
One iteration of the simplex algorithm

Start with feasible basis B
while B is not optimal

Let i 2 B be index with �i < 0
Compute d 2 Rn with aT
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One iteration of the simplex algorithm

Theorem
One iteration of the simplex algorithm requires a total number of O(m · n)
operations on rational numbers whose size is polynomial in the input size.



Open problem : Is there a pivoting rule (choice of entering and

-

leaving element) that guarantees a polynomial number (inm)

iteration through WHILE Loop ?

Dim = U
0 IXi i = 1

.
-- ch

Kend
Hints . F Xic1 =1..... Acnep. M = In

↓
--

↑
# of vertices : 2h

⑧

E Force smallest indes rule tovisit· all vertic



Smale’s 18 problems for the next century

Problem 18: Can linear programming be solved in strongly polynomial time?

A

David Hilbut 1900 : 23 open problem for the century .
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Integer Programming

maxcTx

Ax  b

x 2 Zn

with A 2 Zm⇥n, b 2 Zm

and c 2 Zn.
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Complexity of integer programming

Theorem
The integer feasibility problem is NP-complete.
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Example: Wr: Xe , X2 , Xy FORMULA: 2x,2 , X33 -4 x
,Xz3-4x2 , Ys3
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- Satisfyability is NP-complete

- Tranlat any instance of SAT to INTEGER PROGRAMMING

feasibility problem .

- MESSAGE #P is hard



The LP-relaxation

Theorem
If x⇤ is an optimal solution of linear programming relaxation

max{cTx : Ax  b, x 2 Rn}, then cTx⇤ > cTxI, for each integer feasible solution

xI.
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The LP-relaxation

Theorem
If x⇤ is integral optimal solution of the linear programming relaxation

max{cTx : Ax  b, x 2 Rn}, then x⇤ is also an optimal solution of the integer

programming problem max{cTx : Ax  b, x 2 Zn}

FACE OF OPT. SOLUTIONS

of LP-relaxation

*
max CT-x

Ax b

Definition : A polyhedron PCIR"
is mol if each

non-empty face of P contains on integr point .
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Undirected graphs – Matchings

Definition
An undirected graph is a tuple
G = (V , E)

V is finite set of vertices
E ✓

�
V

2
� is set of edges of G.

Matching: M ✓ E such that for all
e1 6= e2 2 M one has e1 \ e2 = ;.
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�(v)

For a vertex v 2 V , the set �(v) = {e 2 E : v 2 e} denotes the incident edges to
v .
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Max-weight matching as IP
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w(e)x(e)

v 2 V :
X
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x(e)  1

e 2 E : x(e) > 0
x 2 Z|E|.



Example
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Example

Dtion: G= CV ,E) is bipartite if

V= AvB and YetE : LerAl

and (enB1=1

08 week:

A B LP = IP if G is bipartite .



Integral polyhedra

Definition
A rational polyhedron is called integral
if each nonempty face of P contains
an integer vector.



Simplex on polyhedra whose vertices are integral

Lemma
Let P = {x 2 Rn : Ax  b} be an integral polyhedron with A 2 Rm⇥n full-column

rank. If the linear program

max{cT
x : x 2 Rn, Ax  b} (7)

is feasible and bounded, then the simplex method computes an optimal

integral solution to the linear program.



The study of integral polyhedra

Lemma
Let A 2 Zn⇥n be an integral and invertible matrix. One has A�1b 2 Zn for each

b 2 Zn if and only if det(A) = ±1.



Total unimodularity

Definition
An integral matrix A 2 {0,±1}m⇥n is called totally unimodular if each of its
square sub-matrices has determinant 0,±1.



Example: Node-edge incidence matrix of
bipartite graph



Ho�man-Kruskal Theorem

Theorem
Let A 2 Zm⇥n be an integral matrix. The polyhedron

P = {x 2 Rn | Ax  b, x > 0} is integral for each integral b 2 Zm if and only if A

is totally unimodular.


















