

Discrete optimization

Models and algorithms

Michel Bierlaire

Introduction to optimization and operations research

EPFL

Modeling

Motivation

- ▶ Binary variables are convenient to model many situations.
- ▶ Action to be taken or not.
- ▶ A switch to set to “on”.
- ▶ We first investigate some techniques to translate logical rules into a mathematical formulation involving binary variables.

Logical identity

$$x = \begin{cases} 1 & \text{if } P \text{ is true,} \\ 0 & \text{if } P \text{ is false.} \end{cases}$$

P	x
True	1
False	0

Logical negation

$$\begin{array}{l} P : x \\ \neg P : 1 - x \end{array}$$

P	$\neg P$	x	$1 - x$
True	False	1	0
False	True	0	1

Logical conjunction

$$\begin{aligned} P &: x \\ Q &: y \\ P \wedge Q &: xy \end{aligned}$$

P	Q	$P \wedge Q$	x	y	xy
True	True	True	1	1	1
True	False	False	1	0	0
False	True	False	0	1	0
False	False	False	0	0	0

Note: if x and y are both variables, non linear formulation. Use a combination of two constraints instead.

Logical disjunction

	P	Q	$P \vee Q$	x	y	$x + y \geq 1$
$P : x$	True	True	True	1	1	Yes
$Q : y$	True	False	True	1	0	Yes
$P \vee Q : x + y \geq 1$	False	True	True	0	1	Yes
	False	False	False	0	0	No

Generalization: $P_1 \vee \dots \vee P_r. \sum_{i=1}^r x_i \geq 1.$

Logical exclusive disjunction

	P	Q	$P \oplus Q$	x	y	$x + y = 1$
$P : x$	True	True	False	1	1	No
$Q : y$	True	False	True	1	0	Yes
$P \oplus Q : x + y = 1$	False	True	True	0	1	Yes
	False	False	False	0	0	No

Logical implication

$P : x$
 $Q : y$
 $P \Rightarrow Q : x \leq y$

P	Q	$P \Rightarrow Q$	x	y	$x \leq y$
True	True	True	1	1	Yes
	False	False	1	0	No
False	True	True	0	1	Yes
	False	True	0	0	Yes

Note: $P \Rightarrow Q$ is equivalent to $\neg P \vee Q$.

Logical equivalence

$P : x$
 $Q : y$
 $P \Leftrightarrow Q : x = y$

P	Q	$P \Leftrightarrow Q$	x	y	$x = y$
True	True	True	1	1	Yes
True	False	False	1	0	No
False	True	False	0	1	No
False	False	True	0	0	Yes

Optional constraint \geq

- ▶ z is a binary variable.
- ▶ If $z = 1$, the constraint $f(x) \geq a$ must be verified.
- ▶ If $z = 0$, the constraint $f(x) \geq a$ must not be verified.

Assumption: f is bounded from below by L .

$f(x) - L \geq 0$ is always true.

$$f(x) \geq L + (a - L)z$$

Optional constraint \leq

- ▶ z is a binary variable.
- ▶ If $z = 1$, the constraint $f(x) \leq a$ must be verified.
- ▶ If $z = 0$, the constraint $f(x) \leq a$ must not be verified.

Assumption: f is bounded from above by M .

$f(x) \leq M$ is always true.

$$f(x) \leq az + (1 - z)M$$

Disjunctive constraints

- ▶ Constraint 1: $f(x) \geq a$.
- ▶ Constraint 2: $g(x) \geq b$.
- ▶ One of them must be verified, but not necessarily both.

Assumption: f and g are bounded from below.

$f(x) \geq L_f$ and $g(x) \geq L_g$ are always true.

Introduce a binary variable z

$$f(x) \geq L_f + (a - L_f)z$$

$$g(x) \geq L_g + (b - L_g)(1 - z)$$

Linearization

Non linear specification

$$xy = z, \quad x, y, z \in \{0, 1\}.$$

	x	y	z	$x + y \leq 1 + z$	$z \leq x$	$z \leq y$	$xy = z$
	1	1	1	Yes	Yes	Yes	Yes
	1	1	0	No	Yes	Yes	No
$x + y \leq 1 + z$	1	0	1	Yes	Yes	No	No
$z \leq x$	1	0	0	Yes	Yes	Yes	Yes
$z \leq y$.	0	1	1	Yes	No	Yes	No
	0	1	0	Yes	Yes	Yes	Yes
	0	0	1	Yes	No	No	No
	0	0	0	Yes	Yes	Yes	Yes

Definitions

Motivation

- ▶ Discrete optimization involves decision variables that must be integer.
- ▶ We define here some variants of discrete optimization problems.

Discrete optimization

Integer Linear Problem

$$\min_{x \in \mathbb{R}^n} c^T x$$

subject to

$$Ax = b$$

$$x \geq 0$$

$$x \in \mathbb{Z}^n$$

Mixed Integer Linear Problem

$$\min_{x \in \mathbb{R}^n, y \in \mathbb{R}^p} c_x^T x + c_y^T y$$

subject to

$$A_x x + A_y y = b$$

$$x \geq 0$$

$$y \geq 0$$

$$y \in \mathbb{Z}^p$$

Binary linear optimization problem

$$\min_{x \in \mathbb{N}^n} c^T x$$

subject to

$$Ax = b$$

$$x \in \{0, 1\}^n$$

Transformation

Consider $x \in \mathbb{N}$, $x \leq u$.

$$x = \sum_{i=0}^{K-1} 2^i z_i.$$

$$K = \lceil \log_2(u + 1) \rceil.$$

Example : $u = 5$, $K = 3$, $x = z_0 + 2z_1 + 4z_2$.

$$\sum_{i=0}^{K-1} 2^i z_i \leq u.$$

Combinatorial optimization

$$\min f(x)$$

subject to

$$x \in \mathcal{F} \text{ a large finite set.}$$

Knapsack

Motivation

- ▶ We review some classical combinatorial optimization problems.
- ▶ We show how they can be modeled as a (mixed) integer linear optimization problem.
- ▶ We start by the knapsack problem.

The knapsack problem

- ▶ Patricia prepares a hike in the mountain.
- ▶ She has a knapsack with capacity W kg.
- ▶ She considers carrying a list of n items.
- ▶ Each item has a utility u_i and a weight w_i .
- ▶ What items should she take to maximize the total utility, while fitting in the knapsack?

Modeling

Decision variables

$$x_i = \begin{cases} 1 & \text{if item } i \text{ goes into the knapsack,} \\ 0 & \text{otherwise} \end{cases}$$

Objective function

$$\max f(x) = \sum_{i=1}^n u_i x_i$$

Constraints

$$\sum_{i=1}^n w_i x_i \leq W, \quad x_i \in \{0, 1\}, i = 1, \dots, n$$

The set covering problem

- ▶ After the FIFA World Cup, Camille wants to complete her collection of stickers.
- ▶ She can buy collections of stickers from her schoolmates.
- ▶ In each collection, there are stickers that she needs, but also stickers that she does not need.
- ▶ The schoolmates do not accept to sell stickers individually. The whole collection has to be purchased.
- ▶ Camille must decide which collections to purchase, in order to complete her own album, at a minimum price.

Definition

Data

- ▶ A set U of m elements.
- ▶ $S_i \subseteq U, i = 1, \dots, n$.
- ▶ $a_{ij} = 1$ if element j belongs to subset S_i .
- ▶ Costs: c_i .

Objective

Choose J subsets $S_{i_j}, j = 1, \dots, J$, of minimal total cost such that

$$\bigcup_{j=1}^J S_{i_j} = U.$$

Modeling

Decision variables

$$x_i = \begin{cases} 1 & \text{if subset } i \text{ is selected ,} \\ 0 & \text{otherwise} \end{cases}$$

Objective function

$$\min f(x) = \sum_{i=1}^n c_i x_i$$

Constraints

$$\sum_{i=1}^n a_{ij} x_i \geq 1, j = 1, \dots, m \quad x_i \in \{0, 1\}, i = 1, \dots, n$$

The traveling salesman problem

- ▶ Consider a network $(\mathcal{N}, \mathcal{A})$ with n nodes representing cities.
- ▶ For any pair (i, j) of cities, the distance c_{ij} between them is known.
- ▶ Find the shortest possible itinerary that starts from the home town of the salesman, visit all other cities, and come back home.

