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Série 11

1. Montrer que toute solution de l’équation

x′′ +
2t

t2 + 1
x = 0

possède au plus un zéro dans l’intervalle [0, π].
Solution : Soit x1(t) une solution non-triviale de l’équation, et considérons la nouvelle EDO

y′′ + y = 0.

Une solution est x2(t) = sin(t). De plus, on a que
2t

t2 + 1
≤ 1 car t2 − 2t + 1 = (t − 1)2 ≥ 0. Par

conséquent, en posant p1(t) = p2(t) = 1, q1(t) =
2t

t2 + 1
et q2(t) = 1, x2(t) est un majorant de Sturm

pour x1(t). Sur l’intervalle [0, π], les seuls zéros sont 0 et π. Supposons par l’absurde que x1(t) a
deux zéros distincts en 0 ≤ t1 < t2 < π. Alors le théorème de comparaison assure l’existence de
t∗ ∈ (t1, t2] tel que x2(t

∗) = 0, ce qui est impossible comme (t1, t2] ⊂ (0, π). Donc x1(t) a au plus
un zéro sur [0, π).

2. On considère l’équation

x′′ + q(t)x = 0, (1)

où p ∈ C0([0,∞),R). Supposons qu’il existe m1,m2 > 0 tels que m1 ⩽ q(t) ⩽ m2 pour tout t ⩾ 0.
Montrer que toute solution non-triviale de (1) possède un ensemble infini dénombrable de zéros
consécutifs {tn}n∈N0 ⊂ [0,∞) tels que

π
√
m2

⩽ tn+1 − tn ⩽
π

√
m1

.

Solution : Comme les bornes 0 < m1 ≦ (t) ≤ m2 sont valides, on s’intéresse naturellement aux
problèmes auxiliaires

x′′ +m1x = 0 et x′′ +m2x = 0.

En posant p(t) = p1(t) = p2(t) = 1, q1(t) = m1, q2(t) = m2, x(t) une solution du problème initial
et xi(t) des solutions de x′′ + mix = 0, i = 1, 2, on obtient que x(t) est un majorant de Sturm
de x1(t), et que x1(t) est un majorant de Sturm de x2(t). Une solution de x′′ + m1x = 0 est
x1(t) = sin

(√
m1t

)
. Par le théorème de comparaison, x(t) possède au moins un zéro dans tout

l’intervalle de la forme

(
kπ
√
m1

,
(k + 1)π
√
m1

]
, car x1(t) s’annule en

kπ
√
m1

pour tout k ∈ N. De plus, par

le lemme 10.3, les zéros de x(t) ne peuvent pas avoir de point d’accumulation. Par conséquent, les
zéros de x(t) sont un ensemble infini dénombrable {tn}∞n=0 tels que ti < ti+1, pour tout i ∈ N. On
veut prouver maintenant que pour tout i ∈ N, ti+1 − ti ≤ π/

√
m1.

Supposons par l’absurde qu’il existe un j ∈ N tel que tj+1 − tj > π/
√
m1. Considérons la fonction

auxiliaire

yj(t) := sin (
√
m1(t− tj)) .

Alors yj(t) satisfait y′′j (t) + m1yj(t) = 0, par conséquent x(t) est un majorant de yj(t). De plus,

yj(tj) = yj(tj + π/
√
m1) = 0. De ce fait, par le théorème de comparaison, x(t) admet au moins un

zéro dans (tj , tj +π/
√
m1]. Mais ceci contredit le fait que x(t) ̸= 0 sur (tj , tj+1) car t− tj ≤ π/

√
m1

pour tout t ∈ (tj , tj + π/
√
m1]. Donc ti+1 − ti ≤ π/

√
m1, pour tout i ∈ N.

Supposons maintenant que pour un certain j ∈ N, tj+1 − tj < π/
√
m2 et considérons la fonction

x2(t) := sin (
√
m2(t− tj)) .
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Comme précédemment, x2(t) est solution x′′ +m2x = 0 et donc x2(t) est un majorant de Sturm de
x(t). Par conséquent, x2(t) admet un zéro sur l’intervalle (tj , tj+1] par le théorème de comparaison.
Mais

tj+1 < tj + π/
√
m2,

ce qui n’est pas possible car les zéros de x2(t) supérieurs à tj sont de la forme tj+(kπ)/
√
m2, k ∈ N.

