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Série 3

1. Pour t0, a1, . . . , an ∈ R donnés, on considère le problème de Cauchy d’ordre n suivant :

y(n) = g(t, y, y′, . . . , y(n−1)), y(t0) = a1, y′(t0) = a2, . . . , y
(n−1)(t0) = an. (1)

Déduire du théorème 2.1 le théorème suivant.

Soit D ⊂ R × Rn un ouvert et g ∈ C0(D,Rn) une fonction de (t, y1, y2, . . . , yn) ∈ D, localement
lipschitzienne en (y1, y2, . . . , yn) sur D. Alors il existe γ > 0 tel que (1) possède une unique solution
sur [t0 − γ, t0 + γ].
Solution : L’idée est de réexprimer le système comme une EDO du premier ordre. On procède de
la manière suivante : soit y1, . . . , yn−1 : R → R et tels que :

y′(t) = y1(t)

y′1(t) = y2(t)

y′n−2(t) = yn−1(t)

y′n−1(t) = g(t, y1(t), . . . , yn−1(t))

avec condition initiale y(t0) = a1, y1(t0) = a2, . . . , yn−1(t0) = an. En notant x(t) = (y(t), y1(t), . . . , yn−1(t)) ∈
Rn et f(t, x) = (y1, . . . , yn−1, g(t, x)) = (x2, . . . , xn, g(t, x)) ∈ Rn, on obtient l’EDO du premier
ordre :

x′(t) = f(t, x(t)), x(t0) = (a1, . . . , an).

La fonction f ∈ C0(D,Rn) est localement lipschitz en x, car g l’est et toute fonction linéaire l’est
aussi. Le théorème 2.1 nous assure de l’existence d’un γ > 0 tel que le problème de Cauchy admet
une solution unique sur [t0 − γ, t0 + γ], et par conséquent le problème de Cauchy d’ordre n aussi.

2. On considère le problème de Cauchy

y′′ =
1

t
(y′)2/3 − y3/2 + et, y(t0) = a1, y′(t0) = a2. (2)

Prouver les résultats suivants.

(a) Si t0 ̸= 0 et a1 > 0, alors (2) possède une solution.

(b) Si, de plus, a2 ̸= 0, alors cette solution est unique.

Solution : Dans le même esprit que l’exercice 1, soit x(t) = (x1(t), x2(t)) := (y(t), y′(t)) et

f(t, x(t)) =

(
x2(t),

1

t
(x2(t))

2/3 − (x1(t))
3/2 + et

)
.

On réécrit le problème de Cauchy comme une EDO du premier ordre :

x′(t) = f(t, x(t)), (t0, x0) = (t0, a1, a2) ∈ R× R2.

(a) Si t0 ̸= 0 et a1 > 0, alors f est continue sur D := R\{0} × (0,∞)× R ⊂ R× R2 et (t0, x0) ∈ D.

La condition a1 > 0 est important, car sinon l’expression (x1(t))
3/2 n’est pas définie (sur R) dans

un voisinage de a1. Le théorème de Cauchy-Peano assure alors l’existence d’une solution.

(b) Si, de plus, a2 ̸= 0, alors (t0, x0) ∈ D̃ := R\{0}× (0,∞)×R\{0} ⊂ R×R2 et f est différentiable

sur D̃. En effet, la perte de différentiabilité survient lorsque t ou x2 est égal à 0. Cela implique
que f est localement lipschitzeinne en x sur D̃ (voir série 1 exercice 5). Par le théorème de
Picard, la solution est unique.
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3. Déterminer l’intervalle maximal d’existence des solutions du problème de Cauchy

x′ =
x2 − 1

2
, x(t0) = x0,

dans les deux cas suivants : (a) (t0, x0) = (0, 0) ; (b) (t0, x0) = (ln 2,−3).
Solution :

(a) L’expression−2 x′(t)
1−x2(t)

est bien définie au voisinage de (t0, x0) = (0, 0). En utilisant un développement

similaire à l’exerice 3 de la série 1 (le cas v0 ∈ (0,
√
g/λ)), on obtient :

t = −2 arctanh(x(t))

et donc x(t) = tanh (−t/2). On vérifie bien que pour tout t ∈ R :

d

dt
(tanh (−t/2)) =

(
1− tanh2(−t/2)

)
·
(
−1

2

)
=

tanh2(−t/2)− 1

2
.

