
Optimization problems

Optimization problem is pair (F , f )
• F is set of feasible solutions
• f : F �! R objective or cost
function.

Task: Find x 2 F s.t.

f (x) > f (y) holds for all y 2 F

Such x 2 F is optimal solution

We also write

max{c(x) : x 2 F}.I



Minimization

If minimize f (x), i.e.

find x 2 F with

f (x)  f (y) for all y 2 F

This is optimization problem (F ,�f )
since

�f (x) > �f (y) for all y 2 F

if and only if
f (x)  f (y) for all y 2 F .



Example: Maximizing quadratic form over sphere

Max. xTAx over domain

S(d�1) = {x 2 Rd : kxk = 1} ✓ Rd

A 2 Rd⇥d symmetric

F = S(d�1)

f (x) = xTAx

max
n
xTAx : x 2 S(d�1)
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Example: Minimizing quadratic form over sphere

Min xTAx over domain

S(d�1) = {x 2 Rd : kxk = 1} ✓ Rd

A 2 Rd⇥d symmetric

F = S(d�1)

f (x) = xT (�A)x

min
n
xTAx : x 2 S(d�1)

o
.

~ max <xT(-AIX :
x g(d- e)}



Example: Shortest path in directed graph

Directed graph: Tuple G = (V ,A)
V : finite set of vertices
A ✓ V ⇥ V : arcs
w : A �! R: weights
Simple path: P = v1, v2, . . . , vk s.t.
vi distinct and
(vi , vi+1) 2 A i 2 {1, . . . , k � 1}

length: `(P) = Pk�1
i=1 w(vi , vi+1)
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ElectedGraph : G = (V, A)

V : Finite set ,
the Eres of G .

A < VXV ,

the arcs (edge) of G .

Example : G = CV, A) V = 41
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Shortest path

Given: G = (V ,A)
w : A �! R

s, t 2 V

Shortest path problem:
(F , f )

== 2 P = V : Pis

simple path connecting
S with t 3

i f
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Example: G = (31.... n3 : A (
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Linear Programming

F = {x 2 Rn : Ax  b},
A 2 Rm⇥n b 2 Rm

f : Rn �! R linear, i.e.,
f (x) = cTx for c 2 Rn

system of inequalities
(8,f)

max X1⑧
"o+(r)

A e) - = (i)
H fasiblesol.
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Linear programming: Example
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F = {x 2 R2 : Ax  b}
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Linear programming – Focus of this course

• Geometry
• E�cient algorithms
• Duality
• Convexity



Certificates: An algorithmic paradigm

• Algorithms computes solution
• How can we be sure of
correctness?

• Philosophy: Checking a certificate
might be easy

Example: Linear systems solving

Ax = b (1)
A 2 Rm⇥n, b 2 Rm

If solvable, then solution x⇤ 2 Rn serves
as certificate.

vow echo forum .

Eci). . - Engin



Linear systems – Certificate for unsolvability

Theorem
(1) has no solution if and only if there exists q 2 Rm with

qTA = 0 and qTb 6= 0.
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Systems of linear inequalities – Deriving
consequences

2x1 + 3x2  5
4x1 + 1x2  3 (2)

If x⇤ 2 R2 satisfies (2), then x⇤ satisfies

3x1 + 2x2  4*-
* M

= 83x1 + 2X2=4 Derivation proves



Systems of linear inequalities – Deriving
consequences

Let A 2 Rm⇥n, b 2 Rm and � 2 Rm
>0. If

x⇤ 2 Rn satisfies

Ax  b

the x⇤ satisfies

�TAx  �Tb.
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Ax  b: Certifying infeasibility

Theorem (Farkas’ lemma)
Ax  b is infeasible if and only if there exists � 2 Rm

>0 such that

�TA = 0 and �Tb = �1.

of: if is sat
.
A . x=b the xY

patifies .

(A) x = (x+.b) (= 2 0"x = - 1 = feas.
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Example: Infeasible system of inequalities
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Example: Production planning

Spring and Nebsi

Per 100`:
A B Profit

Spring 3` 8` 100 CHF
Nebsi 6` 4` 125 CHF

In stock: 30` of A; 44` of B

Capacity of transport barrels:
Spring: 500` Nebsi: 400`

Production plan: (x1, x2)
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Example: Production planning

Spring and Nebsi

Per 100`:
A B Profit

Spring 3` 8` 100 CHF
Nebsi 6` 4` 125 CHF

In stock: 30` of A; 44` of B

Capacity of transport barrels:
Spring: 500` Nebsi: 400`

Production plan: (x1, x2)



The linear program

max. 100 · x1 + 125 · x2
s.t.: 3 · x1 + 6 · x2  30

8 · x1 + 4 · x2  44
x1  5
x2  4
x1 > 0
x2 > 0 x1

x2
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The linear program

max. 100 · x1 + 125 · x2
s.t.: 3 · x1 + 6 · x2  30

8 · x1 + 4 · x2  44
x1  5
x2  4
x1 > 0
x2 > 0 x1

x2
� = 775

� = 500

� = 250 (4, 3)
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Proving optimality

3 · x1 + 6 · x2  30
8 · x1 + 4 · x2  44.

multiplied by 50/3 and 25/4
respectively:

50 · x1 + 100 · x2  500
50 · x1 + 25 · x2  275


