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Solutions : Série 1

1. Montrer que le problème de Cauchy

x′ = x2, x(0) = 0,

possède la solution unique x(t) ≡ 0 on R.

Solution : Soit x(t) une solution. Supposons que x(t1) ̸= 0 pour un certain t1 ∈ R. Alors il existe
ε > 0 et un voisinage (t1 − ε, t1 + ε) tel que l'équation

x′(t)

x2(t)
= 1

est bien dé�nie pour t ∈ (t1 − ε, t1 + ε). En intégrant de chaque côté on obtient :∫ t

t1

x′(s)

x2(s)
ds =

∫ t

t1

sds,

ce qui est équivalent à :

− 1

x(t)
+

1

x(t1)
= t− t1.

Par conséquent, x(t) = − 1
t−c pour une certaine constante c ∈ R et est solution sur R\{c}. On note

que soit x n'est pas dé�nie en 0(c = 0), soit x(0) ̸= 0. Dans les 2 cas il y a une contradiction, donc
x(t1) = 0. Par arbitrarité de t1, x(t) ≡ 0.

2. Montrer que le problème de Cauchy

x′ =
√
|x|, x(0) = 0,

possède une in�nité de solutions xc : R −→ R, où c ∈ R est un paramètre.

Solution : Supposons que x(t) une solution et que x(t1) ̸= 0 pour un certain t1 ∈ R. Alors il
existe ε > 0 et un voisinage (t1 − ε, t1 + ε) tel que l'équation

x′(t)√
|x(t)|

= 1

est bien dé�nie pour t ∈ (t1 − ε, t1 + ε). En intégrant de chaque côté on obtient :

t− t1 =

∫ t

t1

x′(s)√
|x(s)|

ds

= 2
√
|x(t)| − 2

√
|x(t1)|.

On en déduit que x(t) est de la forme :

|x(t)| = (t− c)2

4
, c ∈ R,

au voisinage de t1. Comme x′(t) doit être positif, on en déduit que :

x′(t) =

{
(t−c)
2 , c ≤ t

−(t−c)
2 , c ≥ t
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au voisinage de t1. De plus, il est clair que la fonction triviale x(t) ≡ 0 est solution du problème de
Cauchy sur toute la droite réelle. On rappelle que la condition initialee est x(0) = 0. Cela nous mène
à dé�nir une solution par morceau. Pour c ≥ 0 :

x(t) =

{
0 , t < c

(t−c)2

4 , t ≥ c

est solution du problème de Cauchy et est bien C1(R). Pour c ≤ 0 :

x(t) =

{
− (t−c)2

4 , t ≤ c
0 , t > c

est aussi solution du problème de Cauchy. De plus, on peut combiner ces deux solutions pour trouver
une expression générale de la forme :

x(t) =


− (t−c)2

4 , t ≤ c1
0 , c1 < t < c2

(t−c)2

4 , t ≥ c2

où c1 ≤ 0 ≤ c2.

3. Le vitesse v(t) d'un mobile de masse m = 1 en chute libre, mesurée le long d'un axe vertical, obéit
à l'équation de Newton

v′ = g − f(v), (1)

où g est l'accélération de gravitation sur terre et f(v) la force de frottement de l'air.

(a) Résoudre l'équation (1) dans le cas �basse vitesse� où

f(v) = µv, µ > 0,

avec condition initiale v(0) = v0 ∈ (0, g/µ). Déterminer la vitesse asymptotique lorsque t → +∞.

(b) Résoudre l'équation (1) dans le cas �haute vitesse� où

f(v) = λv2, λ > 0,

avec condition initiale v0 ∈ (0,
√
g/λ). Déterminer la vitesse asymptotique lorsque t → +∞.

Faire de même avec la condition initiale v0 >
√

g/λ.

(c) Comparer les résultats obtenu avec le cas où le frottement de l'air est négligeable, f ≡ 0.

Solution :

(a) L'équation di�érentielle est dans ce cas v′ = g − vµ.Comme v0 ∈ (0, g/µ), l'équation
v′

g − vµ
= 1

est bien dé�nie dans un voisinage I de 0. Pour t ∈ I, on obtient en intégrant de chaque côté :

t =

∫ t

0

v′(s)

g − v(s)µ
ds

=
1

µ
[ln(g − v0µ)− ln(g − v(t)µ)] ,

ce qui est équivalent à :

e−µt =
g − v(t)µ

g − v0µ

et implique que :

v(t) =

(
v0 −

g

µ

)
e−µt +

g

µ
.
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La solution est dé�nie sur toute la droite réelle et satisfait bien le problème de Cauchy pour tout
t ∈ R. De plus, comme µ > 0, le vitesse asymptotique est �nie :

lim
t→∞

v(t) = lim
t→∞

(
v0 −

g

µ

)
e−µt +

g

µ
=

g

µ
.

