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SERIE 4

1. Soit D C R x R™ x R un ouvert et f = f(t,z;u) € CY(D,R"™). Pour (to,xo; ) € D, prouver que la
solution & = z(t; 1) du probleme de Cauchy
xlzf(t7$;u)a l’(to) = Zo,
est de classe C'! en (¢ ) sur son domaine de définition et que 9,z (t; u) satisfait
y =gt ot m)ipn)y +Ouf(ta(tp)ip),  ylto) =0,
ou
g(t, z(t, 1) ) = Ou f (t, x(t; )i 1)
Solution : Tout d’abord, rappelons comment dériver une fonction dont les variables dépendent du
parametre par rapport auquel on dérive. Ecrivons

fl(t,$,ﬂ)
ft,zp) = : JJi:DCRxR" xR —R.
fn(tax;ﬂ)
Alors (revoir le cours d’analyse II pour plus de détail) :
0 ' K 8xk 0 ' ot
0 oxp
=—f{t,z;p) + —J(&xpn) ——
AR ;%k (tain) - 5
Aufr(t, x5 1) n [ Ou Sr(t, ;1) - Oy (t; p)
= : +> :
Oufn(t,zsp) ) F=1 Oy fu(t, w5 1) - Opi(t; 1)
aufl(tvx§ﬂ) 8x1f1(t7x§ﬂ) 8znf1(t7x§u) 8u371(t;/~‘)
8ufn(t7x;ﬂ) 8x1fn(tax;/~b) 8xnfn(t7x;u) 8uxn(t§,u)

= Ouf(t,z;p) + O f(t, 5 p0) - Op(t; )

ou d,f,0ux € R" et la Jacobienne de f = 0,f € R" ™. Pour tout p fixé, il existe une solution
unique maximale car f € C*(D,R"), donc localement lipschitzienne en z. Le théoréme de Picard
nous assure que la solution z(t; u) est différentiable par rapport a t. Par rapport a p, remarquons
que :

0 t; _ 9 t spu)ds | = ‘o i) d

au (.1‘( 7“)) - aﬂ <ZL’0 + o f(Sa%M) 8) - o Gu (f(S,.’,U,IU)) $

ol on justifie la derniere égalité par le fait que f € C1(D,R"™) et que l'on intégre sur un intervalle
borné. Comme lintégrande appartient & CY(D,R™), on en déduit que 9,z (t; i) est continue et que
x est de classe C1 en (t; ). Grace au rappel précédent, on trouve :

G Ouate) = 4 ([ 3 (e as)

0
= 87/,1, (f(t,(L‘; :U’))

= Ouf(t, ;) + Op f(t, 3 1) - O (t; ),
ce qui est le résultat attendu.
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2. Considérons le probleme de Cauchy dépendant du parametre p € R

, t

(a) Montrer que, pour tout p € R, la solution x, () est unique et globale.

(b) Déterminer lim,_,o () en justifiant rigoureusement votre réponse.

Solution :

(a) Soit D = R x R. Pour u € R, soit f, : D — R définie par f,(t,z) = i

lindice p ne veut pas signifier la dérivée par rapport a p, mais simplement que 1'on considere le
probléme de Cauchy pour un y fixé. Les fonctions f, € C'(D,R), donc localement lipschitzienne
en z. Le théoreme de Picard nous assure une solution unique. De plus, f est bornée sur tout
ouvert Dp = (=T,T),T > 0. Par le corollaire 3.1, la solution existe sur Dp, et par arbitrarité
de T on en déduit que la solution est globale.

Attention, ici

2
(b) Pour =0, il est clair que 'unique solution globale est zo(t) = ) + 1. La fonction f(t,z;u) et

différentiable sur R3, donc satisfait les conditions du théoréme 4.1 (ou 4.2 aussi).Par conséquent,
la continuité de z(t; ) nous donne :

t2
li = = — +1.
Mlg})wu(t) wo(t) 5t

3. Soit f € C1(R™,R") et soit ¢(t; 2¢) la solution du probléme de Cauchy
o' =f(z),  2(0) =0

On considere les applications ¢ : R™ — R™ définies par xg — ¢(xg) = ¢(t; o). Montrer que, pour
tout t fixé, ¢; préserve le volume si et seulement si div f = 0 sur R".

Solution : Par le théoreme de Picard, pour chaque x( la solution est unique et globale par le
corollaire 3.1. On note J;(xg) la Jacobienne de ¢; en xy. La premiere étape est de trouver une
expression pour sa dérivée. Pour ce faire, exprimons ¢:(z¢) et Ji(xp) comme suit :

¢1,1(o)
Pr(x0) = :
b1 (0)
Oz 0t1(z0) -+ Ou,Pt1(20)
Ji(wo) = : :
3351(;5,57“(370) o O, dtn(x0)
= (0 ¢t(x0) -+ Ou,r(20)),
avec ¢ri(zo) € R et Oxipi(xg) € R™, pour tout ¢ = 1,...,n. Par le méme argument que dans

I’exercice 1, on a que :

