

One iteration of the simplex algorithm

Start with feasible basis $B \subseteq \{1, \dots, m\}$. $A_B \in \mathbb{R}^{n \times n}$ invertible.

while B is not optimal

$$\lambda_B^T \cdot A_B = c^T \quad \text{diag, } (\lambda_B)_{i \in B} < 0$$
$$\lambda_B^T = c^T \cdot A_B^{-1} \quad \boxed{O(n^2)}$$

$O(n^3)$ Let $i \in B$ be index with $\lambda_i < 0$

$O(n^3)$ Compute $d \in \mathbb{R}^n$ with $a_j^T d = 0, j \in B \setminus \{i\}$ and $a_i^T d = -1$

$O(m \cdot n)$ Determine $K = \{k: 1 \leq k \leq m, a_k^T d > 0\}$ $A \cdot d$

if $K = \emptyset$

assert LP unbounded

else

$O(m \cdot n)$ Let $k \in K$ index where $\min_{k \in K} (b_k - a_k^T x^*) / \underbrace{a_k^T d}$ is attained

update $B := B \setminus \{i\} \cup \{k\}$

$$\underbrace{A \cdot x^* - b}_{O(m \cdot n)} \quad \boxed{O(m \cdot n)}$$

ALLTOGETHER: $m \geq n \Rightarrow O(m \cdot n)$ arithmetic operations.

Suppose: A_B^{-1} available.

$$A_B \cdot d = \begin{pmatrix} 0 \\ -1 \\ 0 \\ \vdots \\ 0 \end{pmatrix} \leftarrow i$$
$$d = A_B^{-1}(-e_i) \quad \boxed{O(n)}$$

Updating the inverse: Computing $\tilde{A}_{B^3}^{-1}$ $B' = \tilde{B}^{i_1 i_2 i_3}$

• We have \tilde{A}_{B^3}

• $i \rightarrow \tilde{A}_{B^3} \cdot \tilde{A}_{B^3}^{-1} = \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & 0 & \cdots \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 \\ 0 & 0 & 0 & 1 & 0 & \cdots \\ 0 & 0 & 0 & 0 & 1 & 0 & \cdots \\ \vdots & \vdots & & & \ddots & & \vdots \end{pmatrix}$

perform some
elementary row operations on \tilde{A}_{B^3}

$\rightsquigarrow \tilde{A}_{B^3}'$

assuming index i in position
3 of B , $B = \{b_1, b_2, i, b_3, \dots, b_n\}$

Update of \tilde{A}_{B^3} to \tilde{A}_{B^3}' requires
 $O(n^2)$ arithmetic operations.

Still need to find out: sizes of rational numbers of \tilde{A}_{B^3}' for a basis

B or polynomial in n and the largest size of component of A .

Recall: Hadamard bound: $C \in \mathbb{R}^{n \times n}$, then $|\det(C)| \leq \prod_{i=1}^n \|C_i\|_2$

$C = (C_1, \dots, C_n)$. In our case: assume $A \in \mathbb{R}^{n \times n}$,

We have to estimate $\text{size}(A^T B)$ for a b.s. $B \in \mathbb{R}^{1 \times 1, \dots, 1 \times 1}$.

$$A_B^{-1} = \frac{\text{Adj}(A)}{\det(A_B)}$$

each entry is $(n-1) \times (n-1)$ minor.

$$\det(A_B) \leq \prod_{i=1}^n \underbrace{(\sqrt{n} \cdot B)}$$

B is upper bound on abs. value of entry in A .

$$= n^{n/2} \cdot B^n$$

$$\text{size}(A_B) = O(n(\log n) + \text{size}(B))$$

Similarly, we can bound minors.

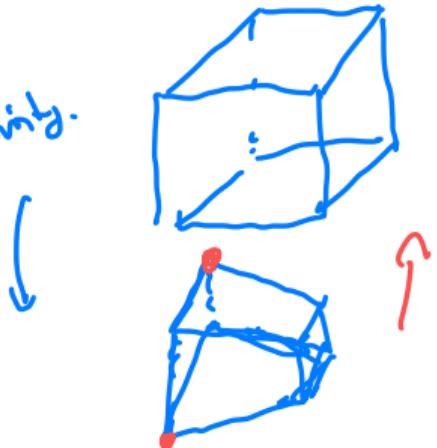
One iteration of the simplex algorithm

Theorem

One iteration of the simplex algorithm requires a total number of $O(m \cdot n)$ operations on rational numbers whose size is polynomial in the input size.

