
Discrete optimization
Models and algorithms

Michel Bierlaire

Introduction to optimization and operations research

1 / 82



Modeling

Motivation
◮ Binary variables are convenient to model many situations.

◮ Action to be taken or not.

◮ A switch to set to “on”.

◮ We first investigate some techniques to translate logical rules into a
mathematical formulation involving binary variables.

2 / 82



Logical identity

x =

{

1 if P is true,
0 if P is false.

P x

True 1
False 0

3 / 82



Logical negation

P : x

¬P : 1− x

P ¬P x 1− x

True False 1 0
False True 0 1

4 / 82



Logical conjunction

P : x

Q : y

P ∧ Q : xy

P Q P ∧ Q x y xy

True True True 1 1 1
True False False 1 0 0
False True False 0 1 0
False False False 0 0 0

Note: if y and y are both variables, non linear formulation. Use a combination of
two constraints instead.

5 / 82



Logical disjunction

P : x

Q : y

P ∨ Q : x + y ≥ 1

P Q P ∨ Q x y x + y ≥ 1
True True True 1 1 Yes
True False True 1 0 Yes
False True True 0 1 Yes
False False False 0 0 No

Generalization: P1 ∨ . . . ∨ Pr .
∑r

i=1 xi ≥ 1.

6 / 82



Logical exclusive disjunction

P : x

Q : y

P ⊕ Q : x + y = 1

P Q P ⊕ Q x y x + y = 1
True True False 1 1 No
True False True 1 0 Yes
False True True 0 1 Yes
False False False 0 0 No

7 / 82



Logical implication

P : x

Q : y

P ⇒ Q : x ≤ y

P Q P ⇒ Q x y x ≤ y

True True True 1 1 Yes
True False False 1 0 No
False True True 0 1 Yes
False False True 0 0 Yes

Note: P ⇒ Q is equivalent to ¬P ∨ Q.

8 / 82



Logical equivalence

P : x

Q : y

P ⇔ Q : x = y

P Q P ⇔ Q x y x = y

True True True 1 1 Yes
True False False 1 0 No
False True False 0 1 No
False False True 0 0 Yes

9 / 82



Optional constraint ≥

◮ z is a binary variable.

◮ If z = 1, the constraint f (x) ≥ a must be verified.

◮ If z = 0, the constraint f (x) ≥ a must not be verified.

Assumption: f is bounded from below by L.

f (x)− L ≥ 0 is always true.

f (x) ≥ L+ (a − L)z

10 / 82



Optional constraint ≤

◮ z is a binary variable.

◮ If z = 1, the constraint f (x) ≤ a must be verified.

◮ If z = 0, the constraint f (x) ≤ a must not be verified.

Assumption: f is bounded from above by M .

f (x) ≤ M is always true.

f (x) ≤ az + (1− z)M

11 / 82



Disjunctive constraints

◮ Constraint 1: f (x) ≥ a.

◮ Constraint 2: g(x) ≥ b.

◮ One of them must be verified, but not necessarily both.

Assumption: f and g are bounded from below.

f (x) ≥ Lf and g(x) ≥ Lg are always true.

Introduce a binary variable z

f (x) ≥ Lf + (a − Lf )z

g(x) ≥ Lg + (b − Lg )(1− z)

12 / 82



Linearization

Non linear specification

xy = z , x , y , z ∈ {0, 1}.

x + y ≤ 1 + z

z ≤ x

z ≤ y .

x y z x + y ≤ 1 + z z ≤ x z ≤ y xy = z

1 1 1 Yes Yes Yes Yes

1 1 0 No Yes Yes No

1 0 1 Yes Yes No No

1 0 0 Yes Yes Yes Yes

0 1 1 Yes No Yes No

0 1 0 Yes Yes Yes Yes

0 0 1 Yes No No No

0 0 0 Yes Yes Yes Yes

13 / 82



Definitions

Motivation
◮ Discrete optimization involves decision variables that must be integer.

