EPFL, Printemps 2025 Equations différentielles ordinaires Francois Genoud, SMA

SOLUTIONS : SERIE 1

1. Montrer que le probléme de Cauchy

posséde la solution unique z(t) = 0 on R.
Solution : Soit z(¢) une solution. Supposons que z(¢;) # 0 pour un certain ¢; € R. Alors il existe
e > 0 et un voisinage (t1 — ¢,t; + ) tel que 'équation

a'(t)

22(t)

est bien définie pour ¢t € (t; —¢,t; + ¢). En intégrant de chaque coté on obtient :

t 0 t
/ 952(5) ds = / sds,
t1 x (8) t1

ce qui est équivalent & :

! + : t—t
7 —t— 1.
x(t)  x(ty)
Par conséquent, z(t) = —i pour une certaine constante ¢ € R et est solution sur R\{c}. On note

que soit x n’est pas définie en 0(c = 0), soit x(0) # 0. Dans les 2 cas il y a une contradiction, donc
x(t1) = 0. Par arbitrarité de ¢, z(t) = 0.

2. Montrer que le probleme de Cauchy

x’ = \/Wﬂ .ZC(O) =0,

posséde une infinité de solutions x. : R —> R, ol ¢ € R est un paramétre.

Solution : Supposons que z(t) une solution et que z(¢;) # 0 pour un certain t; € R. Alors il
existe £ > 0 et un voisinage (t1 — ¢, t1 + ) tel que I'équation

z'(t)
[2(0)]
est bien définie pour t € (t; —&,t1 + ¢). En intégrant de chaque coté on obtient :
_ [T (s
b t1 \/W
=2/[z(t)] - 2v/]z ().

On en déduit que z(t) est de la forme :

t—t ds

—62
) ==L cer,

au voisinage de t1. Comme 2/(t) doit étre positif, on en déduit que :

(t=c) <t
' (t) = 2 » €=
( ) {—(tQ—c) L e>t
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au voisinage de t1. De plus, il est clair que la fonction triviale z(t) = 0 est solution du probléme de
Cauchy sur toute la droite réelle. On rappelle que la condition initialee est (0) = 0. Cela nous méne
a définir une solution par morceau. Pour ¢ > 0 :

0 , t<c
o) = { ey

1o tzc

est solution du probléme de Cauchy et est bien C*(R). Pour ¢ <0 :
(t=c)?

:zz(t):{_4 , tSc

0 , t>c

est aussi solution du probléeme de Cauchy. De plus, on peut combiner ces deux solutions pour trouver
une expression générale de la forme :

— 2 ) t<c
x(t) = 0 , aa<t<e
N2
(t4C) ) t>co

ot c1 <0< eco.

3. Le vitesse v(t) d’un mobile de masse m = 1 en chute libre, mesurée le long d’un axe vertical, obéit
a I’équation de Newton

v =g— f(v), (1)

ou g est l'accélération de gravitation sur terre et f(v) la force de frottement de air.
(a) Résoudre I’équation (1) dans le cas “basse vitesse” o
f0) = v, 50,
avec condition initiale v(0) = vy € (0, g/u). Déterminer la vitesse asymptotique lorsque ¢ — +o0.

(b) Résoudre ’équation (1) dans le cas “haute vitesse” o
f(v) = \?, A >0,
avec condition initiale vy € (0, /g/A). Déterminer la vitesse asymptotique lorsque t — +oc.
Faire de méme avec la condition initiale vy > /g/A.

(c) Comparer les résultats obtenu avec le cas ou le frottement de Pair est négligeable, f = 0.

Solution :
/

=1

a L [S] llal 10N dlﬁ‘(fl (311t1(311(3 (3St daIlS € Cas ! C 07 9 é
'Ull

est bien définie dans un voisinage I de 0. Pour t € I, on obtient en intégrant de chaque coté :

Y O
= /o g- v(S)ud
_ ; In(g — vor) — In(g — v(t)w)],

ce qui est équivalent & :
e—ut — g— U(t):u
g — Vot

v(t) = (Uo - g) ety I
7 u

et implique que :
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La solution est définie sur toute la droite réelle et satisfait bien le probléme de Cauchy pour tout
t € R. De plus, comme p > 0, le vitesse asymptotique est finie :

lim v(¢) = lim (vg - g) ety 99
L

t—o00 t—o00 o) Hu

(b) L’équation différentielle est dans ce cas v/ = g — Av?. De nouveau, grace a la condition initiale
/

v € (0,4/g/A) 'équation ———
v
dérivée de I'arc tangente hyperbolique :

= 1 est bien définie dans un voisinage de 0. On reconnait la

arctanh’(f(t)) = l—f/f(t()v)Q’

avec f(t) . En intégrant de chaque c6té on obtient :

e
/ ()
manh (ﬁw)) — axctanh (ﬁ)] |
ce qui implique que :
o(t) = \/g tanh <\/g7t + arctanh <\/§v0>> .

