) = x0(t) =
t2

2
+ 1.

3. Soit f ∈ C1(Rn,Rn) et soit ϕ(t;x0) la solution du problème de Cauchy

x′ = f(x), x(0) = x0.

On considère les applications ϕt : Rn → Rn définies par x0 7→ ϕt(x0) = ϕ(t;x0). Montrer que, pour
tout t fixé, ϕt préserve le volume si et seulement si div f = 0 sur Rn.
Solution : Par le théorème de Picard, pour chaque x0 la solution est unique et globale par le
corollaire 3.1. On note Jt(x0) la Jacobienne de ϕt en x0. La première étape est de trouver une
expression pour sa dérivée. Pour ce faire, exprimons ϕt(x0) et Jt(x0) comme suit :

ϕt(x0) =

ϕt,1(x0)
...

ϕt,n(x0)


Jt(x0) =

∂x1ϕt,1(x0) · · · ∂xnϕt,1(x0)
...

. . .
...

∂x1ϕt,n(x0) · · · ∂xnϕt,n(x0)


=
(
∂x1ϕt(x0) · · · ∂xnϕt(x0)

)
,

avec ϕt,i(x0) ∈ R et ∂xiϕt(x0) ∈ Rn, pour tout i = 1, . . . , n. Par le même argument que dans
l’exercice 1, on a que :

∂xiϕt(x0) =

∫ t

0

∂

∂xi
(f(ϕ(s, x0))) ds.
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Pour éviter de se tromper dans les calculs suivants, notons f = f(y1, . . . , yn) et ϕt = ϕt(x1, . . . , xn).
Alors on obtient :

d

dt
(∂xiϕt(x0)) =

d

dt

(∫ t

0

∂

∂xi
(f(ϕ(s, x0))) ds

)
=

∂

∂xi
(f(ϕ(t, x0)))

=
∂

∂xi


f1(ϕt,1(x0), . . . , ϕt,n(x0))

...
fn(ϕt,1(x0), . . . , ϕt,n(x0))




=


∑n

k=1

∂f1
∂yk

(ϕt(x0)) ·
∂ϕt,k

∂xi
(x0)

...∑n
k=1

∂fn
∂yk

(ϕt(x0)) ·
∂ϕt,k

∂xi
(x0)


=

∂y1f1(ϕt(x0)) · · · ∂ynf1(ϕt(x0))
...

. . .
...

∂y1fn(ϕt(x0)) · · · ∂ynfn(ϕt(x0))

 ·

∂xiϕt,1(x0)
...

∂xiϕt,n(x0)


= ∂yf(ϕt(x0)) · ∂xiϕt(x0),

où ∂yf(ϕt(x0)) est la Jacobienne de f en ϕt(x0). Par conséquent, la Jacobienne de ϕt en x0 satisfait
l’équation différentielle :

d

dt
(Jt(x0)) =

(
d
dt (∂x1ϕt(x0)) · · · d

dt (∂xnϕt(x0))
)

=
(
∂yf(ϕt(x0)) · ∂x1ϕt(x0) · · · ∂yf(ϕt(x0)) · ∂xnϕt(x0)

)
= ∂yf(ϕt(x0)) · Jt(x0).

Dès lors, on peut calculer la dérivée par rapport à t du déterminant de Jt(x0). Pourquoi s’intéresse-
t-on à cette quantité ? Parce que le déterminant représente le volume orienté des n vecteurs qui le
composent. Lorsque t = 0, J0(x0) = x0. Par conséquent J0 est la matrice identité et son déterminant
est égal à 1. Par continuité, il existe un voisinage de 0 tel que Jt est inversible. On rappelle que la
différentielle de l’application déterminant en M ∈ GLn(R) est égale à

ddetM (H) = det(M) · Tr(M−1H), ∀H ∈ GLn(R).

On trouve alors :

d

dt
(det(Jt(X0))) = ddetJt(x0)

(
d

dt
(Jt(X0))

)
= det(Jt(x0)) · Tr(Jt(x0)−1 d

dt
(Jt(X0)))

= det(Jt(x0)) · Tr(Jt(x0)−1∂yf(ϕt(x0))Jt(x0))

= det(Jt(x0)) · Tr(∂yf(ϕt(x0)))

= det(Jt(x0)) ·

(
n∑

k=1

∂f1
∂y1

(ϕt(x0))

)
= det(Jt(x0)) · divf(ϕt(x0)).

Par conséquent, le déterminant de la Jacobienne est constant égal à un si et seulement si la divergence
de f est nulle sur Rn. La préservation du volume suit directement. En effet, pour tout domaine
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U ⊂ Rn mesurable au sens de Lebesgue :

Vol(ϕt(U)) =

∫
ϕt(U)

dx =

∫
U
|det(Jt(x))| dx =

∫
U
dx = Vol(U),

ce qui est le résultat voulu.

4. Soit f ∈ C0(R× Rn,Rn) une fonction localement lipschitzienne en x ∈ Rn, telle que f(t, 0) ≡ 0. Si
x(t) est une solution de x′ = f(t, x) telle que x′(0) ̸= 0, montrer que x(t) ̸= 0, pour tout t ∈ R.
Solution : Le théorème de Picard nous assure que la solution est unique. Supposons par l’absurde
que x(t1) = 0 pour un certain t1 ∈ R. Alors x(t) est aussi solution du problème de Cauchy :

x′ = f(t, x), x(t1) = 0.

Cependant, la fonction triviale y(t) ≡ 0 est aussi solution car f(t, 0) = 0. Donc x(t) ≡ 0, ce qui
contredit l’hypothèse x′(0) = 0. Par conséquent, x(t) ̸= 0 pour tout t ∈ R.

5. Considérons le problème de Cauchy

x′ = f(x), x(t0) = x0, (1)

pour f ∈ C0(R,R) et (t0, x0) ∈ R2. Supposons que xf(x) < 0 pour tout x ̸= 0. Montrer que toute
solution de (1) existe sur [t0,∞), est monotone sur cet intervalle, et satisfait limt→∞ x(t) = 0.
Solution : Soit x(t) une solution du problème de Cauchy et soit T > |t0|. Définissons DT = (−T, T ).
Alors f est bornée sur DT , donc x(t) existe sur DT . Par arbitrarité de T , x(t) existe sur R et donc
sur [t0,+∞). Pour montrer la monotonie, on prouve que x(t) garde le même signe, ce qui implique
que f(x(t)) = x′(t) garde aussi le même signe et que x(t) est monotone. Par hypothèse, on sait que
x(t) et x′(t) ont leurs signes opposé (pour x ̸= 0) et on a que :

d

dt

(
x2(t)

)
= 2x(t)x′(t) < 0.

On a donc, pour tout t0 ≤ t1 ≤ t2 < +∞, x2(t2) ≤ x2(t1) car

x2(t2)− x2(t1) =

∫ t2

t1

d

dt

(
x2(t)

)
dt =

∫ t2

t1

2x(t)x′(t)dt ≤ 0.

L’inégalité est stricte si x(t1) ̸= 0, et si x(t1) = 0 alors x(t2) = 0 pour tout t2 ≥ t1. On obtient que
x(t) garde le même signe car si ce n’était pas le cas on pourrait trouver, par continuité de la solution,
t0 ≤ t1 < t2 < +∞ tels que sgn(t1) ̸= sgn(t2) et |x(t1)| > |x(t2)|. Cela contredit x2(t2) ≤ x2(t1),
donc x(t) est monotone.