◮ We define here some variants of discrete optimization problems.

14 / 82



Discrete optimization

Integer Linear Problem

min
x∈Rn

cTx

subject to
Ax = b

x ≥ 0

x ∈ Z
n

Mixed Integer Linear Problem

min
x∈Rn

,y∈Rp
cTx x + cTy y

subject to

Axx + Ayy = b

x ≥ 0

y ≥ 0

y ∈ Z
p

15 / 82



Binary linear optimization problem

min
x∈Nn

cTx

subject to
Ax = b

x ∈ {0, 1}n

16 / 82



Transformation

Consider x ∈ N, x ≤ u.

x =
K−1
∑

i=0

2izi .

K = ⌈log2(u + 1)⌉.

Example : u = 5,K = 3, x = z0 + 2z1 + 4z2.

K−1
∑

i=0

2izi ≤ u.

17 / 82



Combinatorial optimization

min f (x)

subject to
x ∈ F a large finite set.

18 / 82



Knapsack

Motivation
◮ We review some classical combinatorial optimization problems.

◮ We show how they can be modeled as a (mixed) integer linear optimization
problem.

◮ We start by the knapsack problem.

19 / 82



The knapsack problem

◮ Patricia prepares a hike in the mountain.

◮ She has a knapsack with capacity W kg.

◮ She considers carrying a list of n items.

◮ Each item has a utility ui and a weight wi .

◮ What items should she take to maximize
the total utility, while fitting in the
knapsack?

20 / 82



Modeling

Decision variables

xi =

{

1 if item i goes into the knapsack,
0 otherwise

Objective function

max f (x) =
n

∑

i=1

uixi

Constraints

n
∑

i=1

wixi ≤ W , xi ∈ {0, 1}, i = 1, . . . , n

21 / 82



The set covering problem

◮ After the FIFA World Cup, Camille wants to
complete her collection of stickers.

◮ She can buy collections of stickers from her
schoolmates.

◮ In each collection, there are stickers that
she needs, but also stickers that she does
not need.

◮ The schoolmates do not accept to sell
stickers individually. The whole collection
has to be purchased.

◮ Camille must decide which collections to
purchase, in order to complete her own
album, at a minimum price.

22 / 82



Definition

Data
◮ A set U of m elements.

◮ Si ⊆ U , i = 1, . . . , n.

◮ aij = 1 if element j belongs to subset Si .

◮ Costs: ci .

Objective
Choose J subsets Sij , j = 1, . . . , J , of minimal total cost such that

J
⋃

j=1

Sij = U .

23 / 82



Modeling

Decision variables

xi =

{

1 if subset i is selected ,

0 otherwise

Objective function

min f (x) =
n

∑

i=1

cixi

Constraints

n
∑

i=1

aijxi ≥ 1, j = 1, . . . ,m xi ∈ {0, 1}, i = 1, . . . , n

24 / 82



The traveling salesman problem

◮ Consider a network (N ,A) with n nodes
representing cities.

◮ For any pair (i , j) of cities, the distance cij
between them is known.

◮ Find the shortest possible itinerary that
starts from the home town of the salesman,
visit all other cities, and come back home.

25 / 82



Modeling

Decision variables

xij =

{

1 if j is visited just after i ,
0 otherwise

Objective function

min f (x) =
n

∑

(i ,j)∈A

cijxij

26 / 82



Modeling

Constraints
Exactly one successor in the tour

∑

j |(i ,j)∈A

xij = 1 ∀i ∈ N

Exactly one predecessor in the tour

∑

i |(i ,j)∈A

xij = 1 ∀j ∈ N

27 / 82



Network

G

Geneva

L

Lausanne

B Bern

Z Zürich

64

158

279

104

22
8

12
5

28 / 82



A tour

G

Geneva

L

Lausanne

B Bern

Z Zürich

104
158

279

22
8

769km

29 / 82



Subtours

G

Geneva

L

Lausanne

B Bern

Z Zürich

64
12
5

◮ xLG = xGL = 1, xZB = xBZ = 1.

