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Série 12

L’objectif de cette série est de prouver le théorème suivant :

Theorème. Berestycki-Lions-Peletier(1981)
Soit p > 1. Il existe un nombre réel ζ > 0 tel que la solution u ∈ C2(R+) du problème à valeur initiale−u′′ − 1

r
u′ = g(u) =

{
−u+ up, u ≥ 0

0, u < 0
u(0) = ζ, u′(0) = 0

,

a les propriétés que u(r) > 0 pour tout r ∈ [0,+∞), u′(r) < 0 pour tout r ∈ (0,+∞) et

lim
r 7→+∞

u(r) = 0.

La preuve se divise en plusieurs étapes.

1. Pour toute valeur initiale ζ ∈ R+, justifier l’existence et l’unicité d’une solution u(ζ, r) sur un
intervalle d’existence maximal [0, rζ).

2. Prouver que pour toute valeur initiale u(ζ, 0) = ζ ∈ (1,+∞) =: I, l’intervalle d’existence maximal
est [0,+∞).
Indice 1 : Utiliser le corollaire 3.1, c’est-à-dire prouver que pour tout intervalle de la forme [0, R),
R > 0, la fonction u(ζ, r) est bornée.
Indice 2 : Définir la fonction G(r) =

∫ r
0 g(s)ds, et prouver que pour tout r > ζ alors

G(u(ζ, r)) ≤ G(u(ζ, 0)) = G(ζ)

à l’aide de l’EDO −u′′(r) − 1

r
u′(r) = g(u). En déduire que u(ζ, r) ≤ ζ. Pour la borne inférieure,

utiliser la solution explicite de l’équation lorsque u ≤ 0.

3. Soit ζ1 ∈ (0,+∞). Montrer que si u(ζ1, r) > 0 pour tout r ≥ 0 et si u′(ζ1, r) < 0 pour tout r > 0,
alors l = limr 7→+∞ u(ζ1, r) satisfait

g(l) = 0.

De plus, montrer que l ̸= 1, et en déduire que l = 0.
Indice 1 : Pour la deuxième partie, procéder par contradiction. Définir v(r) =

√
r[u(r)−1], montrer

qu’il existe R1 > 0 tel que v′′(r) < 0 pour tout r ≥ R1 et que cela mène à une contradiction.

4. Définissons les ensemble :

P = {ζ ∈ I;∃r0 = r0(ζ) > 0 t.q. u′(ζ, r0) = 0 et u(ζ, r) > 0, pour r ∈ [0, r0]}
N = {ζ ∈ I;∃r0 = r0(ζ) > 0 t.q. u(ζ, r0) = 0 et u′(ζ, r) < 0, pour r ∈ (0, r0]}

.

Prouver que ces ensemble sont égaux aux ensembles P et N définis au cours.
Indice 1 : Utiliser l’exercice précédent.

La fin de la preuve, qui sera au programme de la semaine prochaine, consiste à montrer que les ensemble
P et N sont non-vides, ouverts et disjoints. Cela montre que l’ensemble G défini en cours existe.
Solution :



EPFL, Printemps 2025 Equations différentielles ordinaires François Genoud, SMA

1. En définissant u1 = u et u2 = u′, on peut réécrire le problème comme un système d’ordre 1 :(
u1
u2

)′
=

(
u2

−1

r
u2 − g(u1)

)
=: f(r, u1, u2).

La fonction f est localement Lipschitizienne en u1, u2 et est continue surD := R>0×R2. Le théorème
de Picard assure alors l’existence et l’unicité sur un intervalle maximal (0, rζ), pour toute valeur
initiale dans D.
Comme abordé en cours, la méthode pour montrer l’unicité sur [0, rζ) est plus complexe se base sur
un argument de point fixe appliqué à l’équation intégrale équivalente. On montre à postériori que
u′(0) = 0 et que la solution est bien définie sur R+.