Open problem: Is there a pivoting rule (choice of entry and leaving element) that guarantees a polynomial number (m^n) iterations through WHILE loop?

Klein & Minty.



$$0 \leq x_i \quad i=1..n$$

$$x_i \leq 1 \quad i=1..n$$

$$\text{Dim} = n$$

$$\#\text{eq.} \quad m = 2n$$

$$\#\text{ of vertices: } 2^n$$

Forces smallest index rule to visit all vertices.

Smale's ~~10~~ problems for the next century

David Hilbert 1900 : 23 open problems for the century.

Problem 18: Can linear programming be solved in strongly polynomial time?

Subquestion: Is there a pivot rule for simplex alg. guaranteeing $q(m)$ iterations, where $q(x) \in \mathbb{Z}[C(x)]$ is fixed polynomial.

Later: 3 algorithm that runs in $PC(m, \text{size}(B))$ steps
where B is largest absolute value of number in the input.

Integer Programming

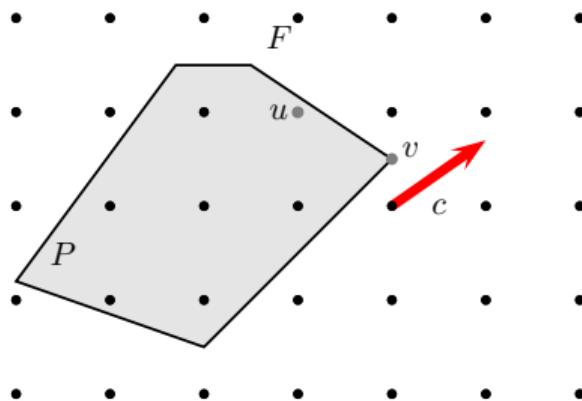
$$\text{OPT}_{\text{LP}} > \text{OPT}_{\text{IP}}$$

$$\max c^T x$$

$$Ax \leq b$$

$$x \in \mathbb{Z}^n$$
 LP: $x \in \mathbb{Q}^n$

with $A \in \mathbb{Z}^{m \times n}$, $b \in \mathbb{Z}^m$
and $c \in \mathbb{Z}^n$.



Complexity of integer programming

Theorem

The integer feasibility problem is NP-complete.

Proof: Satisfiability Variables: x_1, \dots, x_n (TRUE / FALSE)

(SAT)

in Clauses: $C = \{x_1, \bar{x}_2, x_3, x_8\}$

$\uparrow \quad \uparrow \quad \uparrow \quad \uparrow$

Set of literals

literal is either
variable x_i

or a negated variable \bar{x}_i

Determine: Does there exist assignment

$\phi: \{x_1, \dots, x_n\} \rightarrow \{\text{True, False}\}$.

Satisfying all clauses.

A Clause is satisfied by ϕ
if at least one literal is satisfied.

x_i satisfied if $\phi(x_i) = \text{TRUE}$

\bar{x}_i ——— if $\phi(x_i) = \text{FALSE}$

AND

Example: $\{x_1, \bar{x}_5, x_2\} \wedge \{x_5, \bar{x}_2\}$ satisfies all clauses.

$\phi: x_1 \rightarrow \text{T}, x_5 \rightarrow \text{T}$. / best assignment

Example: Var: x_1, x_2, x_3 Formula: $\{x_1, \bar{x}_2, x_3\} \wedge \{\bar{x}_1, x_2\} \wedge \{\bar{x}_2, \bar{x}_3\}$

Idea: Integer program with some variables.

$$0 \leq x_1 \leq 1, 0 \leq x_2 \leq 1, 0 \leq x_3 \leq 1, \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \in \mathbb{Z}^3$$

$\text{P} \quad \text{P} \quad \text{P}$
 $0/1 \quad 0/1 \quad 0/1$

Models FALSE / TRUE

$$x_1 + (1-x_2) + x_3 \geq 1 \quad (x_1 - x_2 + x_3 \geq 0)$$

$$1 - x_1 + x_2 \geq 1 \quad (-x_1 + x_2 \geq 0)$$

$$-x_2 - x_3 \geq -1$$

This INTEGER PROGRAM HAS free solution \Leftrightarrow FORMULA IS SATISFYABLE

- Satisfiability is NP-complete
- Translate any instance of SAT to INTEGER PROGRAMMING feasibility problem.
- MESSAGE IP is hard