◮ 378km.

◮ There is exactly one predecessor for
each city.

◮ There is exactly one successor for
each city.

◮ There are several ways to eliminate
subtours. We present one here.

30 / 82



New variables

yi : position of city i in the tour .

For each i and j different from home:

xij = 1 =⇒ yj ≥ yi + 1,

31 / 82



A tour

G

yG = 2

L

B yB = 1

Z yZ = 3

104
158

279

22
8

32 / 82



A subtour

The constraints cannot be verified in subtours not involving home.

G L

B

Z

64

12
5

yB ≥ yZ + 1 and yZ ≥ yB + 1 : impossible.

33 / 82



Additional constraints

xij = 1 =⇒ yj ≥ yi + 1.

Modeling exercise, using optional constraint see before.

xij(n − 1) + yi − yj ≤ n − 2.

If xij=1
(n − 1) + yi − yj ≤ n − 2, yj ≥ yi + 1

If xij=0
yi − yj ≤ n − 2

Always verified because cities are numbered from 1 to n − 1

34 / 82



Traveling salesman problem

min
x∈Zn(n−1)

,y∈Z(n−1)

n
∑

i=1

∑

j 6=i

cijxij

subject to

∑

j 6=i

xij = 1 ∀i = 1, . . . , n,

∑

i 6=j

xij = 1 ∀j = 1, . . . , n,

xij(n − 1) + yi − yj ≤ n − 2, ∀i = 2, . . . , n, j = 2, . . . , n, i 6= j ,

xij ∈ {0, 1} ∀i = 1, . . . , n, j = 1, . . . , n, i 6= j ,

yi ≥ 0 ∀i = 2, . . . , n.

35 / 82



The curse of dimensionality

Motivation
◮ When we have introduced the transhipment problem, we have seen that

some problems can be solved by ignoring the integrality constraints, and the
solution would be guaranteed to be integer.

◮ Unfortunately, this property occurs only exceptionally.

◮ There is no optimality condition for discrete optimization.

36 / 82



An example

min
x∈N2

−3x1 − 13x2

subject to

2x1 + 9x2 ≤ 29

11x1 − 8x2 ≤ 79.

0 1 2 3 4 5 6 7 8 9
0

1

2

3

4

37 / 82



An example

min
x∈N2

−3x1 − 13x2

subject to

2x1 + 9x2 ≤ 29

11x1 − 8x2 ≤ 79.

0 1 2 3 4 5 6 7 8 9
0

1

2

3

4

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

• • • • • • • •

• • • • • • • •

• • • • • •

• •

38 / 82



Enumeration

x1 x2 cTx x1 x2 cTx x1 x2 cTx

0 0 0 2 0 -6 4 2 -38
0 1 -13 2 1 -19 5 0 -15
0 2 -26 2 2 -32 5 1 -28
0 3 -39 3 0 -9 5 2 -41
1 0 -3 3 1 -22 6 0 -18
1 1 -16 3 2 -35 6 1 -31
1 2 -29 4 0 -12 7 0 -21
1 3 -42 4 1 -25 7 1 -34

Solution: (1,3) -42

39 / 82



Enumeration: the binary knapsack problem

◮ n items.

◮ Number of possibilities: 2n.

◮ For each of them,

1. check feasibility,
2. calculate the objective

function.

◮ About 2n floating point
operations.

◮ Processor: 1 Teraflops.
1012

◮ n = 34: 1 second

◮ n = 40: 1 minute

◮ n = 45: 1 hour

◮ n = 50: 1 day

◮ n = 58: 1 year

◮ n = 69: 2583 years. Christian Era

◮ n = 78: 1 500 000 years. homo erectus.

◮ n = 91: 1010 years. Age of the universe.

