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Chapter 1
Preface

1.1 Optimization problems

An optimization problem is a pair (F , f), where F is a set, referred to as
the set of feasible solutions, and f : F −→ R is a function, that is called the
objective or cost function. The problem is to find an element x ∈ F such that

f(x) ⩾ f(y) holds for all y ∈ F .

Such an x ∈ F is then an optimal solution of the optimization problem. Since
the task is to find a global maximum solution, we also write

max{c(x) : x ∈ F}.

If the objective is to minimize f(x) or, in other words, to find an x ∈ F
with

f(x) ⩽ f(y) for all y ∈ F ,

then this can be understood as the optimization problem (F ,−f), since

−f(x) ⩾ −f(y) for all y ∈ F if and only if f(x) ⩽ f(y) for all y ∈ F .

Example 1.1. From linear algebra we know the problem of maximizing a
quadratic form xTAx over the sphere S(d−1) = {x ∈ Rd : ∥x∥ = 1} ⊆ Rd,
where A ∈ Rd×d is a symmetric matrix. Thus, in this case, F = S(d−1) and
f(x) = xTAx and we write

max
{
xTAx : x ∈ S(d−1)

}
.

If v ∈ Rd\{0} is an eigenvector of A corresponding to the maximal eigenvalue
λmax ∈ R of A, then v ∥v∥ is an optimal solution of the optimization problem.

Following the discussion above, we see that an x∗ ∈ S(d−1) is an optimal
solution of

5



6 1 Preface

min
{
xTAx : x ∈ S(d−1)

}
if and only if x∗ is an optimal solution of

max
{
xT (−A)x : x ∈ S(d−1)

}
.

We have seen that such an optimal solution is an eigenvector of A corre-
sponding to the minimal eigenvalue λmin of A.

Example 1.2. A directed graph is a tuple G = (V,A), where V is a finite set
of elements, called the vertices of G and A ⊆ (V × V ) is the set of arcs
of G. We denote an arc by its two defining nodes (u, v) ∈ A. The graph is
weighted if additionally equipped with a function w : A −→ R that maps the
set of arcs to the reals. A simple path is a finite sequence of distinct vertices
P = v1, v2, . . . , vk such that (vi, vi+1) ∈ A for each i ∈ {1, . . . , k − 1}. The
path is from v1 to vk and the length of the path P is defined as

ℓ(P ) =

k−1∑
i=1

w(vi, vi+1).

a

b

d

e

f

c

13

1

0

2

1

1

0

Fig. 1.1: Example of a weighted directed graph with 6 nodes and 8 arcs. A
shortest path from a to f is the node sequence a, b, e, f . Its length is equal to
2.

The shortest path problem is now as follows. Given a directed graph G =
(V,A) with non-negative weights w : A −→ R+ and two designated vertices
s and t ∈ V , determine a path from s to t of minimal length. In our setting
this is then the tuple (F , f), where F is the set of all paths from s to t in G
and f(P ) is equal to −1 times ℓ(P ).
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Linear programming

Central to this course is the linear programming or linear optimization prob-
lem. This is an optimization problem (F , f) where the set F is described by
linear inequalities

F = {x ∈ Rn : Ax ⩽ b},
where A ∈ Rm×n is a matrix and b ∈ Rm is a vector. The objective function
f : Rn −→ R is linear and of the form f(x) = cTx for a given vector c ∈ Rn.

x1

x2

1

1

Fig. 1.2: The set F in example 1.3
.

Example 1.3. Let A ∈ R3×2 be the matrix

A =

−1 1
1 1
0 −1


and b ∈ R3 be the vector

b =

1
1
0


The set F ⊆ R2 is the set of all points (x1, x2)

T ∈ R2 in the plane that
satisfy all three inequalities

−x1 + x2 ⩽ 1, x1 + x2 ⩽ 1, and x2 ⩾ 0.
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This set F is the triangle depicted in Figure 1.2. If we set the objective
function as f(x) = x2, then x = (0, 1)T is an optimal solution.

The linear optimization problem is one of the most important types of math-
ematical optimization problems. It has numerous applications in science and
engineering and, in particular, modern fields like machine learning.

In this course, we will learn the theory of linear optimization and develop
efficient algorithms to solve linear programming problems. This means that
we do not content ourselves with an algorithm that is correct, but we want
this algorithm to be capable to solve large scale problems within a short time.

1.2 Certificates

A central topic in linear algebra is the theory around linear equations

Ax = b (1.1)

where A ∈ Rm×n is a given matrix and b ∈ Rm is a given vector. Every stu-
dent of mathematics learns learns to appreciate Gaussian elimination which
transforms the system (1.1) into an equivalent system

A′x = b′

that is in row-echelon form. This means that A′ ∈ Rm×n is such that for each
i ∈ {1, . . . ,m− 1}

min{j : a′ij ̸= 0} < min{j : a′i+1j ̸= 0},

see Figure 1.3.

Fig. 1.3: A schematic image of a matrix in row-echelon form



1.2 Certificates 9

The system (1.1) has a solution if and only if b′ has only zero’s in those
components that correspond to the zero-rows of A′ and a solution is readily
computed. In fact, Gaussian elimination also provides an invertible matrix
Q ∈ Rm×m such that Q ·A = A′ and Q · b = b′. If the i-th component of b′ is
nonzero and the i-th row of A′ consists of zeros only, then with q being the
column vector corresponding to the i-th row of Q one has

qTA = 0 and qT b ̸= 0.

Thus there is a convenient certificate of the fact that (1.1) is not solvable.

Theorem 1.1. A linear system (1.1) is not solvable if and only if there exists
a vector q ∈ Rm such that

qTA = 0 and qT b ̸= 0.

In this course, we will now also deal with systems of linear inequalities

Ax ⩽ b, (1.2)

where A ∈ Rm×n and b ∈ Rm. A solution to such a system is a vector
x∗ ∈ Rm such that

for each i = 1, . . . ,m : ai1x
∗
1 + · · ·+ ainx

∗
n ⩽ bi. (1.3)

If a solution exists, the system (1.2) is called feasible otherwise it is called
infeasible. We will ask analogous questions for systems of linear inequalities
as we did for linear equations. Can we efficiently find a solution of (1.2)? Is
there a simple certificate to convince somebody of the infeasibility of (1.2)?

To shed a bit of light on this second question, let us consider a vector
λ ∈ Rm

⩾0. If x∗ is a solution, then x∗ also satisfies the inequality

λTAx ⩽ λT b. (1.4)

If there exists a λ ∈ Rm
⩾0 such that

λTA = 0T and λT b = −1, (1.5)

then this λ certifies that (1.2) is infeasible. In the case of infeasibility, can
such a λ ⩾ 0 always be found? Among the many results presented in this
course, we will show that the answer is “yes”.

Theorem 1.2 (Farkas’ lemma). A system of linear inequalities (1.2) is
infeasible if and only if there exists a λ ∈ Rm

⩾0 such that

λTA = 0 and λT b = −1.
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More generally, we will learn about certificates of optimality of linear opti-
mization problems. Lets consider again example 2.1. How can we certify that
x∗ = (0, 1)T is an optimal solution of the linear program.

Each point x∗ in F must satisfy the first two linear inequalities

−x1 + x2 ⩽ 1 and x1 + x2 ⩽ 1.

But then such an x∗ satisfies also the sum of these two inequalities

(−x1 + x2) + (x1 + x2) ⩽ 1 + 1

which simplifies to
x2 ⩽ 1.

But x2 is the objective function. We have just shown that the objective
function value of any point is at most 1. Since this objective function value
at x∗ = (0, 1)T is equal to one, we have certified optimality of x∗.

The general theory that makes certification of optimility possible for linear
optimization is the theory of duality. It is a rich theory with many other
applications in discrete mathematics. We will touch upon many of them.

Exercises

1) Provide a certificate as in Theorem 1.1 of the unsolvability of the linear
equation 2 1 0

5 4 1
7 5 1

 x1

x2

x3

 =

1
2
4


2) Show the “if” direction of the Farkas’ lemma (Theorem 1.2).
3) The directed graph G = (V,A) is complete, if A = {(u, v) : u ̸= v ∈ V }.

Let s ̸= t ∈ V be two designated vertices. How many directed paths
connect s and t in G? Find a formula with parameter n = |V |.

4) Let G = (V,A) be a directed graph and s, t ∈ V be two designated vertices.
For a vertex v ∈ V we let

δ+(v) = {(u, v) : u ∈ V, (u, v) ∈ A} and δi(v) = {(v, u) : u ∈ V, (v, u) ∈ A}

the arcs entering and leaving u respectively. Consider the following in-
equalities
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a∈δ+(v)

xa −
∑

a∈δ−(v)

xa = 0 v ∈ V \ {s, t}∑
a∈δ+(s)

xa −
∑

a∈δ−(s)

xa = −1∑
a∈δ+(t)

xa −
∑

a∈δ−(t)

xa = 1

xa ⩾ 0 a ∈ A.

(1.6)

a) Consider the following digraph with s and t and a partial assignment
of arc variables. Can this partial assignment be completed to a feasible
solution satisfying the inequalities (1.6)? If yes, complete the assign-
ment.

s

t

.5
.75

.25

0

.25

b) Show the following for a digraph G = (V,A) with s, t ∈ V : If there is
a path connecting s and t in G, then the system of inequalities (1.6)
has a feasible solution

c) (*) Show the following for a digraph G = (V,A) with s, t ∈ V : If the
system of inequalities (1.6) has a feasible solution, then there is a path
connecting s and t in G.





Chapter 2
Linear programming

We start by giving some examples of linear programs and how they are used
in practice.

2.1 Softdrink production

Imagine that you own a company that produces the two softdrinks, Spring
and Nebsi. These softdrinks are a mixture of water, an ingredient A and
ingredient B. The recipes for Spring and Nebsi are different. Also, the profit
for the two drinks is not the same. Those are as follows.

The use of ingredients A and B and the profit per 100l are as follows.

A B Profit
Spring 3l 8l 100 CHF
Nebsi 6l 4l 125 CHF

While the supply of water is unlimited, your company has only 30l of ingre-
dient A and 44l of ingredient B.

At the end of the production day, the local wholesaler picks up the drinks
in two barrels. The capacity of the barrel for Spring is 500l while the barrel
for Nebsi has a capacity of 400l.

As the manager of your small company, your goal is to come up with
a production plan that maximizes your profit. A production plan is a two-
dimensional vector (x1, x2) ∈ R2 which means that you will produce x1 · 100l
of Spring and x2 ·100l of Nebsi. A production plan is feasible if the produced
drinks fit into the respective barrels and not more of A and B is used than
what is on stock. Clearly, (5, 4) is not a feasible production plan, as this would
require 39l of ingredient A which exceeds the capacity.

A feasible production plan that maximizes your profit can be found with
the help of a linear program, a central object of study in this course.

13



14 2 Linear programming

max. 100 · x1 + 125 · x2

s.t.: 3 · x1 + 6 · x2 ⩽ 30
8 · x1 + 4 · x2 ⩽ 44

x1 ⩽ 5
x2 ⩽ 4
x1 ⩾ 0
x2 ⩾ 0

(2.1)

One has to maximize a linear objective function, in this case f(x1, x2) =
100 · x1 + 125 · x2 where (x1, x2) satisfies linear inequalities. The linear in-
equalities x1 ⩾ 0 and x2 ⩾ 0 reflect the fact that only positive amounts can
be produced, while x1 ⩽ 5 reflects the barrel capacity for Spring. The linear
inequality 3 · x1 + 6 · x2 ⩽ 30 reflects the amount of 30l of ingredient A that
is on stock.

We can now make a drawing of all feasible production plans.

x1

x2

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

Fig. 2.1: The feasible production plans are the green area.

The set of points (x1, x2) that have objective function β is the line

{(x1, x2) ∈ R2 : 100 · x1 + 125 · x2 = β}

and our task is now to find the largest value for β such that the corresponding
line still intersects the set of feasible production plans.

Figure 2.2 reveals that (4, 3) is an optimal production plan and that the
maximum profit that the manager can achieve is 775.

2.2 Proving optimality

How can the manager be convinced that (4, 3) is an optimal production plan?
Maybe he has made a mistake in his drawing or with his calculations and
(4, 3) is not optimal. What we will see now is a very important principle of
linear programming. There is a simple way to prove optimality of solutions
that we will explore later on.
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x1

x2

β = 775

β = 500

β = 250
(4, 3)

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

Fig. 2.2: The optimal production plan is (4, 3).

Inspecting the drawing, one can see that there are two inequalities that
(4, 3) satisfies with equality, namely the inequalities

3 · x1 + 6 · x2 ⩽ 30 (2.2)
8 · x1 + 4 · x2 ⩽ 44. (2.3)

Clearly all feasible production plans satisfy these inequalities and inspecting
Figure 2.2 it seems clear that (4, 3) is an optimal solution of the optimization
problem (2.1) where each linear inequality but the inequalities (2.2) and (2.3)
have been removed.

What now follows is a very important technique that we will apply later on
again in greater generality. Since each feasible production plan satisfies the
inequalities (2.2) and (2.3) it satisfies also these inequalities, after they have
been multiplied by 50/3 and 25/4 respectively. In fact the inequalities (2.2)
and (2.3) are equivalent to the following two inequalities

50 · x1 + 100 · x2 ⩽ 500 (2.4)
50 · x1 + 25 · x2 ⩽ 275. (2.5)

By adding up the inequalities (2.4) and (2.5) we obtain the inequality

100 · x1 + 125 · x2 ⩽ 775 (2.6)

which in turn is also satisfied by each feasible production plan. The left-
hand-side of inequality (2.6) is the objective function and 775 is the value of
the objective function evaluated at (4, 3). Thus each feasible production plan
yields a profit of at most 775 which is the profit yielded by (4, 3). This shows
that (4, 3) is optimal.
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2.3 Linear Programs

We use the following notation. For a matrix A ∈ Rm×n, i ∈ {1, . . . ,m} and
j ∈ {1, . . . , n} we denote the i-th row of A by aTi and the j-th column of A
by aj . With aij we denote the element of A which is in the i-th row and j-th
column of A. For a vector v ∈ Rm and i ∈ {1, . . . ,m} we denote the i-th
element of v by vi.

Definition 2.1. Let A ∈ Rm×n be a matrix, b ∈ Rm and c ∈ Rn be vectors
and I⩾, I⩽, I= ⊆ {1, . . . ,m} and J⩾, J⩽ ⊆ {1, . . . , n} be index sets. A linear
program (LP) consists of

i) a linear objective function

max cTx
or min cTx

ii) linear constraints
aTi x ⩾ bi, i ∈ I⩾
aTj x ⩽ bj , j ∈ I⩽
aTk x = bk, k ∈ I=

iii) and bounds on the variables

xj ⩾ 0, j ∈ J⩾
xj ⩽ 0, j ∈ J⩽.

Notice that we can re-write the objective function min cTx as max−cTx.
Similarly, the constraints aTi x ⩾ bi, i ∈ I⩾ are equivalent to the constrains
−aTi x ⩽ −bi, i ∈ I⩾. Also the constraints aTk x = bk, k ∈ I= can be replaced
by the constraints aTk x ⩽ bk, −aTk x ⩽ −bk, k ∈ I=. A lower bound xj ⩾ 0
can be written as −eTj x ⩽ 0, where ej is the j-th unit vector which has zeroes
in every component, except for the j-th component, which is 1. Similarly an
upper bound xj ⩽ 0 can be written as eTj x ⩽ 0.

All-together, a linear program as in Definition 2.1 can always be written
as

max{cTx : Ãx ⩽ b̃, x ∈ Rn}
with a suitable matrix Ã ∈ Rm×n and a suitable vector b̃ ∈ Rm. This repre-
sentation has a name.

Definition 2.2. A linear program is in inequality standard form, if it is of
the form

max{cTx : Ax ⩽ b, x ∈ Rn}
for some matrix A ∈ Rm×n and some vector b ∈ Rm.

Example 2.1. Let us convert the following linear program to an equivalent
linear program in inequality standard form. The objective is to minimize
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2x1 + 5x2 − 8x3

such that x1, x2, x3 satisfy the constraints

x1 + x3 ⩾ 6, (2.7)

−x1 + 3x2 − 5x3 = −4, (2.8)

as well as the lower bounds

x1 ⩾ 0, x2 ⩾ 0, x3 ⩽ 0. (2.9)

The constraint (2.15) is equivalent to

−x1 − x3 ⩽ −6

and (2.16) is equivalent to the conjunction of the two constraints

−x1 + 3x2 − 5x3 ⩽ −4
x1 − 3x2 + 5x3 ⩽ 4.

The lower bounds x1 ⩾ 0, x2 ⩾ 0 in (2.17) can be re-written as −x1 ⩽ 0
and −x2 ⩽ 0. Finally, by multiplying the objective function by −1 we can
transfer to a maximization problem and obtain the linear program

max(−2,−5, 8)x

subject to x ∈ R3 satisfying

A =


−1 0 −1
−1 3 −5
1 −3 5
−1 0 0
0 −1 0
0 0 −1

x ⩽


−6
−4
4
0
0
0

 .

Definition 2.3. A point x∗ ∈ Rn is called feasible, if x∗ satisfies all con-
straints and bounds on the variables. If there are feasible solutions of a linear
program, then the linear program is called feasible itself. A linear program
is bounded if there exists a constant M ∈ R such for all feasible x∗ ∈ Rn

cTx∗ ⩽ M , if the linear program is a maximization problem and cTx∗ ⩾ M ,
if the linear program is a minimization problem. A feasible solution x∗ is an
optimal solution if cTx∗ ⩾ cT y∗ for all feasible y∗ if the linear program is a
maximization problem and cTx∗ ⩽ cT y∗ if the linear program is a minimiza-
tion problem.

We will see later that a feasible and bounded linear program has an optimal
solution.
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Fig. 2.3: With the objective function being to find the highest point, we have
from left-to-right an infeasible linear program, an unbounded linear program
and a bounded linear program.

2.4 Fitting a line

The following is an example which is well known in statistics. Suppose that
you measure points (xi, yi) ∈ R2 i = 1, . . . , n and you are interested in a
linear function y = a · x + b that reflects the sample. One way to do that is
by minimizing the expression

n∑
i=1

(axi + b− yi)
2, (2.10)

where a, b ∈ R are the parameters of the line that we are looking for. The
number (axi + b − yi)

2 is the square of the vertical distance of the point
(xi, yi) from the line y = a x+ b.

Instead of using the method of least-squares, we could also minimize the
following function, see also [13, Chapter 2.4],

n∑
i=1

|axi + b− yi|. (2.11)

This objective has the advantage to be slightly more robust towards outliers.
How can we model this as a linear program. The trick is to use an extra
variable hi which models the absolute value of axi + b− yi.

min
∑n

i=1 hi

hi ⩾ axi + b− yi, i = 1, . . . , n
hi ⩾ −(axi + b− yi), i = 1, . . . , n

(2.12)
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The variables of this linear program are hi, i = 1, . . . , n, a and b. For a
fixed a ∈ R and b ∈ R the optimal hi’s will be hi = |axi + b − yi| since the
objective minimizes the sum of the hi’s. If one of the hi’s was strictly larger
than |axi+b−yi|, then the objective could be improved by making it smaller.

