

Duality via Farkas' lemma

Theorem (Second variant of Farkas' lemma)

Let $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^m$. The system $Ax \leq b$ has a solution if and only if for all $\lambda \geq 0$ with $\lambda^T A = 0$ one has $\lambda^T b \geq 0$.

Duality via Farkas' lemma

Algorithms and running time analysis

Consider the following algorithm to compute the product of two $n \times n$ matrices $A, B \in \mathbb{Q}^{n \times n}$:

```
for  $i = 1, \dots, n$ 
  for  $j = 1, \dots, n$ 
     $c_{ij} := 0$ 
    for  $k = 1, \dots, n$ 
       $c_{ij} := c_{ij} + a_{ik} \cdot a_{kj}$ 
```


O-notation

Definition

Let $T, f : \mathbb{N} \rightarrow \mathbb{R}_{\geq 0}$ be functions. We say

- $T(n) = O(f(n))$, if there exist positive constants $n_0 \in \mathbb{N}$ and $c \in \mathbb{R}_{>0}$ with

$$T(n) \leq c \cdot f(n) \text{ for all } n \geq n_0.$$

- $T(n) = \Omega(f(n))$, if there exist constants $n_0 \in \mathbb{N}$ and $c \in \mathbb{R}_{>0}$ with

$$T(n) \geq c \cdot f(n) \text{ for all } n \geq n_0.$$

- $T(n) = \Theta(f(n))$ if

$$T(n) = O(f(n)) \text{ and } T(n) = \Omega(f(n)).$$

Example

Example

- $T(n) = 2n^2 + 3n + 1 = O(n^2)$
- $T(n) = \Omega(n^2)$
- $T(n) = \Theta(n^2)$.
- $n^2 \log n = O(n^{2+\epsilon})$ for each $\epsilon > 0$

Efficient algorithm, first definition

Definition (Polynomial-time algorithm)

An algorithm runs in **polynomial time**, if there exists a constant k such that the algorithm runs in time

$$O(n^k)$$

where n is the length of the input (total number of bits).

Why definition is problematic

Size

Definition

The **size** of an integer x is $\text{size}(x) = \lceil \log(|x| + 1) \rceil$ and for $x \in \mathbb{Q}$,
 $\text{size}(x) = \text{size}(p) + \text{size}(q)$, where $x = p/q$ with $p, q \in \mathbb{Z}$, $q \geq 1$ and $\gcd(p, q) = 1$.

Polynomial time algorithm

Definition

An algorithm is **polynomial time**, if there exists a constant k such that the algorithm performs $O(n^k)$ operations on rational numbers whose size is bounded by $O(n^k)$. Here n is the number of bits that encode the input of the algorithm. We say that the algorithm runs in time $O(n^k)$.

Example: Euclidean algorithm

Input: Integers $a \geq b \geq 0$ not both equal to zero

Output: The greatest common divisor $\gcd(a, b)$

```
if ( $b = 0$ ) return  $a$   
else
```

 Compute $q, r \in \mathbb{N}$ with $b > r \geq 0$ and $a = q \cdot b + r$
 (division with remainder)

```
    return  $\gcd(b, r)$ 
```

Analysis

Determinant

Input: $A \in \mathbb{Q}^{n \times n}$

Output: $\det(A)$

if ($n = 1$)

return a_{11}

else

$d := 0$

for $j = 1, \dots, n$

$d := (-1)^{1+j} \cdot \det(A_{1j}) + d$

return d

Analysis

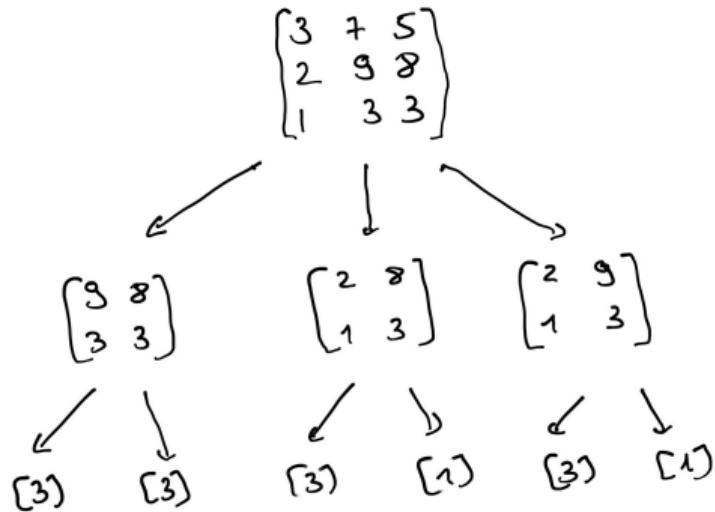


Figure: An example of the recursion tree of the algorithm from Example ?? . The tree corresponds to the run of the algorithm on input $\begin{pmatrix} 3 & 7 & 5 \\ 2 & 9 & 8 \\ 1 & 3 & 3 \end{pmatrix}$.

