One iteration of the simplex algorithm
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One iteration of the simplex algorithm

Theorem

One iteration of the simplex algorithm requires a total number of O(m - n)
operations on rational numbers whose size is polynomial in the input size.
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Smale’s 48 problems for the next century
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Problem 18: Can linear programming be solved in strongly polynomial time?
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Integer Programming
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with A € 2", b e 7™M
and c € Z".




Complexity of integer programming

The infeger feasibility problem is NP-complete.
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Theorem

If x* is an optimal solution of linear programming relaxation
max{c’x: Ax < b,x € R"}, then c'x* > c'x,, for each integer feasible solution
X|.
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If x* is infegral optimal solution of the linear programming relaxation
max{c’x: Ax < b,x € R"}, then x* is also an optimal solution of the integer
programming problem max{c’x: Ax < b, x € Z"}
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The LP-relaxation
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Undirected graphs — Matchings __ ; Sy Lewb, v, M;E
3
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Definition

An undirected graph is a tfuple
G = (V,E)

V is finite set of vertices e ﬂ
E C (%) is set of edges of G.

Matching: M C E such that for all
€1 # e, e Monehase;ne, = 0.
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Foravertex v € V, the set §(v) = {e € E: v € e} denotes the incident edges to
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Max-weight matching as IP
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Integral polyhedra

Definition
A rational polyhedron is called integral

if each nonempty face of P contains
an integer vector.



Simplex on polyhedra whose vertices are integral

Lemma

Let P = {x e R": Ax < b} be an integral polyhedron with A € R™*" full-column
rank. If the linear program

max{c’x: x e R", Ax < b} 7)

is feasible and bounded, then the simplex method computes an optimal
integral solution to the linear program.



The study of integral polyhedra

Lemma

Let A € Z"" be an integral and invertible matrix. One has A~'b € Z" for each
b e Z" if and only if det(A) = £1.




Total unimodularity

Definition

An integral matrix A € {0, £1}*" is called totally unimodular if each of its
square sub-matrices has determinant 0, 1.



Example: Node-edge incidence matrix of
bipartite graph




Hoffman-Kruskal Theorem

Theorem

Let A € ZM™<N be an integral matrix. The polyhedron

P={xeR"| Ax < b, x > 0} is infegral for each infegral b € Z™ if and only if A
is tofally unimodular.




























