Discrete optimization
Models and algorithms

Michel Bierlaire

Introduction to optimization and operations research

1/82

Modeling

Motivation
» Binary variables are convenient to model many situations.
» Action to be taken or not.
» A switch to set to “on”.

» We first investigate some techniques to translate logical rules into a
mathematical formulation involving binary variables.

2/82

Logical identity

|1 if Pis true,
X=93 0 ifPis false.

3/82

Logical negation

-P: 1—x True False | 1
False True | O 1

4/82

Logical conjunction

P Q PANQ| x 'y xy

Pox True True True |1 1 1

Q: y True False False [1 0 O
PAQ: xy False True False | 0 1 0
False False False | 0 0 0

Note: if y and y are both variables, non linear formulation. Use a combination of
two constraints instead.

5/82

Logical disjunction

P R PVQR| x y x+y>1
P: x True True True |1 1 Yes
QR: vy True False True |1 O Yes
PVQR: x+y>1 False True True |0 1 Yes
False False False |0 O No

Generalization: Py V...V P, >\ x> 1.

6/82

Logical exclusive disjunction

P QR PdQ| x y x+y=1
True True False |1 1 No
True False True |1 0 Yes
False True True |0 1 Yes
False False False | 0 0 No

7/82

Logical implication

P Q P=Q| x y x<y
True True True 1 1 Yes
P: x True False False |1 0 No
Q: y False True True |0 1 Yes
P=Q: x<y False False True [0 O Yes

Note: P = @ is equivalent to =P V Q.

8/82

Logical equivalence

DO T

X < X

P

Q P&Q x y x=y
True True True 1 1 Yes
True False False |1 0 No
False True False | O 1 No
False False True 0 0 Yes

9/82

Optional constraint >

» z is a binary variable.

» If z =1, the constraint f(x) > a must be verified.

» If z =0, the constraint f(x) > a must not be verified.
Assumption: f is bounded from below by L.

f(x) — L > 0 is always true.

f(x)>L+(a— L)z

10/82

Optional constraint <

» z is a binary variable.

» If z =1, the constraint f(x) < a must be verified.

» If z =0, the constraint f(x) < a must not be verified.
Assumption: f is bounded from above by M.

f(x) < M is always true.

fix)<az+(1—z)M

11/82

Disjunctive constraints

» Constraint 1: f(x) > a.
» Constraint 2: g(x) > b.
» One of them must be verified, but not necessarily both.

Assumption: f and g are bounded from below.
f(x) > Lr and g(x) > L, are always true.
Introduce a binary variable z
f(x) > L+ (a— Lf)z

g(x) > Ly + (b= Lg)(1 - 2)

12/82

Linearization

Non linear specification

xy =z, x,y,z € {0,1}.

Xy z|lx+y<l4z z<x zLZ<y|xy=z
1 11 Yes Yes Yes Yes
1 10 No Yes Yes No
x+y<l+z 1 01 Yes Yes No No
z<x 1 00 Yes Yes Yes Yes
z<y. 011 Yes No Yes No
010 Yes Yes Yes Yes
0 01 Yes No No No
0 0O Yes Yes Yes Yes

13/82

Definitions

Motivation
» Discrete optimization involves decision variables that must be integer.

» We define here some variants of discrete optimization problems.

14/82

Discrete optimization

Integer Linear Problem

min ¢’ x

x€R"

subject to
Ax =b

x>0
x e€Z"

Mixed Integer Linear Problem

: T T
min ¢ Xx+c, y

x€R" yeRP
subject to
Ax+Ay=>b
x>0
y=0

yezp

15/82

Binary linear optimization problem

min ¢’ x
xeNn

subject to
Ax=0b

x € {0,1}"

16 /82

Transformation

Consider x € N, x < u.
K-1
X = Z 2'z;.
i=0

K = [logy(u +1)].
Example : u=5 K =3,x = zg + 2z + 42.

K-1
Z 2'z; < u.
i=0

17/82

Combinatorial optimization

min f(x)

subject to
x € F a large finite set.

18/82

Knapsack

Motivation
» We review some classical combinatorial optimization problems.

» We show how they can be modeled as a (mixed) integer linear optimization
problem.

» We start by the knapsack problem.

19/82

The knapsack problem

Patricia prepares a hike in the mountain.
She has a knapsack with capacity Wkg.
She considers carrying a list of n items.

Each item has a utility u; and a weight w;.

vVvyyvyy

What items should she take to maximize
the total utility, while fitting in the
knapsack?