Fig. 2.4: A line that minimizes the sum of the vertical distances.

2.5 Linear Programming solvers and modeling languages

We will demonstrate now how to use a modeling language for linear program-
ming and a linear programming solver to find a fitting line, as described in
Section 2.4 for the points

(1, 3), (2.8, 3.3), (4, 2), (5.5, 2.1), (6, 0.2), (7, 1.3), (7.5, 1), (8.5, 0.8)

There are two popular formats for linear programming problems which
are widely used by linear programming solvers, the lp-format and the mps-
format. Both are not easy to read. To facilitate the modeling of a linear
program, so-called modeling languages are used. We demonstrate the use of
the popular open source modeling software called zimpl [8]. Below you see a
way to model our fitting line linear program with zimpl:

set I := {1 to 8};
param X[I] := <1> 1, <2> 2.8, <3> 4 , <4> 5.5,

<5> 6, <6> 7 , <7> 7.5, <8> 8.5 ;
param Y[I] := <1> 3 , <2> 3.3, <3> 2, <4> 2.1,

<5> 0.2, <6> 1.3, <7> 1, <8> 0.8 ;
var h[I] >= -infinity <= infinity;
var a >= -infinity <= infinity ;
var b >= -infinity <= infinity ;

minimize cost: sum <i> in I: h[i];

subto c1: forall <i> in I: h[i] >= ( a * X[i] + b -Y[i]);
subto c2: forall <i> in I: h[i] >= - ( a * X[i] + b -Y[i]);

http://www.zib.de/koch/zimpl
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Zimpl creates a linear program which is readable by linear programming
solvers like QSopt or SoPlex.

2.6 Linear programming for longer OLED-lifetime

Organic Light Emitting Diodes (OLEDs) are considered as the display tech-
nology of the future and more and more commercial products are equipped
with such displays as shown in Fig. 2.5. However, the cheapest OLED tech-
nology suffers from short lifetimes. We will show in this section how linear
programming can be used to increase the lifetime of such displays.

Fig. 2.5: Sample of a commercial OLED device with integrated driver chip

A (passive matrix) OLED display has a matrix structure consisting of n
rows and m columns. At any crossover between a row and a column there is a
vertical diode which works as a pixel. The image itself is given as an integral
non-negative n×m matrix (rij) ∈ [0, . . . , ϱ]n×m representing its RGB values.
Consider the contacts for the rows and columns as switches. For the time the
switch of row i and column j is closed, an electrical current flows through
the diode of pixel (i, j) and it shines. Hence, we can control the intensity
of a pixel by the two quantities electrical current and time. The value rij
determines the amount of time within the time frame in which the switches
i and j have to be simultaneously closed. At a sufficient high frame rate e.g.
50 Hz, the perception by the eye is the average value of the light emitted by
the pixel and one sees the image.

The traditional addressing scheme is row-by-row. This means that the
switch for the first row is closed for a certain time while the switches for
the columns are closed for the necessary amount of time dictated by the
entries r1j , j = 1, . . . ,m. Consequently the first row can be displayed in time
max{r1j : j = 1, . . . ,m}. Then the second row is displayed and so on. With
this addressing scheme, the pixels are idle most of the time and then have
to shine with very high intensity. This puts the diodes under stress and is a
major cause of the short lifetime of the displays.

http://www2.isye.gatech.edu/~wcook/qsopt
http://soplex.zib.de/
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How can this lifetime problem be dealt with? The main idea is to save
time, or equivalently to lower the maximum intensity, by displaying several
rows at once.

Consider the schematic image on the left of Fig. 2.6. Let us compute the
amount of time which is necessary to display the image with this addressing
scheme. The maximum value of the entries in the first row is 238. This is the
amount of time which is necessary to display the first row. After that the
second row is displayed in time 237. In total the time which is required to
display the image is 238 + 237 + 234 + 232 + 229 = 1170 time units.

109 238 28
112 237 28
150 234 25

189 232 22
227 229 19

=

0 82 25
0 82 25
0 41 22

0 41 22
0 0 0

+

0 0 0
112 155 3
112 155 3

189 191 0
189 191 0

+

109 156 3
0 0 0
38 38 0

0 0 0
38 38 19

Fig. 2.6: An example decomposition

Now consider the decomposition of the image as the sum of the three images
on the right of Fig. 2.6. In the first image, each odd row is equal to its
even successor. This means that we can close the switches for rows 1 and
2 simultaneously, and these two equal rows are displayed in 82 time units.
Rows 3 and 4 can also be displayed simultaneously which shows that the
first image on the right can be displayed in 82 + 41 time units. The second
image on the right can be displayed in 155 + 191 time units while the third
image has to be displayed traditionally. In total all three images, and thus
the original image on the left via this decomposition, can be displayed in
82 + 41 + 155 + 191 + 156 + 38 + 38 = 701 time units. This means that we
could reduce the necessary time via this decomposition by roughly 40%. We
could equally display the image in the original 1170 time units but reduce the
peak intensity, or equally the maximum electrical current through a diode by
roughly 40%.

We now show how to model the time-optimal decomposition of an image
as a linear program. To decompose R we need to find matrices F (1) = (f

(1)
ij )

and F (2) = (f
(2)
ij ) where F (1) represents the singleline part and F (2) the

two doubleline parts. More precisely, the i-th row of matrix F (2) represents
the doubleline covering rows i and i + 1. Since the overlay (addition) of the
subframes must be equal to the original image to get a valid decomposition of
R, the matrices F (1) and F (2) must fulfill the constraint f (1)

ij +f
(2)
i−1,j+f

(2)
ij =

rij for i = 1, . . . , n and j = 1, . . . ,m, where we now and in the following
use the convention to simply omit terms with indices running out of bounds.
Since we cannot produce “negative” light we require also non-negativity of
the variables f

(α)
ij ⩾ 0. The goal is to find an integral decomposition that
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minimizes

n∑
i=1

max{f (1)
ij : 1 ⩽ j ⩽ m}+

n−1∑
i=1

max{f (2)
ij : 1 ⩽ j ⩽ m} .

This problem can be formulated as a linear program by replacing the objective
by

∑n
i=1 u

(1)
i +

∑n−1
i=1 u

(2)
i and by adding the constraints f

(α)
ij ⩽ u

(α)
i . This

yields

min

n∑
i=1

u
(1)
i +

n−1∑
i=1

u
(2)
i

s.t. f
(1)
ij + f

(2)
i−1,j + f

(2)
ij = rij for all i, j (2.13)

f
(α)
ij ⩽ u

(α)
i for all i, j, α (2.14)

f
(α)
ij ∈ R⩾0 for all i, j, α

Note that the objective does not contain the f -variables. By decomposing
images like this, the average lifetime of an OLED display can be increased
by roughly 100%, see [4].

Exercises

1) A company produces and sells two different products. Our goal is to de-
termine the number of units of each product they should produce during
one month, assuming that there is an unlimited demand for the products,
but there are some constraints on production capacity and budget.
There are 20000 hours of machine time in the month. Producing one unit
takes 3 hours of machine time for the first product and 4 hours for the
second product. Material and other costs for producing one unit of the
first product amount to 3CHF, while producing one unit of the second
product costs 2CHF. The products are sold for 6CHF and 5CHF per unit,
respectively. The available budget for production is 4000CHF initially.
25% of the income from selling the first product can be used immediately
as additional budget for production, and so can 28% of the income from
selling the second product.

a. Formulate a linear program to maximize the profit subject to the
described constraints.

b. Solve the linear program graphically by drawing its set of feasible
solutions and determining an optimal solution from the drawing.

c. Suppose the company could modernize their production line to get
an additional 2000 machine hours for the cost of 400CHF. Would this
investment pay off?
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2) Reformulate the following linear program in inequality standard form. The
objective is to minimize

−3x1 + 3x2 + 5x3

such that x1, x2, x3 satisfy the constraints

x2 + 3x3 ⩾ 4, (2.15)

2x1 + 2x2 − 4x3 = −4, (2.16)

as well as the lower bounds

x1 ⩾ 0, x2 ⩾ 0, x3 ⩾ 0. (2.17)

3) A factory produces two different products. To create one unit of product
1, it needs one unit of raw material A and one unit of raw material B. To
create one unit of product 2, it needs one units of raw material B and two
units of raw material C. Raw material B needs preprocessing before it
can be used, which takes one minute per unit. At most 20 hours of time is
available per day for the preprocessing. Raw materials of capacity at most
1200 can be delivered to the factory per day. One unit of raw material A,
B and C has size 4, 3 and 2 respectively.
At most 130 units of the first and 100 units of the second product can be
sold per day. The first product sells for 6 CHF per unit and the second
one for 9 CHF per unit.
Formulate the problem of maximizing turnover as a linear program in two
variables and solve it.

4) Prove the following statement or give a counterexample: The set of optimal
solutions of a linear program is always finite.

5) Let (2.18) be a linear program in inequality standard form, i.e.

max{cTx | Ax ⩽ b, x ∈ Rn} (2.18)

where A ∈ Rm×n, b ∈ Rm, and c ∈ Rn.
Prove that there is an equivalent linear program (2.19) of the form

max{c̃Tx | Ãx = b̃, x ⩾ 0, x ∈ Rñ} (2.19)

where Ã ∈ Rm̃×ñ, b̃ ∈ Rm̃, and c̃ ∈ Rñ are such that every feasible point
of (2.18) corresponds to a feasible point of (2.19) with the same objective
function value and vice versa.
Linear programs of the form in (2.19) are said to be in equality standard
form.
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6) Model the linear program (2.13) to decompose the EPFL logo with Zimpl.
An incomplete model containing the encoding of the grayscale values of
the logo can be found here1.
Use an LP solver library of your choice to compute an optmal solution.

1 http://disopt.epfl.ch/webdav/site/disopt/users/190205/public/logo_dec.zmpl

http://disopt.epfl.ch/webdav/site/disopt/users/190205/public/logo_dec.zmpl


Chapter 3
Polyhedra and convex sets

Definition 3.1. A polyhedron P ⊆ Rn is a set of the form P = {x ∈
Rn : Ax ⩽ b} for some A ∈ Rm×n and some b ∈ Rm.

We are interested in polyhedra, since the set of feasible solutions of a linear
program max{cTx : Ax ⩽ b} is a polyhedron.

Example 3.1. Consider again the soft-drink production problem from chap-
ter 2.1. The corresponding set of feasible solutions is the polyhedron P =
{x ∈ R2 : Ax ⩽ b} with

A =


3 6
8 4
1 0
0 1
−1 0
0 −1

 , and b =


30
44
5
4
0
0

 .

x1

x2

Fig. 3.1: The polyhedron of feasible solutions of the linear program (2.1).

Definition 3.2. A set K ⊆ Rn is convex if for each u, v ∈ K and λ ∈ [0, 1]
the point λu+ (1− λ)v is also contained in K.

25
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Fig. 3.2: The set on the left is convex, the set on the right is non-convex.

A halfspace is a set of solutions of one inequality aTx ⩽ β where a ∈ Rn

and β ∈ R, i.e., a set of the form

{x ∈ Rn : aTx ⩽ β}.

A hyperplane is a set of the form

{x ∈ Rn : aTx = β}.

It is easy to see that a halfspace is convex. Convexity is also maintained if
convex sets are intersected.

Proposition 3.1. Let I be an index set and Ci ⊆ Rn be convex sets for each
i ∈ I, then ∩i∈ICi is a convex set.

Consequently, the set of feasible solutions of a linear program {x ∈
Rn : Ax ⩽ b} is a convex set. This is our motivation to study properties
of convex sets.

3.1 Extreme points and vertices

Definition 3.3. An inequality aTx ⩽ β is valid for a set K ⊆ Rn if each
x∗ ∈ K satisfies aTx∗ ⩽ β. If in addition (aTx = β) ∩K ̸= ∅, then aTx ⩽ β
is a supporting inequality and aTx = β is a supporting hyperplane.

Definition 3.4. Let K ⊆ Rn be a convex set. A point x∗ ∈ K is an extreme
point or vertex of K if there exists a valid inequality aTx ⩽ β of K such that

{x∗} = K ∩ {x ∈ Rn : aTx = β}.

In other words, if x∗ is the only point of K that satisfies the valid inequality
with equality.

We can now characterize the extreme points of polyhedra. In fact, there
are only finitely many of them.
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Fig. 3.3: An extreme point of a convex set.

Theorem 3.1. Let P = {x ∈ Rn : Ax ⩽ b} be a polyhedron. A feasible point
x∗ is an extreme point of P if and only if there is a sub-system A′x ⩽ b′ of
Ax ⩽ b such that

i) x∗ satisfies all inequalities of A′x ⩽ b′ with equality.
ii) A′ has n rows and A′ is non-singular.

Proof. Let A′x ⩽ b′ be such a sub-system and consider the valid inequality
1TA′x ⩽ 1T b′. Clearly x∗ satisfies this inequality with equality. Any y∗ ∈ P
that satisfies this inequality with equality must satisfy A′x = b′. Since A′ is
non-singular, x∗ is the unique solution of A′x = b′ which means that x∗ is
the unique point of P that satisfies 1TA′x ⩽ 1T b′ with equality.

Assume now that there does not exist a sub-system A′x ⩽ b′ of Ax ⩽ b
with properties i) and ii). Denote the sub-system of inequalities that are
satisfied by x∗ with equality by Ãx ⩽ b̃. Then rank(Ã) < n and there exists
a d ̸= 0 ∈ Rn with Ãd = 0. Consequently there exists an ε > 0 such that
x∗ ± ε · d ∈ P .

Clearly, any inequality that is satisfied by x∗ with equality and that is
satisfied by x∗ ± εd is satisfied by x∗ ± εd with equality as well. This implies
that x∗ is not an extreme point.

The relevance of vertices for linear programming is reflected in the follow-
ing theorem.

Theorem 3.2. If a linear program max{cTx : x ∈ Rn, Ax ⩽ b} is feasible
and bounded and if rank(A) = n, then the linear program has an optimal
solution that is an extreme point.

Proof. We use the following notation. If x∗ is a feasible solution then Ax∗x ⩽
bx∗ is the subsystem of Ax ⩽ b that is satisfied by x∗ with equality. The rank
of x∗, rank(x∗) is the rank of Ax∗ . The following claim implies the assertion.

If x∗ is feasible and rank(x∗) < n, then there exists a y∗ with cT y∗ ⩾ cT x∗ and
rank(y∗) > rank(x∗).

To prove this, let d ̸= 0 ∈ Rn be a vector with Ax∗d = 0. We can assume
cT d ⩾ 0 by switching to −d otherwise.
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If cT d > 0, then consider the points x∗ + λd with λ ⩾ 0 and let λmax

be maximal with the corresponding point feasible. Clearly y∗ = x∗ + λmaxd
satisfies the condition of the claim.

Suppose now that cT d = 0. Then Ad ̸= 0 since rank(A) = n. Let λmax be
the maximum of the set {λ ⩾ 0: A(x∗ ± λd) ⩽ b}. Then y∗ = x∗ + λmaxd or
y∗ = x∗ − λmaxd satisfies the condition of the claim.

Corollary 3.1. A linear program max{cTx : x ∈ Rn, Ax ⩽ b} which is
feasible and bounded has an optimal solution.

Proof. The linear program

max{cTx+ − cTx− : x+, x− ∈ Rn, x+ ⩾ 0, x− ⩾ 0, A(x+ − x−) ⩽ b}

is feasible and bounded and the rank of the constraint matrix is 2n. Thus, by
Theorem 3.2 possesses an optimal solution. x+, x−. This corresponds to an
optimal solution x+ − x− of the linear program max{cTx : x ∈ Rn, Ax ⩽ b}.

3.2 Linear, affine, conic and convex hulls

We now describe convex sets that are generated by a set X ⊆ Rn of vectors
of Rn. The linear hull, affine hull, conic hull and convex hull of X are defined
as follows.

lin.hull(X) = {λ1x1 + · · ·+ λtxt | t ⩾ 0, (3.1)
x1, . . . , xt ∈ X, λ1, . . . , λt ∈ R}

affine.hull(X) = {λ1x1 + · · ·+ λtxt | t ⩾ 1, (3.2)

x1, . . . , xt ∈ X,

t∑
i=1

λi = 1, λ1, . . . , λt ∈ R}

cone(X) = {λ1x1 + · · ·+ λtxt | t ⩾ 0, (3.3)
x1, . . . , xt ∈ X, λ1, . . . , λt ∈ R⩾0}

conv(X) = {λ1x1 + · · ·+ λtxt | t ⩾ 1, (3.4)

x1, . . . , xt ∈ X,

t∑
i=1

λi = 1, λ1, . . . , λt ∈ R⩾0}

Proposition 3.2. Let X ⊆ Rn and x0 ∈ X. One has

affine.hull(X) = x0 + lin.hull(X − x0),

where for u ∈ Rn and V ⊆ Rn, u+V denotes the set u+V = {u+v | v ∈ V }.
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b

b

b

b

b

b

b

Fig. 3.4: The convex hull of 7 points in R2.

b

b

b

b

Fig. 3.5: Two points with their convex hull on the left and their affine hull
on the right.
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b

x1

x2

cone({x1, x2})

b

Fig. 3.6: Two points with their conic hull

Proof. We first show that each x ∈ affine.hull(X) is also an element of the set
x0+lin.hull(X−x0) and then we show that each point x ∈ x0+lin.hull(X−x0)
is also an element of affine.hull(X).

Let x ∈ affine.hull(X),i.e., there exists a natural number t ⩾ 1 and
λ1, . . . , λt ∈ R, with x = λ1x1 + · · ·+ λtxt and

∑t
i=1 λi = 1. Now

x = x0 − x0 + λ1x1 + λ2x2 + · · ·+ λtxt

= x0 − λ1x0 − · · · − λtx0 + λ1x1 + λ2x2 + · · ·+ λtxt

= x0 + λ1(x1 − x0) + · · ·+ λt(xt − x0),

which shows that x ∈ x0 + lin.hull(X − x0).
Suppose now that x ∈ x0+lin.hull(X−x0). Then there exist λ1, . . . , λt ∈ R

with x = x0 + λ1(x1 − x0) + · · · + λt(xt − x0). With λ0 = 1 −∑t
i=1 λi one

has
∑t

i=0 λi = 1 and

x = x0 + λ1(x1 − x0) + · · ·+ λt(xt − x0)

= λ0x0 + · · ·+ λtxt

and thus that x ∈ affine.hull(X). ⊓⊔

Theorem 3.3. Let X ⊆ Rn be a set of points. The convex hull, conv(X), of
X is convex.

Proof. Let u and v be points in conv(X). This means that there exists a
natural number t ⩾ 1, real numbers αi, βi ⩾ 0, and points xi ∈ X, i = 1, . . . , t
with

∑t
i=1 αi =

∑t
i=1 βi = 1 with u =

∑t
i=1 αixi and v =

∑t
i=1 βixi. For λ ∈

[0, 1] one has λαi+(1−λ)βi ⩾ 0 for i = 1, . . . , t and
∑t

i=1 (λαi + (1− λ)βi) =
1. This shows that
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λu+ (1− λ)v =
∑

(λiαi + (1− λi)βi)xi ∈ conv(X),

and therefore that conv(X) is convex. ⊓⊔

Theorem 3.4. Let X ⊆ Rn be a set of points. Each convex set K containing
X also contains conv(X).