2. Soit On montre que pour toute solution u(ζ, r) du problème associée aux valeurs initiales u(ζ, 0) =
ζ, u′(ζ, 0) = 0, l’intervalle maximal d’existence est rζ = [0,+∞) si ζ ≥ 1. Pour ce faire, on montre
que u(ζ, r) est borné sur tout intervalle [0, R], pour tout R > 0. Par le corollaire 3.1, cela prouve que
u(ζ, r) est défini sur [0, R], et donc sur [0,+∞) par arbitrarité de R. En multipliant l’EDO initiale
par u′(ζ, r) et en intégrant de chaque côté entre 0 et r, on obtient :

−1

2

(
u′(ζ, r)

)2
+

1

2

(
u′(ζ, 0)

)2 − ∫ r

0

1

s
(u′(ζ, s))2ds =

∫ u(ζ,r)

u(ζ,0)
g(s)ds

⇔ −1

2

(
u′(ζ, r)

)2 − ∫ r

0

1

s
(u′(ζ, s))2ds = G(u(ζ, r))−G(ζ)

⇔ G(u(ζ, r)) +
1

2

(
u′(ζ, r)

)2
+

∫ r

0

1

s
(u′(ζ, s))2ds = G(ζ).

Cela implique que pour tout r ∈ [0, R] :

G(u(ζ, r)) ≤ G(ζ) = G(u(ζ, 0)).

De plus, comme g(s) > 0 pour tout s ∈ I = (1,+∞) et que

G(u(ζ, r)) = G(ζ) +

∫ u(ζ,r)

ζ
g(s)ds,

il faut que u(ζ, r) ≤ ζ pour que l’intégrale ait une contribution négative. On a donc une borne
supérieure. Il reste à trouver une borne inférieure à u(ζ, r) pour tout r ∈ [0, R]. S’il existe r0 > 0 tel
que u(ζ, r0) = 0 et u′(ζ, r0) < 0 (le cas u′(ζ, r0) = 0 n’est pas possible par unicité de la solution et
le fait que u n’est pas triviale), alors comme g(s) = 0 pour tout s < 0, l’EDO devient :

u′′(ζ, r) = −1

r
u(ζ, r).

On en déduit que u′(ζ, r) = c
1

r
, avec c une constante réelle non nulle. Par conséquent :

u′(ζ, r) =
(r0
r

)
u′(ζ, r0) ≥ u′(ζ, r0)

car u′(ζ, r0) < 0. Cela finit la preuve et montre que l’intervalle d’existence maximal est rζ = [0,+∞).

3. L’expression que nous avions précédemment trouvée :

1

2

(
u′(ζ1, r)

)2
+

∫ r

0

1

s
(u′(ζ1, s))

2ds = G(ζ1)−G(u(ζ1, r)),

implique que : ∫ r

0

1

s
(u′(ζ1, s))

2ds < +∞,

et donc u′(ζ1, r) converge lorsque r tend vers l’infini. De plus, u(ζ1, r) est borné donc u′(ζ1, r)
converge vers 0. De plus, l’EDO initiale montre que u′′(ζ, r) converge, et comme u′(ζ1, r) est borné,
alors u′′(ζ, r) converge vers 0. En faisant tendre r vers l’infini dans l’EDO initiale, cela prouve que
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g(l) = 0.
Pour montrer que l = limr 7→+∞ u(ζ1, r) est différent de 1, procédons par l’absurde et introduisons
la fonction auxiliaire :

v(r) =
√
r[u(r)− 1].

Alors :

−v′′ = −
(
1

2
r−1/2(u− 1) + r1/2u′

)′

= −
(
−1

4
r−3/2(u− 1) + r−1/2u′ + r1/2u′′

)
= −

(
−1

4
r−3/2(u− 1)− r1/2

(
−u′′ − 1

r
u′
))

=
1

4r2
v +

g(u)

u− 1
v

=

(
g(u(r))

u(r)− 1
+

1

4r2

)
v(r).

