
Polyhedra

Definition
A polyhedron P ⊆ Rn is a set of the form P = {x ∈ Rn : Ax ≤ b} for some
A ∈ Rm×n and some b ∈ Rm.

A =



3 6
8 4
1 0
0 1
−1 0
0 −1

 , b =



30
44
5
4
0
0

 :

x1

x2



Convex sets

Definition
A set K ⊆ Rn is convex if for each u, v ∈ K and λ ∈ [0, 1] the point λu + (1− λ)v
is also contained in K .



Halfspaces

Definition
A halfspace is a set of the form

{x ∈ Rn : aTx ≤ β}.

A hyperplane is a set of the form

{x ∈ Rn : aTx = β}.



Halfspaces are convex

Lemma
A half-space is convex.





Intersections of convex sets

Lemma
Let I be an index set and Ci ⊆ Rn be convex sets for each i ∈ I, then ∩i∈ICi is a
convex set.

Corollary
A polyhedron is a convex set.





Valid inequalities

Definition
aTx ≤ β is valid for K ⊆ Rn if for each
x∗ ∈ K :

aTx∗ ≤ β

If in addition (aTx = β) ∩ K ̸= ∅, then
aTx ≤ β is a supporting inequality and
aTx = β is a supporting hyperplane



Extreme points

Definition
Let K ⊆ Rn be convex. x∗ ∈ K is
extreme point or vertex of K if there
exists a valid inequality aTx ≤ β of K
such that

{x∗} = K ∩ {x ∈ Rn : aTx = β}.



Vertices of polyhedra – algebraic
characterization

Theorem
Let P = {x ∈ Rn : Ax ≤ b} be a polyhedron. x∗ ∈ P is extreme point iff there is
sub-system A′x ≤ b′ of Ax ≤ b s.t.
i) x∗ satisfies all inequalities of A′x ≤ b′ with equality.
ii) A′ has n rows and A′ is non-singular.
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Optimal solutions and vertices

Theorem
If a linear program max{cTx : x ∈ Rn, Ax ≤ b} is feasible and bounded and if
rank(A) = n, then the linear program has an optimal solution that is an
extreme point.







Bounded LP has optimal solution

Corollary
A linear program max{cTx : x ∈ Rn, Ax ≤ b} which is feasible and bounded
has an optimal solution.





A first (inefficient) algorithm

Given: max{cTx : x ∈ Rn, Ax ≤ b} with rank(A) = n.

• Initialize M = ∅
• Enumerate all sets of n row-vectors of A that are basis of Rn

• Solve A′x = b′ for corresponding sub-system A′x ≤ b′ of Ax ≤ b.
• If for solution x∗: Ax∗ ≤ b then

M = M + x∗

• Output element of M with largest objective function value



A first (inefficient) algorithm

Theorem
If LP is bounded then algorithm above computes optimal solution.

We will see ...
... we can do much better.



Linear, affine, conic and convex hulls
Let X ⊆ Rn:

lin. hull(X) = {λ1x1 + · · ·+ λtxt | t ∈ N0,

x1, . . . , xt ∈ X , λ1, . . . , λt ∈ R}
affine. hull(X) = {λ1x1 + · · ·+ λtxt | t ∈ N+,

x1, . . . , xt ∈ X ,
t∑

i=1
λi = 1, λ1, . . . , λt ∈ R}

cone(X) = {λ1x1 + · · ·+ λtxt | t ∈ N0,

x1, . . . , xt ∈ X , λ1, . . . , λt ∈ R⩾0}
conv(X) = {λ1x1 + · · ·+ λtxt | t ∈ N+,

x1, . . . , xt ∈ X ,
t∑

i=1
λi = 1, λ1, . . . , λt ∈ R⩾0}
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Figure: The convex hull of 7 points in R2.
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Figure: Two points with their convex hull on the left and their affine hull on the right.
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Figure: Two points with their conic hull



Bounded continuous functions

Theorem
Let X ⊆ Rn be compact and f : X → R be continuous. Then f is bounded and
there exist points x1, x2 ∈ X with f (x1) = sup{f (x) : x ∈ X} and
f (x2) = inf{f (x) : x ∈ X}.



Linear and affine hulls

Theorem
Let X ⊆ Rn and x0 ∈ X. One has

affine. hull(X) = x0 + lin. hull(X − x0),

where for u ∈ Rn and V ⊆ Rn, u + V denotes the set u + V = {u + v | v ∈ V}.







Convex hull is convex

Theorem
Let X ⊆ Rn be a set of points. The convex hull, conv(X), of X is convex.





Convex hull is minimal

Theorem
Let X ⊆ Rn be a set of points. Each convex set K containing X also contains
conv(X).





Corollary

conv(X) =
⋂
K⊇X

K convex

K .



Cones

Definition
A set C ⊆ Rn is a cone, if it is convex and for each c ∈ C and each λ ∈ R⩾0
one has λ · c ∈ C.



Analogous theorems for cones

Theorem
For any X ⊆ Rn, the set cone(X) is a cone.

Theorem
Let X ⊆ Rn be a set of points. Each cone containing X also contains cone(X).

cone(X) =
⋂
C⊇X

C is a cone

C.



Carathéodory’s Theorem

Theorem
Let X ⊆ Rn, then for each x ∈ cone(X) there exists a set X̃ ⊆ X of cardinality at
most n such that x ∈ cone(X̃). The vectors in X̃ are linearly independent.







Separation theorem

Theorem
Let K ⊆ Rn be a closed convex set and x∗ ∈ Rn \ K, then there exists an
inequality aTx ≤ β such that aTy < β holds for all y ∈ K and aTx∗ > β.





Farkas’ Lemma – Version 1

Theorem (Farkas’ lemma)
Let A ∈ Rm×n be a matrix and b ∈ Rm be a vector. The system Ax = b, x ⩾ 0
has a solution if and only if for all λ ∈ Rm with λTA ⩾ 0 one has λTb ⩾ 0.





Farkas’ Lemma – Version 2

Theorem (Farkas’ lemma)
Let A ∈ Rm×n be a matrix and b ∈ Rm be a vector. The system Ax ≤ b has a
solution if and only if for all λ ∈ Rm

⩾0 with λTA = 0 one has λTb ⩾ 0.

Exercise!