40 / 82



Enumeration: the binary knapsack problem

1 Teraflops

◮ n = 50: 1 day.

◮ n = 69: 2,583 years.

◮ n = 78: 1,500,000 years.

◮ n = 91: 1010 years.

1000 Teraflops

◮ n = 59: 1 day.

◮ n = 69: 2.6 years.

◮ n = 78: 1,500 years.

◮ n = 91: 10 millions years.

41 / 82



Relaxation

Motivation
◮ We know how to solve linear optimization problems.

◮ We do not know how to solve discrete optimization problems.

◮ But if we forget about the integrality constraints, we obtain a linear
optimization problem.

◮ It is called a relaxation, and happens to be very useful.

42 / 82



Relaxation

Original problem

min
x∈Rnx

,y∈Zny
,z∈Nnz

f (x , y , z)

subject to

g(x , y , z) ≤ 0

h(x , y , z) = 0

y ∈ Z
ny

z ∈ {0, 1}nz

Relaxation

min
x∈Rnx

,y∈Rny
,z∈Rnz

f (x , y , z)

subject to

g(x , y , z) ≤ 0

h(x , y , z) = 0

y ∈ R
ny

z ∈ [0, 1]nz

where
◮ f : Rnx × R

ny × R
nz → R,

◮ g : Rnx × R
ny × R

nz → R
m,

◮ h : Rnx × R
ny × R

nz → R
p. 43 / 82



Lower bound

◮ Discrete optimization P : optimal solution: (x∗, y ∗, z∗).

◮ Relaxation R(P): optimal solution: (x∗R , y
∗
R , z

∗
R).

f (x∗R , y
∗
R , z

∗
R) ≤ f (x∗, y ∗, z∗).

Proof: the integer solution (x∗, y ∗, z∗) verifies the constraints of the relaxation.
Note: it is valid only for global minima.

44 / 82



Mixed Integer Linear Problems

◮ Consider the relaxation R(P).

45 / 82



Mixed Integer Linear Problems

◮ Consider the relaxation R(P).

◮ Calculate (x∗R , y
∗
R , z

∗
R) using the simplex algorithm.

45 / 82



Mixed Integer Linear Problems

◮ Consider the relaxation R(P).

◮ Calculate (x∗R , y
∗
R , z

∗
R) using the simplex algorithm.

◮ Round the solution to the nearest integer values.

45 / 82



An example

min
x∈N2

−3x1 − 13x2

subject to

2x1 + 9x2 ≤ 29

11x1 − 8x2 ≤ 79.

0 1 2 3 4 5 6 7 8 9
0

1

2

3

4

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

• • • • • • • •

• • • • • • • •

• • • • • •

• •

46 / 82



Solving the relaxation

min
x∈N2

−3x1 − 13x2

subject to

2x1 + 9x2 ≤ 29

11x1 − 8x2 ≤ 79.

0 1 2 3 4 5 6 7 8 9
0

1

2

3

4
−c

47 / 82



Rounding the solution

min
x∈N2

−3x1 − 13x2

subject to

2x1 + 9x2 ≤ 29

11x1 − 8x2 ≤ 79.

0 1 2 3 4 5 6 7 8 9
0

1

2

3

4

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

• • • • • • • •

• • • • • • • •

• • • • • •

• •

•

48 / 82



Rounding the solution

In this example

◮ Rounding always produce an infeasible point.

◮ The optimal solution (1, 3) is far from the solution of the relaxation.

49 / 82



Branch & Bound

Motivation
◮ In the absence of optimality conditions, enumeration is the only way to find

the optimal solution.

◮ However, it is most of the time impossible to perform explicitly due to the
curse of dimensionality.

◮ The branch & bound method is some sort of implicit enumeration technique,
that attacks the huge set of feasible solutions using a “divide and conquer”
strategy.

50 / 82



Combinatorial optimization

min
x

f (x)

subject to
x ∈ F ,

where F is a large set containing a finite number of elements.