(b) L'équation di�érentielle est dans ce cas v′ = g − λv2. De nouveau, grâce à la condition initiale

v0 ∈ (0,
√
g/λ) l'équation

v′

g − λv2
= 1 est bien dé�nie dans un voisinage de 0. On reconnaît la

dérivée de l'arc tangente hyperbolique :

arctanh′(f(t)) =
f ′(t)

1− f(v)2
,

avec f(t) ∈ (−1, 1). En intégrant de chaque côté on obtient :

t =

∫
t

0

1

g
·
√

g

λ

√
λ

g
· v′(s)

1−
(√

λ

g
v(s)

)2ds

=
1√
gλ

[
arctanh

(√
λ

g
v(t)

)
− arctanh

(√
λ

g
v0

)]
,

ce qui implique que :

v(t) =

√
g

λ
tanh

(√
gλt+ arctanh

(√
λ

g
v0

))
.

La solution est dé�nie sur toute la droite réelle et satisfait bien le problème de Cauchy pour tout
t ∈ R. La vitesse asymptotique est aussi �nie :

lim
t→∞

v(t) = lim
t→∞

√
g

λ
tanh

(√
gλt+ arctanh

(√
λ

g
v0

))
=

√
g

λ
.

De plus, on remarque qu'avec cette condition initiale la vitesse croît jusqu'à la vitesse limite.

Autre démarche pour trouver v(t) : On réécrit
1

g − λv2(s)
=

1

2g

(
1

1−
√
λ/gv(s)

+
1

1 +
√
λ/gv(s)

)
,

ce qui permet de calculer :

t =

∫ t

0

v′(s)

g − λv2(s)
ds

=
1

2g

∫ v(t)

v0

(
1

1−
√
λ/gv(s)

+
1

1 +
√
λ/gv(s)

)
ds

=
1

2
√
gλ

[
ln
(
1 +

√
λ/gv(t)

)
− ln

(
1−

√
λ/gv(t)

)
− ln

(
1 +

√
λ/gv0

)
+ ln

(
1−

√
λ/gv0

)]
=

1

2
√
gλ

ln


(
1 +

√
λ/gv(t)

)
·
(
1−

√
λ/gv0

)
(
1−

√
λ/gv(t)

)
·
(
1 +

√
λ/gv0

)
 .

Par conséquent,

e
√
gλt ·

(
1−

√
λ/gv(t)

)
·
(
1 +

√
λ/gv0

)
= e−

√
gλt ·

(
1 +

√
λ/gv(t)

)
·
(
1−

√
λ/gv0

)
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et donc

v(t)·

√
λ

g
·
[(

1 +
√

λ/gv0

)
e
√
gλt +

(
1−

√
λ/gv0

)
e−

√
gλt
]
=
(
1 +

√
λ/gv0

)
e
√
gλt−

(
1−

√
λ/gv0

)
e−

√
gλt,

ce qui implique que

v(t) =

√
g

λ
·

(
1 +

√
λ/gv0

)
e
√
gλt −

(
1−

√
λ/gv0

)
e−

√
gλt(

1 +
√
λ/gv0

)
e
√
gλt +

(
1−

√
λ/gv0

)
e−

√
gλt

=

√
g

λ
· e

√
gλt+ln

(
1+
√

λ/gv0
)
− e

−
√
gλt+ln

(
1−
√

λ/gv0
)

e
√
gλt+ln

(
1+
√

λ/gv0
)
+ e

−
√
gλt+ln

(
1−
√

λ/gv0
)

=

√
g

λ
· e

√
gλt+ln

(
1+
√

λ/gv0
)
/2−ln

(
1−
√

λ/gv0
)
/2 − e

−
√
gλt−ln

(
1+
√

λ/gv0
)
/2+ln

(
1−
√

λ/gv0
)
/2

e
√
gλt+ln

(
1+
√

λ/gv0
)
/2−ln

(
1−
√

λ/gv0
)
/2

+ e
−
√
gλt−ln

(
1+
√

λ/gv0
)
/2+ln

(
1−
√

λ/gv0
)
/2

=

√
g

λ
tanh

(√
gλt+

1

2

(
ln
(
1 +

√
λ/gv0

)
− ln

(
1−

√
λ/gv0

)))
=

√
g

λ
tanh

(√
gλt+ arctanh

(√
λ/gv0

))
.