La fonction tangeante hyperbolique est définie sur toute la droite réelle, on en déduit que l’in-
tervalle maximal est R.

(b) L’expression −2 x′(t)
1−x2(t)

est bien définie au voisinage de (t0, x0) = (ln(2), 3). En utilisant un

développement similaire à l’exerice 3 de la série 1 (le cas v0 >
√
g/λ), on obtient :

ln(2)− t

2
= arcoth(x(t))− arcoth(3).

et donc x(t) = coth
(
ln(2)−t

2 + arcoth(3)
)
. Il faut utiliser la fonction argument cotangente hyper-

bolique avec cette condition initiale et non pas argument tangente hyperbolique (pour plus de
développement, regarder l’exerice 3 de la série 1). Ces deux fonctions ont la même dérivée, mais
ne sont pas définies sur le même domaine ! La fonction cotangente hyperbolique est une bijection
C∞ de R∗ dans (−∞,−1) ∪ (1, 1∞) et on a lims 7→0 |coth(s)| = +∞. On résoud :

0 =
ln(2)− t

2
+ arcoth(3) =

1

2

(
ln(2)− t+ ln

(
3 + 1

3− 1

))
= − t

2
.

On en déduit par le corollaire 3.1 que l’intervalle maximal d’existence est (0,+∞), et que l’on
peut exprimer la solution comme x(t) = coth(−t/2).

4. Etudier l’existence, l’unicité et l’intervalle maximal d’existence des solutions du problème de Cauchy

x′ = ln t+
x

x2 + 1
, x(1) = 0.

Solution : Posons D = (0,+∞)× R et f : D → R tel que f(t, x) = ln(t) + x
x2+1

. La fonction f est

lipschitzienne en x, donc on a unicité et existence d’une solution pour la condition initiale x(1) = 0
par le théorème de Picard. De plus, on a l’inégalité :

|x(t)| ≤
∫ t

1
[|ln(s)|+

∣∣∣∣ x(s)

1 + x2(s)

∣∣∣∣] ≤ |t− 1| · (|ln(t)|+ 1) .

On déduit du corollaire 3.1 que l’intervalle maximal d’existence est (0,+∞).

5. On considère le problème de Cauchy

x′ = h(t)g(x), x(t0) = x0. (3)

On suppose qu’il existe a ∈ R tel que h ∈ C0([a,∞), [0,∞)), t0 ∈ [a,∞), g ∈ C0([0,∞), (0,∞)),
x0 ∈ [0,∞), et ∫ ∞

x0

dx

g(x)
= ∞.

Montrer que toute solution de (3) existe sur [t0,∞).
Solution : Supposons par l’absurde que x(t) soit solution du problème de Cauchy, existe sur [t0, b)
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avec b ∈ (t0,+∞), mais ne puisse pas être prolongé au-delà de b. Alors, par le corollaire 3.1, on a
que lims 7→b− |x(s)| = +∞. Comme h et g ont leurs images dans [0,+∞) et (0,+∞), respectivement,

x(s)− x0 =

∫ s

t0

h(t)g(t)dt ≥ 0,

ce qui implique que lims 7→b− x(s) = +∞. Comme l’image de g est contenue dans les réels strictement
positifs, on a l’égalité, pour s ∈ (t0, b) :∫ s

t0

h(t)dt =

∫ s

t0

x′(t)

g(x(t))
dt.

Ces deux termes sont bien définis, car on intègre des fonctions continue sur un intervalle borné. On
constate alors que

lim
s 7→b−

∫ s

t0

h(t)dt ≤ (b− t0) · sup
s∈(t0,b)

|(ht)| < +∞,

mais aussi :

lim
s 7→b−

∫ s

t0

h(t)dt = lim
s 7→b−

∫ x(s)

x0

dx

g(x)
=

∫ +∞

x0

dx

g(x)
= +∞,

ce qui est une contradiction. Par arbitrarité de b, x existe sur [0,+∞).