51 / 82



Divide

F

52 / 82



Divide

F1 F2 · · · FK−1 FK

53 / 82



Divide

Problem P

min
x

f (x)

subject to
x ∈ F ,

Solution: x∗.

Problem Pk

min
x

f (x)

subject to
x ∈ Fk ,

Solution: x∗k .

54 / 82



Conquer

Theorem 26.1
Consider i such that

f (x∗i ) ≤ f (x∗k ), k = 1, . . . ,K .

Then,

f (x∗) = f (x∗i ),

and x∗i is solution of P .

f (x∗) ≤ f (x∗i )
∃j such that x∗ ∈ Fj

Optimality of x∗j : f (x
∗
j ) ≤ f (x)∀x ∈ Fj

x∗ ∈ Fj ⇒ f (x∗j ) ≤ f (x∗)
f (x∗) ≤ f (x∗i ) ≤ f (x∗j ) ≤ f (x∗)

55 / 82



Divide

F1 · · · FM FM+1 · · · FK



Divide

F1 · · · FM FM+1 · · · FK

Optimal solution



Divide

F1 · · · FM FM+1 · · · FK

Optimal solution Lower bound

56 / 82



Divide

Problem P

min
x

f (x)

subject to

x ∈ F .

Solution: x∗.

Problem Pk , k ≤ M

min
x

f (x)

subject to

x ∈ Fk .

Solution: x∗k .

Problem Pk , k > M

min
x

f (x)

subject to

x ∈ Fk .

Lower bound:
ℓ(Pm) ≤ f (x∗k ).

57 / 82



Conquer

Corollary 26.2
Consider i such that

f (x∗i ) ≤ f (x∗k ), k = 1, . . . ,M ,

and

f (x∗i ) ≤ ℓ(Pk), k = M+1, . . . ,K .

Then,

f (x∗) = f (x∗i ),

and x∗i is solution of P .

ℓ(Pk) ≤ f (x∗k ) for each k > M

Therefore, f (x∗i ) ≤ f (x∗k ) for all k
The previous theorem applies.

58 / 82



Example

Problem P

min x1 − 2x2

subject to
−4x1 + 6x2 ≤ 9

x1 + x2 ≤ 4
x1, x2 ≥ 0
x1, x2 ∈ N.

Upper bound
(0,0) is feasible: U=0

59 / 82



Example

0 1 2 3 4
0

1

2

3

60 / 82



Lower bound: relaxation

Problem R(P):
min x1 − 2x2

subject to
−4x1 + 6x2 ≤ 9

x1 + x2 ≤ 4
x1, x2 ≥ 0

61 / 82



Lower bound

0 1 2 3 4
0

1

2

3

62 / 82



Divide

◮ Optimal solution of R(P) : (1.5, 2.5)

◮ ℓ(P) : −3.5

P1 P2

min x1 − 2x2 min x1 − 2x2
s.c. s.c.
−4x1 + 6x2 ≤ 9 −4x1 + 6x2 ≤ 9

x1 + x2 ≤ 4 x1 + x2 ≤ 4
x1, x2 ≥ 0 x1, x2 ≥ 0
x1, x2 ∈ N x1, x2 ∈ N

x2 ≤ 2 x2 ≥ 3

63 / 82



Divide

0 1 2 3 4
0

1

2

3

64 / 82



Tree representation

Upper bound
U = 0

Tree

P[−3.5]

P1[?] P2[?]

P2 is infeasible.

65 / 82



Problem P1

0 1 2 3 4
0

1

2

3

66 / 82



Problem P1

Note
The feasible set of P1 is exactly the same as P .

67 / 82



P1: lower bound

Problem P1

min x1 − 2x2

subject to

−4x1 + 6x2 ≤ 9
x1 + x2 ≤ 4
x1, x2 ≥ 0

x2 ≤ 2
x1, x2 ∈ N.