En définitive,
π

√
m2

≤ ti+1 − ti ≤
π

√
m1

,∀i ∈ N.

3. Prouver les théorèmes de comparaison suivants, sans utiliser la transformation de Prüfer.

Théorème 1 : Pour i = 1, 2, soit ϕi(t) une solution non-triviale de

(p(t)x′)′ + qi(t)x = 0

sur l’intervalle [a, b), avec p, qi ∈ C0([a, b),R), pi(t) > 0 pour tout t ∈ [a, b). On suppose que
q1(t) < q2(t) pour tout t ∈ [a, b). Soit t1, t2 ∈ [a, b) deux zéros consécutifs de ϕ1. Alors il existe
t̃ ∈ (t1, t2) tel que ϕ2(t̃) = 0.

Théorème 2 : Pour i = 1, 2, soit ϕi(t) une solution non-triviale de

(pi(t)x
′)′ + qi(t)x = 0

sur l’intervalle [a, b), avec pi, qi ∈ C0([a, b),R), p(t) > 0 pour tout t ∈ [a, b). On suppose que
p1(t) ⩾ p2(t) et q1(t) < q2(t) pour tout t ∈ [a, b). Soit t1, t2 ∈ [a, b) deux zéros consécutifs de ϕ1.
Alors il existe t̃ ∈ (t1, t2) tel que ϕ2(t̃) = 0.

Indications : Pour le théorème 1, démontrer et utiliser l’identité de Lagrange

p(ϕ′
1ϕ2 − ϕ1ϕ

′
2)
∣∣t2
t1
=

∫ t2

t1

(q2 − q1)ϕ1ϕ2 dt.

Pour le théorème 2, démontrer et utiliser l’identité de Picone

ϕ1

ϕ2

(
p1ϕ

′
1ϕ2 − p2ϕ1ϕ

′
2

)∣∣∣t2
t1
=

∫ t2

t1

(q2 − q1)ϕ
2
1 dt+

∫ t2

t1

(p1 − p2)(ϕ
′
1)

2 dt+

∫ t2

t1

p2
(ϕ′

1ϕ2 − ϕ1ϕ
′
2)

2

ϕ2
2

dt.

(Les cas ϕ2(t1) = 0 ou ϕ2(t2) = 0 se traitent en utilisant la formule de Bernoulli–L’Hospital pour
donner un sens au membre de gauche.)

Remarque : Il est intéressant de comprendre pourquoi l’identité de Lagrange ne permet pas de
conclure dans ce cas. Solution :
Théorème 1 : Commençons par prouver l’identité de Lagrange :

p
(
ϕ′
1ϕ2 − ϕ1ϕ

′
2

)
|t2t1 =

∫ t2

t1

(
p
(
ϕ′
1ϕ2 − ϕ1ϕ

′
2

))′
dt

=

∫ t2

t1

[(
pϕ′

1

)′
ϕ2 + pϕ′

1ϕ
′
2 − ϕ1

(
pϕ′

2

)′ − ϕ′
1pϕ

′
2

]
dt

=

∫ t2

t1

(−q1ϕ1ϕ2 + ϕ1q2ϕ2) dt

=

∫ t2

t1

(q2 − q1)ϕ1ϕ2dt

Si t1 et t2 sont des zéros consécutifs de ϕ1, alors ϕ1(t) ̸= 0 sur (t1, t2), donc sans perte de
généralité on peut supposer que ϕ1(t) > 0 sur cet intervalle. Par unicité de la situation et le faire
que ϕ1 est une solution non-triviale, cela force ϕ′

1(t1) > 0 et ϕ′
1(t2) < 0. Par l’absurde, supposons

que ϕ2 n’ait pas des zéros sur (t1, t2). Alors :
• si ϕ2 > 0 pour tout t ∈ (t1, t2), comme q2 − q1 > 0, p > 0, ϕ′

1(t1) > 0 et ϕ′
1(t2) < 0 :

