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Série 10

1. On considère les équations du deuxième ordre

x′′ + a1(t)x
′ + a2(t)x = f(t), (1)

(p(t)x′)′ + q(t)x = h(t), (2)

x′′ + q̃(t)x = h̃(t), (3)

où tous les coefficients sont supposés continus sur un intervalle (a, b) (borné ou non), avec la condition
p(t) > 0 pour tout t ∈ (a, b).

(a) Montrer que (1) peut toujours s’écrire sous la forme (2).

(b) Trouver le changement de variables permettant d’écrire (2) sous la forme (3), tout en déterminant
sous quelles conditions cette ré-écriture est légitime.

Solution :
(a) Soit x(t) solution de l’équation (1). On veut montrer qu’il existe p ∈ C1((a, b)), q ∈ C0((a, b))

avec p(t) > 0 pour tout t ∈ (a, b) tels que :

x′′ + a1x
′ + a2x = f ⇔ (px′)′ + qx = h.

En multipliant l’équation initiale par p, on obtient :

px′′ + pa1x+ pa2x = pf,

ce qui force p′ = pa1. Cela qui mène à définir :

p(t) = e
∫ t
t0

a1(s)ds, q(t) = p(t)a2(t) et h(t) = q(t)f(t),

avec t0 ∈ (a, b). Comme p(t) > 0 pour tout t ∈ (a, b), alors l’équivalence est bien valide, car p
est inversible.

(b) On cherche un intervalle I ⊂ R et un difféomorphisme ϕ : I → (a, b) tels que si y(s) := x(ϕ(s)),
alors : (

p(t)x′(t)
)′
+ q(t)x(t) = h(t) ⇔ y′′(s) + q̃(s)x(s) = h̃(s),

où t = ϕ(s). Pour ce faire, on aimerait que :

y′(s) = x′(ϕ(s))p(ϕ(s)) = x′(t)p(t),

c’est à dire avec la définition de y :

x′(ϕ(s))ϕ′(s) = x′(ϕ(s))p(ϕ(s)) ⇒ ϕ′(s) = p(ϕ(s))

⇒
∫ s

s0

ϕ′(u)

p(ϕ(u))
du =

∫ s

s0

1du

⇔
∫ ϕ(s)

ϕ(s0)

1

p(v)
dv = s− s0.

Cela mène à définir la fonction ψ : (a, b) → R, ψ(t) 7→
∫ t
t0

1

p(u)
du, qui est strictement croissante

et inversible. Soit donc ϕ : (ψ(a), ψ(b)) → (a, b) tel que ϕ(s) := ψ−1(s). Cette fonction satisfait
bien la condition désirée :

ϕ′(s) =
d

ds

(
ψ−1(s)

)
=

1

ψ′ (ψ−1(s))
=

1

ψ′ (ϕ(s))
= p (ϕ(s)) = p(t).
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Dès lors, on a que :

y′′(s) =
d2

ds2
(x(ϕ(s)))

=
d

ds

(
x′(ϕ(s))ϕ′(s)

)
= x′′(ϕ(s))

(
ϕ′(s)

)2
+ x′(ϕ(s))

d

ds

(
ϕ′(s)

)
= x′′(ϕ(s))(p(ϕ(s)))2 + x′(ϕ(s))

d

ds
(p(ϕ(s)))

= x′′(t)p2(t) + x′(t)p′(t)p(t)

= (p(t)x′(t))′p(t),

et donc en posant q̃(s) := p(ϕ(s))q(ϕ(s)) et h̃(s) := p(ϕ(s))h(ϕ(s)) :

y′′(s) + q̃(s)y(s) = h̃(s) ⇔
(
p(t)x′(t)

)′
+ q(t)x(t) = h(t),

ce qui est le résultat voulu.

2. Soit ϕ(t) une solution non-triviale de l’équation homogène

(p(t)x′)′ + q(t)x = 0 (4)

sur l’intervalle (a, b), où les coefficients sont supposés continus, avec p > 0. Montrer que, pour tout
intervalle compact [α, β] ⊂ (a, b), ϕ possède au plus un nombre fini de zéros sur [α, β].
Solution : La preuve est la même que celle présentée dans le lemme 10.3 du cours. Pour rappel,
l’idée est qu’en procédant par contradiction on peut supposer l’existence d’une solution non-triviale
ϕ et d’une suite croissante {tm}∞m=0 ⊂ (a, b) de zéros tels que limm7→∞ tm = t∗ ∈ [α, β]. Alors,
par le théorème de Rolle, cela implique que p(t∗)ϕ′(t∗) = 0 et donc que ϕ est l’unique solution du
problème avec condition initiale ϕ(t∗) = 0 et (pϕ′)(t∗) = 0. Par unicité, cela implique que ϕ ≡ 0, ce
qui contredit l’hypothèse que la solution est non-triviale. Par conséquent, il y a un nombre fini de
zéro sur [α, β].

3. Soit ϕ1(t), ϕ2(t) deux solutions de l’équation homogène (4) sur (a, b). En récrivant (4) comme un
système d’ordre 1, montrer que le Wronskien de ϕ1 et ϕ2 s’écrit

W (t) = p(t)[ϕ1(t)ϕ
′
2(t)− ϕ′1(t)ϕ2(t)],

et qu’il satisfait W ′(t) = 0 pour tout t ∈ (a, b).
Solution : L’équation homogène est

(px′)′ + qx = 0,

ce qui se réécrit, en définissant x1 = x et x2 = px′, comme le système :(
x1
x2

)′
=

(
0 1/p
−q 0

)(
x1
x2

)
.