Proof. Let K be a convex set containing X, and let x1, . . . , xt ∈ X and
λi ∈ R with λi ⩾ 0, i = 1, . . . , t and

∑t
i=1 λi = 1. We need to show that

u =
∑t

i=1 λixi is contained in K. This is true for t ⩽ 2 by the definition of
convex sets.

We argue by induction. Suppose that t ⩾ 3. If one of the λi is equal to 0,
then one can represent u as a convex combination of t− 1 points in X and,
by induction, u ∈ K. If t ⩾ 3, each λi > 0 and

∑t
i=1 λi = 1, then one has

0 < λi < 1 for i = 1, . . . , t and thus we can write

u = λ1x1 + (1− λ1)

t∑
i=2

λi

1− λ1
xi.

One has λi/(1− λ1) > 0 and

t∑
i=2

λi

1− λ1
= 1,

which means that the point
∑t

i=2
λi

1−λ1
xi is in K by induction. Again, by the

definition of convex sets, we conclude that u lies in K. ⊓⊔

Theorem 3.4 implies that conv(X) is the intersection of all convex sets
containing X, i.e.,

conv(X) =
⋂

K⊇X
K convex

K.

Definition 3.5. A set C ⊆ Rn is a cone, if it is convex and for each c ∈ C
and each λ ∈ R⩾0 one has λ · c ∈ C.

Similarly to Theorem 3.3 and Theorem 3.4 one proves the following.

Theorem 3.5. For any X ⊆ Rn, the set cone(X) is a cone.

Theorem 3.6. Let X ⊆ Rn be a set of points. Each cone containing X also
contains cone(X).

These theorems imply that cone(X) is the intersection of all cones con-
taining X, i.e.,

cone(X) =
⋂

C⊇X
C is a cone

C.
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3.3 Radon’s lemma and Carathéodory’s theorem

Theorem 3.7 (Radon’s lemma). Let A ⊆ Rn be a set of n + 2 points.
There exist disjoint subsets A1, A2 ⊆ A with

conv(A1) ∩ conv(A2) ̸= ∅.

Proof. Let A = {a1, . . . , an+2}. We embed these points into Rn+1 by append-
ing a 1 in the n+ 1-st component, i.e., we construct

A′ =
{(

a1
1

)
, . . . ,

( an+2

1

)}
⊆ Rn+1.

The set A′ consists of n + 2 vectors in Rn+1. Those vectors are linearly
dependent. Let

0 =

n+2∑
i=1

λi

(
ai
1

)
(3.5)

be a nontrivial linear representation of 0, i.e., not all λi are 0. Furthermore,
let P = {i : λi ⩾ 0, i = 1, . . . , n + 2} and N = {i : λi < 0, i = 1, . . . , n + 2}.
We claim that

conv({ai : i ∈ P}) ∩ conv({ai : i ∈ N}) ̸= ∅.

It follows from (3.5) and the fact that the n+ 1-st component of the vectors
is 1 that

∑
i∈P λi = −

∑
i∈N λi = s > 0. It follows also from (3.5) that∑

i∈P

λiai =
∑
i∈N

−λiai.

The point u =
∑

i∈P (λi/s)·ai =
∑

i∈N (−λi/s)ai is contained in conv({ai : i ∈
P}) ∩ conv({ai : i ∈ N}), implying the claim. ⊓⊔

Theorem 3.8 (Carathéodory’s theorem). Let X ⊆ Rn, then for each
x ∈ cone(X) there exists a set X̃ ⊆ X of cardinality at most n such that
x ∈ cone(X̃). The vectors in X̃ are linearly independent.

Proof. Let x ∈ cone(X), then there exist t ∈ N+, xi ∈ X and λi ⩾ 0,
i = 1, . . . , t, with x =

∑t
i=1 λixi. Suppose that t ∈ N+ is minimal such that

x can be represented as above. We claim that t ⩽ n. If t ⩾ n+1, then the xi

are linearly dependent. This means that there are µi ∈ R, not all equal to 0
with

t∑
i=1

µixi = 0. (3.6)

By multiplying each µi in (3.6) with −1 if necessary, we can assume that at
least one of the µi is strictly larger than 0. One has for each ε ∈ R
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x =

t∑
i=1

(λi − ε · µi)xi. (3.7)

What is the largest ε∗ > 0 that we can pick for ε such that (3.7) is still a
conic combination? We need to have

λi − ε · µi ⩾ 0, for each i ∈ {1, . . . , t}. (3.8)

Let J be the set of indices J = {j : j ∈ {1, . . . , t}, µj > 0}. We observed that
we can assume J ̸= ∅. We have (3.8) as long as

ε ⩽ λj/µj for each j ∈ J. (3.9)

This means that ε∗ = min{λj/µj : j ∈ J}. Let j∗ ∈ J be an index where
this minimum is attained. Since λi − ε∗ · µi ⩾ 0 for all i = 1, . . . , t and
since λj∗ − ε∗ · µj∗ = 0, we have x ∈ cone({x1, . . . , xt} \ {xj∗}, which is a
contradiction to the minimality of t. ⊓⊔

Corollary 3.2 (Carathéodory’s theorem for convex hulls). Let X ⊆
Rn, then for each x ∈ conv(X) there exists a set X̃ ⊆ X of cardinality at
most n+ 1 such that x ∈ conv(X̃).

3.4 Separation theorem and Farkas’ lemma

We recall a basic fact from analysis, see, e.g. [12, Theorem 4.4.1].

Theorem 3.9. Let X ⊆ Rn be compact and f : X → R be continuous. Then
f is bounded and there exist points x1, x2 ∈ X with f(x1) = sup{f(x) : x ∈
X} and f(x2) = inf{f(x) : x ∈ X}.

Theorem 3.10. Let K ⊆ Rn be a closed convex set and x∗ ∈ Rn \K, then
there exists an inequality aTx ⩽ β such that aT y < β holds for all y ∈ K and
aTx∗ > β.

Proof. Since the mapping f(x) = ∥x∗ − x∥ is continuous and since for any
k ∈ K, K ∩ {x ∈ K : ∥x∗ − x∥ ⩽ ∥x∗ − k∥} is compact, there exists a point
k∗ ∈ K with minimal distance to x∗. Consider the midpoint m = 1/2(k∗+x∗)
on the line-segment k∗x∗ and the hyperplane aTx = β with β = aTm and
a = (x∗ − k∗).

Clearly aTx∗ > β and aT k∗ < β. Suppose now that there exists a point
k′ ∈ K with aT k′ ⩾ β. Since the line segment spanned by k∗ and k′ is
contained in K, we can assume that aT k′ = β holds. This means that k′ =
k∗+a/2+x′, where x′ is orthogonal to a. Again, by convexity k∗+λ(a/2+x′) ∈
K for 0 ⩽ λ ⩽ 1. But the square of the distance of such a point to x∗ is
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∥x∗ − k∗ − λ(a/2 + x′)∥2 = ∥(1− λ/2)a− λx′∥2
= (1− λ/2)2∥a∥2 + λ2∥x′∥2

As a function of λ, this is decreasing at λ = 0. Thus there exists a point
on the line segment between k∗ and k′ which is closer to x∗ than k∗ and this
is a contradiction. ⊓⊔
Theorem 3.11 (Farkas’ lemma). Let A ∈ Rm×n be a matrix and b ∈ Rm

be a vector. The system Ax = b, x ⩾ 0 has a solution if and only if for all
λ ∈ Rm with λTA ⩾ 0 one has λT b ⩾ 0.

Proof. Suppose that x∗ ∈ Rn
⩾0 satisfies Ax∗ = b and let λ ∈ Rm with λTA ⩾

0. Then λT b = λTAx∗ ⩾ 0, since λTA ⩾ 0 and x∗ ⩾ 0.
Now suppose that Ax = b, x ⩾ 0 does not have a solution. Then, with

X ⊆ Rm being the set of column vectors of A, b is not in cone(X). The
set cone(X) is convex and closed, see exercise 8. Theorem 3.10 implies that
there is an inequality λTx ⩾ β such that λT y > β for each y ∈ cone(X) and
λT b < β. Since 0 ∈ cone(X) it follows that 0 > β and thus that λT b < 0.

3.5 Decomposition theorem for polyhedra

In the following we use the notation P (A, b) = {x ∈ Rn : Ax ⩽ b} for the
polyhedron that is defined by Ax ⩽ b. We prove the Minkowski-Weyl theo-
rem in this section that shows that polyhedra can be decomposed into the
Minkowski sum of a polytope and a cone.

Definition 3.6. An inequality aTx ⩽ β is called an implicit equality of Ax ⩽
b if each x∗ ∈ P (A, b) satisfies aTx∗ = β. We denote the subsystem consisting
of implicit equalities of Ax ⩽ b by A=x ⩽ b= and the subsystem consisting of
the other inequalities by A⩽x ⩽ b⩽. A constraint is redundant if its removal
from Ax ⩽ b does not change the set of feasible solution of Ax ⩽ b.

In the following, a vector x satisfies Ax < b if and only if aTi x < bi for all
1 ⩽ i ⩽ m, where a1,. . . ,am are the rows of A.

Lemma 3.1. Let P (A, b) be a non-empty polyhedron. Then there exists an
x ∈ P (A, b) with A⩽x < b⩽.

Proof. Suppose that the inequalities in A⩽x ⩽ b⩽ are aT1 x ⩽ β1, . . . , a
T
k x ⩽

βk. For each 1 ⩽ i ⩽ k there exists an xi ∈ P with aTi xi < βi. Thus the point
x = 1/k(x1 + · · ·+ xk) is a point of P (A, b) satisfying A⩽x < b⩽.

Lemma 3.2. Let Ax ⩽ b be a system of inequalities. One has

affine.hull(P (A, b)) = {x ∈ Rn | A=x = b=} = {x ∈ Rn | A=x ⩽ b=}.
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Proof. Let x1, . . . , xt ∈ P (A, b) and suppose that aTx ⩽ β is an implicit
equality. Then since aTxi = β one has aT (

∑t
j=1 λixi) = β. Therefore the

inclusions ⊆ follow.
Suppose now that x0 satisfies A=x ⩽ b=. Let x1 ∈ P (A, b) with A⩽x1 <

b⩽. If x0 = x1 then x0 ∈ P (A, b) ⊆ affine.hull(P (A, b)). Otherwise the line
segment between x0 and x1 contains more than one point in P and thus
x0 ∈ affine.hull(P ).

A nonempty set C ⊆ Rn is a cone if λx + µ y ∈ C for each x, y ∈ C
and λ, µ ∈ R⩾0. A cone C is polyhedral if C = {x ∈ Rn | Ax ⩽ 0}. A cone
generated by vectors x1, . . . , xm ∈ Rn is a set of the form C = {∑m

i=1 λixi |
λi ∈ R⩾0, i = 1, . . . ,m}. A point x =

∑m
i=1 λixi with λi ∈ R⩾0, i = 1, . . . ,m

is called a conic combination of the x1, . . . , xm. The set of conic combinations
of X is denoted by cone(X).

Theorem 3.12 (Farkas-Minkowsi-Weyl theorem). A convex cone is
polyhedral if and only if it is finitely generated.

Proof. Suppose that a1, . . . , am span Rn and consider the cone C = {∑m
i=1 λiai |

λi ⩾ 0, i = 1, . . . ,m}. Let b /∈ C. Then the system Aλ = b, λ ⩾ 0 has no
solution. By Theorem 3.11 (Farkas’ lemma), this implies that there exists a
y ∈ Rn such that AT y ⩽ 0 and bT y > 0.

Suppose that the columns of A which correspond to inequalities in AT y ⩽ 0
that are satisfied by y with equality have rank < n−1. Denote these columns
by ai1 , . . . , aik . Then there exists a v ̸= 0 which is orthogonal to each of these
columns and to b, i.e., aTijv = 0 for each j = 1, . . . , k and bT v = 0. There
also exists a column a∗ of A which is not in the set {ai1 , . . . , aik} such that
(a∗)T v > 0 since the columns of A span Rn. Therefore there exists an ϵ > 0
such that

i) AT (y + ϵ · v) ⩽ 0
ii) The subspace generated by the columns of A which correspond to in-

equalities of ATx ⩽ 0 which are satisfied by y + ϵ · v with equality
strictly contains ⟨ai1 , . . . , aik⟩.

Notice that we have bT y = bT (y + ϵ · v) > 0.
Continuing this way, we obtain a solution of the form y+u of ATx ⩽ 0 such

that one has n − 1 linearly independent columns of A whose corresponding
inequality in ATx ⩽ 0 are satisfied with equality. Thus we see that each b
which does not belong to C can be separated from C with an inequality of
the form cTx ⩽ 0 which is uniquely defined by n − 1 linearly independent
vectors from the set a1, . . . , am. This shows that C is polyhedral.

Suppose now that a1, . . . , am do not span Rn. Then there exist linearly
independent vectors d1, . . . , dk such that each di is orthogonal to each of
the a1, . . . , am and a1, . . . , am, d1, . . . , dk spans Rn. The cone generated by
a1, . . . , am, d1, . . . , dk is polyhedral and thus of the form Ax ⩽ 0 with some
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matrix A ∈ Rm×n. Suppose that ⟨a1, . . . , am⟩ = {x ∈ Rn | Ux = 0}. Now
C = {x ∈ Rn | Ax ⩽ 0, Ux = 0} and C is polyhedral.

Now suppose that C = {x ∈ Rn | aT1 x ⩽ 0, . . . , aTmx ⩽ 0}. The cone

C ′ := cone(a1, . . . , am) = {
m∑
i=1

λiai | λi ⩾ 0, i = 1, . . . ,m}

is polyhedral and thus of the form C ′ = {x ∈ Rn | bT1 x ⩽ 0, . . . , bTk x ⩽
0}. Clearly, cone(b1, . . . , bk) ⊆ C since bTi aj ⩽ 0. Suppose now that y ∈
C\cone(b1, . . . , bk). Then, since cone(b1, . . . , bk) is polyhedral, there exists a
w ∈ Rn with wT y > 0 and wT bi ⩽ 0 for each i = 1, . . . , k. From the latter we
conclude that w ∈ C ′. From y ∈ C and w ∈ C ′ we conclude wT y ⩽ 0, which
is a contradiction.

A set of vectors Q = conv(X), where X ⊆ Rn is finite is called a polytope.

Theorem 3.13 (Decomposition theorem for polyhedra). A set P ⊆
Rn is a polyhedron if and only if P = Q + C for some polytope Q and a
polyhedral cone C.

Proof. Suppose P = {x ∈ Rn | Ax ⩽ b} is a polyhedron. Consider the
polyhedral cone {(

x
λ

)
| x ∈ Rn, λ ∈ R⩾0;Ax− λb ⩽ 0

}
(3.10)

is generated by finitely many vectors
(
xi

λi

)
, i = 1, . . . ,m. By scaling with a

positive number we may assume that each λi ∈ {0, 1}. Let Q be the convex
hull of the xi with λi = 1 and let C be the cone generated by the xi with

λi = 0. A point x ∈ Rn is in P if and only if
(
x
1

)
belongs to (3.10) and thus

if and only if (
x
1

)
∈ cone

{(
x1

λ1

)
, . . . ,

(
xm

λm

)}
.

Therefore P = Q+ C.
Suppose now that P = Q+C for some polytope Q and a polyhedral cone

C with Q = conv(x1, . . . , xm) and C = cone(y1, . . . , yt). A vector x0 is in P
if and only if(

x0

1

)
∈ cone

{(
x1

1

)
, . . . ,

(
xm

1

)
,

(
y1
0

)
, . . . ,

(
yt
0

)}
(3.11)

By Theorem 3.12 (3.11) is equal to{(
x
λ

)
| Ax− λb ⩽ 0

}
(3.12)
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for some matrix A and vector b. Thus x0 ∈ P if and only if Ax0 ⩽ b and thus
P is a polyhedron.

= +

P conv(Q) cone(C)

Fig. 3.7: A polyhedron and its decomposition into Q and C

Let P = {x ∈ Rn | Ax ⩽ b}. The characteristic cone is char.cone(P ) =
{y | y + x ∈ P for all x ∈ P} = {y | Ay ⩽ 0}. One has

i) y ∈ char.cone(P ) if and only if there exists an x ∈ P such that x+λ y ∈ P
for all λ ⩾ 0

ii) P + char.cone(P ) = P
iii) P is bounded if and only if char.cone(P ) = {0}.
iv) If the decomposition of P is P = Q+ C, then C = char.cone(P ).

The lineality space of P is defined as char.cone(P ) ∩ −char.cone(P ). A
polyhedron is pointed, if its lineality space is {0}.

Definition 3.7. A set F ⊆ Rn is called a face of P if there exists a valid
inequality cTx ⩽ δ for P with F = P ∩ (cTx = δ).

Lemma 3.3. A set ∅ ≠ F ⊆ Rn is a face of P if and only if F = {x ∈ P |
A′x = b′} for a subset A′x ⩽ b′ of Ax ⩽ b.

Proof. Suppose that F = {x ∈ P | A′x = b′}. Consider the vector c = 1TA′

and δ = 1T b′. The inequality cTx ⩽ δ is valid for P . It is satisfied with
equality by each x ∈ F . If x′ ∈ P\F , then there exists an inequality aTx ⩽ β
of A′x ⩽ b′ such that aTx′ < β and consequently cTx′ < δ.

On the other hand, if cTx ⩽ δ defines the face F , then by the linear
programming duality (see chapter 5)

max{cTx | Ax ⩽ b} = min{bTλ | ATλ = c, λ ⩾ 0}
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there exists a λ ∈ Rm
⩾0 such that c = λTA and δ = λT b. Let A′x ⩽ b′ be the

subsystem of Ax ⩽ b which corresponds to strictly positive entries in Ax ⩽ b.
One has F = {x ∈ P | A′x = b′}.

A facet of P is an inclusion-wise maximal face F of P with F ̸= P . An
inequality aTx ⩽ β of Ax ⩽ b is called redundant if P (A, b) = P (A′, b′),
where A′x ⩽ b′ is the system stemming from Ax ⩽ b by deleting aTx ⩽ β.
A system Ax ⩽ b is irredundant if Ax ⩽ b does not contain a redundant
inequality.

Lemma 3.4. Let Ax ⩽ b be an irredundant system. Then a set F ⊆ P is a
facet if and only if it is of the form F = {x ∈ P | aTx = β} for an inequality
aTx ⩽ β of A⩽x ⩽ b⩽.

Proof. Let F be a facet of P . Then F = {x ∈ P | cTx ⩽ δ} for a valid
inequality cTx ⩽ δ of P . There exists a λ ∈ Rm

⩾0 with c = λTA and δ = λT b.
There exists an inequality aTx ⩽ β of A⩽x ⩽ b⩽ whose corresponding entry
in λ is strictly positive. Clearly F ⊆ {x ∈ P | aTx = β} ⊂ P . Since F is an
inclusion-wise maximal face one has F = {x ∈ P | aTx = β}.