Modeling

Decision variables

$$x_{ij} = \begin{cases} 1 & \text{if } j \text{ is visited just after } i , \\ 0 & \text{otherwise} \end{cases}$$

Objective function

$$\min f(x) = \sum_{(i,j) \in \mathcal{A}}^n c_{ij} x_{ij}$$

Modeling

Constraints

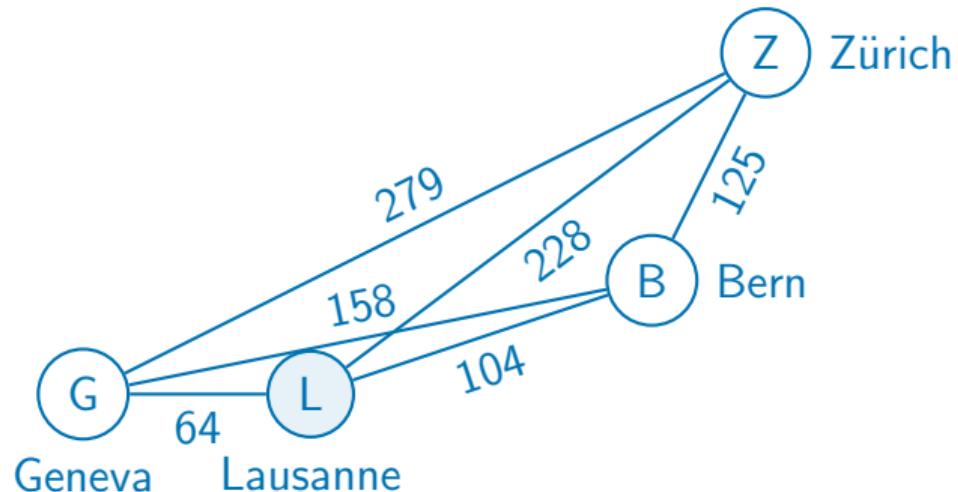
Exactly one successor in the tour

$$\sum_{j|(i,j) \in \mathcal{A}} x_{ij} = 1 \quad \forall i \in \mathcal{N}$$

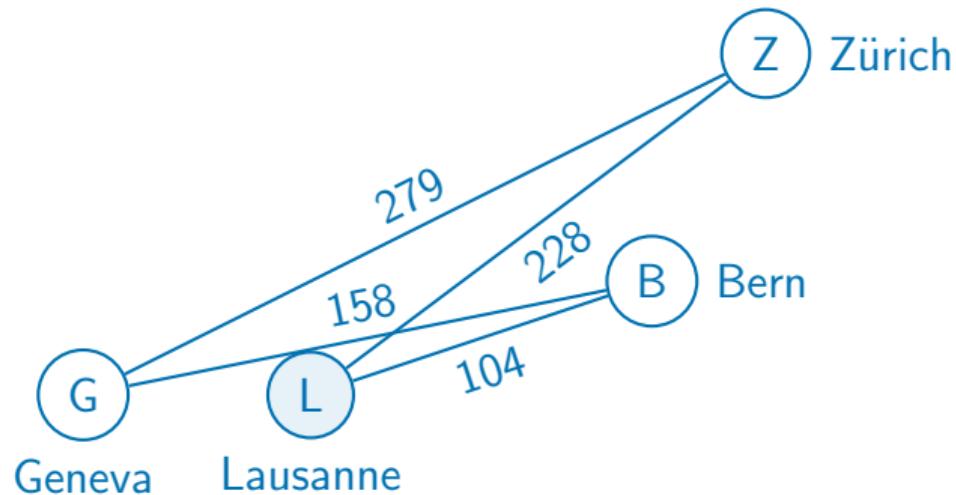
Exactly one predecessor in the tour

$$\sum_{i|(i,j) \in \mathcal{A}} x_{ij} = 1 \quad \forall j \in \mathcal{N}$$

Network

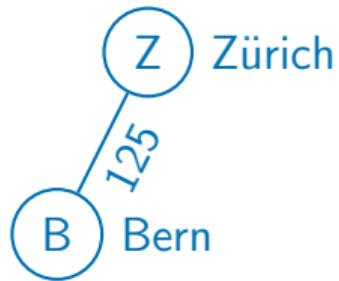


A tour



769km

Subtours



- ▶ $x_{LG} = x_{GL} = 1, x_{ZB} = x_{BZ} = 1.$
- ▶ 378km.
- ▶ There is exactly one predecessor for each city.
- ▶ There is exactly one successor for each city.
- ▶ There are several ways to eliminate subtours. We present one here.

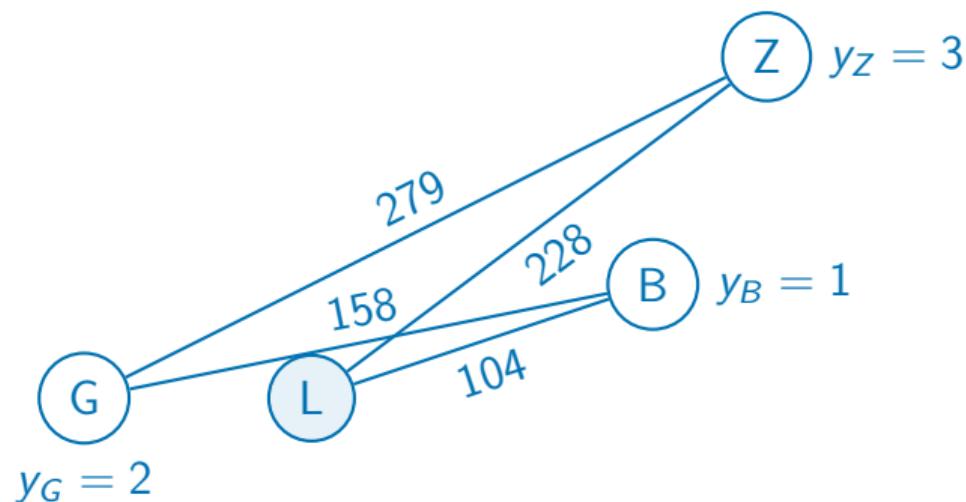
New variables

y_i : position of city i in the tour .

For each i and j different from home:

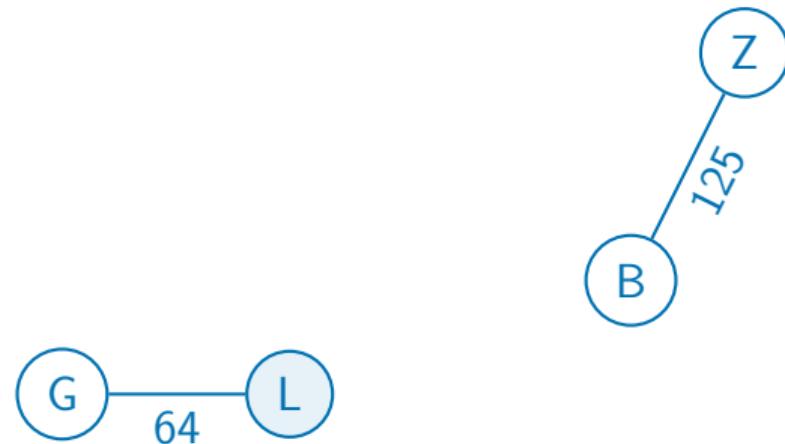
$$x_{ij} = 1 \implies y_j \geq y_i + 1,$$

A tour



A subtour

The constraints cannot be verified in subtours not involving home.



$y_B \geq y_Z + 1$ and $y_Z \geq y_B + 1$: *impossible*.

Additional constraints

$$x_{ij} = 1 \implies y_j \geq y_i + 1.$$

Modeling exercise, using optional constraint see before.

$$x_{ij}(n - 1) + y_i - y_j \leq n - 2.$$

If $x_{ij}=1$

$$(n - 1) + y_i - y_j \leq n - 2, \quad y_j \geq y_i + 1$$

If $x_{ij}=0$

$$y_i - y_j \leq n - 2$$

Always verified because cities are numbered from 1 to $n - 1$

Traveling salesman problem

$$\min_{x \in \mathbb{Z}^{n(n-1)}, y \in \mathbb{Z}^{(n-1)}} \sum_{i=1}^n \sum_{j \neq i} c_{ij} x_{ij}$$

subject to

$$\sum_{j \neq i} x_{ij} = 1 \quad \forall i = 1, \dots, n,$$

$$\sum_{i \neq j} x_{ij} = 1 \quad \forall j = 1, \dots, n,$$

$$x_{ij}(n-1) + y_i - y_j \leq n-2, \quad \forall i = 2, \dots, n, j = 2, \dots, n, i \neq j,$$

$$x_{ij} \in \{0, 1\} \quad \forall i = 1, \dots, n, j = 1, \dots, n, i \neq j,$$

$$y_i \geq 0 \quad \forall i = 2, \dots, n.$$

The curse of dimensionality

Motivation

- ▶ When we have introduced the transhipment problem, we have seen that some problems can be solved by ignoring the integrality constraints, and the solution would be guaranteed to be integer.
- ▶ Unfortunately, this property occurs only exceptionally.
- ▶ There is no optimality condition for discrete optimization.

