
Duality via Farkas’ lemma

Theorem (Second variant of Farkas’ lemma)
Let A ∈ Rm×n and b ∈ Rm. The system Ax ≤ b has a solution if and only if for all
λ ⩾ 0 with λTA = 0 one has λTb ⩾ 0.



Duality via Farkas’ lemma



Algorithms and running time analysis

Consider the following algorithm to compute the product of two n× n
matrices A,B ∈ Qn×n:

for i = 1, . . . ,n
for j = 1, . . . ,n

cij := 0
for k = 1, . . . ,n

cij := cij + aik · akj





O-notation

Definition
Let T , f : N → R⩾0 be functions. We say
• T (n) = O(f (n)), if there exist positive constants no ∈ N and c ∈ R>0 with

T (n) ≤ c · f (n) for all n ⩾ n0.

• T (n) = Ω(f (n)), if there exist constants no ∈ N and c ∈ R>0 with

T (n) ⩾ c · f (n) for all n ⩾ n0.

• T (n) = Θ(f (n)) if
T (n) = O(f (n)) and T (n) = Ω(f (n)).



Example

Example
• T (n) = 2n2 + 3n+ 1 = O(n2)

• T (n) = Ω(n2)

• T (n) = Θ(n2).
• n2 logn = O(n2+ϵ) for each ϵ > 0



Efficient algorithm, first definition

Definition (Polynomial-time algorithm)
An algorithm runs in polynomial time, if there exists a constant k such that the
algorithm runs in time

O(nk)

where n is the length of the input (total number of bits).



Why definition is problematic





Size

Definition
The size of an integer x is size(x) = ⌈log(|x |+ 1)⌉ and for x ∈ Q,
size(x) = size(p) + size(q), where x = p/q with p,q ∈ Z, q ⩾ 1 and gcd(p,q) = 1.



Polynomial time algorithm

Definition
An algorithm is polynomial time, if there exists a constant k such that the
algorithm performs O(nk) operations on rational numbers whose size is
bounded by O(nk). Here n is the number of bits that encode the input of the
algorithm. We say that the algorithm runs in time O(nk).



Example: Euclidean algorithm

Input: Integers a ⩾ b ⩾ 0 not both equal to zero
Output: The greatest common divisor gcd(a,b)

if (b = 0) return a
else

Compute q, r ∈ N with b > r ⩾ 0 and a = q · b + r
(division with remainder)

return gcd(b, r)



Analysis



Determinant

Input: A ∈ Qn×n

Output: det(A)
if (n = 1)
return a11

else
d := 0
for j = 1, . . . ,n

d := (−1)1+j · det(A1j) + d
return d



Analysis

Figure: An example of the recursion tree of the algorithm from Example ??. The tree
corresponds to the run of the algorithm on input

( 3 7 5
2 9 8
1 3 3

)
.



Gaussian elimination

Input: A ∈ Qm×n

Output: A′ in row echelon form such that there exists an invertible
Q ∈ Qm×m such that Q · A = A′ .

A′ := A
i := 1
while (i ≤ m)

find minimal 1 ≤ j ≤ n such that there exists k ⩾ i such that a′
kj ̸= 0

If no such element exists, then stop
swap rows i and k in A′

for k = i + 1, . . . ,m
subtract (a′

kj/a′
ij) times row i from row k in A′

i := i + 1



Analysis

Theorem
The Gaussian algorithm runs in polynomial time on input A ∈ Zm×n. More
precisely, the rational numbers produced in the algorithm can be maintained
to be ratios of sub-determinants of A′ and are thus of polynomial binary
encoding length.





Matrix multiplication

If we split the matrices A and B into 4 n/2× n/2 matrices

A =

(
A11 A12
A21 A22

)
and B =

(
B11 B12
B21 B22

)
(4)

Then (
C11 C12
C21 C22

)
=

(
A11 · B11 + A12 · B21 A11 · B12 + A12 · B22
A21 · B11 + A22 · B21 A21 · B12 + A22 · B22

)
.



Strassen’s algorithm

M1 = (A11 + A22) · (B11 + B22)
M2 = (A21 + A22) · B11
M3 = A11 · (B12 − B22)
M4 = A22 · (B21 − B11)
M5 = (A11 + A12) · B22
M6 = (A21 − A11) · (B11 + B12)
M7 = (A12 − A22) · (B21 + B22)

.

C11 = M1 +M4 −M5 +M7
C12 = M3 +M5
C21 = M2 +M4
C22 = M1 −M2 +M3 +M6.





Strassen’s algorithm

Input: Two n× n matrices A and B
Output: C = FMM(A,B), the product A · B
if n = 1 return a11 · b11
else

M1 = FMM(A11 + A22,B11 + B22)
M2 = FMM(A21 + A22,B11)
M3 = FMMA11,B12 − B22)
M4 = FMM(A22, (B21 − B22)
M5 = FMM(A11 + A12,B22)
M6 = FMM(A21 − A11,B11 + B12)
M7 = FMM(A12 − A22,B21 + B22)
Compute the matrices C11,C12,C21,C22 from M1, . . . ,M7
return C



Analysis

Figure: The analysis of the Strassen algorithm.





Running time

Theorem (Strassen)
Two n× n matrices can be multiplied in time (number of arithmetic
operations) O(n2+log2(7/4)).