Let F be of the form F = {x ∈ P | aTx = β} for an inequality aTx ⩽ β
of A⩽x ⩽ b⩽. Clearly F ̸= ∅ since the system Ax ⩽ b is irredundant. If F
is not a facet, then F ⊆ F ′ = {x ∈ P | a′Tx = β′} with another inequality
a′Tx ⩽ β′ of A⩽x ⩽ b⩽. Let x∗ ∈ Rn be a point with aTx∗ > β and which
satisfies all other inequalities of Ax ⩽ b. Such an x∗ exists, since Ax ⩽ b is
irredundant. Let x̃ ∈ P with A⩽x̃ < b⩽. There exists a point x on the line-
segment x̃x∗ with aTx = β. This point is then also in F ′ and thus a′Tx = β′

follows. This shows that a′Tx∗ > β′ and thus aTx ⩽ β can be removed from
the system. This is a contradiction to Ax ⩽ b being irredundant.

Lemma 3.5. A face F of P (A, b) is inclusion-wise minimal if and only if it
is of the form F = {x ∈ Rn | A′x = b′} for some subsystem A′x ⩽ b′ of
Ax ⩽ b.

Proof. Let F be a minimal face of P and let A′x ⩽ b′ a the subsystem
of inequalities of Ax ⩽ b with F = {x ∈ P | A′x = b′}. Suppose that
F ⊂ {x ∈ Rn | A′x = b′} and let x1 ∈ Rn\P satisfy A′x1 = b′ and x2 ∈ F .
There exists “a first” inequality aTx ⩽ β of Ax ⩽ b which is “hit” by the
line-segment x2x1. Let x∗ = x2x1 ∩ (aTx = β). Then x∗ ∈ F and thus
F ∩ (aTx = β) ̸= ∅. But F ⊃ F ∩ (aTx = β) since aTx ⩽ β is not an
inequality of A′x ⩽ b′. This is a contradiction to the minimality of F .

Suppose that F is a face with F = {x ∈ Rn | A′x = b′} = {x ∈ P | A′x =

b′} for a subsystem A′x ⩽ b′ of Ax ⩽ b. Suppose that there exists a face F̃ of
P with ∅ ⊂ F̃ ⊂ F . By Lemma 3.3 F̃ = {x ∈ P | A′x = b′, A∗x = b∗}, where
A∗x ⩽ b∗ is a sub-system of Ax ⩽ b which contains an inequality aTx ⩽ β
such that there exists an x1, x2 ∈ F with aTx1 < β and aTx2 ⩽ β. The line
ℓ(x1, x2) = {x1+λ(x2−x1) | λ ∈ R} is contained in F but is not contained in
aTx ⩽ β. This shows that F is not contained in P which is a contradiction.
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Exercise 21 asks for a proof of the following corollary.

Corollary 3.3. Let F1 and F2 be two inclusion-wise minimal faces of P =
{x ∈ Rn : Ax ⩽ b}, then dim(F1) = dim(F2).

We say that a polyhedron contains a line ℓ(x1, x2) with x1 ̸= x2 ∈ P if
ℓ(x1, x2) = {x1 + λ(x2 − x1) | λ ∈ R} ⊆ P . A vertex of P is a 0-dimensional
face of P . An edge of P is a 1-dimensional face of P .

Example 3.2. Consider a linear program min{cTx : Ax = b, x ⩾ 0}. A basic
feasible solution defined by the basis B ⊆ {1, . . . , n} is a vertex of the poly-
hedron P = {x ∈ Rn : Ax = b, x ⩾ 0}. This can be seen as follows. The
inequality aTx ⩾ 0 is valid for P , where aB = 0 and aB = 1. The inequality
is satisfied with equality by a point x∗ ∈ P if and only if x∗

B
= 0. Since the

columns of AB are linearly independent, as B is a basis, the unique point
which satisfies aTx ⩾ 0 with equality is the basic feasible solution

In exercise 23 you are asked to show that the simplex method can be
geometrically interpreted as a walk on the graph G = (V,E), where V is
the set of basic feasible solutions and uv ∈ E if and only if conv{u, v} is a
1-dimensional face of the polyhedron defined by the linear program.

Exercises

1) Consider the unit ball Bn = {x ∈ Rn : ∥x∥2 ⩽ 1}. Show that the set of
extreme points of B is the sphere S(n−1) = {x ∈ Rn : ∥x∥2 = 1}.

2) A line is a set L = {x · d + t : x ∈ R} ⊆ Rn where d, t ∈ Rn d ̸= 0. Show
the following.
A non-empty polyhedron P = {x ∈ Rn : Ax ⩽ b} ⊆ Rn contains a line if
and only if rank(A) < n.

3) Two different vertices v1 ̸= v2 of a polyhedron P = {x ∈ Rn : Ax ⩽ b} are
called adjacent, if there exists a subsystem A′x ⩽ b′ of Ax ⩽ b with

i) A′v1 = b′ and A′v2 = b′ and
ii) rank(A′) = (n− 1).

Show that there exists a valid inequality cTx ⩽ δ of P with(
P ∩ {x ∈ Rn : cTx = δ}

)
= conv{v1, v2}.

4) Let {Ci}i∈I be a family of convex subsets of Rn. Show that the intersection⋂
i∈I Ci is convex.

5) Show that the set of feasible solutions of a linear program is convex.
6) Prove Carathéodory’s Theorem for convex hulls, Corollary 3.2.
7) Let A ∈ Rn×n be a non-singular matrix and let a1, . . . , an ∈ Rn be the

columns of A. Show that cone({a1, . . . , an}) is the polyhedron P = {y ∈
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Rn : A−1y ⩾ 0}. Show that cone({a1, . . . , ak}) for k ⩽ n is the set Pk =
{y ∈ Rn : a−1

i x ⩾ 0, i = 1, . . . , k, a−1
i x = 0, i = k + 1, . . . , n}, where a−1

i

denotes the i-th row of A−1.
8) Prove that for a finite set X ⊆ Rn the conic hull cone(X) is closed and

convex.
Hint: Use Carathéodory’s theorem and exercise 7.

9) Find a countably infinite set X ⊂ R2 such that cone(X) is not closed. Are
there any cones that are open?

10) Prove Theorem 3.5.
11) Prove Theorem 3.6.
12) Let f : Rn → Rd be a linear map.

a) Show that f(K) = {f(x) : x ∈ K} is convex if K is convex. Is the
reverse also true?

b) For X ⊆ Rn arbitrary, prove that conv(f(X)) = f(conv(X)).

13) Using Theorem 3.11, prove the following variant of Farkas’ lemma: Let
A ∈ Rm×n be a matrix and b ∈ Rm be a vector. The system Ax ⩽ b,
x ∈ Rn has a solution if and only if for all λ ∈ Rm

⩾0 with λTA = 0 one has
λT b ⩾ 0.

14) Provide an example of a convex and closed set K ⊆ R2 and a linear
objective function cTx such that inf{cTx : x ∈ K} > −∞ but there does
not exist an x∗ ∈ K with cTx∗ ⩽ cTx for all x ∈ K.

15) Consider the vectors

x1 =

 3
1
2

 , x2 =

1
2
5

 , x3 =

 2
0
1

 , x4 =

 2
4
3

 , x5 =

1
1
1

 .

Let A = {x1, . . . , x5}. Find two disjoint subsets A1, A2 ⊆ A such that

conv(A1) ∩ conv(A2) ̸= ∅.

Hint: Recall the proof of Radon’s lemma
16) Consider the vectors

x1 =

 3
1
2

 , x2 =

1
2
5

 , x3 =

 2
0
1

 , x4 =

 2
4
3

 , x5 =

1
1
1

 .

The vector

v = x1 + 3x2 + 2x3 + x4 + 3x5 =

 15
14
25


is a conic combination of the xi.
Write v as a conic combination using only three vectors of the xi.
Hint: Recall the proof of Carathéodory’s theorem
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17) Prove that each nonempty polyhedron P ⊆ Rn can be represented as
P = L + Q, where L ⊆ Rn is a linear space and Q ⊆ Rn is a pointed
polyhedron.

18) Let P ⊂ Rn be a polytope and f : Rn → Rm a linear map.

i) Show that f(P ) is a polytope.
ii) Let y ∈ Rm be a vertex of f(P ). Show that there is a vertex x ∈ Rn

of P such that f(x) = y.

19) Let A ∈ Rm×n and b ∈ Rm and consider the polyhedron P = P (A, b).
Show that dim(P ) = n− rank(A=).

20) i) Show that the dimension of each minimal face of a polyhedron P is
equal to n− rank(A).

ii) Show that a polyhedron has a vertex if and only if the polyhedron
does not contain a line.

21) Show that the affine dimension of the minimal faces of a polyhedron P =
{x ∈ Rn : Ax ⩽ b} is invariant.

22) In this exercise you can assume that a linear program max{cTx | Ax ⩽ b}
can be solved in polynomial time. Suppose that P (A, b) has vertices and
that the linear program is bounded. Show how to compute an optimal
vertex solution of the linear program in polynomial time.

23) Let P = {x ∈ Rn : Ax = b, x ⩾ 0} be a polyhedron, where A ∈ Rm×n has
full row-rank. Let B1, B2 be two bases such that |B1 ∩ B2| = m − 1 and
suppose that the associated basic solutions x∗

1 and x∗
2 are feasible. Show

that, if x1 ̸= x2, then conv{x∗
1, x

∗
2} is a 1-dimensional face of P .





Chapter 4
The simplex method

In this chapter we describe the simplex method. The task is to solve a linear
program

max{cTx : x ∈ Rn, Ax ⩽ b}. (4.1)

We make the following assumption.

The matrix A ∈ Rm×n is of full column-rank. In other words, the columns of A are
linearly independent.

This assumption is not a restriction, since we can solve the following equiva-
lent linear program instead, where each xi is represented as the difference of
two positive values xi = x+

i − x−
i .

max{cTx+ − cTx− : x+, x− ∈ Rn, Ax+ −Ax− ⩽ b, x+ ⩾ 0, x− ⩾ 0}. (4.2)

The constraint matrix of the linear program (4.2) in inequality standard form
is  A −A

−In 0
0 −In

 ,

where In is the n × n identity matrix and 0 is the n × n all-zero matrix.
Clearly this matrix has linearly independent columns.

4.1 Adjacent vertices

Let P = {x ∈ Rn : Ax ⩽ b} be the polyhedron of feasible solutions of (4.1).

Definition 4.1. Two extreme points x1 ̸= x2 of P are adjacent, if there exists
a valid inequality dTx ⩽ δ of P such that

P ∩ {x ∈ Rn : dTx = δ} = {λx1 + (1− λ)x2 : λ ∈ [0, 1]}.

43
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In other words, x1 ̸= x2 are adjacent if there exists a valid inequality for P
such that the points of P that satisfy this inequality with equality are exactly
the line-segment spanned by x1 and x2.

Similar to the characterization of extreme points in Theorem 3.1, we can
state and prove the following theorem.

Theorem 4.1. Two distinct vertices x1 and x2 of P are adjacent if and only
if there exists a sub-system A′x ⩽ b′ of Ax ⩽ b such that

i) A′ ∈ R(n−1)×n and the rows of A′ are linearly independent.
ii) x1 and x2 satisfy A′x ⩽ b′ with equality.

Proof. Suppose that x1 ̸= x2 are adjacent and suppose that dTx ⩽ δ is a
valid inequality that asserts this fact. Consider the sub-system Ãx ⩽ b̃ of
inequalities of Ax ⩽ b that are satisfied by 1/2(x1 + x2) with equality. These
are the inequalities that are satisfied by all points on the line-segment with
equality. Since Ã(x1− x2) = 0, one has rank(Ã) ⩽ n− 1. If rank(Ã) < n− 1,
then there exists a v ∈ Rn that is linearly independent from (x1 − x2) that
satisfies Ãv = 0. Consequently there exist a ε > 0 such that

{1
2
(x1 + x2) + µ1(x1 − x2) + µ2v : − ε ⩽ µ1, µ2 ⩽ ε} ⊆ P. (4.3)

All points of the set (4.3) satisfy dTx ⩽ δ with equality and they are not
a subset of the line-segment spanned by x1 and x2. From this we conclude
that rank(Ã) = n− 1 which implies that there exists a sub-system A′x ⩽ b′

satisfying i) and ii).
Suppose on the other hand that there exists a sub-system A′x ⩽ b′ that

satisfies i) and ii). The line spanned by x1 and x2 is the set of points of Rn

that satisfies A′x = b′ and the intersection of this line with P is, since x1 and
x2 are vertices, the line-segment spanned by these two points.

The inequality 1TA′x ⩽ 1T b′ is valid for P and is satisfied by the line-
segment spanned by x1 and x2 with equality. Let y∗ ∈ P be a point that
does not lie on the line segment. Then one of the inequalities of A′x ⩽ b′ is
satisfied by y∗ with strict inequality and thus y∗ does not satisfy dTx ⩽ δ
with equality.

4.2 Bases, feasible bases and vertices

We will frequently use the following notation. Let B ⊆ {1, . . . ,m} then AB ∈
R|B|×n is the matrix consisting of the rows of A that are indexed by B and
bB ∈ R|B| is the vector whose components are the ones of b indexed by B.

Example 4.1. For A =

3 2
7 1
8 4

, b =

3
2
6

 and B = {2, 3}, one has



4.2 Bases, feasible bases and vertices 45

AB =

(
7 1
8 4

)
and bB =

(
2
6

)
.

A python implementation based on the sympy package of the above is as
follows. Notice that the index set represented by a list B here is starting at
1, since the first row of a matrix in sympy is indexed by 0.

1 from sympy import *
2 A = Matrix ([[3 ,2] ,[7 ,1] ,[8 ,4]])
3 b = Matrix ([3,2,6])
4

5 B = [1,2]
6

7 pprint(A[B,:])
8 pprint(b[B,:])

Definition 4.2. An index set B ⊆ {1, . . . ,m} is a basis if |B| = n and AB is
non-singular. If in addition x∗ = A−1

B bB is feasible, then B is called a feasible
basis.

Theorem 3.1 implies that every vertex x∗ of P = {x ∈ Rn : Ax ⩽ b}
is represented by a basis B, i.e. x∗ is the unique solution of ABx

∗ = bB .
This representation however must not be unique, see Figure 4.1. We say that
a linear program is degenerate, if there exists a basic solution x∗ ∈ Rn that
satisfies n+1 inequalities with equality. Otherwise the linear program is called
non-degenerate. If the linear program is non-degenerate, then each vertex is
represented by exactly one basis.

x∗
1

2 3

Fig. 4.1: The vertex x∗ is represented by each choice of two of the three tight
constraints. The linear program is degenerate. The red vector is the objective
function vector and the red labels are the indices of the constraints.

Definition 4.3. A basis B is called optimal if it is feasible and the unique
λ ∈ Rm with

λTA = cT and λi = 0, i /∈ B (4.4)

satisfies λ ⩾ 0.
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The basis {1, 2} in Figure 4.1 is not optimal whereas the bases {2, 3} and
{1, 3} are optimal bases.

Theorem 4.2. If B is an optimal basis, then x∗ = A−1
B bB is an optimal

solution of the linear program (4.1).

Proof. The inequality λTAx ⩽ λT b is valid for P = {x ∈ Rn : Ax ⩽ b}. But
λTA = cT and λT b = λTAx∗ = cTx∗. Consequently x∗ is an optimal solution
of the linear program (4.1).

4.3 Moving to an improving vertex

Suppose now that B is a feasible but not optimal basis. Then the unique λ
satisfying (4.4) has a negative component λi < 0 for some i ∈ B. The idea is
now to move from x∗

B = A−1
B bB by remaining tight at all constraints indexed

by B except for i.
There is only one way this can be achieved. Namely by moving in the

unique direction d with

aTj d =

{
0 for j ∈ B \ {i}
−1 if j = i.

When we do this, we follow the ray x∗
B + ε · d with ε ⩾ 0. What happens

to the objective function, as ε grows? Since cT d = λTAd = −λi > 0, the
objective function strictly grows with growing ε. There are now two cases.

At some point, we hit the boundary of a constraint and further increase
of ε results in an infeasible point. Let K ⊆ {1, . . . ,m} be the set of indices

K = {k : 1 ⩽ k ⩽ m, aTk d > 0}. (4.5)

Those are the indices of constraints that, at some point, will be violated. We
can increase ε until

ε∗ = min
k∈K
{(bk − aTk x

∗)/aTk d}. (4.6)

Now pick any k ∈ K for which this minimum is achieved and set B′ =
B \ {i} ∪ {k}. This is a feasible basis, d is orthogonal to all rows indexed by
B \ {i} but not to ak.

In the case where there is no constraint that puts an upper bound on ε,
then the linear program is unbounded. We have described one iteration of
the simplex algorithm. We iterate this procedure until an optimal solution is
found.

Example 4.2. Consider the linear program max{cTx : A ⩽ b, x ∈ R3} with
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A =


1 2 2
2 1 2
2 2 1
−1 0 0
0 −1 0
0 0 −1

 , b =


10
14
11
0
0
0

 and c =

 6
14
13



with starting basis
B = {1, 2, 3}.

One has

AB =

1 2 2
2 1 2
2 2 1

 bB =

10
14
11

 and x∗
B =

4
0
3

 .

For λB one obtains

λB =

 36
5
− 4

5
1
5

 .

From this it follows that 2 leaves the basis. The direction d is the solution of
the system

ABd =

 0
−1
0

 .

One has

d =

− 2
5

3
5
− 2

5

 .

The vector Ad is

A · d =


0
−1
0
2
5
− 3

5
2
5

 .

and one has

b−Ax∗ =


0
0
0
4
0
3

 .

This means that 6 enters the basis.
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1 from sympy import *
2

3 A = Matrix ([[1, 2, 2],
4 [2, 1, 2],
5 [2, 2, 1],
6 [-1, 0, 0],
7 [0, -1, 0],
8 [0, 0, -1]])
9

10 b = Matrix ([10 ,14,11,0,0,0])
11 c = Matrix ([6 ,14 ,13])
12 r = Matrix ([0,-1,0])
13

14 B = [0,1,2]
15

16 A_B = A[B,:]
17 b_B = b[B,:]
18

19 x = A_B.solve(b_B)
20 l = A_B.transpose ().solve(c)
21 d = A_B.transpose ().solve(r)
22

23 L = {"A_B =":A_B , "b_B =":b_B , "x^*=":x, "\lambda_B =":l , "d = "
:d}

24

25 for key , value in L.items ():
26 print (key)
27 pprint(value)

Fig. 4.2: A partial python code for example 4.2.

Algorithm 4.1 (Simplex algorithm).