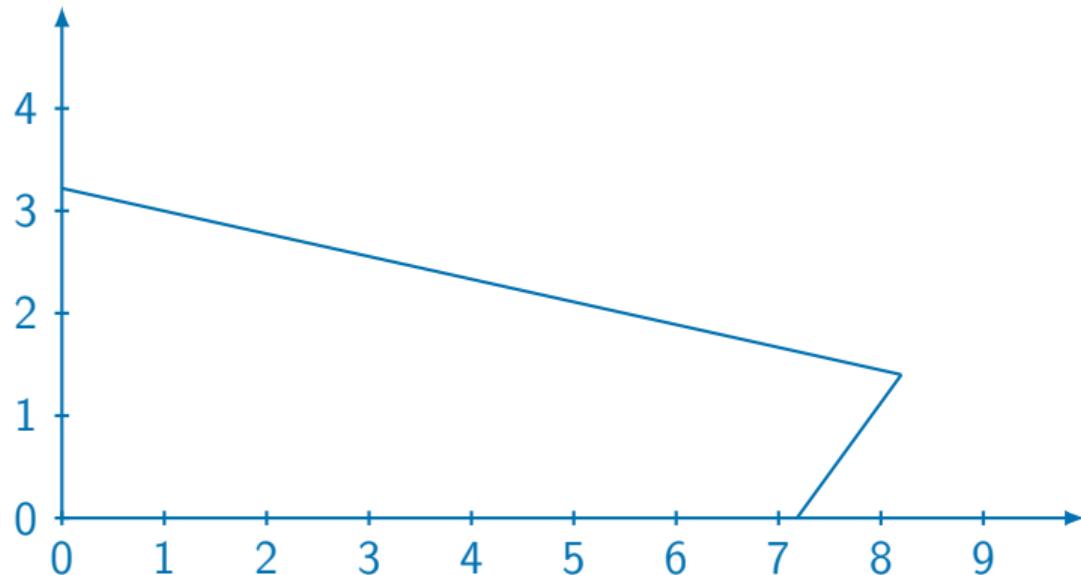
An example

$$\min_{x \in \mathbb{N}^2} -3x_1 - 13x_2$$

subject to

$$2x_1 + 9x_2 \leq 29$$

$$11x_1 - 8x_2 \leq 79.$$

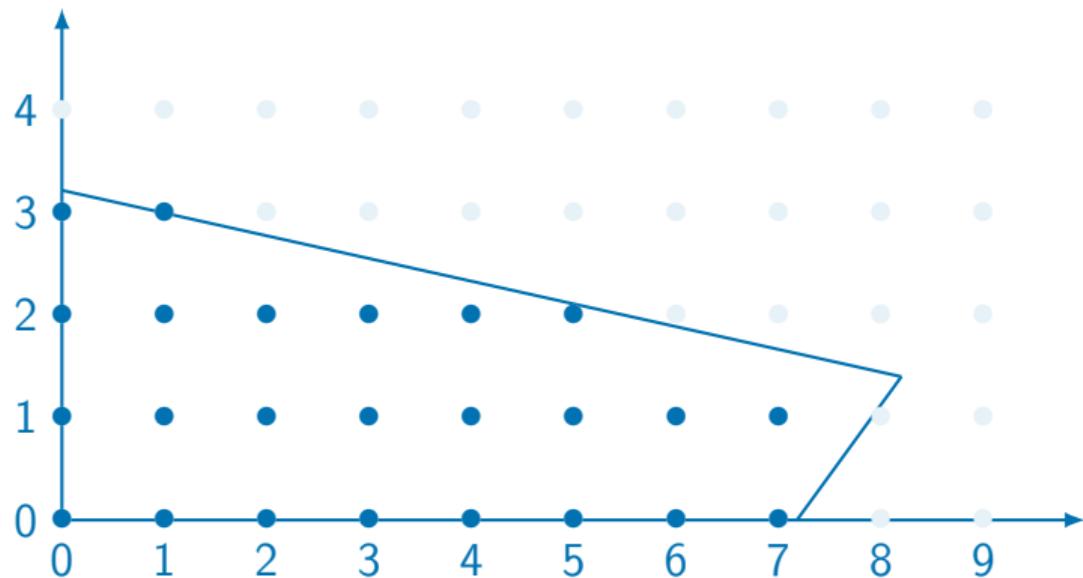


An example

$$\min_{x \in \mathbb{N}^2} -3x_1 - 13x_2$$

subject to

$$\begin{aligned} 2x_1 + 9x_2 &\leq 29 \\ 11x_1 - 8x_2 &\leq 79 \end{aligned}$$



Enumeration

x_1	x_2	$c^T x$	x_1	x_2	$c^T x$	x_1	x_2	$c^T x$
0	0	0	2	0	-6	4	2	-38
0	1	-13	2	1	-19	5	0	-15
0	2	-26	2	2	-32	5	1	-28
0	3	-39	3	0	-9	5	2	-41
1	0	-3	3	1	-22	6	0	-18
1	1	-16	3	2	-35	6	1	-31
1	2	-29	4	0	-12	7	0	-21
1	3	-42	4	1	-25	7	1	-34

Solution: (1,3) -42

Enumeration: the binary knapsack problem

- ▶ n items.
- ▶ Number of possibilities: 2^n .
- ▶ For each of them,
 1. check feasibility,
 2. calculate the objective function.
- ▶ About $2n$ floating point operations.
- ▶ Processor: 1 Teraflops.
 10^{12}
- ▶ $n = 34$: 1 second
- ▶ $n = 40$: 1 minute
- ▶ $n = 45$: 1 hour
- ▶ $n = 50$: 1 day
- ▶ $n = 58$: 1 year
- ▶ $n = 69$: 2583 years. Christian Era
- ▶ $n = 78$: 1 500 000 years. homo erectus.
- ▶ $n = 91$: 10^{10} years. Age of the universe.

Enumeration: the binary knapsack problem

1 Teraflops

- ▶ $n = 50$: 1 day.
- ▶ $n = 69$: 2,583 years.
- ▶ $n = 78$: 1,500,000 years.
- ▶ $n = 91$: 10^{10} years.

1000 Teraflops

- ▶ $n = 59$: 1 day.
- ▶ $n = 69$: 2.6 years.
- ▶ $n = 78$: 1,500 years.
- ▶ $n = 91$: 10 millions years.

Relaxation

Motivation

- ▶ We know how to solve linear optimization problems.
- ▶ We do not know how to solve discrete optimization problems.
- ▶ But if we forget about the integrality constraints, we obtain a linear optimization problem.
- ▶ It is called a relaxation, and happens to be very useful.

Relaxation

Original problem

$$\min_{x \in \mathbb{R}^{n_x}, y \in \mathbb{Z}^{n_y}, z \in \mathbb{N}^{n_z}} f(x, y, z)$$

subject to

$$g(x, y, z) \leq 0$$

$$h(x, y, z) = 0$$

$$y \in \mathbb{Z}^{n_y}$$

$$z \in \{0, 1\}^{n_z}$$

Relaxation

$$\min_{x \in \mathbb{R}^{n_x}, y \in \mathbb{R}^{n_y}, z \in \mathbb{R}^{n_z}} f(x, y, z)$$

subject to

$$g(x, y, z) \leq 0$$

$$h(x, y, z) = 0$$

$$y \in \mathbb{R}^{n_y}$$

$$z \in [0, 1]^{n_z}$$

where

- ▶ $f : \mathbb{R}^{n_x} \times \mathbb{R}^{n_y} \times \mathbb{R}^{n_z} \rightarrow \mathbb{R}$,
- ▶ $g : \mathbb{R}^{n_x} \times \mathbb{R}^{n_y} \times \mathbb{R}^{n_z} \rightarrow \mathbb{R}^m$,
- ▶ $h : \mathbb{R}^{n_x} \times \mathbb{R}^{n_y} \times \mathbb{R}^{n_z} \rightarrow \mathbb{R}^p$.

Lower bound

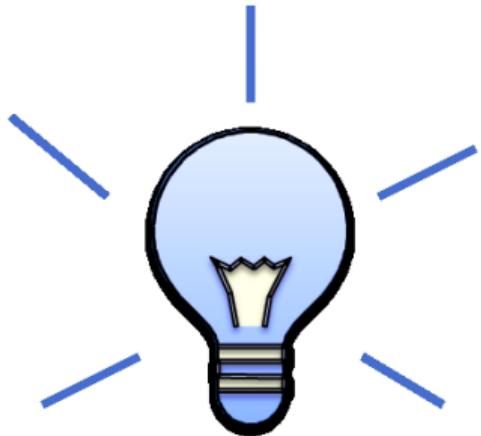
- ▶ Discrete optimization P : optimal solution: (x^*, y^*, z^*) .
- ▶ Relaxation $R(P)$: optimal solution: (x_R^*, y_R^*, z_R^*) .

$$f(x_R^*, y_R^*, z_R^*) \leq f(x^*, y^*, z^*).$$

Proof: the integer solution (x^*, y^*, z^*) verifies the constraints of the relaxation.

Note: it is valid only for global minima.

Mixed Integer Linear Problems



► Consider the relaxation $R(P)$.

Mixed Integer Linear Problems



- ▶ Consider the relaxation $R(P)$.
- ▶ Calculate (x_R^*, y_R^*, z_R^*) using the simplex algorithm.

Mixed Integer Linear Problems



- ▶ Consider the relaxation $R(P)$.
- ▶ Calculate (x_R^*, y_R^*, z_R^*) using the simplex algorithm.
- ▶ Round the solution to the nearest integer values.