La solution est définie sur toute la droite réelle et satisfait bien le probléme de Cauchy pour tout
t € R. La vitesse asymptotique est aussi finie :

. ] A _ /9
tlggo v(t) = tll)rgo 3 tanh (x/g/\t + arctanh <\/;vo>> =\

De plus, on remarque qu’avec cette condition initiale la vitesse croit jusqu’a la vitesse limite

1 1 1
Autre démarche pour trouver v(t) : On réécrit —————— =

g — Av?(s) % 1—\/%7) 1‘*‘\/79“ >

g 2
>

ce qui permet de calculer :
t /
t —/ ) (Sg ds
0 g— Av(s)

_1 / " ( ! + = ) ds
29 Ju, \1—/Mgu(s) 1+ /Ngu(s)
:2\} [m (1 + \/%v(t)) ~In (1 - A/gv(t))
“In (1 + mvg) +In (1 )\/gv())]
) (1 + \/Wv(t)) : (1 - /\/gvo)
2¢/gX (1 - \/mv(t)) : (1 + )\/gvo) '

Par conséquent,

eVIAL (1 _ \/%U(t)) . (1 + \/%Uo) — o VoA, <1 + \/%U(t)> : (1 - \/%vg)
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et donc

o) \[ (14 Vg0 /7% + (1= \/¥750) eV = (14 yAauo) /7 (1~ /370 e,
ce qui implique que
o) =/% (14 VATguo) /7% — (1= /Aguo) V¥
(14—@@0) eVort 4 (1— Mg VX
J ﬁtﬂn( + /g'L)o) o VNI (1= VMavo
i >
)72
)

>

\/ At+1In( 14+4/M/gvo

(
_\/3 \/7t+ln<1+\/7g V0 (1 MU())/Q_ —v/gMt— ln(1+ gvg)/2+ln(1— )\/gvo)/Q
VA \ﬁmn(u Ngvo)/2— 1n(1 )\/gv0>/2 —VaA— 1n(1+ v0>/2+1n(17 )\/gv0>/2

/—\CD

\/>tanh (\/715 + < L <ln (1 + mvo)
:\/gtanh <\/gi)\t + arctanh (m%)) .

1= V)

/

v
Avec la condition initiale vg > /g/A I'équation ——~—
g— v

de 0. On reconnait la dérivée de I’arc cotangente hyperbolique (qui est la méme que celle de 'arc
tangente hyperbolique) :

= 1 est bien définie dans un voisinage

f't)
1— f(v)*

avec f(t) € (—oo,—1[U]1,00) . Le domaine de définition est important ! En intégrant de chaque

cOté on obtient :
1 A A
t = —— |arcoth —v(t) | — arcoth - ,

ce qui implique que :
g A
u(t) = X coth | v/gAt + arcoth EUO
_ /9 1
VA A
tanh | v/gAt + arcoth ;vo

R (1Y)

ol on a utilisée que coth(x) = 1/tanh(x) et arctanh(z) = arcoth(1/z). La solution est définie sur
la droite réelle privée de 0 et satisfait bien le probléme de Cauchy pour tout ¢t € R*. La vitesse
asymptotique est aussi finie :

arcoth’(f(t)) =

1
lim v(t) = lim g =./2.

0o oo\ A 1 A
= = <\/7t + arctanh <\/?>>
A Vo
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On remarque qu’avec cette condition initiale la vitesse décroit jusqu’a la vitesse limite, un com-
portement contraire au cas précédent.
Montrons comment trouver cette expression avec ’autre démarche.

o [ (4 VAT~ (1= VAT s
. (14 VAgu(®)) - (V/Agwo - 1)

= In
2V | (VATgu(t) = 1) - (1+ VA gwo)
Par conséquent,

eV (VATgu(t) - 1) : (1 + VM guy) = eVoN (1 + /M go(t ) (ﬁvo - 1)

ce qui implique que

g (1 A/Q“O) eVIrt 4 ( /gvo — 1) e VoAl
v(t) e <1 )\/gvo> e (\/79710 — 1) N

~—r

g \/7t+ln<1+\/g/7)\v ) rt+ln<1 g/)\v 1
\/: \/7t+ln<1—\/gﬁvo_1>

i
*+
B
—~
=
+
j
o@
N

:\/Et h(\ﬁt+ (1 (1+\/71 - - -
an (14 Vo) - (1= Var ) )