The LP-relaxation

IP:

$$\begin{aligned} & \max c^T x \\ & Ax \leq b \\ & x \in \mathbb{Z}^n \end{aligned}$$

LP-RELAXATION:

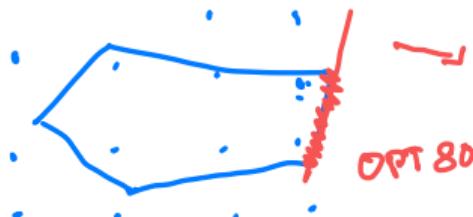
$$\begin{aligned} & \max c^T x \\ & Ax \leq b \\ & x \in \mathbb{R}^n \end{aligned}$$

Theorem

If x^* is an optimal solution of linear programming relaxation

$\max\{c^T x : Ax \leq b, x \in \mathbb{R}^n\}$, then $c^T x^* \geq c^T x_I$, for each integer feasible solution x_I .

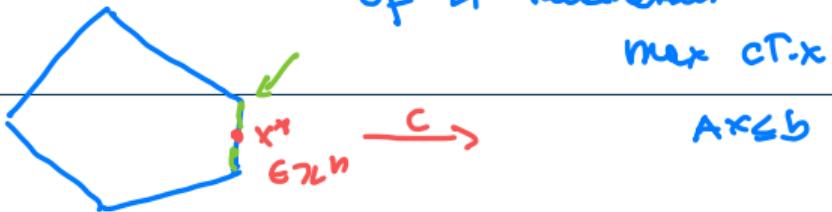
$$\text{OPT}_{\text{LP}} \geq \text{OPT}_{\text{IP}}$$



Def: Let $P \subseteq \mathbb{R}^n$ be a polyhedron and $c^T x \leq \delta$ valid for P . $F = P \cap \{x \in \mathbb{R}^n : c^T x = \delta\}$ is FACE OF P

The LP-relaxation

FACE OF OPT. SOLUTIONS
OF LP relaxation



Theorem

If x^* is integral optimal solution of the linear programming relaxation $\max\{c^T x : Ax \leq b, x \in \mathbb{R}^n\}$, then x^* is also an optimal solution of the integer programming problem $\max\{c^T x : Ax \leq b, x \in \mathbb{Z}^n\}$

Definition: A polyhedron $P \subseteq \mathbb{R}^n$ is integral if each non-empty face of P contains an integer point.

$$(\forall F \neq \emptyset \text{ face of } P : F \cap \mathbb{Z}^n \neq \emptyset)$$

Undirected graphs – Matchings

$$V = \{s, t, u, v\}$$
$$E = \left\{ \{s, u\}, \{s, v\}, \{t, v\}, \{u, v\} \right\}$$

(2, u, v)

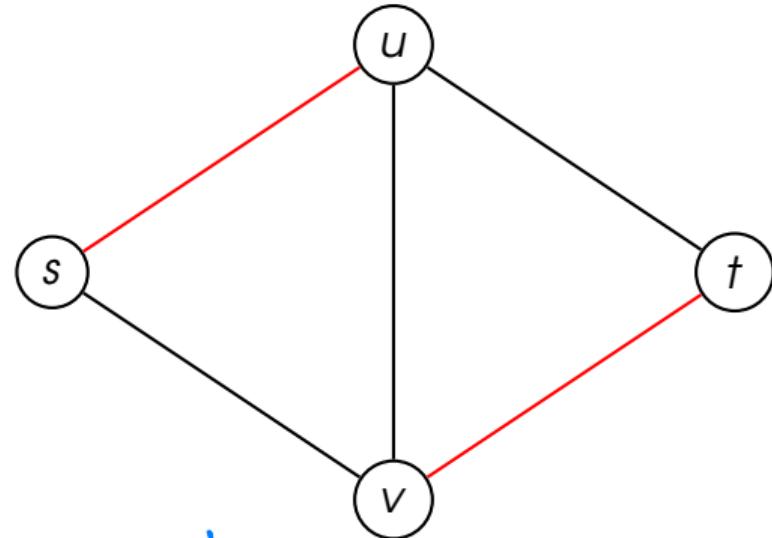
Definition

An **undirected graph** is a tuple $G = (V, E)$

V is finite set of **vertices**

$E \subseteq \binom{V}{2}$ is set of **edges** of G .