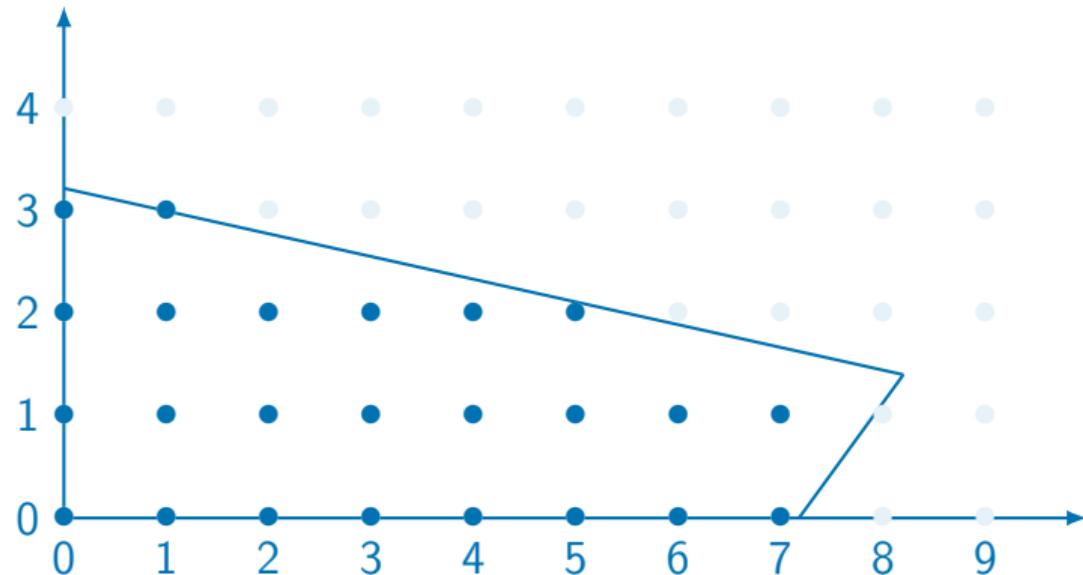
An example

$$\min_{x \in \mathbb{N}^2} -3x_1 - 13x_2$$

subject to

$$2x_1 + 9x_2 \leq 29$$

$$11x_1 - 8x_2 \leq 79.$$



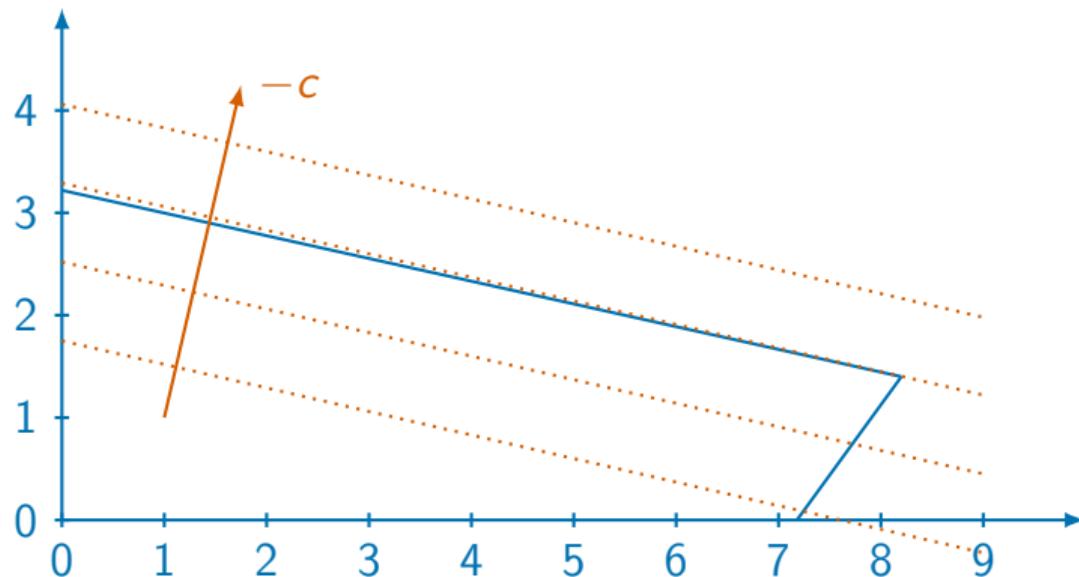
Solving the relaxation

$$\min_{x \in \mathbb{N}^2} -3x_1 - 13x_2$$

subject to

$$2x_1 + 9x_2 \leq 29$$

$$11x_1 - 8x_2 \leq 79.$$



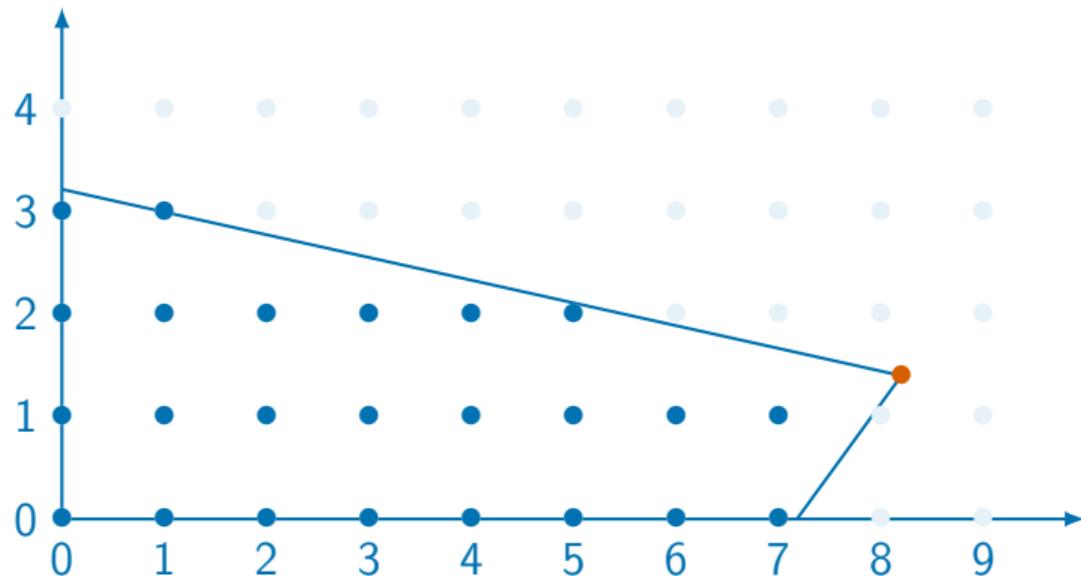
Rounding the solution

$$\min_{x \in \mathbb{N}^2} -3x_1 - 13x_2$$

subject to

$$2x_1 + 9x_2 \leq 29$$

$$11x_1 - 8x_2 \leq 79.$$



Rounding the solution

In this example

- ▶ Rounding always produce an infeasible point.
- ▶ The optimal solution $(1, 3)$ is far from the solution of the relaxation.

Branch & Bound

Motivation

- ▶ In the absence of optimality conditions, enumeration is the only way to find the optimal solution.
- ▶ However, it is most of the time impossible to perform explicitly due to the curse of dimensionality.
- ▶ The branch & bound method is some sort of implicit enumeration technique, that attacks the huge set of feasible solutions using a “divide and conquer” strategy.

Combinatorial optimization

$$\min_x f(x)$$

subject to

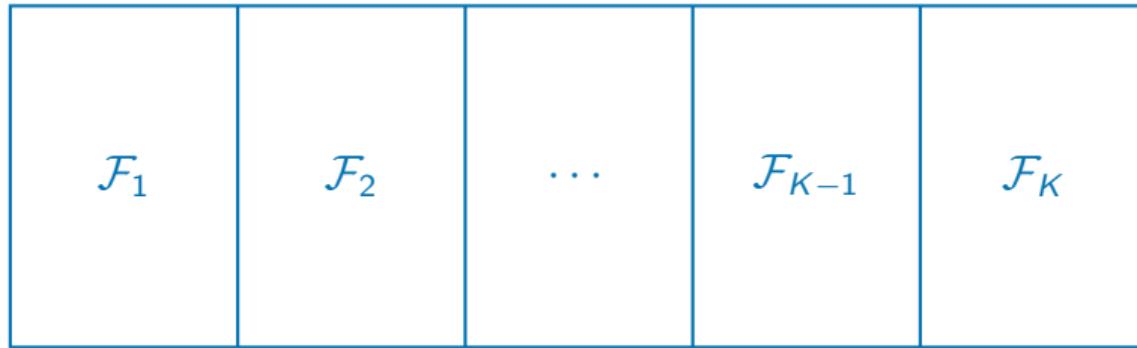
$$x \in \mathcal{F},$$

where \mathcal{F} is a large set containing a finite number of elements.

Divide

\mathcal{F}

Divide



Divide

Problem P

$$\min_x f(x)$$

subject to

$$x \in \mathcal{F},$$

Solution: x^* .

Problem P_k

$$\min_x f(x)$$

subject to

$$x \in \mathcal{F}_k,$$

Solution: x_k^* .