20/82

Modeling

Decision variables

. 1 if item / goes into the knapsack,
"1 0 otherwise

Objective function

Constraints

D wix <W, xi€{0,1},i=1,...,n

i=1
21/82

The set covering problem

» After the FIFA World Cup, Camille wants to
complete her collection of stickers.

» She can buy collections of stickers from her
schoolmates.

» In each collection, there are stickers that
she needs, but also stickers that she does
not need.

» The schoolmates do not accept to sell
stickers individually. The whole collection
has to be purchased.

a8
§
:
g
]
2
H

» Camille must decide which collections to
purchase, in order to complete her own
album, at a minimum price.

22/82

Definition

Data
> A set U of m elements.
> S,g U, izl,...,n.

» a; =1 if element j belongs to subset S;.

» Costs: ¢;.
Objective
Choose J subsets 5,-/., Jj=1,...,J, of minimal total cost such that
J
s, =vu
j=1

23/82

Modeling

Decision variables

v — 1 if subset i is selected ,
"1 0 otherwise

Objective function
min f(x) = Z CiXi
Constraints

Sax>1j=1. . mxe{01}i=1n
i=1

24 /82

The traveling salesman problem

» Consider a network (N, A) with n nodes
representing cities.

» For any pair (i) of cities, the distance c;
between them is known.

» Find the shortest possible itinerary that
starts from the home town of the salesman,
visit all other cities, and come back home.

25 /82

Modeling

Decision variables

. 1 if j is visited just after / ,
Y71 0 otherwise

Objective function

min f(x) = Z CijXij

(ij)eA

26 /82

Modeling

Constraints
Exactly one successor in the tour

Y o xz=1VieN

Jlij)eA

Exactly one predecessor in the tour

Z XU:].V_]GN

i|(ij)eA

27 /82

Network

Geneva Lausanne

28 /82

A tour

Geneva Lausanne

769km

29 /82

Subtours

OO0,

Geneva Lausanne

vy

X =XeL =1, xzg = xgz = 1.
378km.

There is exactly one predecessor for
each city.

There is exactly one successor for
each city.

There are several ways to eliminate
subtours. We present one here.

30/82

New variables

yi . position of city / in the tour .

For each i and j different from home:

xj=1l=y >y +1,

31/82

A tour

32/82

A subtour

The constraints cannot be verified in subtours not involving home.

o
<

®
Oz 20,

yg > yz+1land yz > yg + 1: impossible.

33/82

Additional constraints

Modeling exercise, using optional constraint see before.

xj(n—=1)+yi—y; <n—2.

IfXU:].
(=1 +yi—y<n=2, yy>yi+1

|fXU:0
Yi—yj<n—2

Always verified because cities are numbered from 1 to n—1

34/82

Traveling salesman problem

min E E C’JXU
xgZn(n—1) yEZ” 1)

=1 j#i
subject to

Zx,-jzl Vi=1,...,n,

J#i
D x=1 Vi=1,...,n,

i#i
xj(n=1)+yi—y;<n—=2, Yi=2,....,nj=2,...,ni%#],
x; € {01} Vi=1,....nj=1, .. ni#]
yi >0 Vi=2,...,n

35/82

The curse of dimensionality

Motivation

» When we have introduced the transhipment problem, we have seen that
some problems can be solved by ignoring the integrality constraints, and the
solution would be guaranteed to be integer.

» Unfortunately, this property occurs only exceptionally.

» There is no optimality condition for discrete optimization.

36/82

An example

min —3x; — 13x
xEN2

subject to

2X1 + 9X2 S 29

11X1 — 8X2 S 79.

37/82

An example

min —3x; — 13x
xEN2

subject to

2X1 + 9X2 S 29

11X1 — 8X2 S 79.

38/82

Enumeration

X1 X2 CTX X1 Xo C TX X1 X2 CTX
0 0 0 2 0 -6 |4 2 -38
o 1 -13}2 1 -19 |5 0 -15
o 2 -26(2 2 -32|5 1 -28
0O 3 -39/3 0 9|5 2 41
1 0 3|3 1 2|6 0 -18
11 -16 1 3 2 3|6 1 -31
1 2 2914 0 -12 |7 0 -21
1 3 424 1 -25 |7 1 -34

Solution: (1,3) -42

39/82

Enumeration: the binary knapsack problem

» n items.

» Number of possibilities: 2".

» For each of them,
1. check feasibility,
2. calculate the objective
function.
» About 2n floating point
operations.

