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SERIE 10

1. On considere les équations du deuxieme ordre

2" +a1()r’ + ax(t)z = f(1), (1)
(p(t)2")" + q(t)z = h(t), (2)
2" + G(t)x = h(t), (3)

ou tous les coefficients sont supposés continus sur un intervalle (a, b) (borné ou non), avec la condition
p(t) > 0 pour tout ¢ € (a,b).

(a) Montrer que (1) peut toujours s’écrire sous la forme (2).

(b) Trouver le changement de variables permettant d’écrire (2) sous la forme (3), tout en déterminant
sous quelles conditions cette ré-écriture est 1égitime.

Solution :
(a) Soit z(t) solution de 1’équation (1). On veut montrer qu'il existe p € C1((a,b)),q € C°((a,b))
avec p(t) > 0 pour tout ¢ € (a,b) tels que :

2+ a12' + asw = f & (p2') + qr = h.
En multipliant ’équation initiale par p, on obtient :
pz” + parz + pasr = pf,

ce qui force p’ = pay. Cela qui meéne & définir :

p(t) = o MO (1) = p(t)as(t) et h(t) = q(B)f(2),

avec tg € (a,b). Comme p(t) > 0 pour tout ¢t € (a,b), alors I'’équivalence est bien valide, car p
est inversible.

(b) On cherche un intervalle I C R et un difféfomorphisme ¢ : I — (a,b) tels que si y(s) := x(¢(s)),
alors :

(P2’ (1) + a(t)z(t) = h(t) < y"(s) + d(s)a(s) = h(s),
ou t = ¢(s). Pour ce faire, on aimerait que :
y'(s) = 2'(¢(s))p(e(s)) = 2’ ()p(t),

c’est a dire avec la définition de y :

2(6(5)# () = 2 ($(5)p(6(s)) = &' (s) = p(6(s))
s ¢/(u) B s y
- / (o)™ = / td

o(s) q
& / ——dv = s — 5.
#(s0) p(v)

1
Cela meéne a définir la fonction ¢ : (a,b) — R, ¢ (t) — ftg (—>du, qui est strictement croissante
p(u

et inversible. Soit donc ¢ : (1(a), (b)) — (a,b) tel que ¢(s) := 1h~1(s). Cette fonction satisfait
bien la condition désirée :

#(s)= o (7))

B 1 1
(W) ¥ (8(s))

=p(¢(s)) = p(t).
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Des lors, on a que :

() = oy (w(6(5))

et donc en posant 4(s) = p(#(s))a(é(s)) ct h(s) = p(é(s))h(8(s)) :
y'(s) + d(s)y(s) = h(s) & (p(O' () + a()a(t) = h(t),

ce qui est le résultat voulu.

2. Soit ¢(t) une solution non-triviale de I’équation homogene
(p(t)2') +q(t)z =0 (4)

sur l'intervalle (a,b), ou les coefficients sont supposés continus, avec p > 0. Montrer que, pour tout
intervalle compact [a, §] C (a,b), ¢ possede au plus un nombre fini de zéros sur [, (].

Solution : La preuve est la méme que celle présentée dans le lemme 10.3 du cours. Pour rappel,
I’idée est qu’en procédant par contradiction on peut supposer ’existence d’une solution non-triviale
¢ et d’une suite croissante {t,}>_o C (a,b) de zéros tels que limy, o0ty = t* € [ov, B]. Alors,
par le théoreme de Rolle, cela implique que p(t*)¢'(t*) = 0 et donc que ¢ est 'unique solution du
probléme avec condition initiale ¢(t*) = 0 et (p¢')(t*) = 0. Par unicité, cela implique que ¢ = 0, ce
qui contredit 'hypothese que la solution est non-triviale. Par conséquent, il y a un nombre fini de
zéro sur [a, (]

3. Soit ¢1(t), p2(t) deux solutions de I’équation homogene (4) sur (a,b). En récrivant (4) comme un
systeme d’ordre 1, montrer que le Wronskien de ¢ et ¢o s’écrit

W(t) = p(t)[d1()d5(t) — ¢1(t)da(t)],

et qu'il satisfait W' (t) = 0 pour tout t € (a,b).
Solution : L’équation homogene est