Conquer

Theorem 26.1

Consider i such that

$$f(x_i^*) \leq f(x_k^*), \quad k = 1, \dots, K.$$

Then,

$$f(x^*) = f(x_i^*),$$

and x_i^* is solution of P .

$$f(x^*) \leq f(x_i^*)$$

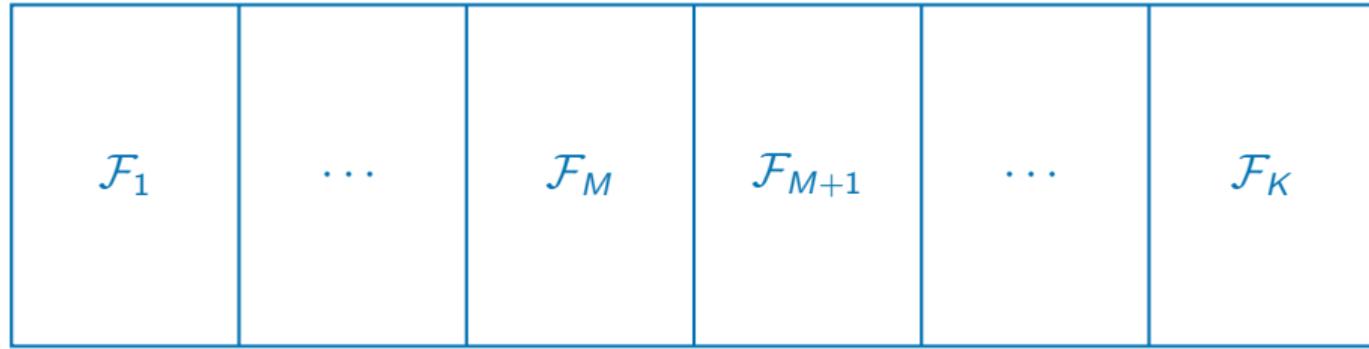
$$\exists j \text{ such that } x^* \in \mathcal{F}_j$$

$$\text{Optimality of } x_j^*: f(x_j^*) \leq f(x) \forall x \in \mathcal{F}_j$$

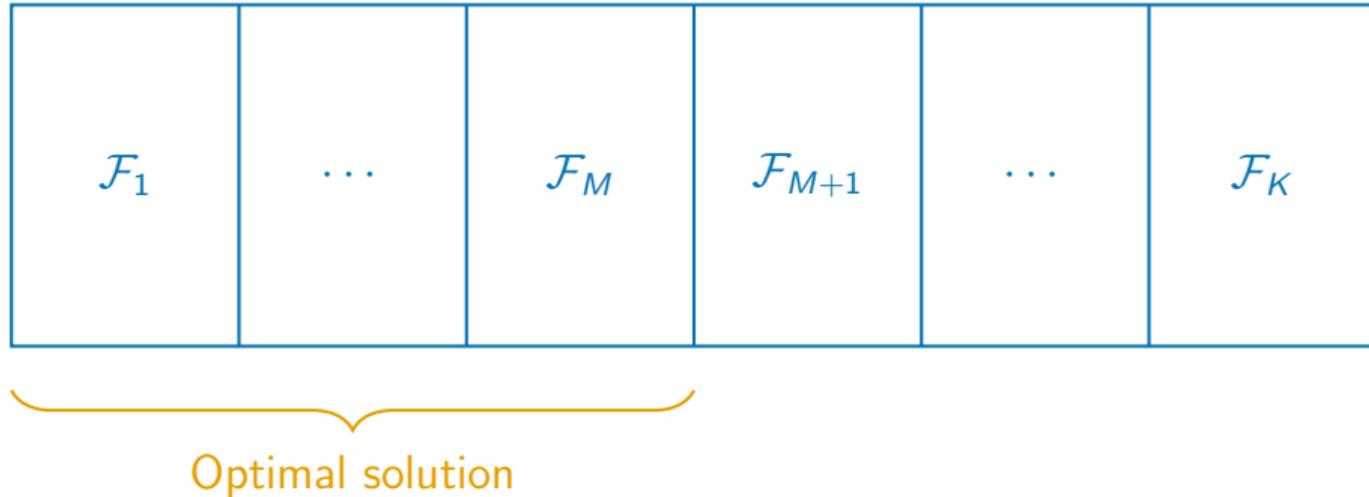
$$x^* \in \mathcal{F}_j \Rightarrow f(x_j^*) \leq f(x^*)$$

$$f(x^*) \leq f(x_i^*) \leq f(x_j^*) \leq f(x^*)$$

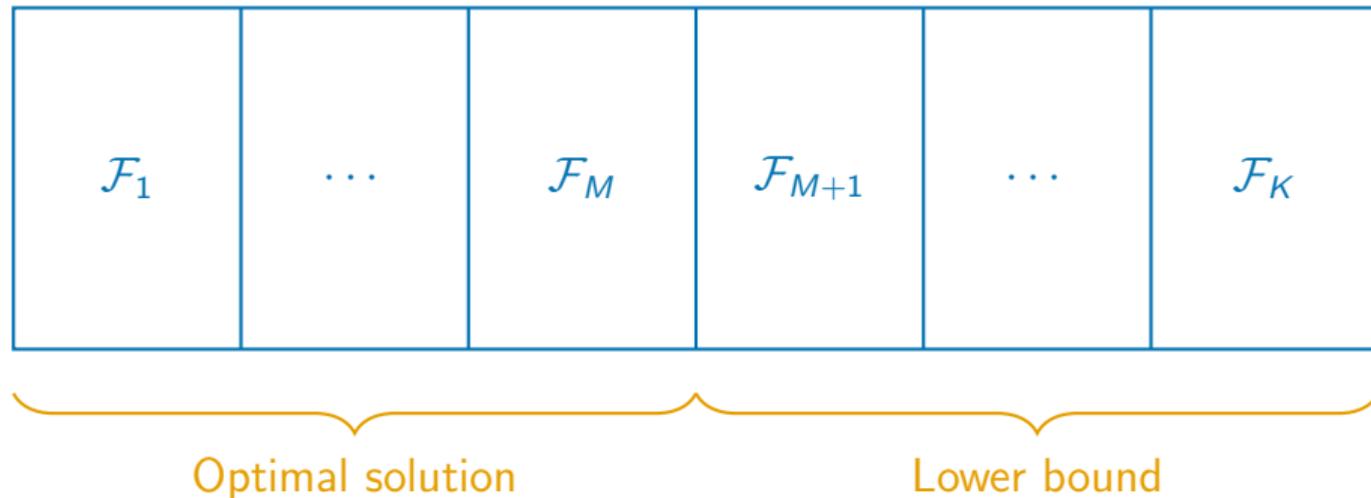
Divide



Divide



Divide



Divide

Problem P

$$\min_x f(x)$$

subject to

$$x \in \mathcal{F}.$$

Solution: x^* .

Problem $P_k, k \leq M$

$$\min_x f(x)$$

subject to

$$x \in \mathcal{F}_k.$$

Solution: x_k^* .

Problem $P_k, k > M$

$$\min_x f(x)$$

subject to

$$x \in \mathcal{F}_k.$$

Lower bound:
 $\ell(P_m) \leq f(x_k^*)$.

Conquer

Corollary 26.2

Consider i such that

$$f(x_i^*) \leq f(x_k^*), \quad k = 1, \dots, M,$$

and

$$\ell(P_k) \leq f(x_k^*) \text{ for each } k > M$$

Therefore, $f(x_i^*) \leq f(x_k^*)$ for all k

The previous theorem applies.

Then,

$$f(x^*) = f(x_i^*),$$

and x_i^* is solution of P .

Example

Problem P

$$\min x_1 - 2x_2$$

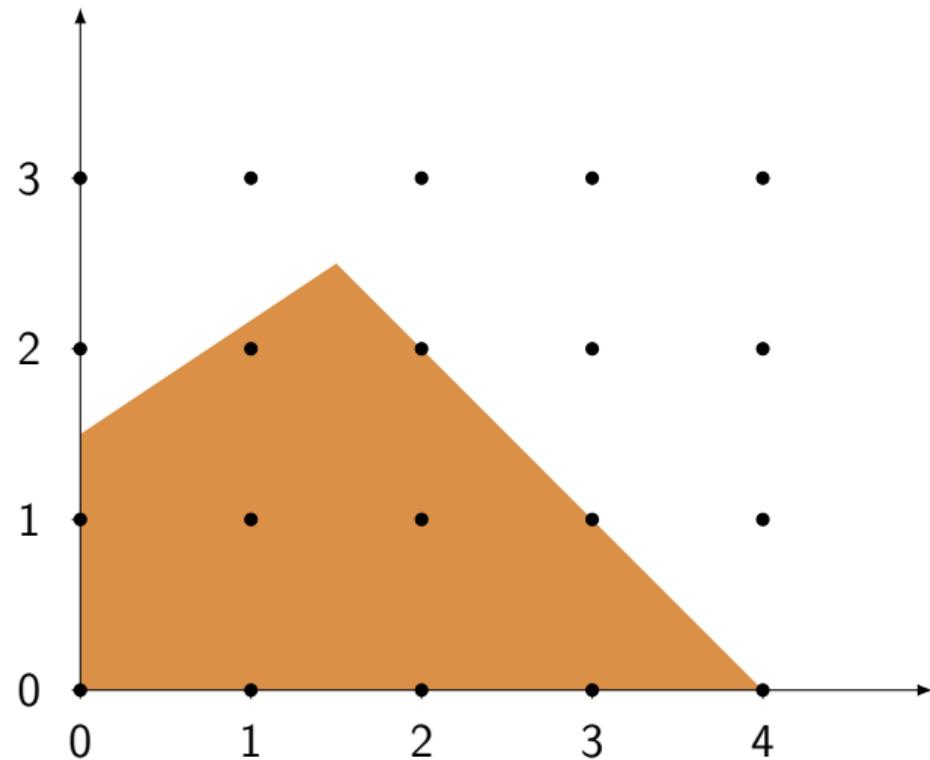
subject to

$$\begin{aligned} -4x_1 + 6x_2 &\leq 9 \\ x_1 + x_2 &\leq 4 \\ x_1, x_2 &\geq 0 \\ x_1, x_2 &\in \mathbb{N}. \end{aligned}$$