Si ϕ1 et ϕ2 sont deux solutions de l’équation homogène, alors

(
ϕi
pϕ′i

)
sont deux solutions du système.

En effet : (
ϕi
pϕ′i

)′
=

1

p
(pϕ′i)

−qϕi

 =

(
0 1/p
−q 0

)(
ϕi
pϕ′i

)
.
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Le Wronskien est donc W = det

((
ϕ1 ϕ2
pϕ′1 pϕ′2

))
= p(t) (ϕ1(t)ϕ

′
2(t)− ϕ′1(t)ϕ2(t)) . On calcule alors,

pour tout t ∈ (a, b), que :

W ′(t) = ϕ′1(t)p(t)ϕ
′
2(t) + ϕ1(t)

(
p(t)ϕ′2(t)

)′ − ϕ2(t)
(
p(t)ϕ′1(t)

)′ − ϕ′2(t)p(t)ϕ
′
1(t)

= ϕ′1(t)p(t)ϕ
′
2(t)− ϕ1(t)q(t)ϕ2(t) + ϕ2(t)q(t)ϕ1(t)− ϕ′2(t)p(t)ϕ

′
1(t)

= 0.

4. Soit ϕ(t) une solution de (4) sur (a, b) telle que ϕ(t) ̸= 0 pour tout t ∈ (a, b). Soit t0 ∈ (a, b). Montrer
que la solution générale de (4) est donnée par

x(t) = c1ϕ(t) + c2ϕ(t)

∫ t

t0

ds

p(s)ϕ(s)2
, t ∈ (a, b).

Solution : Soit ψ une autre solution du problème homogène linéairement indépendante de ϕ. Alors,
par l’exercice précédent :

p(t)
(
ϕ(t)ψ′(t)− ϕ′(t)ψ(t)

)
= c ̸= 0,

pour une certaine constante réelle c ∈ R. En utilisant le fait que ϕ(t) ̸= 0 pour tout t ∈ (a, b), on
réécrit :

ϕ(t)ψ′(t)− ϕ′(t)ψ(t)

ϕ2(t)
=

c

ϕ2(t)p(t)
.

En intégrant de chaque côté, on trouve :∫ t

t0

(
ψ(s)

ϕ(s)

)′
ds = c

∫ t

t0

1

ϕ2(s)p(s)
ds,

ce qui implique que

ψ(t) = cϕ(t)

∫ t

t0

1

ϕ2(s)p(s)
ds+ d,

où d est une autre constante réelle. Comme c ̸= 0, ces deux solutions sont bien linéairement
indépendantes car W (t) = c ̸= 0, pour tout t ∈ (a, b). La solution générale est donc de la forme :

x(t) = c1ϕ(t) + c2ϕ(t)

∫ t

t0

1

ϕ2(s)p(s)
ds,

avec c1, c2 ∈ R.

5. On considère maintenant (4) sur [a, b) avec −∞ < a < b ⩽ ∞ et p, q ∈ C0([a, b),R). Etant donné
une solution x(t) non-triviale, on définit le rayon de Prüfer r(t) et l’angle de Prüfer θ(t) par

r2(t) = x2(t) + (px′)2(t), r(t) > 0,

et

tan θ(t) =
x(t)

(px′)(t)
, θ(a) ∈ [0, π),

où l’on rappelle que x(t) et (px′)(t) ne peuvent s’annuler simultanément. Montrer que les fonctions
r, θ ∈ C1([a, b),R) et satisfont

r′ =

(
1

p(t)
− q(t)

)
r sin θ cos θ, θ′ =

1

p(t)
cos2 θ + q(t) sin2 θ.

Solution : On commence par faire les observations suivantes : si tan(θ(t)) = 0, alors x(t) = 0. Avec
la définition du rayon de Prüfer, on en déduit que

sin(θ(t)) =
x(t)

r(t)
et cos(θ(t)) =

p(t)x′(t)

r(t)
.
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On fait alors les développements suivants, grâce aux expressions trouvées pour x et x′ ci-dessus :

1

2

d

dt

(
r2
)
= rr′

= xx′ − px′qx

=
r2 sin(θ) cos(θ)

p
− r2 sin(θ) cos(θ)q

= r2 sin(θ) cos(θ)

(
1

p
− q

)
.

De même,

d

dt
(tan(θ)) =

θ′

cos2(θ)

=
r2 cos2(θ)

p
+ r2 sin2(θ)q

=
1

cos2(θ)

(
1

p
cos2(θ) + q sin2(θ)

)
.

On en déduit les identités suivantes :

r′ = r sin(θ) cos(θ)

(
1

p
− q

)
, θ′ =

1

p
cos2(θ) + q sin2(θ).

On sait que x, px′ sont C1((a, b)),que p, q sont C0((a, b)) et que p > 0. Par conséquent, r =√
x2 + (px′)2 est C1((a, b)). La fonction

θ(t) = arctan

(
x(t)

p(t)x′(t)

)
est continue, car composée de fonctions continues. De plus, l’expression trouvée pour θ′ montre
qu’elle aussi est continue, donc θ ∈ C1((a, b)).