» Processor: 1 Teraflops.
10*2

vVvyvVvyvVvyvVvyYVYyYvyy

n = 34:
n = 40:
n = 45:
n = 50:
n = 58:
n=69:
n=78:
n=91:

1 second

1 minute

1 hour

1 day

1 year

2583 years. Christian Era

1 500 000 years. homo erectus.
109 years. Age of the universe.

40/82

Enumeration: the binary knapsack problem

1 Teraflops
> n=>50: 1day.
» n=69: 2,583 years.

» n=78: 1,500,000 years.

» n=91: 10% years.

1000 Teraflops

>

>
>
>

n=159: 1 day.

n=69: 2.6 years.

n = 78: 1,500 years.

n = 91: 10 millions years.

41/82

Relaxation

Motivation
» We know how to solve linear optimization problems.
» We do not know how to solve discrete optimization problems.

» But if we forget about the integrality constraints, we obtain a linear
optimization problem.

» It is called a relaxation, and happens to be very useful.

42/82

Relaxation

Original problem Relaxation
xERMx ,y@%’ly ,zENnz flx.y,2) xERMx ,yrgﬂlkr']Y,zeR"z (x.y.2)
subject to subject to
g(x,y,z) <0 g(x,y,z) <0
h(x,y,z) =0 h(x,y,z) =0
y ez y € R
z€{0,1}"™ z € [0,1]™
where

> R™ x R x R" — R,
» g:R™ xR x R™ — R™,
> h:R™ x R x R" — RP, 43 /82

Lower bound

» Discrete optimization P: optimal solution: (x*, y*, z*).

» Relaxation R(P): optimal solution: (x%, y%, zx)-
f(xg: YR, 2r) < F(x7,y", 2%).

Proof: the integer solution (x*, y*, z*) verifies the constraints of the relaxation.
Note: it is valid only for global minima.

44 /82

Mixed Integer Linear Problems

|

- » Consider the relaxation R(P).

N

45 /82

Mixed Integer Linear Problems

|

- » Consider the relaxation R(P).
» Calculate (xz, y5, %) using the simplex algorithm.

N

45 /82

Mixed Integer Linear Problems

|

- » Consider the relaxation R(P).
» Calculate (xz, y5, %) using the simplex algorithm.

» Round the solution to the nearest integer values.

N

45 /82

An example

min —3x; — 13x
xEN2

subject to

2X1 + 9X2 S 29

11X1 — 8X2 S 79.

46 /82

Solving the relaxation

min —3x; — 13x
xEN2

subject to

2X1 + 9X2 S 29
11X1 — 8X2 S 79.

A\

47 /82

Rounding the solution

min —3x; — 13x
xEN2

subject to

2X1 + 9X2 S 29
11X1 — 8X2 S 79.

48 /82

Rounding the solution

In this example

» Rounding always produce an infeasible point.

» The optimal solution (1, 3) is far from the solution of the relaxation.

49/82

Branch & Bound

Motivation
» In the absence of optimality conditions, enumeration is the only way to find
the optimal solution.
» However, it is most of the time impossible to perform explicitly due to the
curse of dimensionality.

» The branch & bound method is some sort of implicit enumeration technique,
that attacks the huge set of feasible solutions using a “divide and conquer”
strategy.

50 /82

Combinatorial optimization

min f(x)

X

subject to
x e F,

where F is a large set containing a finite number of elements.

51/82

Divide

52/82

Divide

F1

F2

-’T_.Kfl

Fk

53/82

Divide

Problem P

subject to

Solution:

X" .

*

min f(x)

x e F,

Problem Py

min f(x)

X

subject to
X € fk,

*

Solution: x;.

54/82

Conquer

Theorem 26.1
Consider i such that
f(x*) < £(x7)
f(x') < f(xz), k=1,....K. 3j such that x* € F;
Optimality of x: f(x}) <
Then, X €)=) < (x*)
F(x') < Fxt) < F(x7) < F(x°)

f(x)Vx € F;

and x; is solution of P.

55 /82

Divide

F1

Fm

Fums1

Fk

Divide

F1

Fm

Fums1

Fk

~"
Optimal solution

Divide

F1

Fm

Fums1

Fk

~"
Optimal solution

~
Lower bound

56 /82

Divide

Problem P Problem P,, k < M Problem Py, k > M
min f (x) min f(x) min f(x)
subject to subject to subject to
x e F. x € F. x € Fu.
Solution: x*. Solution: x;. Lower bound:

U(Pm) < f(x5).

57/82

Conquer

Corollary 26.2

Consider i such that
f(x) <f(xg), k=1,..., M,

and ((Py) < f(xg) for each k > M
. Therefore, f(xF) < f(x;) for all k
F(x7) < UPx), k=M+1,.... K. The previous theorem applies.