_ /9 .
_\/:tanh <\/th + arctanh (mval)> |

(c) Quand le frottement de l'air est négligeable, alors v(t) = gt 4+ vg et limy oo v(t) = +o00. Le
comportement asymptotique différe donc des deux cas précédents ot I'on atteignait une vitesse
limite finie.

(a) Soit I C R un intervalle et f : I — R une fonction lipschitzienne sur I. Montrer que f est
uniformément continue sur /.

(b) Montrer que les fonctions suivantes sont uniformément continues sur tout intervalle compact de
R mais ne sont pas lipschitziennes sur les voisinages de 0 :

(a) f(x) = V], (Mguu={?ﬁﬂ’ii&

Solution :

(a) Notons k la constante de Lipschitz assosciée a f et soit ¢ > 0. On veut montrer qu’il existe
d = d(e, k) tel que pour tout x,y € I satisfaisant |z —y| < § alors |f(x) — f(y)| < e . Posons

€
0= T Alors, pour tout x,y € I tels que |[x —y| <4 :

[f(x) = fW <klz—yl <kd=e.
Par arbitrarité de €, on a montré que f est uniformément continue sur I.

(b) Pour tout k£ > 0, on montre que f et g ne sont pas k—Lipschitz au voisinage de 0. Soit donc k > 0.
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1
(i) La fonction y/|z| est dérivable sur (0, 1), donc pour tout 0 < 1 < x2 < min (4]42’ 1> on a :

fﬂz f'(z)dx

1
o 1
——dx
[ 2m
> |xg —x1| -  inf

1
z€[z1,22] 2\/5
1

2/
1

1
e

|f(22) = f(z1)] =

= |wg — a1

> |$2 — Ily
2
=kl|zy — x1].
Donc f n’est pas localement Lipschitz en 0.
(ii) La fonction zIn(z) est dérivable sur (0,1), donc pour tout 0 < 21 < 2 < min (e”*~1,1) on

a

9taz) gl = | [ (o) + 1)| do

1

= /12 In(x)dx + (x2 — x1)

x1

— [(z2 — 21)|

2
> / In(x)dx
Z1
> |wg — 1| (In(z2)| - 1)
> Joa — 1] =k — 1] — 1)

:k|x2—$1\.

Donc g n’est pas localement Lipschitz en 0.

5. Soit —o0 < a<b<4oc0et f:(a,b) — R une fonction dérivable sur (a,b). Prouver les résultats
suivants :

(a) f’ est bornée sur (a,b) si et seulement si f est lipschitzienne sur (a,b);
(b) si f’ est continue sur (a,b), alors f est localement lipschitzienne sur (a,b).
Solution :

(a) Supposons que f’ est bornée et soit M := sup,c(, ) [f'(7)]. Alors f est M —Lipschitz. En effet,

pour tout z,y € (a,b) :
1) - 1@l =| [ f’(t)dt‘

<|y—ax| sup |f'(z)]
z€(a,b)

=Mly—z|.

Supposons maintenant que f est k—Lipschitz pour un certain & > 0. Alors pour tout ¢t € (a,b)
et h € (—min(|t —al, |t — b]), min(|t — al, |t — b])) :
ft+h)—f(t) < k|t —h—t _
h - A

k.
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Par continuité de la valeur absolue, on a donc en passant a la limite :

o | fE+R) = £ F(t+h) = ()
7] = iy = —— B

h—0

= lim

<k.
h—0

Donc f’ est borné par k.

(b) Comme [’ est continue, f’ est borné sur tout compact K C R, et donc lipschitzienne sur 'intérieur
de K par le point précédent. Cependant, la constante de Lipschitz dépend du compact, c’est &
1
dire k = k(K). Soit t € (a,b) et définissons ¢ = imin(lt— alt,t —b) > 0. Alors [t — e,t + €]
est inclus dans (a, b) et est compact, donc f est k— Lipschitz sur (¢t — e,t + ) avec un certain
k = k(e). Par le point précédent, on sait par exemple que k = sup,c_ 4. |f'(s)| fonctionne.
Par arbitrarité de t, f est localement Lipschitz.