Comme v(r) > 0 pour tout r ≥ 0 (car la dérivée u′(ζ, r) < 0, ce qui implique que u(ζ1, r) ≥ 1) et que
pour tout u ≥ 1,g(u) ≥ 0, alors v′′ < 0 pour tout r. Cela implique que la limite L = limr 7→+∞ v′(r)
satisfait −∞ ≤ L < +∞. Si L < 0 alors v(r) converge vers −∞, ce qui est impossible car v(r) ≥ 0.
Si 0 ≤ L < +∞, il existe R > 1 tel que 0 < v(R) ≤ v(r) pour tout r > R. De plus, par Bernoulli-
L’Hospital :

lim
r 7→+∞

(
g(u)

u− 1
+

1

4r2

)
= lim

r 7→+∞

g′(u)u′

u′
= p− 1 > 0.

Par conséquent, il existe un R̃ > 1 tel que pour tout r > R̃, alors(
g(u(r))

u− 1
+

1

4r2

)
>

p− 1

2
,

ce qui implique que pour tout r > max{R, R̃} =: ˜̃R :

−v′′(r) =

(
g(u(r))

u− 1
+

1

4r2

)
v(r) >

p− 1

2
v(r) ≥ p− 1

2
v
(
˜̃R
)
> 0.

On en déduit que v′(r) tend vers −∞, ce qui est de nouveau une contradiction avec 0 ≤ L. De ce
fait, l ̸= 1 et comme les zéros de g sont en 0 et 1, l = 0.

4. Les défintions du cours sont :

Ñ = {ζ ∈ I; ∃r > 0 t.q. u(ζ, r) = 0}
G = {ζ ∈ I;u(ζ, r) > 0, ∀r > 0, lim

r 7→+∞
u(ζ, r) = 0}

P̃ = {ζ ∈ I;u(ζ, r) > 0, ∀r > 0, ζ /∈ G}

.

Supposons que P̃ ⊈ P . Il existe alors ζ ∈ P̃ tel que pour tout r > 0, u′(ζ, r) < 0. Mais par l’exercice
précédent, cela implique que limr 7→+∞ u(ζ1, r) = 0, ce qui est une contradiction avec le fait que

ζ ∈ P̃ . Donc P̃ ⊂ P . Soit maintenant ζ ∈ P , et montrons que ζ ∈ P̃ . Pour ce faire, nous allons
montrer que ζ n’appartient ni à Ñ ni à G.
Supposons que ζ ∈ Ñ , et donc qu’il existe r̃ > 0 tel que u(ζ, r̃) = 0 (r̃ et égal au z(ζ) défini en cours).
Par le lemme 12.3, u′(ζ, r) < 0 pour tout 0 < r < r̃. Mais la solution de l’exercice 2 montrait aussi

que dans ce cas pour tout r ≥ r̃ u′(ζ, r) = c
1

r
, avec c une constante réelle négative. Cela prouve que

pour tout r > 0 on a u′(ζ, r) ̸= 0, ce qui est une contradiction avec l’hypothèse ζ ∈ P . Supposons
maintenant que ζ ∈ G. Alors dans ce cas la quantité z(ζ) = +∞ et le théorème 12.3 assure de
nouveau que u′(ζ, r) < 0 pour tout 0 < r < z(ζ) = +∞, ce qui est de nouveau une contradiction
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avec ζ ∈ P . Comme I = Ñ ∪G∪ P̃ et que = Ñ ,G et P̃ sont disjoints deux à deux, ζ ∈ P̃ et P ⊂ P̃ .
Il est clair par les définitions que N ⊂ Ñ , montrons donc que Ñ ⊂ N . Supposons par l’absurde que
Ñ ⊈ N . Il existe alors ζ ∈ Ñ et r∗ > 0 tel que u(ζ, r∗) = 0 et u(ζ, r) > 0 pour tout 0 ≤ r < r∗, mais

u′(ζ, r̃) ≥ 0 pour un certain 0 < r̃ < r∗. Par continuité de u′(ζ, r), cela force l’existence de 0 < ˜̃r ≤ r̃

tel que u′(ζ, ˜̃r) = 0. Par conséquent, ζ ∈ P . Mais comme l’on vient de prouver que P ⊂ P̃ , cela

mène à une contradiction car P̃ et Ñ sont disjoints. De ce fait, Ñ ⊂ N et donc N = Ñ .


