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Série 2

1. Soit f ∈ C0(D,Rn) où D ⊂ R× Rn est un ouvert. Prouver que x(t) est une solution du problème

x′ = f(t, x), x(t0) = x0,

sur l’intervalle [a, b] (tel que t0 ∈ (a, b)) si et seulement si x(t) satisfait l’équation intégrale (formule
de Duhamel)

x(t) = x0 +

∫ t

t0

f(s, x(s)) ds, t ∈ [a, b].

Solution : Par définition de la topologie produit, on écrit D = D1 ×D2, D1 et D2 deux ouverts de
R et Rn, respectivement.
Supposons que x : D → R satisfait x′(t) = f(t, x(t)), x(t0) = x0 avec (t0, x0) ∈ D. Comme x′ ∈
C0(D1), car f ∈ C0(D), alors x ∈ C1(D1) et le théorème fondamental de l’analyse nous assure que
pour tout t ∈ D1 :

x(t)− x(t0) =

∫ t

t0

x′(s)ds =

∫ t

t0

f(s, x(s))ds,

et donc satisfait l’équation intégrale.
Supposons maintenant que x(t) satisfait la formule de Duhamel. On obtient que x(t0) = x0 et que
x ∈ C1(D1) car x(t) est obtenu en intégrant la fonction s 7→ f(s, x(s)) qui est continue, et donc
intégrable sur tout intervalle de la forme [a, b], avec a, b ∈ D1. En dérivant de chaque côté de la
formule, on obient bien x′(t) = f(t, x(t)) ce qui est le résultat désiré.

2. Prouver le résultat suivant (inégalité de Gronwall).

Soit M ∈ R, t0 ∈ R, h ∈ C0([t0,∞),R+). Soit u(t) une fonction qui satisfait

u(t) ⩽ M +

∫ t

t0

h(s)u(s) ds, t ⩾ t0.

Alors

u(t) ⩽ M exp

(∫ t

t0

h(s) ds

)
.

Enoncer et démontrer un résultat analogue pour t ⩽ t0 et une fonction h ∈ C0((−∞, t0],R+).
Solution : Définissons tout d’abord F : [t0,∞)] → R+ par :

F (t) = M +

∫ t

t0

h(s)u(s)ds.

En dérivant de chaque côté on obtient :

F ′(t) = h(t)u(t) ≤ h(t)

(
M +

∫ t

t0

h(s)u(s)ds

)
= h(t)F (t).

En d’autres termes :
F ′(t)− h(t)F (t) ≤ 0.

Cela nous mène à étudier la fonction G(t) = F (t) exp
(
−
∫ t
t0
h(s)ds

)
. Sa dérivée satisfait :

G′(t) =
d

dt

(
F (t) exp

(
−
∫ t

t0

h(s)ds

))
=

(
F ′(t)− F (t)h(t)

)
exp

(
−
∫ t

t0

h(s)ds

)
≤ 0.

Ainsi, comme sa dérivée est toujours non-positive, on obtient

F (t) exp

(
−
∫ t

t0

h(s)ds

)
= G(t) ≤ G(0) = F (0) = M,
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et donc l’inégalité de Gronwall :

u(t) ≤ F (t) ≤ M exp

(∫ t

t0

h(s)ds

)
.

Supposons maintenant que t ≤ t0, h ∈ C0 (−∞, t0],R+) et que u(t) satisfait toujours :

u(t) ≤ M +

∫ t0

t
h(s)u(s)ds.

Dans ce cas,

F (t) = M +

∫ t0

t
h(s)u(s)ds

satisfait :

F ′(t) = −h(t)u(t) ≥ h(t)

(
M +

∫ t

t0

h(s)u(s)ds

)
= −h(t)F (t).

Ceci implique que :

d

dt

(
F (t) exp

(
−
∫ t

t0

h(s)ds

))
=

(
F ′(t) + F (t)h(t)

)
exp

(
−
∫ t

t0

h(s)ds

)
≥ 0.

Comme cette dérivée est positive et que t ≤ t0, alors :

F (t) exp

(
−
∫ t

t0

h(s)ds

)
≤ F (0) = M,

ce qui a pour conséquence à nouveau :

u(t) ≤ F (t) ≤ M exp

(∫ t

t0

h(s)ds

)
.

3. On considère le problème de Cauchy

x′ = f(t, x), x(0) = x0 ∈ Rn,

sous les hypothèses du théorème 2.1. Prouver en utilisant l’exercice 2 que sa solution est unique.
Solution : Soit x1, x2 : [t0 − γ, t0 + γ] deux solutions du théorème 2.1. En utilisant l’exercice 1 de
la série, on a que :

xi(t) = x0 +

∫ t

t0

f(s, x(s))ds, i = 1, 2.

Définissons u(t) = |x1(t)− x2(t)|. Alors, en utilisant le fait que f est k−Lipschitz en la deuxième
variable on obtient :

u(t) =

∣∣∣∣∫ t

t0

(f(s, x1(s))− f(s, x2(s))) ds

∣∣∣∣
≤

∫ t

t0

|(f(s, x1(s))− f(s, x2(s)))| ds

≤
∫ t

t0

k |(x1(s)− x2(s))| ds

=

∫ t

t0

ku(s)ds.

Par conséquent, en utilisant l’inégalité de Gronwall avec M = 0 et h(s) = k cela implique que
u(t) ≤ 0. Mais par définition, u(t) ≥ 0 donc u(t) ≡ 0 et x1(t) = x2(t) sur [t0 − γ, t0 + γ].
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4. On considère le problème de Cauchy

x′ = f(x), x(0) = x0 ∈ R,
où

f(x) =

{
x ln |x|, x ̸= 0,

0, x = 0.

Montrer que les hypothèses du théorème 2.1 ne sont pas vérifiées mais que, néanmoins, ce problème
possède une unique solution pour tout x0 ∈ R.
Solution : On a vu en série 1, exercice 4, que la fonction f n’est pas lipschitzienne sur les voisinages
de 0. Donc f ne vérifie pas toutes les hypotèses du théorème 2.1.
Supposons que x(t) soit solution du problème de Cauchy et qu’il existe t0 ∈ R tel que x(t0) ̸= 0.
Alors dans un voisinage de t0, la méthode de séparation des variables nous donne :

t− t0 =

∫ x(t)

x(t0)

1

x ln(|x|)
dx

=

∫ x(t)

x(t0)

d

dx
(ln(ln(|x|))) dx

= ln(ln(|x(t)|))− ln(ln(|x(t0)|)).
Ce qui est équivalent à dire que :

|x(t)| = eln(|x(t0)|)·e
t−t0

= |x(t0)|e
t−t0

.

On remarque donc que si la solution est non-nulle en un point alors elle ne s’annule jamais, ce qui
implique aussi que la solution triviale x(t) ≡ 0 est l’unique qui satisfait le problème de Cauchy
avec la condition initiale est x(0) = 0. Par conséquent, en prenant en compte la condition initiale
x(0) = x0 en t0 = 0 on obtient :

x(t) = sgn(x0) · |x0|e
t

.

Cette solution est bien définie sur toute la droite réelle, et l’unicité provient de la construction
ci-dessus.