(pz')' + qx =0,

ce qui se réécrit, en définissant 1 = = et 9 = pa’, comme le systeme :

21\ (0 1/p\ (=1
z2)  \—q O x) "
Si @1 et ¢ sont deux solutions de I’équation homogene, alors < %,) sont deux solutions du systeme.

i
En effet :

(- ()2 )
pe, p_qqﬁi —q 0 ) \pg))"
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Le Wronskien est donc W = det <<pd();,1 p%é)) = p(t) (P1(t)Ph(t) — ¢ (t)d2(t)) . On calcule alors,
pour tout ¢ € (a,b), que :
W'(t) = ¢1()p(£)da (1) + 61(t) (p(1)d5 (1)) — da(t) (p(1)1 (1)) — Da()p(t) (¢)
= O (Op(t)d5(t) — P1(t)a(t)P2(t) + d2(t)a(t) 1 (t) — S5(t)p(t) 81 (t)
=0.

4. Soit ¢(t) une solution de (4) sur (a, b) telle que ¢(t) # 0 pour tout ¢t € (a,b). Soit ty € (a,b). Montrer
que la solution générale de (4) est donnée par

o) = ero(t) + ea0lt) [ =S e (ab)

Solution : Soit ¥ une autre solution du probléme homogene linéairement indépendante de ¢. Alors,
par ’exercice précédent :

p(t) (B()Y'(t) — &' ()(t) = c #0,
pour une certaine constante réelle ¢ € R. En utilisant le fait que ¢(t) # 0 pour tout ¢t € (a,b), on
réécrit :
PY'(t) — ¢ (B)p(t) _ c
¢*(t) ¢*(t)p(t)

En intégrant de chaque coté, on trouve :

RO L S

ﬂ;<a@>‘“" P ™
|

Vi =eolt) | B0

ol d est une autre constante réelle. Comme ¢ # 0, ces deux solutions sont bien linéairement
indépendantes car W (t) = ¢ # 0, pour tout t € (a,b). La solution générale est donc de la forme :

z(t) = c19(t) + 62¢(75)/t m

ce qui implique que

————ds +d,

ds,

avec c1,cy € R.

5. On consideére maintenant (4) sur [a,b) avec —0o < a < b < oo et p,q € C°([a,b),R). Etant donné
une solution z(¢) non-triviale, on définit le rayon de Priifer r(t) et ’angle de Priifer 6(¢) par

r2(t) = 2(t) + (pa')*(t),  r(t) >0,
et

7x(t) a s
py@ (O

ou l'on rappelle que z(t) et (px’)(t) ne peuvent s’annuler simultanément. Montrer que les fonctions
r,0 € C'(la,b),R) et satisfont

tand(t) =

1 1
r':<— t>rsin9(:os€, 0" = —— cos? 0 + ¢(t) sin? 6.
o 1 p(t) )

Solution : On commence par faire les observations suivantes : si tan(6(¢)) = 0, alors z(¢) = 0. Avec
la définition du rayon de Priifer, on en déduit que

sin(6(t)) = ng et cos(0(t)) = M
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On fait alors les développements suivants, grace aux expressions trouvées pour x et 2’ ci-dessus :

1d

saq )=’
= x2’ — pa'qx
_ r2sin0)cos(®) _ 12 1 (9) cos(f)g
b
2 - !
= 72 sin(6) cos(0) . q)-
De méme,
d o'
a0 = ooy
72 cos?(6)

= —— =2 +r%sin?(0)q
p

_ COS;(@ @ cos?(0) + qsin2(9)> .

On en déduit les identités suivantes :
1 1
7’ = rsin(f) cos(6) ( — q> .0 = = cos?(0) + gsin®(9).
p p

On sait que z,pz’ sont C'((a,b)),que p,q sont C°((a,b)) et que p > 0. Par conséquent, r =
22 + (pa')? est C*((a,b)). La fonction
6(t) = arctan <x(t)>
p(t)z'(t)
est continue, car composée de fonctions continues. De plus, I'expression trouvée pour 6’ montre
qu’elle aussi est continue, donc § € C1((a,b)).