Upper bound

$(0,0)$ is feasible: $U=0$

Example



Lower bound: relaxation

Problem $R(P)$:

$$\min x_1 - 2x_2$$

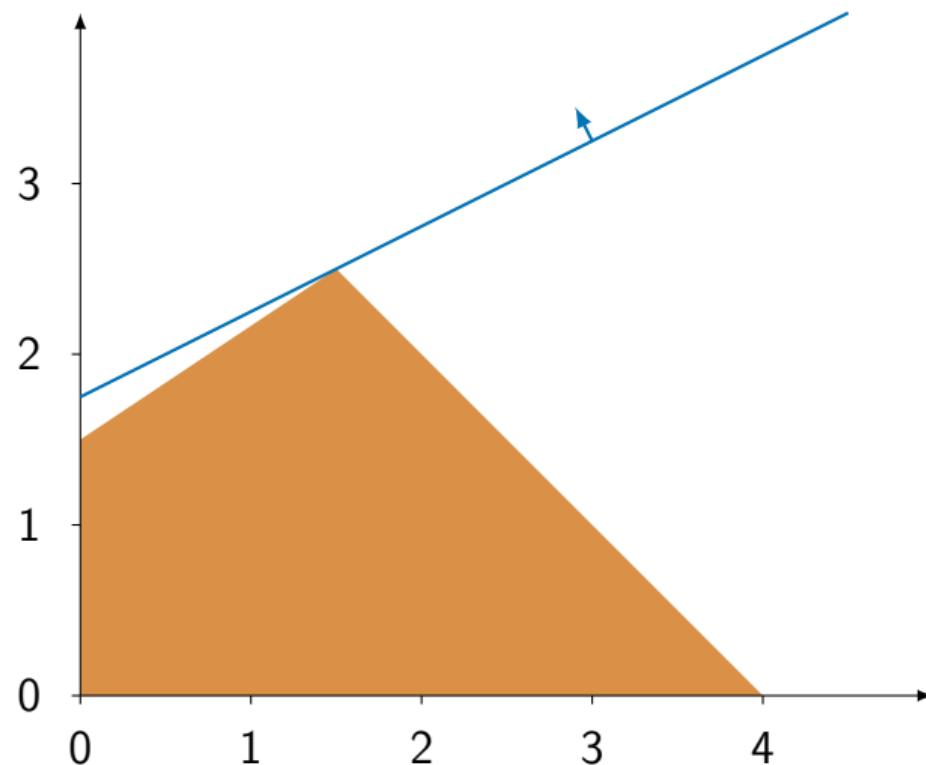
subject to

$$-4x_1 + 6x_2 \leq 9$$

$$x_1 + x_2 \leq 4$$

$$x_1, x_2 \geq 0$$

Lower bound

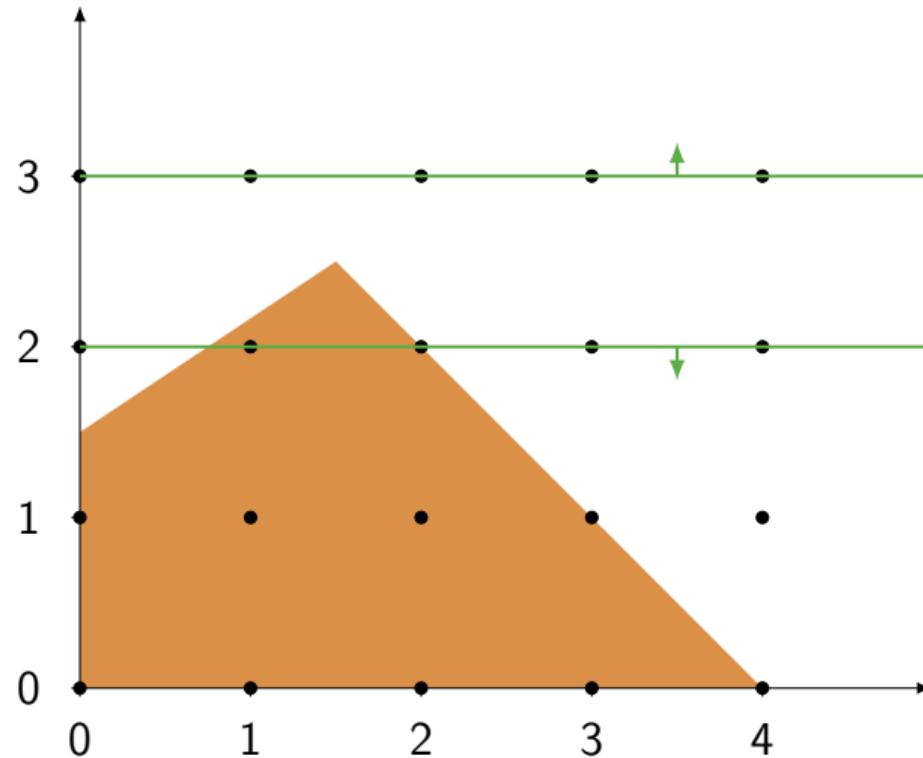


Divide

- Optimal solution of $R(P)$: $(1.5, 2.5)$
- $\ell(P)$: -3.5

P_1	P_2
$\min x_1 - 2x_2$	$\min x_1 - 2x_2$
S.C.	S.C.
$-4x_1 + 6x_2 \leq 9$	$-4x_1 + 6x_2 \leq 9$
$x_1 + x_2 \leq 4$	$x_1 + x_2 \leq 4$
$x_1, x_2 \geq 0$	$x_1, x_2 \geq 0$
$x_1, x_2 \in \mathbb{N}$	$x_1, x_2 \in \mathbb{N}$
$x_2 \leq 2$	$x_2 \geq 3$

Divide

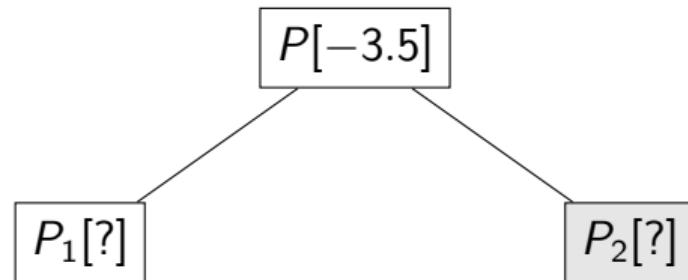


Tree representation

Upper bound

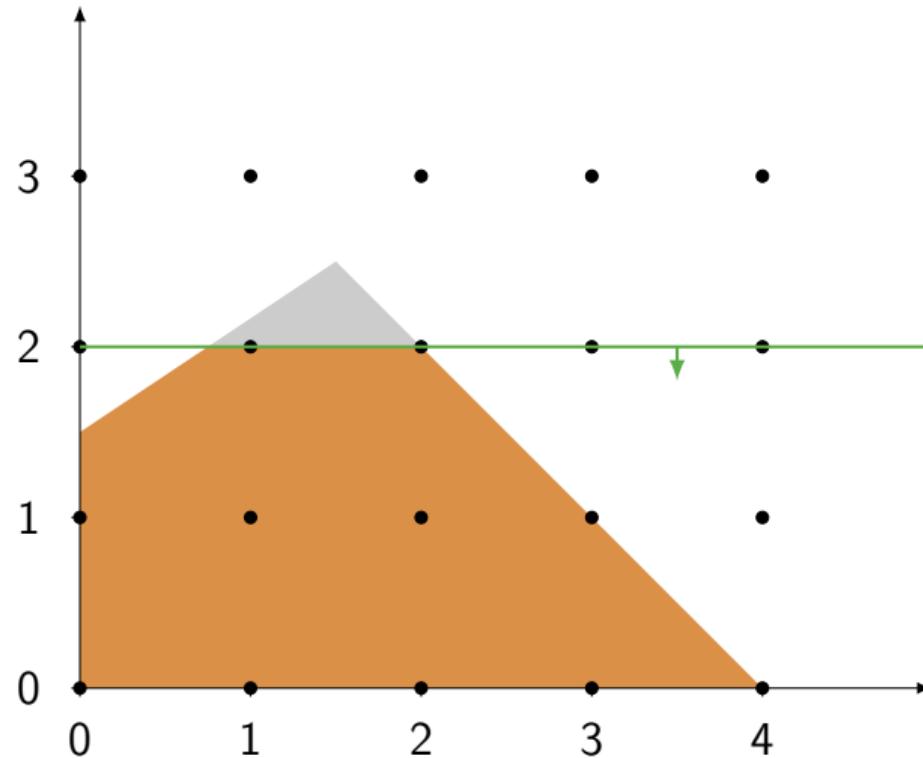
$$U = 0$$

Tree



P_2 is infeasible.