Start with feasible basis B

while B is not optimal
Let i ∈ B be index with λi < 0
Compute d ∈ Rn with aTj d = 0, j ∈ B \ {i} and aTi d = −1
Determine K = {k : 1 ⩽ k ⩽ m, aTk d > 0}
if K = ∅

assert LP unbounded
else

Let k ∈ K index where min
k∈K

(bk − aTk x
∗)/aTk d is attained

update B := B \ {i} ∪ {k}

Theorem 4.3. If the linear program (4.1) is non-degenerate, then the sim-
plex algorithm terminates.
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Proof. In the non-degenerate case, ε∗ > 0 and the simplex algorithm makes
progress, i.e., the objective function value strictly increases after each itera-
tion. Since there is only a finite number of vertices, the algorithm terminates.

4.4 Termination in the degenerate case

In the case where the linear program (4.1) is degenerate, we cannot argue
that the objective function value increases each iteration and that the simplex
algorithm terminates. However, the simplex algorithm leaves us some choice.
Namely, there can be several indices i ∈ B such that λi < 0. Also, there could
be several indices k ∈ K attaining the minimum in (4.6). If one adheres to the
smallest index rule, then one can prove termination of the simplex algorithm
also in the degenerate case. One iteration of the simplex algorithm is now as
follows.

Algorithm 4.2 (Simplex algorithm with the smallest index rule).

Start with feasible basis B

while B is not optimal
Compute λ ∈ Rn such that λTAB = cT

Let i∗ ∈ B be the smallest index with λi < 0
Compute d ∈ Rn with aTj d = 0, j ∈ B \ {i∗} and aTi∗d = −1
Determine K = {k : 1 ⩽ k ⩽ m, aTk d > 0}
if K = ∅

assert LP unbounded
else

Let k∗ ∈ K the smallest index where min
k∈K

(bk − aTk x
∗)/aTk d is attained

update B := B \ {i∗} ∪ {k∗}
Theorem 4.4. The simplex algorithm with the smallest index rule termi-
nates.

Proof. We suppose that the simplex algorithm does not terminate. This
means that the simplex algorithm iterates through a sequence of bases

B0, B1, . . . , Bk

with Bk = B0. Inspecting two succeeding bases Bℓ and Bℓ+1 for 0 ⩽ ℓ ⩽ k−1,
one has Bℓ+1 = Bℓ \ {i} ∪ {j}, i.e., i leaves and j enters Bℓ. Now let j be
the largest index that leaves on that sequence. Since B0 = Bk, j also enters
again at some point. Let p and q be the indices of bases, 0 ⩽ p, q < k where
j leaves and enters respectively.

Let λ(p) and d(q) be the corresponding λ and d vectors from the iteration p

and q of the simplex algorithm respectively. Since λ(p)TA = cT and cT d(q) > 0
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we conclude
λ(p)TAd(q) > 0. (4.7)

Let i ∈ Bp be an index with

λ
(p)
i aid

(q) > 0 (4.8)

where ai denotes the i-th row of A.
We now distinguish three cases. Let us suppose that i > j. Then, since j is

the largest index that ever leaves or enters one has that i is also an element
of Bq implying that aid(q) is 0 or −1. It cannot be −1, since this would mean
that i leaves Bq contradictory to the choice of j.

Suppose then that i < j. Then λ
(p)
i > 0 since j is the smallest index that

can leave the basis Bp. But aid
(q) > 0 is not possible, otherwise index i is

an index where the minimum (ε∗ = 0) in (4.6) is attained and j > i is the
smallest index where this minimum is attained. Thus this case can also be
ruled out.

Finally, if i = j, then λ
(p)
i < 0 and aid

(q) > 0 which also contradicts (4.8).

4.5 Finding an initial basic feasible solution

The simplex algorithm starts with a feasible basis. How can such a feasi-
ble basis be determined? In fact, this can be done with an auxiliary linear
program.

Any linear program has an equivalent form

max{cTx : Ax ⩽ b, x ⩾ 0}. (4.9)

We want to find an initial feasible basis for this linear program. Suppose first
that we re-write the constraints Ax ⩽ b as A1x ⩽ b1 and A2x ⩽ b2 with
b1 ⩾ 0 and b2 < 0. Now consider the following linear program

min{1T y : A1x ⩽ b1, A2x ⩽ b2 + y, x, y ⩾ 0, y ⩽ −b2} (4.10)

with constraints in matrix form
A1

A2 −Ik
−In

−Ik
Ik


(
x
y

)
⩽


b1
b2
0
−b2
0

 . (4.11)

where k is the number of negative entries in b. An initial basic feasible solution
is x = 0 and y = −b2 with the basis corresponding to the inequalities x ⩾ 0
and y ⩽ −b2, i.e., the 3-rd and 5-th block of rows of the matrix (4.11).
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The simplex algorithm applied to this linear program terminates. It finds
an optimal solution with objective value 0 if and only if the original linear
program is feasible. Let B be the optimal basis in this case. Then B without
the indices corresponding to the constraints y ⩾ 0 contains a feasible basis
for the linear program (4.9). This follows from the fact that the rows of A1

A2

−In

 (4.12)

indexed by B must correspond to a submatrix of rank n. If the corresponding
rank was smaller than n, then the rank of the rows of the matrix (4.11)
indexed by B would be smaller than n+ k. Let B′ be any subset of B of size
n corresponding to a basis of 4.12. Then B′ is an initial feasible basis of (4.9).

4.6 Removing degeneracy by perturbation

In the following, we derive an alternative pivoting rule that also ensures
termination of the simplex algorithm. We begin by perturbing the right-hand-
sides of our constraints

Ax ⩽ b (4.13)

by adding a vector pε
Ax ⩽ b+ pε (4.14)

where pε is the vector

pε =


ε
ε2

...
εm

 .

Lemma 4.1. If Ax ⩽ b is feasible, then Ax ⩽ b + pε is feasible for each
ε > 0. If B is an infeasible basis of Ax ⩽ b, then B is an infeasible basis of
Ax ⩽ b+ pε for ε > 0 sufficiently small.

Proof. Clearly, the feasible solutions of (4.14) contain the feasible solutions
of (4.13). Suppose now that B is infeasible, then there exists an index i and
some δ > 0 such that

aiA
−1
B bB ⩾ bi + δ,

where ai and bi are the i-th row of A and the i-th component of b respectively.
Now

aiA
−1
B (bB + pεB) ⩾ bi + δ +A−1

B pεB > bi

if ε > 0 is sufficiently small.
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Furthermore, we can show that the constraint system (4.14) is non-
degenerate for ε > 0 small enough.

Lemma 4.2. If ε > 0 is small enough, then (4.14) is non-degenerate.

Proof. If the set of inequalities (4.14) is degenerate, then there exists a basis
B and an index i /∈ B such that

aix
∗
B,ε = bi + εi (4.15)

where x∗
B,ε = A−1

B (bB + (pε)B). Notice that

aix
∗
B,ε − bi − εi

is a nonzero polynomial in ε. It is non-zero, since the coefficient of εi is −1
as εi is not a component of (pε)B . A nonzero polynomial has only a finite
number of roots. Thus, if ε > 0 is small enough, no equation of the form
(4.15) can hold.

Suppose now that we want to solve the linear program

max{cTx : x ∈ Rn, Ax ⩽ b} (4.16)

The idea is run the simplex algorithm on the perturbed linear program

max{cTx : x ∈ Rn, Ax ⩽ b+ pε} (4.17)

where ε > 0 is sufficiently small. This linear program is non-degenerate. What
is nice is that this perturbation does not have to be computed explicitly.
We can formulate a pivot rule for the non-perturbed linear program (4.16)
that is conform with the pivoting that is performed on the perturbed linear
program (4.15). For this, assume that B is a feasible basis of the perturbed
linear program (4.15). By Lemma 4.1, B is also feasible for the unperturbed
linear program. Let us now consider the iteration of the simplex algorithm at
the basis B. As before, we choose i ∈ B with λi < 0 arbitrary and compute
d ∈ Rn. Now we have to determine the unique index of the inequality of
(4.17) that is hit first, when moving in the direction of d in the perturbed
linear program.

This index can be determined as follows. As before, we determine K =
{k : 1 ⩽ k ⩽ m, aTk d > 0} and we let K̃ ⊆ K be those indices of K where the
minimum mink∈K(bk − aTk x

∗)/aTk d is attained. In the perturbed program we
would have to determine the unique minimum

bk + εk − aTkA
−1
B (bB + (pε)B)/a

T
k d, k ∈ K̃, (4.18)

where we imagine that ε tends to zero from above. Each of the expressions
in (4.18) is a polynomial in ε. The index that will leave in the perturbed
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linear program is the one that corresponds to the lexicographically minimal
polynomial in (4.18).

Algorithm 4.3 (Simplex with largest index leaving rule).

Start with feasible basis B of the perturbed linear program (4.17)

while B is not optimal
Compute λ ∈ Rn such that λTAB = cT

Let i ∈ B be index with λi < 0
Compute d ∈ Rn with aTj d = 0, j ∈ B \ {i} and aTi d = −1
Determine K = {k : 1 ⩽ k ⩽ m, aTk d > 0}
if K = ∅

assert LP unbounded
else

Let k ∈ K be the index corresponding to the lexicographically
smallest polynomial of the form (4.18)
update B := B \ {i} ∪ {k}

Exercise 6 explains how to convert a feasible basis of (4.16) into a feasible
basis of (4.17).

Theorem 4.5. The variant of the simplex method described in Algorithm 4.3
terminates.

Exercises

1. For each of the following assertion, provide a proof or a counterexample.

i) An index that has just left the basis B in the simplex algorithm
cannot enter in the very next iteration.

ii) An index that has just entered the basis B in the simplex algorithm
cannot leave again in the very next iteration.

2. Consider the auxiliary linear program to find an initial feasible ba-
sis (4.10). The constraint matrix of this linear program is of the form

A 0
−In 0
0 −Im2

0 Im2

 ,

where m2 is the number of rows of A2. This matrix has m+n+2·m2 rows.
Describe an initial feasible basis that corresponds to the basic feasible
solution x = 0 and y = 0.
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Suppose that the optimal value of the auxiliary linear program is 0 and
let B′ be an optimal basis found by the simplex algorithm. Prove that B′\
{m+n+1, . . . ,m+n+m2} is a feasible basis of the linear program (4.9).

3. Suppose that the linear program max{cTx : x ∈ Rn, Ax ⩽ b} is non-
degenerate and B is an optimal basis. Show that the linear program has
a unique optimal solution if and only if λB > 0.

4. Let P = {x ∈ Rn : Ax ⩽ b} be a polyhedron. Show that the following are
equivalent for a feasible x∗:

i) x∗ is a vertex of P .
ii) There exists a set B ⊆ {1, . . . ,m} such that |B| = n, AB is invertible

and ABx
∗ = bB . Here the matrix AB and the vector bB consists of

the rows of A indexed by B and the components of b indexed by B
respectively.

iii) For every feasible x1, x2 ̸= x∗ ∈ P one has x∗ /∈ conv{x1, x2}.
5. A polyhedron P = {x ∈ Rn : Ax ⩽ b} contains a line, if there exists

a nonzero v ∈ Rn and an x∗ ∈ Rn such that for all λ ∈ R, the point
x∗ + λ · v ∈ P . Show that a nonempty polyhedron P contains a line if
and only if A does not have full column-rank.

6. Let x∗ be a basic feasible solution of the non-perturbed linear pro-
gram (4.16) and let C ⊆ {1, . . . ,m} be the indices of inequalities that are
tight at x∗. Prove that the following greedy algorithm produces a feasible
basis B ⊆ C of the perturbed linear program.

Initialize B = ∅
while B is not a basis

Let i ∈ C be the largest index such that the rows
indexed by B ∪ {i} are linearly independent
Update B = B ∪ {i}.
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Duality

Via the termination argument for the simplex algorithm, we can now prove
the duality theorem. We are given a linear program

max{cTx : x ∈ Rn, Ax ⩽ b}, (5.1)

called the primal and its dual

min{bT y : y ∈ Rm, AT y = c, y ⩾ 0}. (5.2)

We again formulate the theorem of weak duality in this setting.

Theorem 5.1 (Weak duality). If x∗ and y∗ are primal and dual feasible
solutions respectively, then cTx∗ ⩽ bT y∗.

Proof. We have cTx∗ = y∗TAx∗ ⩽ y∗T b. ⊓⊔

The strong duality theorem tells us that if there exist feasible primal and
dual solutions, then there exist feasible primal and dual solutions which have
the same objective value. We can prove it with the simplex algorithm.

Theorem 5.2. If the primal linear program is feasible and bounded, then so
is the dual linear program. Furthermore in this case, both linear programs
have an optimal solution and the optimal values coincide.

Proof. Suppose first that A has full column rank. The simplex method finds
an optimal basis B of (5.1) with x∗

B being an optimal feasible solution. At
the same time, we have a λ ∈ Rm

⩾0 with λi = 0 if i /∈ B and λTA = cT . Notice
that λ is a feasible solution of the dual linear program (5.2). One has

cTx∗
B = λTAx∗

B = λT b,

which shows the theorem in this case.
If A does not have full column rank, then we re-write the linear pro-

gram (5.1) as

55
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max{cT (x1 − x2) : A(x1 − x2) ⩽ b, x1 ⩾ 0, x2 ⩾ 0}. (5.3)

There is a dual solution that we partition into three parts λ1, λ2, λ3 ⩾ 0. Its
dual objective function value is λT

1 b. Furthermore

λT
1 A− λ2 = cT , −λT

1 A− λ3 = −cT ,

which together with λ2, λ3 ⩾ 0 implies λT
1 A = cT and λ2 = λ3 = 0. This

means that λ1 is an optimal dual solution.

We can formulate dual linear programs also if the linear program is not in
inequality standard form. The procedure above can be described as follows.
We transform a linear program into a linear program in inequality standard
form and construct its dual linear program. This dual is then transformed
into an equivalent linear program again which is conveniently described.

Let us perform such operations on the dual linear program

min{bT y : y ∈ Rm, AT y = c, y ⩾ 0}

of the primal max{cTx : x ∈ Rn, Ax ⩽ b}. We transform it into inequality
standard form

max−bT y
AT y ⩽ c
−AT y ⩽ −c
−Iy ⩽ 0.

The dual linear program of this is

min cTx1 − cTx2

Ax1 −Ax2 − x3 = −b
x1, x2, x3 ⩾ 0

This is equivalent to
max cT (x2 − x1)
A(x2 − x1) + x3 = b

x1, x2, x3 ⩾ 0

which is equivalent to the primal linear program

max cTx
Ax ⩽ b.

Loosely formulated one could say that “The dual of the dual is the primal”.
But this, of course, is not to be understood as a mathematical statement. In
any case we can state the following corollary.

Corollary 5.1. If the dual linear program has an optimal solution, then so
does the primal linear program and the objective values coincide.
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We present another example of duality that we will need later on. Consider
a linear program

max cTx
Bx = b
Cx ⩽ d.

(5.4)

After re-formulation, we obtain

max cTx
Bx ⩽ b
−Bx ⩽ −b
Cx ⩽ d

We can form the dual of the latter problem and obtain

min bT y1 − bT y2 + dT y3
BT y1 −BT y2 + CT y3 = c

y1, y2, y3 ⩾ 0.

But this linear program is equivalent to the linear program

min bT y1 + dT y2
BT y1 + CT y2 = c

y2 ⩾ 0.
(5.5)

This justifies to say that (5.5) is the dual of (5.4).

5.1 Zero sum games

Consider the following two-player game defined by a matrix A ∈ Rm×n. The
row-player chooses a row i ∈ {1, . . . ,m} and the column-player chooses a
column j ∈ {1, . . . , n}. Both players make this choice at the same time. The
payoff for the row-player is then the matrix-element A(i, j) whereas A(i, j)
also determines the loss of the column player. In other words, the column
player pays A(i, j) to the row-player. If this number is negative, then the
row-player actually pays the absolute value of A(i, j) to the column player.

Consider for example the matrix

A =

 5 1 3
3 2 4
−3 0 1

 . (5.6)

If the row-player chooses the second row and the column player chooses
the second-column, then the payoff for the row-player is 2, whereas this is
the loss of the column player.
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The row-player is now interested in finding a strategy that maximizes his
guaranteed payoff. For example, if he chooses row 1, then the best choice of
the column player would be column 2, since the second element of the first
row is the smallest element of that row. Thus the strategy that maximizes
the minimal possible payoff would be to choose row 2. In other words

max
i

min
j

A(i, j) = 2.

What would be the column-player’s best hedging strategy? He wants to
choose a column such that the largest element in this column is minimized.
This column would be the second one. In other words

min
j

max
i

A(i, j) = 2.

Is it always the case that maxi minj A(i, j) = minj maxi A(i, j)? The next
example shows that the answer is no:(

−1 1
1 −1

)
. (5.7)

Here we have maxi minj A(i, j) = −1 and minj maxi A(i, j) = 1. This can be
interpreted as follows. If the column player knows beforehand, the row to be
chosen by the row-player, then he would choose a column that results in a
gain for him. Similarly, if the row-player knows beforehand the column to be
chosen by the column-player, then he can guarantee him a gain of one.

The idea is thus not to stick with a pure strategy, but to play with a
random or mixed strategy. If the row-player chooses each of the two rows
above uniformly at random, then his expected payoff is zero. Similarly, if the
column player chooses each of his two columns with probability 1/2, then his
expected payoff is zero as well.

Definition 5.1 (Mixed strategy). Let A ∈ Rm×n define a two-player ma-
trix game. A mixed strategy for the row-player is a vector x ∈ Rm

⩾0 with∑m
i=1 xi = 1. A mixed strategy for the column player is a vector y ∈ Rn

⩾0

with
∑n

j=1 yi = 1.

Such mixed strategies define a probability distribution on the row and column
indices respectively. If the row-player and column-player choose a row and
column according to this distribution respectively, then the expected payoff
for the row-player is

E[Payoff] = xTAy. (5.8)

For the game defined by (5.7) and xT = (1/2, 1/2) and yT = (1/2, 1/2) the
expected payoff is 0.

Lemma 5.1. Let A ∈ Rm×n, then
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max
x∈X

min
y∈Y

xTAy ⩽ min
y∈Y

max
x∈X

xTAy,

where X and Y denote the set of mixed row and column-strategies respectively.

Proof. Let x′ and y′ be some fixed mixed strategies of the row and column-
player respectively. Clearly

min
y

x′TAy ⩽ x′TAy′ ⩽ max
x

xTAy′,

which implies the assertion. ⊓⊔

The next theorem is one of the best-known results in the field of game
theory. It states that there are mixed strategies x′ and y′ from above such
that equality holds. It is proved with the theorem of strong duality.

Theorem 5.3 (Minimax-Theorem).

max
x∈X

min
y∈Y

xTAy = min
y∈Y

max
x∈X

xTAy,

where X and Y denote the set of mixed row and column-strategies respectively.

Proof. Let us inspect the value maxx∈X miny∈Y xTAy. This can be under-
stood as to maximize the function

f(x) = min{(xTA) · y :
n∑

j=1

yj = 1, y ⩾ 0}.

