Optimization problems

Optimization problem is pair (%, f)

e 7 is set of feasible solutions

e f:. 7 — R objective or cost
function.

Task: Find x € .# s.1.

f(x) > f(y) holds forally € #

Such x € . is optimal solution
We also write

max{F(X) X € 7}



Minimization

If minimize f(x), i.e.
find x € . with

f(x) <f(y)forally e #

This is optimization problem (%, —f)
since

—f(x) > —f(y)forally € .
if and only if
f(x) <f(y)forally e #.



Example: Maximizing quadratic form over sphere
ACR™™ s

Max. xT Ax over domain Z — §(d-1)

f(x) = xTAx £ F—- R,

SN —{xeR: x| =1} CRY
max {XTAX: X € S(d_ﬂ )

A € R9*9 symmetric
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Example: Minimizing quadratic form over sphere

Min x” Ax over domain F =51
f(x) = xT(-A)x
S@D = {x e RY: ||x|| = 1} C R
min {XTAX: X € S(d_])} )
A € R9*9 symmetric
v mex { XA xe S[d;“j



Example: Shortest path in directed graph

Directed graph: Tuple G = (V,A)
V. finite set of verfices

ACV x V:arcs

w: A — R: weights

Simple path: P = vy, Vs, ..., Vi S.t.
v; distinct and

(Vi,vipr) e Aie{l,... .k =1}
length: ¢(P) = 15 w(Vi, Vi)
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Shortest path

Given: G = (V,A)
w:A—R
s,teV

Shortest path problem:
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Linear Programming

Sugiew of cwaq ULy

(G::'?) L/ € xaw gl -
9:{X€R”:, or X, 4 2 3
A€R™N b e RM LAV, A=, -3 b2 | ¢

)G
f:R" — Rlinear,ie.,
f(x)=c'xforc e R \\\/ &m-l,&/bﬂ.

2-%a £2-Xz 3 Ci)

X1 -3 % 4% (2)




Linear programming: Example
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Linear programming - Focus of this course

Geometry

Efficient algorithms
Duality

Convexity



Certificates: An algorithmic paradigm

Example: Linear systems solving
e Algorithms computes solution

Ax=Db M
e How can we be sure of
correctness? A e RN beRM
¢ Philosophy: Checking a certificate
might be easy If solvable, then solution x* € R" serves
A o as certificate. o, ¢ondee ?"“'"'
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Linear systems — Certificate for unsolvability
g

=<==5) O
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(1) has no. solution if and only if there exists q € R™ with

g’A=0andqg’b +0.
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Systems of linear inequalities - Deriving
consequences

If x* € R? satisfies (2), then x* satisfies
2X] + 3X2
Ax1 + 1Xxo

w O,




Systems of linear inequalities - Deriving
consequences

ok, awm  voux off A

LetAc RN, beRTand \ € Rg’o. If G\#_A) x"
x* € RN satisfies '

A Ay
the x* safisfies k—-o—r‘/) \_————r—) L S bom
& M- b <€ 202
ATAX < \Th. = _
A ——————~ b

\ m
Owa \'.\Lﬂ-[‘w.o_ﬂv%_ olavived %i‘bw\ Axe b wity A€ Qéb



Ax < b: Certifying infeasibility

Theorem (Farkas’ lemma)

Ax < b is infeasible if and only if there exists A € Rg’o such that

MA=0and \'b=—1.

v : =" of X sk Axc b fa X il

A

G\TP‘) Xé(a\q\":y (=> o'.x € <A
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Example: Infeasible system of inequalities
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Example: Production planning

- - el @
Spring and Nebsi L 400 @,
A | B Profit 20 A
Per 100¢: Spring | 3¢ | 8¢ | 100 CHF
Nebsi | 6¢ | 4¢ | 125 CHF 6L b
In stock: 30¢ of A; 44/ of B

Spring: 500¢ Nelbsi: 400¢

wax 100-&a + 425 Kz

Capacity of transport barrels: A 3% 4 6 30
T I
(V]

Production plan: (xi, Xo)
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Example: Production planning

Spring and Nebsi

A

B

Profit

Per 100¢: Spring

3¢

8¢

100 CHF

Nelbsi

In stock: 30¢ of A;

o/

44¢ of B

4¢

125 CHF

Capacity of fransport barrels:
Spring: 500¢ Nelbsi: 400¢

Production plan: (xi, Xo)



The linear program

MAX.
s.t.:

]OO-X] —|—]25~X2
3:x1+6-X
8-x1+4-x
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The linear program

MAX.
s.t.:

]00~X] —|—]25-X2
3:X1+6-X
8'X]—|-4~X2

X1
X2
X1
X
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Proving optimality

30
44.

3-Xx1+6-X%

<
8-x1+4-x, <

multiplied by 50/3 and 25/4
respectively:

50'X]+100-X2
50'X]—|-25-X2

500
275



