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1.

2.

SERIE 3
Pour tg,a1,...,a, € R donnés, on considere le probleme de Cauchy d’ordre n suivant :
v =gty vy, y(te) = a1, y(t) = az,. .y (t) = an. (1)

Déduire du théoreme 2.1 le théoréme suivant.

Soit D C R x R™ un ouvert et g € C°(D,R") une fonction de (t,41,%2,...,yn) € D, localement
lipschitzienne en (y1,ya, ..., ys) sur D. Alors il existe v > 0 tel que (1) posseéde une unique solution
sur [to — 7, to + 7).

Solution : L’idée est de réexprimer le systeme comme une EDO du premier ordre. On procede de

la maniere suivante : soit y1,...,yn—1 : R — R et tels que :
y'(t) = y(t)
yi(t) = 12(t)
Yn—2(t) = yn-1(t)
Yn1(t) = g(t,y1(1), -, yn—1(1))

avec condition initiale y(to) = a1, y1
R™ et f(t,l‘) = (2/1, ceey Z/n7179(

ordre :

2'(t) = f(t,z(t),z(to) = (a1, ..., an).
La fonction f € C%(D,R") est localement lipschitz en x, car g l’est et toute fonction linéaire 1'est
aussi. Le théoreme 2.1 nous assure de Iexistence d’'un v > 0 tel que le probleme de Cauchy admet
une solution unique sur [ty — 7, to + 7], et par conséquent le probléme de Cauchy d’ordre n aussi.

~

to
,x)) = (z2,...,7pn,9(t,x)) € R™, on obtient 'EDO du premier

On considere le probleme de Cauchy

1
=W =P e yth) = an, o (to) = s (2)

Prouver les résultats suivants.

(a) Sitp#0eta; >0, alors (2) posséde une solution.

(b) Si, de plus, ay # 0, alors cette solution est unique.

Solution : Dans le méme esprit que l'exercice 1, soit x(t) = (z1(¢t), z2(t)) := (y(t),y'(t)) et
1
Ft,0) = (1200). 3 (20 — (07 4 ).
On réécrit le probleme de Cauchy comme une EDO du premier ordre :
2’ (t) = f(t,z(t)), (to, z0) = (to,a1,a2) € R x R?,

(a) Sitg#0eta; >0, alors f est continue sur D := R\{0} x (0,00) x R C R x R? et (tg,20) € D.
La condition a; > 0 est important, car sinon expression (z1(t))%/? n’est pas définie (sur R) dans
un voisinage de aj. Le théoréeme de Cauchy-Peano assure alors I’existence d’une solution.

(b) Si, de plus, az # 0, alors (¢, 7o) € D :=R\{0} x (0,00) x R\{0} C R xR? et f est différentiable
sur D. En effet, la perte de différentiabilité survient lorsque ¢ ou z2 est égal a 0. Cela implique

que f est localement lipschitzeinne en z sur D (voir série 1 exercice 5). Par le théoreme de
Picard, la solution est unique.

) =a2,...,yn-1(to) = an. Ennotant z(t) = (y(¢), y1(t), ..., yn-1(t)) €
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3. Déterminer I'intervalle maximal d’existence des solutions du probleme de Cauchy

2
-1
o =2 5 z(to) = xo,
dans les deux cas suivants : (a) (to, o) = (0,0); (b) (to,z0) = (In2,—3).

Solution :

()
1—x2(t)

similaire a l’exerice 3 de la série 1 (le cas vy € (0,1/g/\)), on obtient :
t = —2arctanh(z(t))
et donc z(t) = tanh (—t/2). On vérifie bien que pour tout t € R :
d 1\ _ tanh*(—¢/2) — 1
= (tanh (<£/2)) = (1 - tanh?(~¢/2)) - (—2> _ tanh’( 2/ )=l

La fonction tangeante hyperbolique est définie sur toute la droite réelle, on en déduit que I'in-
tervalle maximal est R.

(a) L’expression —2

(b) L’expression —2% est bien définie au voisinage de (to,zo) = (In(2),3). En utilisant un
développement similaire a 'exerice 3 de la série 1 (le cas vg > 1/g/A), on obtient :
In(2) —t

5 = arcoth(z(t)) — arcoth(3).

et donc z(t) = coth (% + arcoth(?))). 11 faut utiliser la fonction argument cotangente hyper-

bolique avec cette condition initiale et non pas argument tangente hyperbolique (pour plus de

développement, regarder I'exerice 3 de la série 1). Ces deux fonctions ont la méme dérivée, mais

ne sont pas définies sur le méme domaine! La fonction cotangente hyperbolique est une bijection
C* de R* dans (—o0, —1) U (1,100) et on a limg g [coth(s)| = +00. On résoud :

In(2) —t 1 3+1 t

0= —"— th(3) == In(2) —t+In|{ — =——.

5 tarco (3) 2<n() —|—n<3_1>> 5

On en déduit par le corollaire 3.1 que Iintervalle maximal d’existence est (0,+00), et que l'on
peut exprimer la solution comme z(t) = coth(—t/2).

4. Etudier I'existence, I'unicité et I'intervalle maximal d’existence des solutions du probleme de Cauchy

, x
r=Int+ ———, z(1) = 0.
+ 22 +1 (1)
Solution : Posons D = (0,+0c) x Ret f: D — R tel que f(t,2) = In(t) + »°5. La fonction f est
lipschitzienne en z, donc on a unicité et existence d’une solution pour la condition initiale (1) = 0
par le théoreme de Picard. De plus, on a I'inégalité :

|z(t)] S/l[lha(é‘)\Jr %

On déduit du corollaire 3.1 que I'intervalle maximal d’existence est (0, +00).

'] <Jt— 1] (@] +1).

5. On considéere le probleme de Cauchy
a' = h(t)g(x),  x(to) = zo. (3)
On suppose qu’il existe a € R tel que h € C%([a, ), [0,00)), to € [a,00), g € CY([0,0), (0,00)),

zg € [0,00), et
/°° dz ~
v 9(x)

Montrer que toute solution de (3) existe sur [tg, c0).
Solution : Supposons par I’absurde que z(t) soit solution du probleme de Cauchy, existe sur [tg, b)

est bien définie au voisinage de (o, o) = (0,0). En utilisant un développement
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avec b € (tp, +00), mais ne puisse pas étre prolongé au-dela de b. Alors, par le corollaire 3.1, on a
que limg, - |z(s)| = +00. Comme h et g ont leurs images dans [0, +00) et (0, +00), respectivement,

2(5) — a0 = /t h(t)g(t)dt > 0,

0
ce qui implique que limg, ;- x(s) = +o00. Comme I'image de g est contenue dans les réels strictement
positifs, on a I’égalité, pour s € (t,b) :

/t : h(t)dt = /t : gf;(é)))dt.

Ces deux termes sont bien définis, car on integre des fonctions continue sur un intervalle borné. On
constate alors que

s

lim h(t)dt < (b—ty)- sup |(ht)|] < +oo,

s—=b~ to SE(to,b)
malis aussi : ) N
S (s d [ee] d
lim h(t)dt = lim = = / == +o00,
s=b~ Ji, s—=b~ Jzq g(l’) zo g(l’)

ce qui est une contradiction. Par arbitrarité de b, z existe sur [0, +00).