Avec la condition initiale v0 >
√

g/λ l'équation
v′

g − λv2
= 1 est bien dé�nie dans un voisinage

de 0. On reconnaît la dérivée de l'arc cotangente hyperbolique (qui est la même que celle de l'arc
tangente hyperbolique) :

arcoth′(f(t)) =
f ′(t)

1− f(v)2
,

avec f(t) ∈ (−∞,−1[∪]1,∞) . Le domaine de dé�nition est important ! En intégrant de chaque
côté on obtient :

t =
1√
gλ

[
arcoth

(√
λ

g
v(t)

)
− arcoth

(√
λ

g
v0

)]
,

ce qui implique que :

v(t) =

√
g

λ
coth

(√
gλt+ arcoth

(√
λ

g
v0

))

=

√
g

λ

1

tanh

(√
gλt+ arcoth

(√
λ

g
v0

))
=

√
g

λ

1(√
gλt+ arctanh

(√
g

λ

1

v0

)) ,

où on a utilisée que coth(x) = 1/ tanh(x) et arctanh(x) = arcoth(1/x). La solution est dé�nie sur
la droite réelle privée de 0 et satisfait bien le problème de Cauchy pour tout t ∈ R∗. La vitesse
asymptotique est aussi �nie :

lim
t→∞

v(t) = lim
t→∞

√
g

λ

1(√
gλt+ arctanh

(√
g

λ

1

v0

)) =

√
g

λ
.
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On remarque qu'avec cette condition initiale la vitesse décroît jusqu'à la vitesse limite, un com-
portement contraire au cas précédent.
Montrons comment trouver cette expression avec l'autre démarche.

t =
1

2
√
gλ

∫ v(t)

v0

d

dt

[
ln
(
1 +

√
λ/gv(s)

)
− ln

(∣∣∣1−√λ/gv(s)
∣∣∣)] ds

=
1

2
√
gλ

ln


(
1 +

√
λ/gv(t)

)
·
(√

λ/gv0 − 1
)

(√
λ/gv(t)− 1

)
·
(
1 +

√
λ/gv0

)
 .

Par conséquent,

e
√
gλt ·

(√
λ/gv(t)− 1

)
·
(
1 +

√
λ/gv0

)
= e−

√
gλt
(
1 +

√
λ/gv(t)

)
·
(√

λ/gv0 − 1
)

ce qui implique que

v(t) =

√
g

λ
·

(
1 +

√
λ/gv0

)
e
√
gλt +

(√
λ/gv0 − 1

)
e−

√
gλt(

1 +
√

λ/gv0

)
e
√
gλt −

(√
λ/gv0 − 1

)
e−

√
gλt

=

√
g

λ
· e

√
gλt+ln

(
1+
√

g/λv−1
0

)
− e

−
√
gλt+ln

(
1−
√

g/λv−1
0

)
e
√
gλt+ln

(
1+
√

g/λv−1
0

)
+ e

−
√
gλt+ln

(
1−
√

g/λv−1
0

)

=

√
g

λ

1

tanh

(√
gλt+

1

2

(
ln
(
1 +

√
g/λv−1

0

)
− ln

(
1−

√
g/λv−1

0

)))
=

√
g

λ

1

tanh
(√

gλt+ arctanh
(√

g/λv−1
0

)) .
(c) Quand le frottement de l'air est négligeable, alors v(t) = gt + v0 et limt7→∞ v(t) = +∞. Le

comportement asymptotique di�ère donc des deux cas précédents où l'on atteignait une vitesse
limite �nie.

4.

(a) Soit I ⊂ R un intervalle et f : I −→ R une fonction lipschitzienne sur I. Montrer que f est
uniformément continue sur I.

(b) Montrer que les fonctions suivantes sont uniformément continues sur tout intervalle compact de
R mais ne sont pas lipschitziennes sur les voisinages de 0 :

(a) f(x) =
√

|x|, (b) g(x) =

{
x ln |x|, x ̸= 0,

0, x = 0.