Problem P_1



Problem P_1

Note

The feasible set of P_1 is exactly the same as P .

P_1 : lower bound

Problem P_1

$$\min x_1 - 2x_2$$

subject to

$$\begin{aligned} -4x_1 + 6x_2 &\leq 9 \\ x_1 + x_2 &\leq 4 \\ x_1, x_2 &\geq 0 \\ x_2 &\leq 2 \\ x_1, x_2 &\in \mathbb{N}. \end{aligned}$$

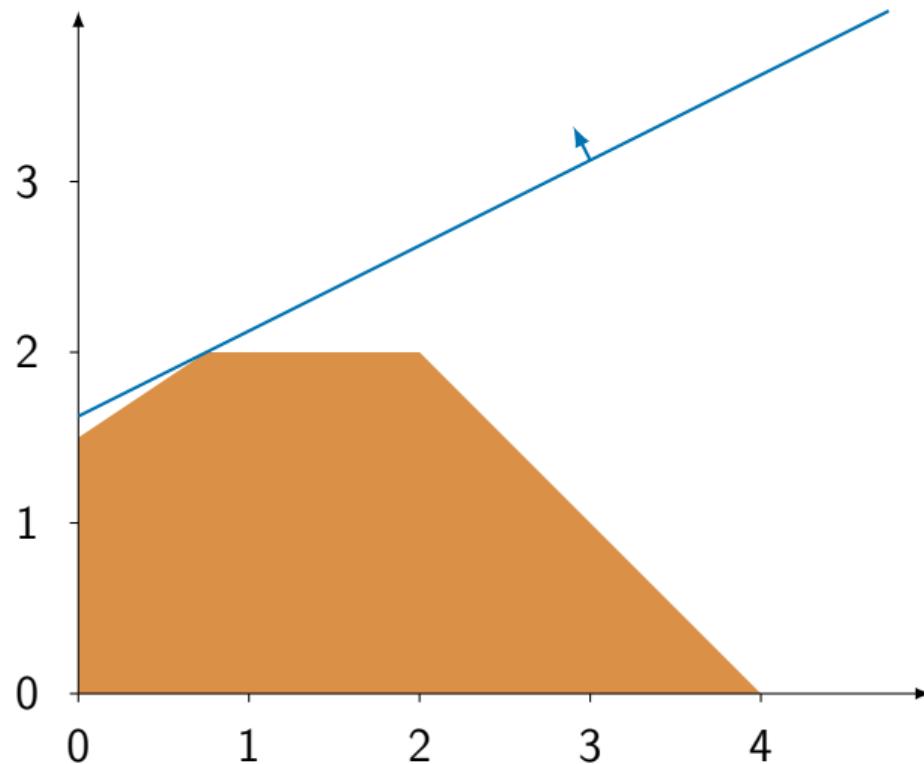
Relaxation $R(P_1)$

$$\min x_1 - 2x_2$$

subject to

$$\begin{aligned} -4x_1 + 6x_2 &\leq 9 \\ x_1 + x_2 &\leq 4 \\ x_1, x_2 &\geq 0 \\ x_2 &\leq 2 \end{aligned}$$

P_1 : lower bound

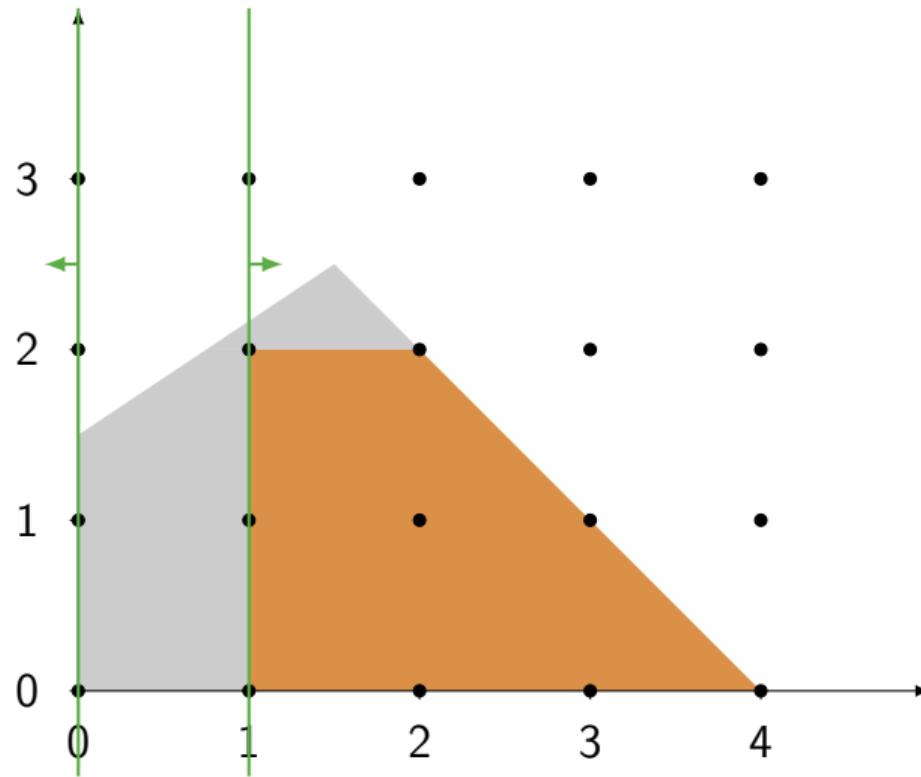


P_1 : divide

- Optimal solution of $R(P_1)$: $(0.75, 2)$
- $\ell(P_1)$: -3.25

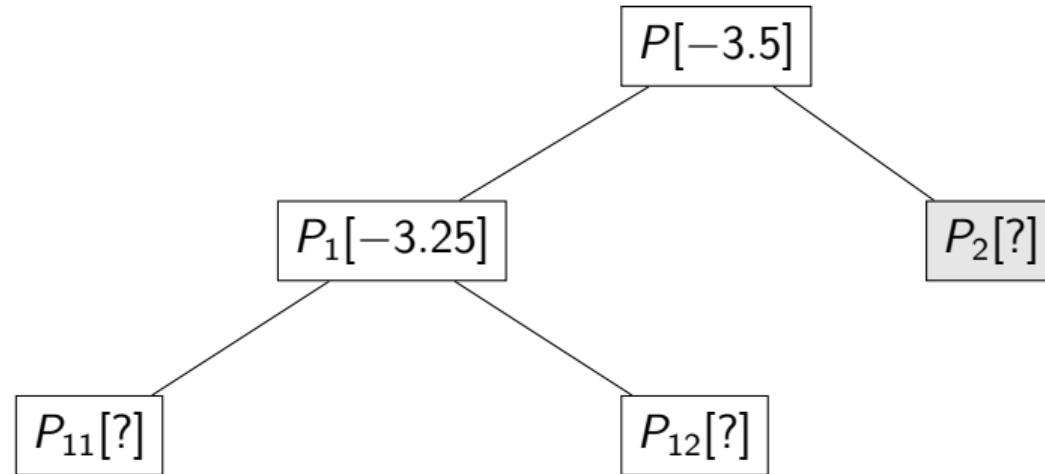
P_{11}	P_{12}
$\min x_1 - 2x_2$	$\min x_1 - 2x_2$
S.C.	S.C.
$-4x_1 + 6x_2 \leq 9$	$-4x_1 + 6x_2 \leq 9$
$x_1 + x_2 \leq 4$	$x_1 + x_2 \leq 4$
$x_1, x_2 \geq 0$	$x_1, x_2 \geq 0$
$x_1, x_2 \in \mathbb{N}$	$x_1, x_2 \in \mathbb{N}$
$x_2 \leq 2$	$x_2 \leq 2$
$x_1 \leq 0$	$x_1 \geq 1$

P_1 : divide



Tree representation

$$U = 0$$



P_{11} : lower bound

Problem P_{11}

$$\min x_1 - 2x_2$$

subject to

$$\begin{aligned} -4x_1 + 6x_2 &\leq 9, \\ x_1 + x_2 &\leq 4, \\ x_1, x_2 &\geq 0, \\ x_2 &\leq 2, \\ x_1 &\leq 0, \\ x_1, x_2 &\in \mathbb{N}. \end{aligned}$$