Thus the value f(x) is the optimal solution of a bounded and feasible linear
program. The dual of this linear program (for fixed x) has only one variable
x0 and reads

max{x0 : x0 ∈ R, 1x0 ⩽ ATx}.
But this shows that the maximum value of f(x), where x ranges over all
mixed row-strategies is the linear program

maxx0

1x0 −ATx ⩽ 0∑m
i=1 xi = 1

x ⩾ 0.

(5.9)

Let us now inspect the value miny∈Y maxx∈X xTAy. Again, by applying du-
ality this can be computed with the linear program

min y0
1y0 −Ay ⩾ 0∑n

j=1 yj = 1

y ⩾ 0.

(5.10)



60 5 Duality

It follows from the duality of (5.5) and (5.4) that the linear programs (5.9)
and (5.10) are duals of each other. This proves the Minimax-Theorem. ⊓⊔

5.2 A proof of the duality theorem via Farkas’ lemma

Remember Farkas’ lemma (Theorem 3.11) which states that Ax = b, x ⩾ 0
has a solution if and only if for all λ ∈ Rm with λTA ⩾ 0 one also has λT b ⩾ 0.
In fact the duality theorem follows from this. First, we derive another variant
of Farkas’ lemma.

Theorem 5.4 (Second variant of Farkas’ lemma). Let A ∈ Rm×n and
b ∈ Rm. The system Ax ⩽ b has a solution if and only if for all λ ⩾ 0 with
λTA = 0 one has λT b ⩾ 0.

Proof. Necessity is clear: If x∗ is a feasible solution, λ ⩾ 0 and λTA = 0,
then λTAx∗ ⩽ λT b implies 0 ⩽ λT b.

On the other hand, Ax ⩽ b has a solution if and only if

Ax+ −Ax− + z = b, x+, x−, z ⩾ 0 (5.11)

has a solution. So, if Ax ⩽ b does not have a solution, then also (5.11)
does not have a solution. By Farkas’ lemma, there exists a λ ∈ Rm with
λT

(
A −A Im

)
⩾ 0 and λT b < 0. For this λ one also has λTA = 0 and λ ⩾ 0.

⊓⊔

We are now ready to prove the theorem of strong duality via the second
variant of Farkas’ lemma.

Proof (of strong duality via Farkas’ lemma). Let δ be the objective function
value of an optimal solution of the dual max{bT y : y ∈ Rm, AT y ⩽ c}. For
all ε > 0, the system AT y ⩽ c,−bT y ⩽ −δ − ε does not have a solution. By
the second variant of Farkas’ lemma, there exists a λ ⩾ 0 with λT

(−bT

AT

)
= 0

and λT
(−δ−ε

c

)
< 0. Write λ as λ =

(
λ1

λ′
)

with λ′ ∈ Rn. If λ1 were zero, we
could apply the second variant of Farkas’ lemma to the system AT y ⩽ c and
λ′, since we know that AT y ⩽ c has a solution. Therefore, we can conclude
λ1 > 0. Furthermore, by scaling, we can assume λ1 = 1. One has λ′TAT = bT

and λ′T c < δ + ε. The first equation implies that λ′ is a feasible solution
of the primal (recall λ′ ⩾ 0). The second equation shows that the objective
function value of λ′ is less than δ+ ε. This means that the optimum value of
the primal linear program is also δ, since the primal has an optimal solution
and ε can be chosen arbitrarily small. ⊓⊔
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Exercises

1. Formulate the dual linear program of

max 2x1 + 3x2 − 7x3

x1 + 3x2 + 2x3 = 4
x1 + x2 ⩽ 8
x1 − x3 ⩾ −15
x1, x2 ⩾ 0

2. Consider the following linear program

max x1 + x2

2x1 + x2 ⩽ 6
x1 + 2x2 ⩽ 8
3x1 + 4x2 ⩽ 22
x1 + 5x2 ⩽ 23

Show that (4/3, 10/3) is an optimal solution by providing a suitable fea-
sible dual solution.

3. Show that for A ∈ Rm×n, one has

max
i

min
j

A(i, j) ⩽ min
j

max
i

A(i, j).

4. In the lecture you have seen the simplex algorithm for linear programs of
the form

max{cTx : Ax ⩽ b}.
We will now derive a simplex algorithm for linear programs of the form

min{cTx : Ax = b, x ⩾ 0} (5.12)

with c ∈ Rn and A ∈ Rm×n, b ∈ Rm. Throughout the exercise we assume
that (5.12) is feasible and bounded, and that A has full row rank.
For i ∈ {1, . . . , n} we define Ai as the i-th column of A. Moreover, for
some subset B ⊆ {1, . . . , n}, AB is the matrix A restricted to the columns
corresponding to elements of B.
A subset B ⊆ {1, . . . , n} with |B| = m such that AB has full rank is
called a basis. The vector x ∈ Rn defined as xi := 0 for all i /∈ B and
xB := A−1

B b is called the basic solution associated to B. Note that x is a
feasible solution to (5.12) if and only if x ⩾ 0.
Given a basis B and let j ∈ {1, . . . , n}, j /∈ B. The vector d ∈ Rn defined
as dj = 1, di = 0 for all i /∈ B and dB := −A−1

B Aj is called the j-th basic
direction.
Assume that the solution x associated to B is feasible. Moreover assume
that xB > 0.
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a. Show that there is a θ > 0 such that x + θd is a feasible solution.
Give a formula to compute the largest θ such that x+ θd is feasible.

b. Let θ∗ be maximal. Show that there is a basis B′ such that x + θ∗d
is the basic solution associated to B′.

c. Let x′ = x + θd. Show that the objective value of x′ changes by
θ
(
cj − cTBA

−1
B Aj

)
.

d. Consider a basis B with basic feasible solution x. Show that if c −
cTBA

−1
B A ⩾ 0, then x is an optimal solution to (5.12).

This suggests the following algorithm: Start with some basis B whose
associated basic solution is feasible. Compute c̄ := c− cTBA

−1
B A. If c̄ ⩾ 0,

we have an optimal solution (see 4d). Otherwise, let j be such that c̄j < 0.
Part 4b and 4c show that if we change the basis, we find a feasible solution
with an improved objective value. We repeat these steps until the vector
c̄ is nonnegative.
This is the way the simplex algorithm usually is introduced in the liter-
ature. This algorithm is exactly the same as the one you learned in the
lecture. To get an intuition why this is true, show the following:

a. Given a basis B, show that its associated basic solution is feasible if
and only if B is a basis of the LP dual to (5.12).

b. Consider a basis B and its associated feasible basic solution x. As
seen before, B is also a basis in the dual LP. Let y be the vertex of
that basis.
Show that for any j ∈ {1, . . . , n} we have c̄j < 0 if and only if
AT

j y > cj .



Chapter 6
Algorithms and running time analysis

An algorithm executes a set of instructions used in common programming
languages like arithmetic operations, comparisons or read/write instructions.
The sequence of these instructions is controlled by loops and conditionals like
if, while, for etc.

Each of these instructions requires time. The running time of an algorithm
is the number of instructions that the algorithm performs. This number de-
pends on the input of the algorithm.

Example 6.1. Consider the following algorithm to compute the product of
two n× n matrices A,B ∈ Qn×n:

for i = 1, . . . , n
for j = 1, . . . , n

cij := 0
for k = 1, . . . , n

cij := cij + aik · akj
The number of additions that are carried out is n2 · (n− 1) and the number
of multiplications is n3. The number of store-instructions is n2 · (n+ 1). The
number of read-instructions is of similar magnitude.

The above example shows that an exact counting is sometimes tedious.
Looking at the algorithm however, you quickly agree that there exists some
constant c ∈ R>0 such that the algorithm performs at most c·n3 instructions.

In the analysis of algorithms, one does usually not care so much about the
constant c above in the beginning. There are sub-fields of algorithms where
this constant however matters. Especially for algorithms on large data sets,
where access to external data is costly. However, this is another story that
does not concern us here. When we analyze algorithms, we are interested in
the asymptotic running time.

Definition 6.1 (O-notation).
Let T, f : N→ R⩾0 be functions. We say

63
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• T (n) = O(f(n)), if there exist positive constants no ∈ N and c ∈ R>0 with

T (n) ⩽ c · f(n) for all n ⩾ n0.

• T (n) = Ω(f(n)), if there exist constants no ∈ N and c ∈ R>0 with

T (n) ⩾ c · f(n) for all n ⩾ n0.

• T (n) = Θ(f(n)) if

T (n) = O(f(n)) and T (n) = Ω(f(n)).

Example 6.2. The function T (n) = 2n2+3n+1 is in O(n2), since for all n ⩾ 1
one has 2n2 +3n+1 ⩽ 6n2. Here n0 = 1 and c = 6. Similarly T (n) = Ω(n2),
since for each n ⩾ 1 one has 2n2 + 3n+ 1 ⩾ n2. Thus T (n) is in Θ(n2).

We measure the running time of algorithms in terms of the length of the
input. The matrices A and B that are the input of the matrix-multiplication
algorithm of Example 6.1 consist of n2 numbers each. The algorithm runs in
time O(n3 = (n2)3/2).

What does it mean for an algorithm to be efficient? For us, this will mean
that it runs in polynomial time. As a first definition of polynomial time al-
gorithm, we say that an algorithm runs in polynomial time, if there exists a
constant k such that the algorithm runs in time O(nk), where n is the length
of the input of the algorithm.

However, we recall the binary representation of natural numbers n ∈ N.
A sequence of bits a0, . . . , ak−1 with aj ∈ {0, 1} for 0 ⩽ j ⩽ k − 1 represents
the number

k−1∑
j=0

aj · 2j .

Conversely, each positive natural number n ⩾ 1 has the binary representation
that is found recursively by the following process. If n = 1, then its repre-
sentation is a0 = 1. If n > 1 and is even, then the sequence representing n
is

0, b0, . . . , bk−1,

where b0, . . . , bk−1 is the representation of n/2. If n > 1 and n is odd, then
the sequence representing n is

1, b0, . . . , bk−1,

where b0, . . . , bk−1 is the representation of ⌊n/2⌋. This creates a represen-
tation with leading bit one, i.e. ak−1 = 1. By deleting leading zeros, i.e.,
ensuring ak−1 = 1, the representation of a natural positive number is unique,
(see exercise 6.2).
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Example 6.3. This example will make us revise the our first definition of a
polynomial-time algorithm. The input of this algorithm is a list of characters.
Let us say that the list has n elements.

Input: A list L or characters
s := 2
for c ∈ L:

s := s · s
return s

Then clearly, the algorithm carries out a polynomial, even linear, number of
operations in the input, if we consider an arithmetic operation also as a basic
operation that can be carried out in constant time. However, the algorithm
squares 2 repeatedly, n times to be precise. Thus, at the end, the variable s
holds the number 22

n

. The number of bits in the binary representation that
the return value is 2n which is exponential in the input length.

Definition 6.2. The size of an integer x is size(x) = ⌈log(|x| + 1)⌉ and for
x ∈ Q, size(x) = size(p) + size(q), where x = p/q with p, q ∈ Z, q ⩾ 1 and
gcd(p, q) = 1.

Here gcd(p, q) denotes the greatest common divisor of p and q which we
define precisely below. Thus the size of a number is asymptotically equal to
the number of bits that are needed to store the number. We now provide the
definition of what a polynomial-time algorithm is.

Definition 6.3. An algorithm is polynomial time, if there exists a constant
k such that the algorithm performs O(nk) operations on rational numbers
whose size is bounded by O(nk). Here n is the number of bits that encode
the input of the algorithm. We say that the algorithm runs in time O(nk).

We now use this definition to analyze the famous Euclidean algorithm that
computes the greatest common divisor of two integers.

For a, b ∈ Z, b ̸= 0 we say b divides a if there exists an x ∈ Z such that
a = b · x. We write b | a. For a, b, c ∈ Z, if c | a and c | b, then c is a common
divisor of a and b. If at least one of the two integers a and b is non-zero, then
there exists a greatest common divisor of a and b. It is denoted by gcd(a, b).

How do we compute the greatest common divisor efficiently? The following
is called division with remainder. For a, b ∈ Z with b > 0 there exist unique
integers q, r ∈ Z with

a = q · b+ r, and 0 ⩽ r < b.

Now clearly, for a, b ∈ Z with b > 0 and q, r ∈ Z as above one has gcd(a, b) =
gcd(b, r). This gives rise to the famous Euclidean algorithm.

Algorithm 6.1 (Euclidean algorithm).
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Input: Integers a ⩾ b ⩾ 0 not both equal to zero
Output: The greatest common divisor gcd(a, b)
if (b = 0) return a
else

Compute q, r ∈ N with b > r ⩾ 0 and a = q · b+ r
(division with remainder)

return gcd(b, r)

Theorem 6.1. The Euclidean algorithm runs in time O(n).

Proof. Suppose that a and b have at most n bits each. Clearly, the numbers
in the course of the algorithm have at most n bits. Furthermore, if a ⩾ b,
then r ⩽ a/2, where r is the remainder of the division of a by b. Thus each
second iteration, the first parameter of the input has one bit less. Thus the
number of operations is bounded by O(n).

Example 6.4. The determinant of a matrix A ∈ Rn×n can be computed by
the recursive formula

det(A) =

n∑
i=1

(−1)1+ja1j det(A1j),

where A1j is the (n− 1)× (n− 1) matrix that is obtained from A by deleting
its first row and j-th column. This yields the following algorithm.

Input: A ∈ Qn×n

Output: det(A)
if (n = 1)

return a11
else

d := 0
for j = 1, . . . , n

d := (−1)1+j · det(A1j) + d
return d

This algorithm is recursive. This basically means that a tree is constructed,
where nodes of the tree correspond to recursive calls to the algorithm det(·)
including the root call. Any node that corresponds to a matrix with k > 1
rows and columns is expanded by adding k child nodes corresponding to the
recursive calls that are executed. Once the lower-level nodes of the tree cannot
expanded anymore, one can evaluate the tree, in this case the determinant,
in a bottom-up fashion. See Let T (n) denote the number of basic operations
that the algorithm performs. Then T (1) ⩾ 1 and

T (n) ⩾ n · T (n− 1),

which shows that T (n) >= n! = 2Ω(n logn) which is exponential in n.
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Fig. 6.1: An example of the recursion tree of the algorithm from Example 6.4.
The tree corresponds to the run of the algorithm on input

( 3 7 5
2 9 8
1 3 3

)
.

Exercises

1. Find the binary representation of 134.
2. Show that the binary representation with leading bit one of a positive

natural number is unique.
3. Show that there are n-bit numbers a, b ∈ N such that the Euclidean

algorithm on input a and b performs Ω(n) arithmetic operations. Hint:
Fibonacci numbers

4. Show n! = 2Ω(n logn).
5. Let A ∈ Rn×n and suppose that the n2 components of A are pairwise

different. Suppose that B is a matrix that can be obtained from A by
deleting the first k rows and some of the k columns of A. How many
(recursive) calls of the form det(B) does the algorithm of Example 6.4
create?

6. Let A ∈ Rn×n and suppose that the n2 components of A are pairwise
different. How many different submatrices can be obtained from A by
deleting the first k rows and some set of k columns? Conclude that the
algorithm of Example 6.4 remains exponential, even if it does not expand
repeated subcalls.

7. Complete the algorithm below such that it adds two natural numbers in
binary representation a0, . . . , al−1, b0, . . . , bl−1. What is the asymptotic
running time (number of basic operations) of your algorithm? Can there
be an asymptotically faster algorithm?

Input: Two natural numbers a and b in their binary representation
a0, . . . , al−1, b0, . . . , bl−1.

Output: The binary representation c0, . . . , cl of a+ b



68 6 Algorithms and running time analysis

carry := 0
for i = 0, . . . , l − 1

ci = carry + ai + bi (mod 2)
carry :=

cl :=
return c0, . . . , cl

6.1 Analysis of Gaussian elimination

We recall Gaussian elimination.

Algorithm 6.2 (Gaussian elimination).

Input: A ∈ Qm×n

Output: A′ in row echelon form such that there exists an invertible
Q ∈ Qm×m such that Q ·A = A′ .

A′ := A
i := 1
while (i ⩽ m)

find minimal 1 ⩽ j ⩽ n such that there exists k ⩾ i such that a′kj ̸= 0

If no such element exists, then stop
swap rows i and k in A′

for k = i+ 1, . . . ,m
subtract (a′kj/a

′
ij) times row i from row k in A′

i := i+ 1

We can easily prove correctness of the algorithm. First of all, the algorithm
does only perform elementary row-operations of the form

i) swap two rows
ii) subtract a multiple of one row from another row.

This means that the resulting matrix A′ can be obtained via

A′ = Q ·A

with a non-singular Q ∈ Qm×m. On the other hand we have the following
invariant.

After each iteration of the while-loop, the matrix H obtained from the first first j
columns of A′ is in row-echelon form and rows i, i+1, . . . ,m of H are entirely zero,
see Figure6.2.
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Fig. 6.2: Gaussian elimination: The matrix A′ before the i-th iteration of the
while loop.

How many arithmetic operations does Gaussian elimination perform? Sub-
tracting a multiple of one row from another row in A′ can be done in time
O(n) Thus the number of operations that are performed within the for-loop
are O(m ·n) in total. There are O(m) iterations through the while-loop. All-
together this shows that Gaussian elimination performs O(m2 ·n) iterations.
But how large can the numbers grow in the course of the Gaussian algorithm?
Could it be that numbers have to be manipulated, whose binary encoding
length is not polynomial in the total encoding length of the matrix A? Luck-
ily the answer to this question is “No”. To provide this answer, we have to
show the following.

Theorem 6.2 (Hadamard bound). Let A ∈ Rn×n be non-singular. Then

|det(A)| ⩽
n∏

i=1

∥ai∥2 ⩽ nn/2 ·Bn,

where B is upper bound on absolute values of entries of A.

Proof. The Gram-Schmidt orthogonalization of A yields a factorization

A = Q ·R,

where R is an upper triangular matrix with ones on the diagonal. The matrix
Q has orthogonal columns, where the length of the i-th column q(i) is upper
bounded by the length of the i-th column of A. The assertion follows from

det(A)2 = det(Q)2 = det(QT ) det(Q) =
∏
i

∥q(i)∥2.
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Corollary 6.1. If A ∈ Zn×n is integral and each entry in absolute value is
bounded by B, then size(det(A)) = O(n log n+ n · size(B)).

Corollary 6.2. If A ∈ Qn×n is a rational matrix and ϕ is an upper bound
on the size of each component of A, then size(det(A)) = O(n3 · ϕ).

Proof. Suppose that aij = pij/qij , where pij and qij are integers with
gcd(pij , qij) = 1 for each i, j. Then (

∏
ij qij)A is an integer matrix and

det(A) = (
∏
ij

qij)
−n det((

∏
ij

qij)A).

The size of (
∏

ij qij)
−n is O(n3ϕ) and the size of det((

∏
ij qij)A is also O(n3ϕ)

thanks to Corollary 6.1 .

Now that we have shown that the determinant of a rational matrix is a
number of polynomial encoding length, we can prove that Gaussian elimina-
tion is indeed a polynomial time algorithm.

Theorem 6.3. The Gaussian algorithm runs in polynomial time on input
A ∈ Zm×n. More precisely, the rational numbers produced in the algorithm
can be maintained to be ratios of sub-determinants of A′ and are thus of
polynomial binary encoding length.