Oucnlan) = [ 5 (F(6(s,a0)) ds.
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Pour éviter de se tromper dans les calculs suivants, notons f = f(y1,...,Yn) €t ¢y = ¢(x1,. .., x4).
Alors on obtient :
d
2 (0, ) i ([ ot as)
— o (1t 20))
5 f1(pea(z0), - - - Ptn(z0))
fn(d)t l(xO)u .. 7¢t n(xO))
0 0
S gt (@r(o0) - Sy (ao)
Ofn 0
Si o <¢>t< o))+ L a0)
5y1f1(¢t(960)) Oy, J1(¢t(xo)) O, P1,1(20)
Oy fn(&nla0)) -+ Oy uldu(en)))  \Ouidun(eo)

= 0y f(de(20)) - Oz, t(0),

ot dy f(¢¢(x0)) est la Jacobienne de f en ¢;(xg). Par conséquent, la Jacobienne de ¢; en xq satisfait
I’équation différentielle :

< (o)) = (2 (0, u(x0)

= (0yf (de(0)) - Oy 1 (o)
= 3yf(¢t($0)) - Ji(z0).

Dés lors, on peut calculer la dérivée par rapport a ¢ du déterminant de Jy(zp). Pourquoi s’intéresse-
t-on a cette quantité ? Parce que le déterminant représente le volume orienté des n vecteurs qui le
composent. Lorsque t = 0, Jo(z9) = x¢. Par conséquent Jy est la matrice identité et son déterminant
est égal a 1. Par continuité, il existe un voisinage de 0 tel que J; est inversible. On rappelle que la
différentielle de lapplication déterminant en M € GL,,(R) est égale a

& (O, dt(x0))

)
Ay f (d1(x0)) - Or,, Pt (20))

ddetys(H) = det(M) - Te(M~H),VH € GL,(R).

On trouve alors :

j (J(Xo)

- Tr(Je(xo) 'Oy f (Br(w0))

TI‘(Jt (370)
+(20))

= det(Jy(x0)) -

= det(Jy(x0))

- Tr(9y f(¢1(x0)))

— 0f1
(kl B (¢t($0))>

-divf(¢(xo)).-

Par conséquent, le déterminant de la Jacobienne est constant égal a un si et seulement si la divergence
de f est nulle sur R™. La préservation du volume suit directement. En effet, pour tout domaine
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U C R™ mesurable au sens de Lebesgue :

Vol(cbt(U))—/d)(U) da?—/U]det(Jt(x))\dx—/Udac—Vol(U),

ce qui est le résultat voulu.

4. Soit f € CO(R x R™,R") une fonction localement lipschitzienne en z € R™, telle que f(¢,0) = 0. Si
x(t) est une solution de 2’ = f(t, x) telle que 2’(0) # 0, montrer que z(t) # 0, pour tout ¢ € R.
Solution : Le théoreme de Picard nous assure que la solution est unique. Supposons par 1’absurde
que z(t1) = 0 pour un certain t; € R. Alors x(t) est aussi solution du probleme de Cauchy :

¥ = f(t,x),z(t1) = 0.

Cependant, la fonction triviale y(t) = 0 est aussi solution car f(¢,0) = 0. Donc z(t) = 0, ce qui
contredit 'hypothése 2/(0) = 0. Par conséquent, z(t) # 0 pour tout ¢ € R.

5. Considérons le probleme de Cauchy

o' = f(x),  x(to) = o, (1)
pour f € C°(R,R) et (tg,z0) € R%. Supposons que zf(z) < 0 pour tout = # 0. Montrer que toute
solution de (1) existe sur [tg,c0), est monotone sur cet intervalle, et satisfait lim;_,oc 2:(t) = 0.
Solution : Soit z(t) une solution du probléeme de Cauchy et soit T' > |to|. Définissons Dy = (=T, T).
Alors f est bornée sur Dy, donc z(t) existe sur Dp. Par arbitrarité de T', z(t) existe sur R et donc
sur [tp, +00). Pour montrer la monotonie, on prouve que z(t) garde le méme signe, ce qui implique
que f(x(t)) = 2/(t) garde aussi le méme signe et que x(t) est monotone. Par hypothése, on sait que
x(t) et 2/(t) ont leurs signes opposé (pour z # 0) et on a que :

d
dt
On a donc, pour tout tg < t1 < to < +00, 2%(t2) < 2%(t1) car

x2(t2)—:c2(t1):/t2jt(xQ(t))dt:/tQ 20(t)a! (£)dt < 0.

t1 t1

L’inégalité est stricte si z(¢1) # 0, et si z(t1) = 0 alors z(t2) = 0 pour tout t2 > ¢;. On obtient que
x(t) garde le méme signe car si ce n’était pas le cas on pourrait trouver, par continuité de la solution,
to < t1 < ta < +oo tels que sgn(ty) # sgn(ta) et |x(t1)] > |z(t2)|. Cela contredit z2(t2) < z%(t1),
donc z(t) est monotone.

($2(t)) =2x(t)2'(t) < 0.