0 <

∫ t2

t1

(q2 − q1)ϕ1ϕ2dt = p
(
ϕ′
1ϕ2 − ϕ1ϕ

′
2

)
|t2t1= p(t2)ϕ

′
1(t2)ϕ2(t2)− p(t1)ϕ

′
1(t1)ϕ2(t1) ≤ 0
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• si ϕ2 < 0 pour tout t ∈ (t1, t2), alors :

0 >

∫ t2

t1

(q2 − q1)ϕ1ϕ2dt = p(t2)ϕ
′
1(t2)ϕ2(t2)− p(t1)ϕ

′
1(t1)ϕ2(t1) ≥ 0

Dans les deux cas, cela mène à une contradiction, donc ϕ2 admet un zéro dans (t1, t2). Si on
avait supposé que ϕ1 < 0 sur (t1, t2), les inégalités auraient été dans le sens inverse mais la
contradiction toujours valable.

Théorème 2 : Vérifions tout d’abord que la fonction

t 7→ ϕ1(t)

ϕ2(t)

(
p1(t)ϕ

′
1(t)ϕ2(t)− p2(t)ϕ1(t)ϕ

′
2(t)

)
est bien définie en t1 et t2. Si ϕ2(ti) = 0, i = 1, 2, alors ϕ′

2(ti) ̸= 0 par unicité de la solution,
et que ϕ2 est non-triviale par hypothèse. Par conséquent, comme ϕ1(ti) = 0 et que ϕ1, ϕ2 est
dérivable sur [a, b) :

lim
t7→ti

∣∣∣∣ϕ1(t)

ϕ2(t)

∣∣∣∣ = ∣∣∣∣ϕ′
1(ti)

ϕ′
2(ti)

∣∣∣∣ < ∞,

ce qui implique que

lim
t7→ti

ϕ1(t)

ϕ2(t)

(
p1(t)ϕ

′
1(t)ϕ2(t)− p2(t)ϕ1(t)ϕ

′
2(t)

)
= 0.

Si l’on suppose que ϕ2(t) ̸= 0 pour tout t ∈ (t1, t2), le développement suivant est valide :

0 =
ϕ1

ϕ2

(
p1ϕ

′
1ϕ2 − p2ϕ1ϕ

′
2

)
|t2t1

=

∫ t2

t1

(
ϕ1

ϕ2

(
p1ϕ

′
1ϕ2 − p2ϕ1ϕ

′
2

)
|t2t1

)′
dt

=

∫ t2

t1

ϕ′
1ϕ2 − ϕ1ϕ

′
2

ϕ2
2

(
p1ϕ

′
1ϕ2 − p2ϕ1ϕ

′
2

)
+

ϕ1

ϕ2

((
p1ϕ

′
1

)′
ϕ2 + p1ϕ

′
1ϕ

′
2 − ϕ′

1p2ϕ
′
2 − ϕ1

(
p2ϕ

′
2

)′)
dt

=

∫ t2

t1

ϕ′
1ϕ2 − ϕ1ϕ

′
2

ϕ2
2

(
p1ϕ

′
1ϕ2 − p2ϕ1ϕ

′
2

)
+

ϕ1

ϕ2

(
(q2 − q1)ϕ1ϕ2 + (p1 − p2)ϕ

′
1ϕ

′
2

)
dt

=

∫ t2

t1

(q2 − q1)ϕ
2
1 +

1

ϕ2
2

(
p1

(
ϕ′
1ϕ2

)2
+ p2

(
ϕ1ϕ

′
2

)2 − 2p2ϕ1ϕ
′
2ϕ

′
1ϕ2

)
dt

=

∫ t2

t1

(q2 − q1)ϕ
2
1 +

1

ϕ2
2

(
(p1 − p2)

(
ϕ′
1ϕ2

)2
+ p2

(
ϕ′
1ϕ2

)2
+ p2

(
ϕ1ϕ

′
2

)2 − 2p2ϕ1ϕ
′
2ϕ

′
1ϕ2

)
dt

=

∫ t2

t1

(q2 − q1)ϕ
2
1 + (p1 − p2)

(
ϕ′
1

)2
+

p2
ϕ2
2

(
ϕ1ϕ

′
2 − ϕ′

1ϕ2

)2
dt

C’est une contradiction, car le dernier terme est strictement positif. Donc ϕ2 admet un zéro dans
(t1, t2).