Relaxation R(P1)

min x1 − 2x2

subject to

−4x1 + 6x2 ≤ 9
x1 + x2 ≤ 4
x1, x2 ≥ 0

x2 ≤ 2

68 / 82



P1: lower bound

0 1 2 3 4
0

1

2

3

69 / 82



P1: divide

◮ Optimal solution of R(P1) : (0.75, 2)

◮ ℓ(P1) : −3.25

P11 P12

min x1 − 2x2 min x1 − 2x2
s.c. s.c.
−4x1 + 6x2 ≤ 9 −4x1 + 6x2 ≤ 9

x1 + x2 ≤ 4 x1 + x2 ≤ 4
x1, x2 ≥ 0 x1, x2 ≥ 0
x1, x2 ∈ N x1, x2 ∈ N

x2 ≤ 2 x2 ≤ 2
x1 ≤ 0 x1 ≥ 1

70 / 82



P1: divide

0 1 2 3 4
0

1

2

3

71 / 82



Tree representation

U = 0

P[−3.5]

P1[−3.25] P2[?]

P11[?] P12[?]

72 / 82



P11: lower bound

Problem P11

min x1 − 2x2

subject to

−4x1 + 6x2 ≤ 9,
x1 + x2 ≤ 4,
x1, x2 ≥ 0,

x2 ≤ 2,
x1 ≤ 0,

x1, x2 ∈ N.

Relaxation R(P11)

min x1 − 2x2

subject to

−4x1 + 6x2 ≤ 9,
x1 + x2 ≤ 4,
x1, x2 ≥ 0,

x2 ≤ 2,
x1 ≤ 0.

Note: x1 = 0.

73 / 82



P11: lower bound

0 1 2 3 4
0

1

2

3

74 / 82



P11: lower bound

◮ Optimal solution of R(P11) : (0, 1.5)

◮ ℓ(P11) : −3

75 / 82



P12: lower bound

Problem P12

min x1 − 2x2

subject to

−4x1 + 6x2 ≤ 9
x1 + x2 ≤ 4
x1, x2 ≥ 0

x2 ≤ 2
x1 ≥ 1

x1, x2 ∈ N.

Relaxation R(P12)

min x1 − 2x2

subject to

−4x1 + 6x2 ≤ 9
x1 + x2 ≤ 4
x1, x2 ≥ 0

x2 ≤ 2
x1 ≥ 1

76 / 82



P12: lower bound

0 1 2 3 4
0

1

2

3

77 / 82



P12: lower bound

◮ Optimal solution of R(P12) : (1, 2)

◮ ℓ(P12) : −3

Integer solution
It is the optimal solution of P12.
Feasible solution for P
Better upper bound: U = −3.

78 / 82



Tree representation

U = −3

P[−3.5]

P1[−3.25] P2[?]

P11[−3]
P12[−3]

Optimal solution: (1, 2).

79 / 82



Branch & bound algorithm

At each iteration, we maintain

◮ a list of active subproblems S = {P1,P2, . . .},

◮ an upper bound U , that is the value of the objective function at the best
feasible solution encountered so far.

◮ Initialization:
◮ Either U = +∞,
◮ or U = f (x), where x is a known feasible solution.
◮ S = {P}.

80 / 82



Branch & bound algorithm

Iteration:

◮ Consider an active subproblem Pk .

◮ If Pk is infeasible, remove it from the list.

◮ Otherwise, calculate a lower bound ℓ(Pk).

◮ If U ≤ ℓ(Pk), remove Pk from the list.

◮ Otherwise,
◮ either solve Pk directly,
◮ or partition its feasible set, and create new subproblems, that are added to

the list.

81 / 82



Summary

◮ Modeling logical rules.

◮ Types of problems: integer, mixed, binary, and combinatorial.

◮ Examples: knapsack, set covering, traveling salesman.

◮ No optimality condition: the curse of dimensionality.

◮ Relaxation.

◮ Branch & bound.

82 / 82