Gaussian elimination

Input: $A \in \mathbb{Q}^{m \times n}$

Output: A' in row echelon form such that there exists an invertible $Q \in \mathbb{Q}^{m \times m}$ such that $Q \cdot A = A'$.

$A' := A$

$i := 1$

while ($i \leq m$)

 find **minimal** $1 \leq j \leq n$ such that there exists $k \geq i$ such that $a'_{kj} \neq 0$

 If no such element exists, then **stop**

 swap rows i and k in A'

for $k = i + 1, \dots, m$

 subtract (a'_{kj}/a'_{ii}) times row i from row k in A'

i := i + 1

Analysis

Theorem

The Gaussian algorithm runs in polynomial time on input $A \in \mathbb{Z}^{m \times n}$. More precisely, the rational numbers produced in the algorithm can be maintained to be ratios of sub-determinants of A' and are thus of polynomial binary encoding length.

Matrix multiplication

If we split the matrices A and B into 4 $n/2 \times n/2$ matrices

$$A = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix} \text{ and } B = \begin{pmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{pmatrix} \quad (4)$$

Then

$$\begin{pmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{pmatrix} = \begin{pmatrix} A_{11} \cdot B_{11} + A_{12} \cdot B_{21} & A_{11} \cdot B_{12} + A_{12} \cdot B_{22} \\ A_{21} \cdot B_{11} + A_{22} \cdot B_{21} & A_{21} \cdot B_{12} + A_{22} \cdot B_{22} \end{pmatrix}.$$

Strassen's algorithm

$$M_1 = (A_{11} + A_{22}) \cdot (B_{11} + B_{22})$$

$$M_2 = (A_{21} + A_{22}) \cdot B_{11}$$

$$M_3 = A_{11} \cdot (B_{12} - B_{22})$$

$$M_4 = A_{22} \cdot (B_{21} - B_{11})$$

$$M_5 = (A_{11} + A_{12}) \cdot B_{22}$$

$$M_6 = (A_{21} - A_{11}) \cdot (B_{11} + B_{12})$$

$$M_7 = (A_{12} - A_{22}) \cdot (B_{21} + B_{22})$$

.

$$C_{11} = M_1 + M_4 - M_5 + M_7$$

$$C_{12} = M_3 + M_5$$

$$C_{21} = M_2 + M_4$$

$$C_{22} = M_1 - M_2 + M_3 + M_6.$$

Strassen's algorithm

Input: Two $n \times n$ matrices A and B

Output: $C = \text{FMM}(A, B)$, the product $A \cdot B$

if $n = 1$ **return** $a_{11} \cdot b_{11}$

else

$M_1 = \text{FMM}(A_{11} + A_{22}, B_{11} + B_{22})$

$M_2 = \text{FMM}(A_{21} + A_{22}, B_{11})$

$M_3 = \text{FMM}(A_{11}, B_{12} - B_{22})$

$M_4 = \text{FMM}(A_{22}, (B_{21} - B_{22}))$

$M_5 = \text{FMM}(A_{11} + A_{12}, B_{22})$

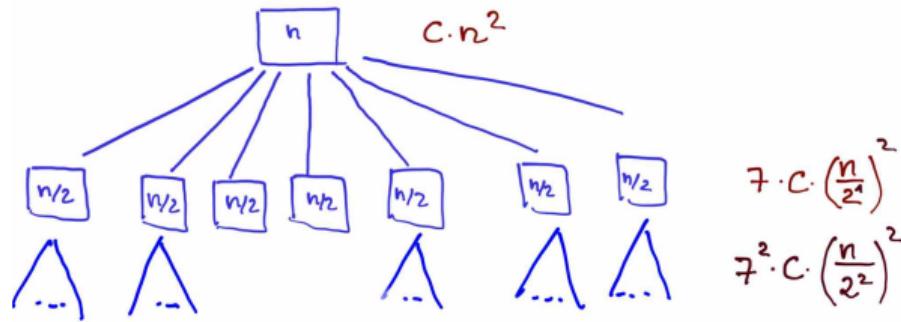
$M_6 = \text{FMM}(A_{21} - A_{11}, B_{11} + B_{12})$

$M_7 = \text{FMM}(A_{12} - A_{22}, B_{21} + B_{22})$

Compute the matrices $C_{11}, C_{12}, C_{21}, C_{22}$ from M_1, \dots, M_7

return C

Analysis



$$\begin{aligned} \text{Total: } & C \sum_{i=0}^{\log_2 n} 7^i \cdot \frac{n^2}{4^i} = C \cdot n^2 \cdot \sum_{i=0}^{\log_2 n} \left(\frac{7}{4}\right)^i \\ & \leq C \cdot n^2 \cdot \left(\frac{7}{4}\right)^{\log_2 n} = C \cdot n^{2 + \log_2 \left(\frac{7}{4}\right)} = C \cdot n^{2.807} \end{aligned}$$

Running time

Theorem (Strassen)

Two $n \times n$ matrices can be multiplied in time (number of arithmetic operations) $O(n^{2+\log_2(7/4)})$.