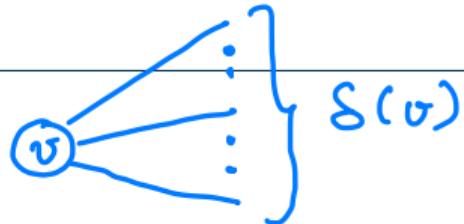
Matching: $M \subseteq E$ such that for all $e_1 \neq e_2 \in M$ one has $e_1 \cap e_2 = \emptyset$.



$w: E \rightarrow \mathbb{R}$ are **edge weights**.

$$w(M) = \sum_{e \in M} w(e)$$

$\delta(v)$



For a vertex $v \in V$, the set $\delta(v) = \{e \in E: v \in e\}$ denotes the **incident** edges to v .

Var: $x_e = \begin{cases} 1 & \text{if } e \in M \\ 0 & \text{otherwise} \end{cases}$

$$\max \sum_{e \in E} w(e) \cdot x(e)$$

IP to solve max-weight
matching problem:

$$\forall v \in V: \sum_{e \in \delta(v)} x(e) \leq 1$$

$$\forall e \in E: 0 \leq x_e \leq 1$$

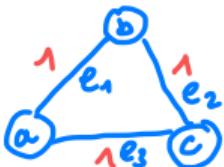
$$x \in \mathbb{Z}_L^{|E|}$$

Max-weight matching as IP

$$\begin{aligned} & \max \sum_{e \in E} w(e)x(e) \\ v \in V : \quad & \sum_{e \in \delta(v)} x(e) \leq 1 \\ e \in E : \quad & x(e) \geq 0 \\ x \in \mathbb{Z}^{|E|}. \end{aligned}$$

Example

G_1 :



WEIGHS.

MAX WEIGHT
MATCHING ~ 1

IP:

$$\text{max } x(e_1) + x(e_2) + x(e_3)$$

s.t.:

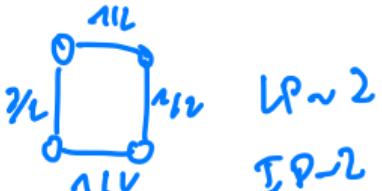
$$x(e_1) + x(e_3) \leq 1$$

$$x(e_2) + x(e_3) \leq 1$$

$$x(e_1) + x(e_2) \leq 1$$

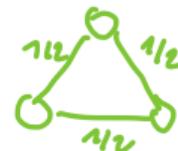
$$0 \leq x$$

$$x \in \mathbb{Z}^3$$



$$\text{IP} \sim 2$$

$$\text{IP} \sim 2$$

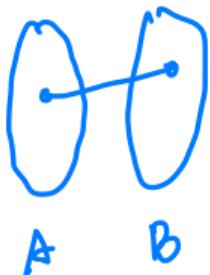


$$\text{LP-RELAX} \sim 1.5$$

NOT INTEGRAL
POLYHEDRAL.

Example

Definition: $G = (V, E)$ is bipartite if
 $V = A \cup B$ and $\forall e \in E: |e \cap A| = 1$
and $|e \cap B| = 1$



Next week:

$LP = IP$ if G is bipartite.

Integral polyhedra

Definition

A rational polyhedron is called **integral** if each nonempty face of P contains an integer vector.

Simplex on polyhedra whose vertices are integral

Lemma

Let $P = \{x \in \mathbb{R}^n : Ax \leq b\}$ be an integral polyhedron with $A \in \mathbb{R}^{m \times n}$ full-column rank. If the linear program

$$\max\{c^T x : x \in \mathbb{R}^n, Ax \leq b\} \tag{7}$$

is feasible and bounded, then the simplex method computes an optimal integral solution to the linear program.

The study of integral polyhedra

Lemma

Let $A \in \mathbb{Z}^{n \times n}$ be an integral and invertible matrix. One has $A^{-1}b \in \mathbb{Z}^n$ for each $b \in \mathbb{Z}^n$ if and only if $\det(A) = \pm 1$.

Total unimodularity

Definition

An integral matrix $A \in \{0, \pm 1\}^{m \times n}$ is called **totally unimodular** if each of its square sub-matrices has determinant 0, ± 1 .

Example: Node-edge incidence matrix of bipartite graph

Hoffman-Kruskal Theorem

Theorem

Let $A \in \mathbb{Z}^{m \times n}$ be an integral matrix. The polyhedron $P = \{x \in \mathbb{R}^n \mid Ax \leq b, x \geq 0\}$ is integral for each integral $b \in \mathbb{Z}^m$ if and only if A is totally unimodular.