Proof. For the proof of this theorem, we assume that we have performed
row and column swaps on A ∈ Z beforehand such that the pivot element in
iteration i ⩾ 1 is in row i and column i. This means that we never have to
swap rows in A′, after the i-th iteration of the wile-loop the matrix A′ is of
the form

A′ =

(
U E
0 D

)
where U ∈ Qi×i is upper triangular and non-singular and D ∈ Q(m−i)×(n−i)

is the part that still has to be eliminated.
Consider an element dk,j of D and define the index sets K = {1, . . . , i} ∪

{i+k} and J = {1, . . . , i}+∪{i+ j} and the matrix AKJ as the one induced
from A by the rows and columns indexed by K and J respectively. A crucial
observation is that

det(AKJ) = det(A′
KJ)

holds. Likewise one has det(Ai) = det(U), where Ai is the matrix stemming
from the first i rows and columns of A.

From this it follows that

dk,j · det(Ai) = det(AKJ)

and thus
dk,j = det(AKJ)/ det(Ai).
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We also write
dk,j = rij/ det(Ai)

with the suitable integer rij = det(AKJ). Now the pivot element is d11 and
the new element in position k, j of D becomes with r11 = det(Ai+1)

dkj − dk1/d11 · d1j =
rkj

det(Ai)
− rk1

r11
· r1j
det(Ai)

=
(rkjr11 − rk1r1j)/ det(Ai)

det(Ai+1)

The numerator is an integer that can be computed with basic integer arith-
metic operations. All integers are bounded by nn/2Bn, where B is the largest
binary encoding length of an entry of A. This shows the claim.

Exercises

1. Show that the matrix Q ∈ Qm×m that transforms A ∈ Qm×n into A′ in
the Gaussian algorithm via Q ·A = A′ has entries that are od polynomial
size in the binary encoding length of A.

6.2 Fast matrix multiplication

We conclude this chapter on the analysis of algorithms with a result of Volker
Strassen [18] who showed that two n× n matrices can be multiplied in time
(number of arithmetic operations) O(n2.805). This algorithm was published
in 1969 and it showed as well that a matrix can be inverted within the same
timebound, see [1].

Our task is to compute the product

C = A ·B (6.1)

for two n×n matrices. We have seen that straightforward matrix-multiplication
(Example 6.1) requires O(n3) arithmetic operations. We can assume, by
padding A and B with zeroes, that n = 2ℓ for some ℓ ∈ N0.

If we split the matrices A and B into 4 n/2× n/2 matrices

A =

(
A11 A12

A21 A22

)
and B =

(
B11 B12

B21 B22

)
(6.2)

Then
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C11 C12

C21 C22

)
=

(
A11 ·B11 +A12 ·B21 A11 ·B12 +A12 ·B22

A21 ·B11 +A22 ·B21 A21 ·B12 +A22 ·B22

)
.

Thus wan can reduce one multiplication of two n × n matrices to 8 multi-
plications of two n/2× n/2 matrices. For the running time, one obtains the
recurrence

T (n) = 8 · T (n/2) +Θ(n2) (6.3)

which leads again to T (n) = Θ(n3), see exercise 2).
Strassen discovered that one can preprocess the input matrices in such a

way that the correct result can be retrieved from the result 7 multiplications
of n/2 × n/2 matrices. The preprocessing and retrival time is O(n) which
yields the recursion

T (n) = 7 · T (n/2) +O(n2). (6.4)

The idea is to compute the 7 matrices

M1 = (A11 +A22) · (B11 +B22)

M2 = (A21 +A22) ·B11

M3 = A11 · (B12 −B22)

M4 = A22 · (B21 −B11)

M5 = (A11 +A12) ·B22

M6 = (A21 −A11) · (B11 +B12)

M7 = (A12 −A22) · (B21 +B22)

.

This amounts to O(n2) arithmetic operations and 7 multiplications of n/2×
n/2 matrices. From M1, . . . ,M7 one can retrieve

C11 = M1 +M4 −M5 +M7

C12 = M3 +M5

C21 = M2 +M4

C22 = M1 −M2 +M3 +M6.

again with O(n2) arithmetic operations.

Algorithm 6.3 (Fast matrix multiplication (FMM)).

Input: Two n× n matrices A and B
Output: C = FMM(A,B), the product A ·B
if n = 1 return a11 · b11
else

M1 = FMM(A11 +A22, B11 +B22)
M2 = FMM(A21 +A22, B11)
M3 = FMM(A11, B12 −B22)
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M4 = FMM(A22, B21 −B22)
M5 = FMM(A11 +A12, B22)
M6 = FMM(A21 −A11, B11 +B12)
M7 = FMM(A12 −A22, B21 +B22)
Compute the matrices C11, C12, C21, C22 from M1, . . . ,M7

return C

Fig. 6.3: The analysis of the Strassen algorithm.

Theorem 6.4 (Strassen). Two n × n matrices can be multiplied in time
(number of arithmetic operations) O(n2+log2(7/4)).

Proof. See Figure 6.3.

Exercises

1. Suppose we are given three n×n matrices A,B,C ∈ Zn×n and we want to
test whether A ·B = C holds. We could multiply A and B and then com-
pare the result with C. This would amount to running time (number of
arithmetic operations) of O(n3) with the standard matrix-multiplication
algorithm.
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We now show how to perform an efficient randomized test. Suppose that
you can draw a vector v ∈ {0, 1}n i.i.d. at random in time O(n). The idea
is then to compute the product B · v and then the product A · (B · v) and
afterwards C · v, all in time O(n2). Show the following.

a. If A ·B ̸= C, then P (A · (B · v) = C · v) ⩽ 1/2.
b. Let v1, . . . , vk ∈ {0, 1}n be i.i.d. at random and suppose that A ·B ̸=

C. The probability of the event: A·(B ·vi) = C ·vi for each i = 1, . . . , k
is bounded by 1/2k.

c. Conclude that there is an algorithm that runs in time O(k ·n2) which
tests whether A · B = C holds. The probability that the algorithm
gives the wrong result is bounded by 1/2k.

2. Show that the recursion (6.3) has the solution T (n) = Θ(n3).
3. Describe an algorithm that multiplies two n-bit integers in time O(n2).

You may use the algorithm to add two n-bit integers from exercise 6.7.
4. Suppose n = 2ℓ and a, b ∈ N are two n-bit integers. Consider the numbers

ah and al which are represented by the first n/2 bits and the last n/2
bits of a respectively. Likewise the numbers bh and bl are the numbers
represented by the first half and the second half of the bit-representation
of b.

i) Show a = ah · 2n/2 + al and b = bh · 2n/2 + bl
ii) Show a · b = ah · bh · 2n + (ah · bl + al · bh) · 2n/2 + al · bl
iii) Conclude very carefully that two n-bit numbers can be multiplied

by resorting to three multiplications of n/2-bit numbers and O(n)
basic operations.

iv) Conclude that two n-bit numbers can be computed in time O(nlog2(3))
elementary bit operations.
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6.3 One iteration of the simplex algorithm

In the following we will analyze the complexity of one iteration of the simplex
algorithm. We suppose that the input data A ∈ Zm×n, c ∈ Zn, b ∈ Zm is
integral.

Now if A−1
B has been computed, then λT

B = cT · A−1
B and d, which is

the negative of a column of A−1
B , can be computed with O(n2) operations.

To compute K we have to compute A · d. This can be done with O(m · n)
operations. The index of element entering the basis can be determined by
computing x∗ = A−1

B bB , b−Ax∗ and Ad. Thus, if A−1
B is known, this amounts

to a total of
O(m · n)

arithmetic operations.
In order to argue that one iteration of the simplex algorithm runs in poly-

nomial time, we have to show that each of the numbers of A−1
B has size that

is polynomial in the size of the input and that A−1
B can be quickly computed.

Let us first see how large the size of the numbers in A−1
B can be. Suppose

that

A =

p11/q11 · · · p1n/q1n
· · ·

pn1/qn1 · · · pnn/qnn

 ∈ Qn×n.

is invertible. The size of the product of denominators
∏n

i=1,j=1 qij is clearly
linear in the size of the input. Now write A = 1/Q ·A′ where Q is product of
denominators and A′ ∈ Zn×n Since A−1 = Q · (A′)−1 we only have to answer
this question for A′ instead of A. In other words, we can assume that A is
integral.

For A ∈ Rm×n and 1 ⩽ i ⩽ m and 1 ⩽ j ⩽ n, Aij denotes the matrix
obtained from A by deleting the i-th row and j-th column. The following
matrix inversion formula is known as Cramer’s rule.

A−1 =
1

det(A)



det(A11) −det(A21) det(A31) . . .
−det(A12) det(A22) −det(A32) . . .
det(A13) −det(A23) det(A33) . . .

...
...

... . . .
...

...
... . . .


Theorem 6.5 (Hadamard bound). Let A ∈ Rn×n be non-singular. Then

|det(A)| ⩽
n∏

i=1

∥ai∥2 ⩽ nn/2 ·Bn,

where B is upper bound on absolute values of entries of A.

Proof. The Gram-Schmidt orthogonalization of A yields a factorization
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A = Q ·R,

where R is an upper triangular matrix with ones on the diagonal. The matrix
Q has orthogonal columns, where the length of the i-th column q(i) is upper
bounded by the length of the i-th column of A. The assertion follows from

det(A)2 = det(Q)2 = det(QT ) det(Q) =
∏
i

∥q(i)∥2.

Corollary 6.3. If A ∈ Zn×n is integral and each entry in absolute value is
bounded by B, then size(det(A)) = O(n log n+ n · size(B)).

Corollary 6.4. Let A ∈ Qn×n be an invertible matrix. The size of A−1 is
polynomial in the size of A.

Now we known that the size of A−1
B polynomial in the size of the input

(A, b, c)? Now, how expensive is it to compute A−1
B ? Suppose basis B is

preceded by B′ with

B′ = {b1, . . . , bk−1, b
′
k , bk+1, . . . , bn}

B = {b1, . . . , bk−1, bk , bk+1, . . . , bn}

Then each row of AB ·A−1
B′ , except for row k, is the corresponding row of the

n × n identity matrix except. Let the k-th row be (v1, v2, . . . , vn). We now
only have to perform the elementary column operations that turn this row
into the k-th unit vector on A−1

B′ to obtain A−1
B . In other words, the following

algorithm computes A−1
B given A−1

B′ .

• Compute aTbk ·A
−1
B′ = (v1, . . . , vk, . . . , vn)

• For each column i ̸= k: Subtract vi/vk times column k from column i
• Divide column k by vk

This amounts to a total number of O(n2) arithmetic operations for the
update. We can conclude with the following theorem.

Theorem 6.6. One iteration of the simplex algorithm requires a total number
of O(m · n) operations on rational numbers whose size is polynomial in the
input size.



Chapter 7
Integer Programming

An integer program is a problem of the form

max cTx
Ax ⩽ b
x ∈ Zn,

where A ∈ Rm×n and b ∈ Rm.

c

P

F

vb
u b

Fig. 7.1: This picture illustrates a polyhedron P , an objective function vector
c and optimal points u, v of the integer program and the relaxation respec-
tively.

The difference to linear programming is the integrality constraint x ∈ Zn.
This powerful constraint allows to model discrete choices but, at the same
time, makes an integer program much more difficult to solve than a linear
program. In fact one can show that integer programming is NP-hard, which
means that it is in theory computationally intractable. However, integer pro-

77
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gramming has nowadays become an important tool to solve difficult industrial
optimization problems efficiently. In this chapter, we characterize some inte-
ger programs which are easy to solve, since the linear programming relaxation
max{cTx : Ax ⩽ b} yields already an optimal integer solution. The following
observation is crucial.

Theorem 7.1. Suppose that x∗ is an integral optimal solution of the linear
programming relaxation max{cTx : Ax ⩽ b}, i.e., x∗ ∈ Zn, then x∗ is also an
optimal solution of the integer programming problem max{cTx : Ax ⩽ b, x ∈
Zn}

Before we present an example for the power of integer programming we
recall the definition of an undirected graph.

Definition 7.1 (Undirected graph, matching). An undirected graph is a
tuple G = (V,E) where V is a finite set of elements, called the vertices or
the nodes, and E ⊆

(
V
2

)
is the set of edges of G. A matching of G is a subset

M ⊆ E such that for all e1 ̸= e2 ∈M one has e1 ∩ e2 = ∅.

s

u

v

t

Fig. 7.2: A graph with 4 nodes V = {s, u, v, t} and 5 edges E =
{{s, u}, {s, v}, {u, v}, {u, t}, {v, t}}. The red edges are a matching of the graph

We are interested in the solution of the following problem, which is called
maximum weight matching problem. Given a graph G = (V,E) and a weight
function w : E → R, compute a matching with maximum weight w(M) =∑

e∈M w(e).
For a vertex v ∈ V , the set δ(v) = {e ∈ E : v ∈ e} denotes the incident

edges to v. The maximum weight matching problem can now be modeled as
an integer program as follows.

max
∑

e∈E w(e)x(e)
v ∈ V :

∑
e∈δ(v) x(e) ⩽ 1

e ∈ E : x(e) ⩾ 0
x ∈ Z|E|.

(7.1)
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Clearly, if an integer vector x ∈ Zn satisfies the constraints above, then this
vector is the incidence vector of a matching of G. In other words, the integral
solutions to the constraints above are the vectors {χM : M matching of G},
where χM

e = 1 if e ∈M and χM
e = 0 otherwise.

7.1 Integral Polyhedra

In this section we derive sufficient conditions on an integer program to be
solved easily by an algorithm for linear programming. A central notion is the
one of an integral polyhedron.

Definition 7.2 (Valid inequality, face, vertex). Let P = {x ∈ Rn : Ax ⩽
b} be a polyhedron. An inequality cTx ⩽ β is valid for P if cTx∗ ⩽ β for
all x∗ ∈ P . A face of P is a set of the form P ∩ {x ∈ Rn : cTx = β} for a
valid inequality cTx ⩽ β of P . If a face consist of one point, then it is called
a vertex of P .

b

Fig. 7.3: A polyhedron with a valid inequality defining a vertex.

Definition 7.3. A rational polyhedron is called integral if each nonempty
face of P contains an integer vector.

Lemma 7.1. Let P = {x ∈ Rn : Ax ⩽ b} be an integral polyhedron with
A ∈ Rm×n full-column rank. If the linear program

max{cTx : x ∈ Rn, Ax ⩽ b} (7.2)

is feasible and bounded, then the simplex method computes an optimal integral
solution to the linear program.

Proof. Recall that, if the linear program (7.2) is bounded, the simplex method
finds an optimal basis B ⊆ {1, . . . ,m} of (7.2) and the vertex of the basis
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x∗
B is an optimal solution to (7.2). We have to show that x∗

B is integral. This
will follow from the fact that {x∗

B} is a face of P .
Theorem 3.1 implies that x∗

B is the unique optimum solution of the linear
program max{c̃Tx : x ∈ Rn, aTi x ⩽ bi, i ∈ B}, where c̃ =

∑
i∈B ai. Conse-

quently x∗
B is the unique solution of the linear program

max{c̃Tx : x ∈ P}

which implies that {x∗
B} is a face defined by the valid inequality c̃Tx ⩽ c̃Tx∗

B .
⊓⊔

Lemma 7.2. Let A ∈ Zn×n be an integral and invertible matrix. One has
A−1b ∈ Zn for each b ∈ Zn if and only if det(A) = ±1.

Proof. Recall Cramer’s rule which says A−1 = Ã/ det(A), where Ã is the
adjoint matrix of A. Clearly Ã is integral. If det(A) = ±1, then A−1 is an
integer matrix.

If A−1b is integral for each b ∈ Zn, then A−1 is an integer matrix. We
have 1 = det(A · A−1) = det(A) · det(A−1). Since A and A−1 are integral it
follows that det(A) and det(A−1) are integers. The only divisors of one in
the integers are ±1. ⊓⊔

Definition 7.4 (Total unimodularity). An integral matrix A ∈ {0,±1}m×n

is called totally unimodular if each of its square sub-matrices has determinant
0,±1.

Theorem 7.2 (Hoffman-Kruskal Theorem). Let A ∈ Zm×n be an inte-
gral matrix. The polyhedron P = {x ∈ Rn | Ax ⩽ b, x ⩾ 0} is integral for
each integral b ∈ Zm if and only if A is totally unimodular.

[Cambristi Lemani] Moment Musical au bord du lac le 10 mai

Proof. Let A ∈ Zm×n be totally unimodular and b ∈ Zm. Let x∗ be vertex
of P and suppose that this vertex is defined by the valid inequality cTx ⩽ δ.
Notice that the matrix

(
A
−I

)
has full column-rank. If one applies the simplex

algorithm to the problem

max{cTx : x ∈ Rn,
(

A
−I

)
x ⩽

(
b
0

)
},

it finds an optimal basis B ⊆ {1, . . . ,m+n} with x∗
B = x∗. If AB denotes the

matrix whose rows are those rows of
(

A
−I

)
indexed by B and if bB denotes the

vector whose components are those of
(
b
0

)
indexed by B, then x∗ = A−1

B bB .
We are done, once we conclude that det(AB) = ±1, since then A−1

B is an
integer matrix and since bB is an integer vector x∗ = A−1

B b is integral as well.
We can permute the columns of AB in such a way that one obtains a matrix
of the form (

A Ã
0 −Ik

)



7.2 Applications of total unimodularity 81

where A is a (n−k)×(n−k) sub-matrix of A and Ik is the k×k identity matrix.
Here k = |B ∩ {m+ 1, . . . ,m+ n}|. Clearly 0 ̸= det(AB) = ±det(A) = ±1.

For the converse, suppose that A is not totally unimodular. Then there
exists an index set B ⊆ {1, . . . ,m + n} with |B| = n such that the matrix
AB defined as above satisfies |det(AB)| ⩾ 2. We can suppose w.l.o.g. that
B = {1, . . . , n}. By Lemma 7.2 there exists choices for the components of bB
making A−1

B bB non-integral. In fact, if we split B into components L ⊆ B
corresponding to lines of A and C corresponding to lines of −I we can choose
those components of bB corresponding to L being equal to zero. Now let v be
the vector with vi = 1 for all i ∈ C and vi = 0 for all i ∈ L. By choosing γ ∈ N
large enough the point x∗

B = A−1
B (bB + γABv) is non-integral and positive.

Notice that starting from now we will consider a new vector b̃ instead of b,
where b̃B = bB . In the next lines we will say b̃{1,...,m+n}\B has to be to finish
the proof. The set B is a basis of the linear program

max{cTx : x ∈ Rn,
(

A
−I

)
x ⩽

(
b̃
0

)
},

where c =
∑

i∈B ai and ai denotes the i-th row of
(

A
−I

)
. If we define for

j ∈ {1, . . . ,m} \ B, b̃j = ⌈aTj x∗
B⌉, then x∗

B is feasible and thus a vertex of P
that is non-integral. ⊓⊔

A direct consequence of theorem 7.2 is the following corollary.