Then,

and x; is solution of P.

58 /82

Example

Problem P
min X1 — 2X2
subject to
—4X1 + 6X2 S 9
X1 + Xo S 4
x,x > 0
X1, X2 € N.

Upper bound
(0,0) is feasible: U=0

59 /82

Example

60 /82

Lower bound: relaxation

Problem R(P):

min X1 — 2X2

subject to
—4x; +6x, < 9
X1 + X2 S 4
x,x2 =2 0

61/82

Lower bound

62 /82

Divide

» Optimal solution of R(P) : (1.5,2.5)

> ((P): —35
Py P,
min X1 — 2X2 min X1 — 2X2
S.C. S.C.
—4X1 + 6X2 S 9 —4X]_ + 6X2 < 9
xx+x < 4 xx1t+x < 4
x,x > 0 x,%x > 0
X1, X2 € N X1, X2 € N
x <2 x > 3

63/82

Divide

64/82

Tree representation
Upper bound

U=0

Tree

P, is infeasible.

P[—3.5]

P1[7]

P2[7]

65 /82

Problem P;

66 /82

Problem P;

Note
The feasible set of P; is exactly the same as P.

67 /82

P:: lower bound

Problem P

min x; — 2xo

subject to

—4X1 + 6X2
X1 + X2

X1, X2

X2

X1, X2

M A IV IN A
Z N oo

Relaxation R(P;)

min x; — 2xo

subject to

—4x; + 6x
X1 + X2

X1, X2

X2

VANIAVARVANRVAN

N O B O

68 /82

P:: lower bound

69 /82

P:: divide

» Optimal solution of R(Py) : (0.75,2)

P11 P>
min x; — 2xo min x; — 2xo
S.C. S.C.

—4X1 + 6X2 S 9 —4X1 + 6X2 S 9
xxt+x < 4 x1t+x < 4
X1, X2 Z 0 X1, X2 Z 0
X1, X2 € N X1,X2 € N
X <2 X <02
x < 0 xx = 1

70/82

P:: divide

71/82

Tree representation

U=0

P[-3.5]

P;[—3.25]

Pll[?]

P12 [?]

Po[7]

72/82

P11: lower bound

Problem P11

min X1 — 2X2

subject to

—4x; 4+ 6x
X1+ X

X1, X2

X2

X1

X1, X2

M AN IN TV IN A
Z O N O~ ©

Relaxation R(P1)

min X1 — 2X2

subject to
—4x;1+6x < 9,
x1tx < 4,
X1, X2 Z O,
X2 S 27
X1 S 0.

Note: x; = 0.

73/82

P11: lower bound

7482

P11: lower bound

» Optimal solution of R(P11) @ (0,1.5)
> K(P]_l) =3

75/82

P1>: lower bound

Problem Pi»

min x; — 2xo

subject to

—4x; + 6x
X1 + X2

X1, X2

X2

X1

X1, X2

M IV IAIVINIA
Z =N o~ O

Relaxation R(P;»)

min X1 — 2X2

subject to

—4X1 -+ 6X2
X1 + X

X1, X2

X2

X1

VNIV IAIA
=N O MO

76 /82

Pi,: lower bound

77/82

P1>: lower bound

» Optimal solution of R(P12) : (1,2)
> ((Pp): —3

Integer solution

It is the optimal solution of Pys.

Feasible solution for P
Better upper bound: U = —3.

78/82

Tree representation

U=-3

P11[—3]

Optimal solution: (1,2).

P[—3.5]

P1[—3.25]

P[?]

79/82

Branch & bound algorithm

At each iteration, we maintain
» a list of active subproblems S = {Py, P>, ...},
» an upper bound U, that is the value of the objective function at the best
feasible solution encountered so far.
» Initialization:
» Either U = +o0,

» or U = f(x), where x is a known feasible solution.
> S={P}.

80 /82

Branch & bound algorithm

Iteration:
» Consider an active subproblem P;.

If Py is infeasible, remove it from the list.

If U < {(Py), remove Py from the list.

Otherwise,
» either solve Py directly,
P or partition its feasible set, and create new subproblems, that are added to
the list.

>
» Otherwise, calculate a lower bound ¢(Py).
>
>

81/82

Summary

Modeling logical rules.

Types of problems: integer, mixed, binary, and combinatorial.
Examples: knapsack, set covering, traveling salesman.

No optimality condition: the curse of dimensionality.
Relaxation.

Branch & bound.

vvyVvyVvyyvYyy

82/82

