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SERIE 12

L’objectif de cette série est de prouver le théoreme suivant :

Theoréme. Berestycki-Lions-Peletier(1981)
Soit p > 1. Il existe un nombre réel ¢ > 0 tel que la solution u € C%(R,) du probléme & valeur initiale

1 —u+uP, u>0
A _ ) z
Y Tu 9(u) 0, u <0,

u(0) = ¢,u'(0) =0
a les propriétés que u(r) > 0 pour tout r € [0, +00), u/(r) < 0 pour tout r € (0, +00) et

T'ETOO U(T) - 0'

La preuve se divise en plusieurs étapes.

1. Pour toute valeur initiale { € Ry, justifier I'existence et 'unicité d’une solution u({,r) sur un
intervalle d’existence maximal [0, 7¢).

2. Prouver que pour toute valeur initiale u(¢,0) = ¢ € (1,400) =: I, I'intervalle d’existence maximal
est [0, +00).
Indice 1 : Utiliser le corollaire 3.1, c’est-a-dire prouver que pour tout intervalle de la forme [0, R),
R >0, la fonction u(C,r) est bornée.
Indice 2 : Définir la fonction G(r) = [ g(s)ds, et prowver que pour tout r > ¢ alors

G(u(¢,r)) < G(u(¢,0)) = G()

1
a Uaide de UEDO —u"(r) — =u/(r) = g(u). En déduire que u(¢,r) < (. Pour la borne inférieure,
r

utiliser la solution explicite de ’équation lorsque u < 0.

3. Soit (1 € (0,400). Montrer que si u({1,7) > 0 pour tout > 0 et si v/({1,7) < 0 pour tout r > 0,
alors | = limy, oo u((1, ) satisfait

g(1) = 0.
De plus, montrer que [ # 1, et en déduire que [ = 0.

Indice 1 : Pour la deuziéme partie, procéder par contradiction. Définir v(r) = /r[u(r) — 1], montrer
qu’il existe Ry > 0 tel que v”(r) < 0 pour tout » > Ry et que cela méne & une contradiction.

4. Définissons les ensemble :
P={¢e;3rg=ro(¢) >0 t.q. v'(¢,m0) =0 et u(¢,r) >0, pour r € [0,79]}
N ={¢eI;Irg =1ro(¢) >0 t.q. u(¢,m0) =0 et u/(¢,r) <0, pour r € (0,70]}

Prouver que ces ensemble sont égaux aux ensembles P et N définis au cours.
Indice 1 : Utiliser l’exercice précédent.

La fin de la preuve, qui sera au programme de la semaine prochaine, consiste a montrer que les ensemble
P et N sont non-vides, ouverts et disjoints. Cela montre que I’ensemble G défini en cours existe.
Solution :
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1. En définissant u; = u et us = v/, on peut réécrire le probléme comme un systéme d’ordre 1 :

(Z;)l - (_1u2u_2 g(m)) =: f(r;un, uz).

La fonction f est localement Lipschitizienne en uq, ug et est continue sur D := R+ xR?. Le théoréme
de Picard assure alors I'existence et I'unicité sur un intervalle maximal (0,7¢), pour toute valeur
initiale dans D.

Comme abordé en cours, la méthode pour montrer 'unicité sur [0,7¢) est plus complexe se base sur
un argument de point fixe appliqué a I’équation intégrale équivalente. On montre a postériori que
u/(0) = 0 et que la solution est bien définie sur R..

2. Soit On montre que pour toute solution u((,r) du probleme associée aux valeurs initiales u((,0) =
¢, v (¢,0) = 0, I'intervalle maximal d’existence est r¢ = [0,400) si ( > 1. Pour ce faire, on montre
que u(¢,r) est borné sur tout intervalle [0, R], pour tout R > 0. Par le corollaire 3.1, cela prouve que
u(C,r) est défini sur [0, R], et donc sur [0, +00) par arbitrarité de R. En multipliant 'EDO initiale
par u/({,r) et en intégrant de chaque coté entre 0 et r, on obtient :

1 u(¢r)

— = ’U/ 7"2 1’LL/ 2— Tlu/ 825’: S)as
5 (En) 5 W @0) = [ Taaras= [ gt

! L (¢, 9))%ds = G(u(¢, 7)) - G(Q)

g lien)= [
& GG + 3 (W6n) + [ (6 9)Pds = GO,
0

Cela implique que pour tout r € [0, R] :

G(u(¢,r)) < G(¢) = G(u(C,0)).
De plus, comme g(s) > 0 pour tout s € I = (1,+00) et que

u(¢,r)
Gwamzam+l o(5)ds,

il faut que u(¢,r) < ¢ pour que lintégrale ait une contribution négative. On a donc une borne
supérieure. Il reste & trouver une borne inférieure & u(¢,r) pour tout r € [0, R]. S’il existe rg > 0 tel
que u(¢,r9) = 0 et u'(¢,r0) <0 (le cas u/({,79) = 0 n’est pas possible par unicité de la solution et
le fait que u n’est pas triviale), alors comme ¢(s) = 0 pour tout s < 0, 'EDO devient :

Uf’((? T) = _%U(CI> ’l“)-

1
On en déduit que u/(¢,r) = ¢—, avec ¢ une constante réelle non nulle. Par conséquent :
r

7

W/ (¢r) = (52) W/(Gro) > /(o)

car u'(¢,79) < 0. Cela finit la preuve et montre que 'intervalle d’existence maximal est r¢ = [0, +00).