Solution :

(a) Notons k la constante de Lipschitz assosciée à f et soit ε > 0. On veut montrer qu'il existe
δ = δ(ε, k) tel que pour tout x, y ∈ I satisfaisant |x− y| ≤ δ alors |f(x)− f(y)| ≤ ε . Posons

δ =
ε

k
. Alors, pour tout x, y ∈ I tels que |x− y| ≤ δ :

|f(x)− f(y)| ≤ k |x− y| ≤ kδ = ε.

Par arbitrarité de ε, on a montré que f est uniformément continue sur I.

(b) Pour tout k > 0, on montre que f et g ne sont pas k−Lipschitz au voisinage de 0. Soit donc k > 0.
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(i) La fonction
√
|x| est dérivable sur (0, 1), donc pour tout 0 < x1 < x2 < min

(
1

4k2
, 1

)
on a :

|f(x2)− f(x1)| =
∣∣∣∣∫ x2

x1

f ′(x)dx

∣∣∣∣
=

∣∣∣∣∫ x2

x1

1

2
√
x
dx

∣∣∣∣
≥ |x2 − x1| · inf

x∈[x1,x2]

1

2
√
x

= |x2 − x1|
1

2
√
x2

> |x2 − x1|
1

2

√
1

4k2

= k |x2 − x1| .

Donc f n'est pas localement Lipschitz en 0.

(ii) La fonction x ln(x) est dérivable sur (0, 1), donc pour tout 0 < x1 < x2 < min
(
e−k−1, 1

)
on

a :

|g(x2)− g(x1)| =
∣∣∣∣∫ x2

x1

(ln(x) + 1)

∣∣∣∣ dx
=

∣∣∣∣∫ x2

x1

ln(x)dx+ (x2 − x1)

∣∣∣∣
≥
∣∣∣∣∫ x2

x1

ln(x)dx

∣∣∣∣− |(x2 − x1)|

≥ |x2 − x1| (|ln(x2)| − 1)

> |x2 − x1| (|−k − 1| − 1)

= k |x2 − x1| .

Donc g n'est pas localement Lipschitz en 0.

5. Soit −∞ ≤ a < b ≤ +∞ et f : (a, b) −→ R une fonction dérivable sur (a, b). Prouver les résultats
suivants :

(a) f ′ est bornée sur (a, b) si et seulement si f est lipschitzienne sur (a, b) ;

(b) si f ′ est continue sur (a, b), alors f est localement lipschitzienne sur (a, b).

Solution :

(a) Supposons que f ′ est bornée et soit M := supx∈(a,b) |f ′(x)|. Alors f est M−Lipschitz. En e�et,

pour tout x, y ∈ (a, b) :

|f(y)− f(x)| =
∣∣∣∣∫ y

x
f ′(t)dt

∣∣∣∣
≤ |y − x| sup

x∈(a,b)

∣∣f ′(x)
∣∣

= M |y − x| .

Supposons maintenant que f est k−Lipschitz pour un certain k > 0. Alors pour tout t ∈ (a, b)
et h ∈ (−min(|t− a| , |t− b|),min(|t− a| , |t− b|)) :∣∣∣∣f(t+ h)− f(t)

h

∣∣∣∣ ≤ k |t− h− t|
|h|

= k.
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Par continuité de la valeur absolue, on a donc en passant à la limite :∣∣f ′(t)
∣∣ = ∣∣∣∣ limh→0

f(t+ h)− f(t)

h

∣∣∣∣ = lim
h→0

∣∣∣∣f(t+ h)− f(t)

h

∣∣∣∣ ≤ k.

Donc f ′ est borné par k.

(b) Comme f ′ est continue, f ′ est borné sur tout compactK ⊂ R, et donc lipschitzienne sur l'intérieur
de K par le point précédent. Cependant, la constante de Lipschitz dépend du compact, c'est à

dire k = k(K). Soit t ∈ (a, b) et dé�nissons ε =
1

2
min (|t− a| t, t− b) > 0. Alors [t − ε, t + ε]

est inclus dans (a, b) et est compact, donc f est k− Lipschitz sur (t − ε, t + ε) avec un certain
k = k(ε). Par le point précédent, on sait par exemple que k = sups∈(t−ε,t+ε) |f ′(s)| fonctionne.
Par arbitrarité de t, f est localement Lipschitz.