Relaxation $R(P_{11})$

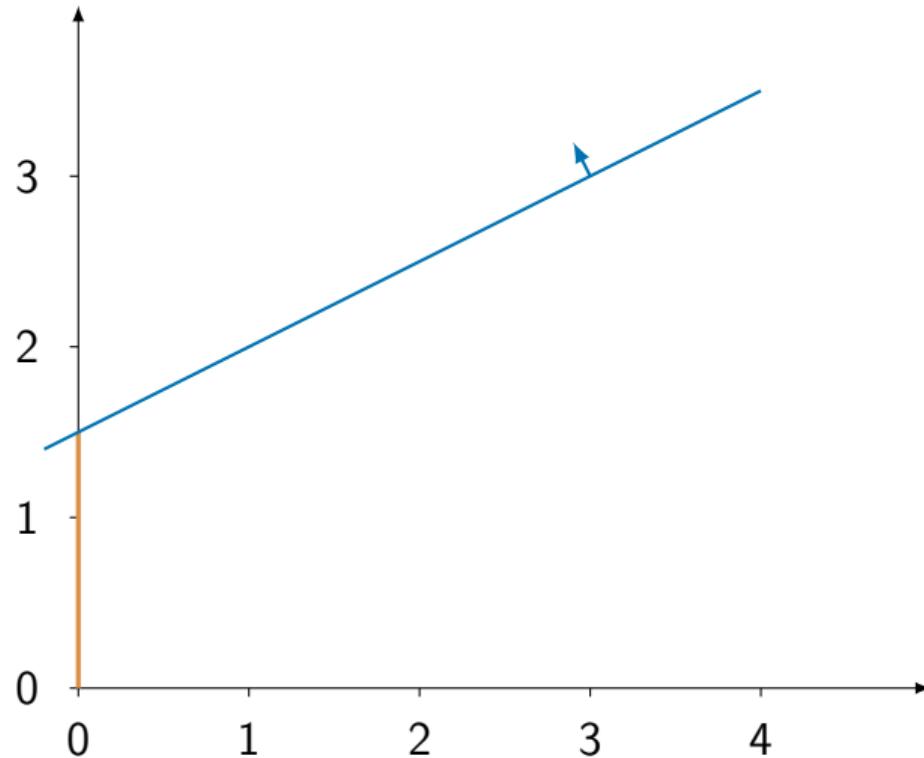
$$\min x_1 - 2x_2$$

subject to

$$\begin{aligned} -4x_1 + 6x_2 &\leq 9, \\ x_1 + x_2 &\leq 4, \\ x_1, x_2 &\geq 0, \\ x_2 &\leq 2, \\ x_1 &\leq 0. \end{aligned}$$

Note: $x_1 = 0$.

P_{11} : lower bound



P_{11} : lower bound

- ▶ Optimal solution of $R(P_{11})$: $(0, 1.5)$
- ▶ $\ell(P_{11})$: -3

P_{12} : lower bound

Problem P_{12}

$$\min x_1 - 2x_2$$

subject to

$$\begin{aligned} -4x_1 + 6x_2 &\leq 9 \\ x_1 + x_2 &\leq 4 \\ x_1, x_2 &\geq 0 \\ x_2 &\leq 2 \\ x_1 &\geq 1 \\ x_1, x_2 &\in \mathbb{N}. \end{aligned}$$

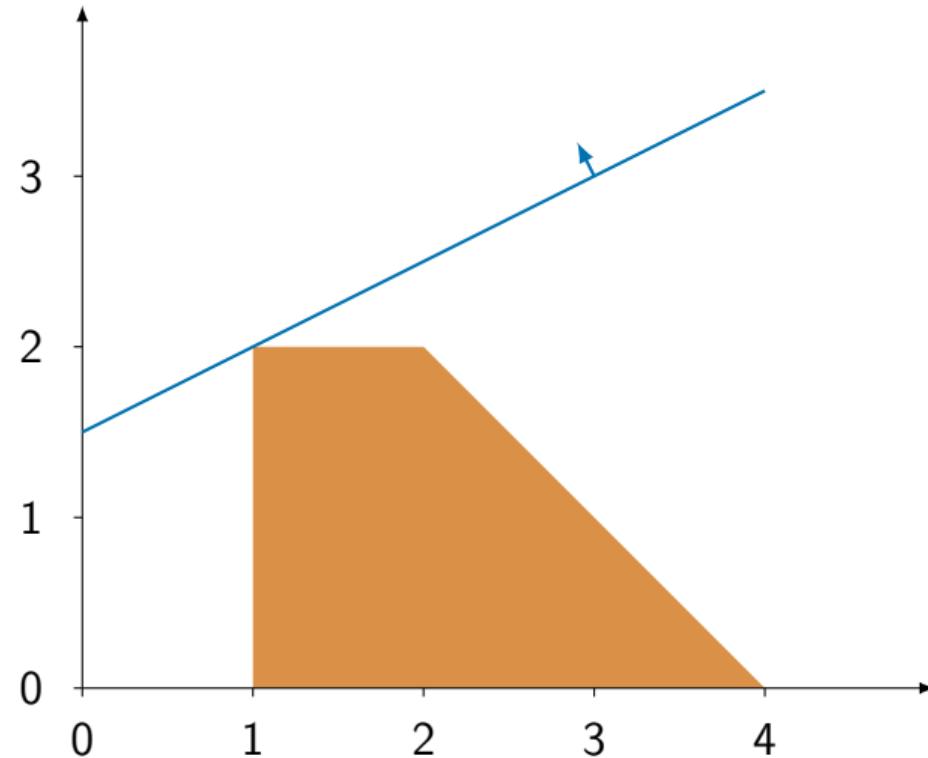
Relaxation $R(P_{12})$

$$\min x_1 - 2x_2$$

subject to

$$\begin{aligned} -4x_1 + 6x_2 &\leq 9 \\ x_1 + x_2 &\leq 4 \\ x_1, x_2 &\geq 0 \\ x_2 &\leq 2 \\ x_1 &\geq 1 \end{aligned}$$

P_{12} : lower bound



P_{12} : lower bound

- ▶ Optimal solution of $R(P_{12})$: $(1, 2)$
- ▶ $\ell(P_{12})$: -3

Integer solution

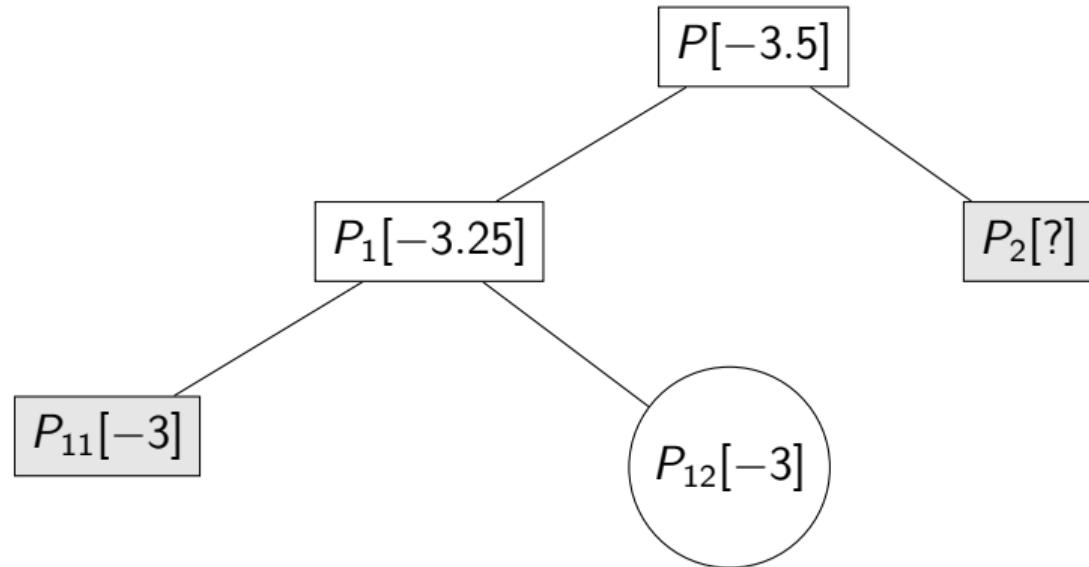
It is the optimal solution of P_{12} .

Feasible solution for P

Better upper bound: $U = -3$.

Tree representation

$$U = -3$$



Optimal solution: (1, 2).

Branch & bound algorithm

At each iteration, we maintain

- ▶ a list of active subproblems $\mathcal{S} = \{P_1, P_2, \dots\}$,
- ▶ an upper bound U , that is the value of the objective function at the best feasible solution encountered so far.
- ▶ Initialization:
 - ▶ Either $U = +\infty$,
 - ▶ or $U = f(x)$, where x is a known feasible solution.
 - ▶ $\mathcal{S} = \{P\}$.

Branch & bound algorithm

Iteration:

- ▶ Consider an active subproblem P_k .
- ▶ If P_k is infeasible, remove it from the list.
- ▶ Otherwise, calculate a lower bound $\ell(P_k)$.
- ▶ If $U \leq \ell(P_k)$, remove P_k from the list.
- ▶ Otherwise,
 - ▶ either solve P_k directly,
 - ▶ or partition its feasible set, and create new subproblems, that are added to the list.

Summary

- ▶ Modeling logical rules.
- ▶ Types of problems: integer, mixed, binary, and combinatorial.
- ▶ Examples: knapsack, set covering, traveling salesman.
- ▶ No optimality condition: the curse of dimensionality.
- ▶ Relaxation.
- ▶ Branch & bound.