3. L’expression que nous avions précédemment trouvée :

5 () + [ LG = GG) - Glalgin),
implique que :
/07‘ é(ul(Q,S))st < +o0,
et donc u/({1,r) converge lorsque r tend vers l'infini. De plus, u((;,7) est borné donc u/((y,7)

converge vers 0. De plus, 'EDO initiale montre que u” (¢, r) converge, et comme ({1, r) est borné,
alors u” (¢, r) converge vers 0. En faisant tendre r vers U'infini dans I'EDO initiale, cela prouve que
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g(l) =0.

Pour montrer que | = lim,, o u((1,7) est différent de 1, procédons par I'absurde et introduisons

la fonction auxiliaire :
o) = Vrlu(r) - 1)

1 /
' = (2 —1/2 ) Tl/zu/)

B ( % SR u—1)+r” 1/2u’+1"1/2u">
1

1
— —3/2 R VO N
( 4 —1)—r ( U Tu))

B g(u)
47«2” tu_1Y

_ (W + 471”2> o(r).

Comme v(r) > 0 pour tout > 0 (car la dérivée u/(¢,r) < 0, ce qui implique que u(¢1,7) > 1) et que
pour tout u > 1,g(u) > 0, alors v < 0 pour tout r. Cela implique que la limite L = lim 4 v'(7)
satisfait —oo < L < +o00. Si L < 0 alors v(r) converge vers —oo, ce qui est impossible car v(r) > 0.
Si0 <L < +o0, il existe R > 1 tel que 0 < v(R) < v(r) pour tout r > R. De plus, par Bernoulli-

L’Hospital :
: glu) 1N\ g
T}Einoo <u—1+47“2> _T»EIJPOO uw =P 1>0.

Par conséquent, il existe un R > 1 tel que pour tout r > R, alors
1 -1
olu(r) | 1\ _p=1
u—1 4r2 2

ce qui implique que pour tout r > max{R, R} =R:

=" (r) = <g(u(r)) + 4}3) v(r) > p%lv(r) > P ; 11} (é) > 0.

u—1

Alors :

On en déduit que v/(r) tend vers —oo, ce qui est de nouveau une contradiction avec 0 < L. De ce
fait, I # 1 et comme les zéros de g sont en 0 et 1, [ = 0.

4. Les défintions du cours sont :
N = {¢CeI;3r>0t.q. u(l,r) =0}
G={¢e Lu((r)>0,vr>0, lim u((,r)=0},

P={¢eLu(,r)>0Yr>0¢¢G}

Supposons que P ¢ P. 1l existe alors ( € P tel que pour tout r > 0, u'(¢,r) < 0. Mais par 'exercice
précédent, cela implique que limy 400 u(¢1,7) = 0, ce qui est une contradiction avec le fait que
¢ € P. Donc P C P. Soit maintenant ¢ € P, et montrons que { € P. Pour ce faire, nous allons
montrer que ¢ n’appartient ni a N niaG.

Supposons que ¢ € N, et donc qu'il existe 7 > 0 tel que u(¢,7) = 0 (7 et égal au z(¢) défini en cours).
Par le lemme 12.3, «/({,7) < 0 pour tout 0 < r < 7. Mais la solution de I’exercice 2 montrait aussi

que dans ce cas pour tout r > 7 u/({,r) = ¢—, avec ¢ une constante réelle négative. Cela prouve que
T

pour tout > 0 on a u/({,r) # 0, ce qui est une contradiction avec I’hypothese ¢ € P. Supposons
maintenant que ¢ € G. Alors dans ce cas la quantité z(¢) = +oo et le théoréme 12.3 assure de
nouveau que u'(¢,r) < 0 pour tout 0 < r < 2(¢) = 400, ce qui est de nouveau une contradiction
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avec ( € P. Comme I = NUGUP et que = N, G et P sont disjoints deux a deux, (¢ € Pet P C P.
1l est clair par les définitions que N C N, montrons donc que N C N. Supposons par Pabsurde que
NQN. 1l existe alors ¢ € N et r* >Otelqueu(§7 *) =0et u(¢,r) > 0 pour tout 0 < r < r*, mais
u'(¢,7) > 0 pour un certain 0 < # < 7*. Par continuité de u’(¢, r), cela force existence de 0 < 7 < 7
tel que u'((, :) = 0. Par consequent ¢ € P. Mais comme l'on vient de prouver que P C P cela
mene & une contradiction car P et N sont disjoints. De ce fait, N C N et donc N = N.