Corollary 7.1. If A ∈ Zm×n is totally unimodular, b ∈ Zm and if max{cTx :
x ∈ Rn, Ax ⩽ b, x ⩾ 0} is bounded, then

max{cTx : x ∈ Rn, Ax ⩽ b, x ⩾ 0} = max{cTx : x ∈ Zn, Ax ⩽ b, x ⩾ 0}.

7.2 Applications of total unimodularity

7.2.1 Bipartite matching

A graph is bipartite, if V has a partition into sets A and B such that each
edge uv satisfies u ∈ A and v ∈ B. Recall that δ(v) is the set of edges incident
to the vertex v ∈ V , that is δ(v) = {e ∈ E | v ∈ e}.

The node-edge incidence matrix of a graph G = (V,E) is the matrix A ∈
{0, 1}|V |×|E| with

A(v, e) =

{
1, if v ∈ e,

0 otherwise.

The integer program (7.1) can thus be formulated as

max{wTx : Ax ⩽ 1, x ⩾ 0, x ∈ ZE}. (7.3)
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The next lemma implies that the simplex algorithm can be used to compute
a maximum-weight matching of a bipartite graph.

Lemma 7.3. If G is bipartite, the node-edge incidence matrix of G is totally
unimodular.

Proof (By induction). Let G = (V,E) be a bipartite graph with bi-partition
V = V1 ∪ V2.

The case where A′ is a 1×1 sub-matrix of A is trivial. Suppose the lemma
is proven for k − 1 ⩾ 1 and let A′ be a k × k sub-matrix of A. We are
interested in the determinant of A. Clearly, we can assume that A does not
contain a column which contains no 1 or only one 1, since we simply consider
the (k − 1) × (k − 1) sub-matrix A′′ of A′, which emerges from developing
the determinant of A′ along this column. By the induction hypothesis the
determinant of A′ would be zero or ±1 · det(A′′).

Thus we can assume that each column contains exactly two ones. Now we
can order the rows of A′ such that the first rows correspond to vertices of
V1 and then follow the rows corresponding to vertices in V2. This re-ordering
only affects the sign of the determinant. By summing up the rows of A′ in V1

we obtain exactly the same row-vector as we get by summing up the rows of
A′ corresponding to V2. This shows that det(A′) = 0. ⊓⊔

7.2.2 Bipartite vertex cover

A vertex cover of a graph G = (V,E) is a subset C ⊆ V of the nodes
such e ∩ C ̸= ∅ for each e ∈ E. Let us formulate an integer program for the
minimum-weight vertex-cover problem. Here, one is given a graph G = (V,E)
and weights w ∈ RV . The goal is to find a vertex cover C with minimum
weight w(C) =

∑
v∈V w(v).

min
∑

v∈V w(v)xv

uv ∈ E : xu + xv ⩾ 1
v ∈ V : xv ⩾ 0

x ∈ ZV .

(7.4)

Clearly, this is the integer program

min{wTx : ATx ⩾ 1, x ⩾ 0, x ∈ ZV }, (7.5)

where A is the node-edge incidence matrix of G. A matrix A is totally uni-
modular if and only if AT is totally unimodular. Thus the simplex algorithm
can be used to compute a minimum weight vertex-cover of a bipartite graph.
Furthermore we have the following theorem.
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Theorem 7.3 (König’s theorem). In any bipartite graph, the number of
edges in a maximum matching equals the number of vertices in a minimum
vertex cover.

Proof. Let A be the node-edge incidence-matrix of the bipartite graph G =
(V,E). The linear programs max{1Tx : Ax ⩽ 1, x ⩾ 0} and min{1Tx : Ax ⩾
1, x ⩾ 0} are duals of each other. Since A is totally unimodular, the value of
the linear programs are the cardinality of a maximum matching and minimum
vertex-cover respectively. Thus the theorem follows from strong duality. ⊓⊔

7.2.3 Flows

Let G = (V,A) be a directed graph. The node-edge incidence matrix of a
directed graph is a matrix A ∈ {0,±1}V×E with

A(v, a) =


1 if v is the starting-node of a,
−1 if v is the end-node of a,
0 otherwise.

(7.6)

A feasible flow f of G with capacities u and in-out-flow b is then a solution
f ∈ RA to the system Af = b, 0 ⩽ f ⩽ u.

Lemma 7.4. The node-edge incidence matrix A of a directed graph is totally
unimodular.

Proof (By induction). The case where A′ is a 1×1 sub-matrix of A is trivial.
Let A′ be a k×k sub-matrix of A and suppose we have proven the lemma for
every (k− 1)× (k− 1) sub-matrix with k− 1 ⩾ 1. Again, we can assume that
in each column we have exactly one 1 and one −1. Otherwise, we develop the
determinant along a column which does not have this property. But then, the
matrix A′ is singular, since adding up all rows of A′ yields the 0-vector.

A consequence is that, if the b-vector and the capacities u are integral and
an optimal flow exists, then there exists an integer optimal flow.

7.2.4 Doubly stochastic matrices

A matrix A ∈ Rn×n is doubly stochastic if it satisfies the following linear
constraints ∑n

i=1 A(i, j) = 1, ∀j = 1, . . . , n∑n
j=1 A(i, j) = 1, ∀i = 1, . . . , n

A(i, j) ⩾ 0, ∀1 ⩽ i, j ⩽ n.
(7.7)
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A permutation matrix is a matrix which contains exactly one 1 per row
and column, where the other entries are all 0.

Theorem 7.4. A matrix A ∈ Rn×n is doubly stochastic if and only if A is a
convex combination of permutation matrices.

Proof. Since a permutation matrix satisfies the constraints (7.7), then so does
a convex combination of these constraints.

On the other hand it is enough to show that each vertex of the polytope
defined by the system (7.7) is integral and thus a permutation matrix. How-
ever, the matrix defining the system (7.7) is the node-edge incidence matrix
of the complete bipartite graph having 2n vertices. Since such a matrix is
totally unimodular, the theorem follows.

7.3 The matching polytope

We now come to a deeper theorem concerning the convex hull of matchings.
We mentioned several times in the course that the maximum weight matching
problem can be solved in polynomial time. We are now going to show a the-
orem of Edmonds [2] which provides a complete description of the matching
polytope and present the proof by Lovász [11].

Before we proceed let us inspect the symmetric difference M1∆M2 of two
matchings of a graph G. If a vertex is adjacent to two edges of M1∪M2, then
one of the two edges belongs to M1 and one belongs to M2. Also, a vertex
can never be adjacent to three edges in M1 ∪M2. Edges which are both in
M1 and M2 do not appear in the symmetric difference. We therefore have
the following lemma.

Lemma 7.5. The symmetric difference M1∆M2 of two matchings decom-
poses into node-disjoint paths and cycles, where the edges on these paths and
cycles alternate between M1 and M2.

The Matching polytope P (G) of an undirected graph G = (V,E) is the
convex hull of incidence vectors χM of matchings M of G.

The incidence vectors of matchings are exactly the 0/1-vectors that satisfy
the following system of equations.∑

e∈δ(v) xe ⩽ 1 ∀v ∈ V

xe ⩾ 0 ∀e ∈ E.
(7.8)

However the triangle (Figure 7.4) shows that the corresponding polytope
is not integral. The objective function max 1Tx has value 1.5. However, one
can show that a maximum weight matching of an undirected graph can be
computed in polynomial time which is a result of Edmonds [3].
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1
2

1
2

1
2

Fig. 7.4: Triangle

The following (Figure 7.5) is an illustration of an Edmonds inequality.
Suppose that U is an odd subset of the nodes V of G and let M be a matching
of G. The number of edges of M with both endpoints in U is bounded from
above by ⌊|U |/2⌋.

Thus the following inequality is valid for the integer points of the polyhe-
dron defined by (7.8).

∑
e∈E(U)

xe ⩽ ⌊|U |/2⌋, for each U ⊆ V, |U | ≡ 1 (mod 2). (7.9)

Fig. 7.5: Edmonds inequality.

The goal of this lecture is a proof of the following theorem.

Theorem 7.5 (Edmonds 65). The matching polytope is described by the
following inequalities:

i) xe ⩾ 0 for each e ∈ E,
ii)

∑
e∈δ(v) xe ⩽ 1 for each v ∈ V ,

iii)
∑

e∈E(U) xe ⩽ ⌊|U |/2⌋ for each U ⊆ V
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Lemma 7.6. Let G = (V,E) be connected and let w : E −→ R>0 be a
weight-function. Denote the set of maximum weight matchings of G w.r.t. w
by M (w). Then one of the following statements must be true:

i) ∃ v ∈ V such that δ(v) ∩M ̸= ∅ for each M ∈M (w)
ii) |M | = ⌊|V |/2⌋ for each M ∈M (w) and |V | is odd.

Proof. Suppose both i) and ii) do not hold. Then there exists M ∈ M (w)
leaving two exposed nodes u and v. Choose M such that the minimum dis-
tance between two exposed nodes u, v is minimized.

Now let t be on shortest path from u to v. The vertex t cannot be exposed.

u vt

Fig. 7.6: Shortest path between u and v.

Let M ′ ∈M (w) leave t exposed. Both u and v are covered by M ′ because
the distance to u or v from t is smaller than the distance of u to v.

Consider the symmetric difference M△M ′ which decomposes into node
disjoint paths and cycles. The nodes u, v and t have degree one in M△M ′.
Let P be a path with endpoint t in M△M ′

t

Fig. 7.7: Swapping colors.

If we swap colors on P , see Figure 7.7, we obtain matchings M̃ and M̃ ′

with w(M) + w(M ′) = w(M̃) + w(M̃ ′) and thus M̃ ∈M (w).
The node t is exposed in M̃ and u or v is exposed in M̃ . This is a contra-

diction to u and v being shortest distance exposed vertices

Proof (Proof of Theorem 7.5).
Let wTx ⩽ β be a facet of P (G), we need to show that this facet is of the

form

i) xe ⩾ 0 for some e ∈ E
ii)

∑
e∈δ(v) xe ⩽ 1 for some v ∈ V

iii)
∑

e∈E(U) xe ⩽ ⌊|U |/2⌋ for some U ∈ Podd
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To do so, we use the following method: One of the inequalities i), ii), iii)
is satisfied with equality by each χM , M ∈M (w). This establishes the claim
since the matching polytope is full-dimensional and a facet is a maximal face.

If w(e) < 0 for some e ∈ E, then each M ∈ M (w) satisfies e /∈ M and
thus satisfies xe ⩾ 0 with equality.

Thus we can assume that w ⩾ 0.
Let G∗ = (V ∗, E∗) be the graph induced by edges e with w(e) > 0. Each

M ∈M (w) contains maximum weight matching M∗ = M ∩ E∗ of G∗ w.r.t.
w∗.

If G∗ is not connected , suppose that V ∗ = V1 ∪V2, where V1 ∩V2 = ∅ and
V1, V2 ̸= ∅ and there is no edge connecting V1 and V2, then wTx ⩽ β can be
written as the sum of wT

1 x ⩽ β1 and wT
2 x ⩽ β2, where βi is the maximum

weight of a matching in Vi w.r.t. wi, i = 1, 2, see Figure 7.8. This would also
contradict the fact that wTx ⩽ β is a facet, since it would follow from the
previous inequalities and thus would be a redundant inequality.

wT
1 x ≤ β1 wT

2 ≤ β2

Fig. 7.8: G∗ is connected.

Now we can use Lemma 7.6 for G∗.

i) ∃v such that δ(v) ∩M = ∅ for each M ∈M (w). This means that each
M in M (w) satisfies ∑

e∈δ(v)

xe ⩽ 1 with equality

ii) |M ∩ E∗| = ⌊|V ∗|/2⌋ for each M ∈M (w) and |V ∗| is odd. This means
that each M in M (w) satisfies∑

e∈E(V ∗)

xe ⩽ ⌊|V ∗|/2⌋ with equality
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Exercises

1. Let M ∈ Zn×m be totally unimodular. Prove that the following matrices
are totally unimodular as well:

i) MT

ii) (M In)
iii) (M −M)
iv) M · (In − 2eje

T
j ) for some j

In is the n× n identity matrix, and ej is the vector having a 1 in the jth

component, and 0 in the other components.
2. A family F of subsets of a finite groundset E is laminar, if for all C,D ∈
F , one of the following holds:

(i) C ∩D = ∅, (ii) C ⊆ D, (iii) D ⊆ C.

Let F1 and F2 be two laminar families of the same groundset E and
consider its union F1 ∪ F2. Define the |F1 ∪ F2| × |E| adjacency matrix
A as follows: For F ∈ F1 ∪ F2 and e ∈ E we have AF,e = 1, if e ∈ F and
AF,e = 0 otherwise.
Show that A is totally unimodular.

3. Consider the following scheduling problem: Given n tasks with periods
p1, . . . , pn ∈ N, we want to find offsets xi ∈ N0, such that every task i
can be executed periodically at times xi + pi · k for all k ∈ N0. In other
words, for all pairs i, j of tasks we require xi + k · pi ̸= xj + l · pj for all
k, l ∈ N0.
Formulate the problem of finding these offsets as an integer program (with
zero objective function).

4. Show the following: A polyhedron P ⊆ Rn with vertices is integral, if and
only if each vertex is integral.

5. Consider the polyhedron P = {x ∈ R3 : x1 + 2x2 + 4x3 ⩽ 4, x ⩾ 0}.
Show that this polyhedron is integral.

6. Which of these matrices is totally unimodular? Justify your answer.
1 1 0 1 0
0 0 1 0 1
0 1 1 1 0
1 1 0 0 0
0 1 0 0 1



1 1 1 1 1
1 1 0 0 0
1 1 1 0 0
1 1 1 1 0


7. Consider the complete graph Gn with 3 vertices, i.e., G = ({1, 2, 3},

(
3
2

)
).

Is the polyhedron of the linear programming relaxation of the vertex-
cover integer program integral?



Chapter 8
Paths, cycles and flows in graphs

Suppose you want to find a shortest path from a given starting point to a given
destination. This is a common scenario in driver assistance systems (GPS)
and can be modeled as one of the most basic combinatorial optimization
problems, the shortest path problem. In this chapter, we introduce directed
graphs, shortest paths and flows in networks. We focus in particular on the
maximum-flow problem, which is a linear program that we solve with direct
methods, versus the simplex method, and analyze the running time of these
direct methods.

8.1 Graphs

Definition 8.1. A directed graph is a tuple G = (V,A), where V is a finite
set of elements, called the vertices of G and A ⊆ (V ×V ) is the set of arcs of
G. We denote an arc by its two defining nodes (u, v) ∈ A. The nodes u and
v are called tail and head of the arc (u, v) respectively.

u v

x

y z

Fig. 8.1: Example of a directed graph with 5 nodes and 7 arcs.

89
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Definition 8.2 (Walk, path, distance). A walk is a sequence of the form

P = (v0, a1, v1, . . . , vm−1, am, vm),

where ai = (vi−1, vi) ∈ A for i = 1, . . . ,m. If the nodes v0, . . . , vm are all
different, then P is a path. The length of P is m. The distance of two nodes
u and v is the length of a shortest path from u to v. It is denoted by d(u, v).

Example 8.1. The following is a walk and a path of the graph in Figure 8.1.

z, (z, x), x, (x, u), u, (u, v), v, (v, u), u, (u, y), y, (y, x), x
y, (y, x), x, (x, u), u, (u, v), v

8.2 Representing graphs and computing the distance of
two nodes

We represent a graph with n vertices v1, . . . , vn as an array A[v1, . . . , vn],
where the entry A[vi] is a pointer to a linked list of vertices, the neighbours
of vi. N(vi) = {u ∈ V : (vi, u) ∈ A}.

u v x y z

y u u x x

v y

Fig. 8.2: Adjacency list representation of the graph in Figure 8.1.

8.2.1 Breadth-first search

We next describe a very basic algorithm that computes the distances from a
designated node s ∈ V to all other nodes. The distance from s to v is denoted
by d(s, v). It is the smallest integer i such that there exists a path from s
to v of length i. If there does not exist such a path, then s and v are not
connected and we define d(s, v) = ∞. For i ∈ N0, Vi ⊆ V denotes the set of
vertices that have distance i from s. Notice that V0 = {s}.
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Lemma 8.1. For i = 1, . . . , n − 1, the set Vi is equal to the set of vertices
v ∈ V \(V0∪· · ·∪Vi−1) such that there exists an arc (u, v) ∈ A with u ∈ Vi−1.

Proof. Suppose that v /∈ V0 ∪ · · · ∪ Vi−1 and there exists an arc uv ∈ A with
u ∈ Vi−1. Since u ∈ Vi−1, there exists a path s, a1, v1, a2, v2, . . . , ai−1, u of
length i−1 from s to u. The sequence s, a1, v1, a2, v2, . . . , ai, u, uv, v is a path
of length i from s to v and thus v ∈ Vi.

If, on the other hand, v ∈ Vi, then there exists a path

s, a1, v1, . . . , ai−1, u, ai, v

of length i from s to v. We need to show that u ∈ Vi−1 holds. Clearly, since
there exists a path of length i− 1 from s to u, one has u ∈ Vj with j ⩽ i− 1.
If j < i− 1, then there exists a path s, a′1, v

′
1, . . . , a

′
j , u of length j which can

be extended to a path of length j + 1 < i from s to v

s, a′1, v
′
1, . . . , a

′
j , u, ai, v

which contradicts v ∈ Vi. ⊓⊔
The breadth-first search algorithm is an implementation of Lemma 8.1.

The algorithm maintains arrays

D[v1 = s, v2, . . . , vn]
π[v1 = s, v2, . . . , vn]

and a queue Q that contains only s in the beginning. The array D contains
at termination of the algorithm the distances from s to all other nodes and is
initialized with [0,∞, . . . ,∞]. The array π contains predecessor information
for shortest paths, in other words, when the algorithm terminates, π[v] = u,
where uv is an arc and D[u] + 1 = D[v]. The array π is initialized with
[0, . . . , 0].

After this initialization, the algorithm proceeds as follows.

while Q ̸= ∅
u := head(Q)
for each v ∈ δ+(u)

if (D[v] =∞)
π[v] := u
D[v] := D[u] + 1
enqueue(Q, v)

dequeue(Q)

Here the function head(Q) returns the next element in the queue and
dequeue(Q) removes the first element of Q, while enqueue(Q, v) adds v to
the queue Q as last element.

Lemma 8.2. The breadth-first search algorithm assigns distance labels D
correctly.
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Proof. We show the following claim by induction on i ∈ {0, . . . , n− 1}.
For each i ∈ {1, . . . , n− 1} there exists a point in time where:

i) Q contains precisely the elements of Vi

ii) for each v ∈ Vi, D[v] = d(s, v)

iii) for each v ∈ Vi one has π[v]v is an arc and π[v] ∈ Vi−1.

Once this claim is shown, the lemma follows, because the labels D[v] and
π[v] are only changed once, if at all, from ∞ or 0 to an integer or a vertex
respectively.

Since V0 = {s} and since Q = [s] and D[s] = 0 after the initialization,
the claim holds for i = 0. Suppose i > 0. By the induction hypothesis, there
is a point in time, where Q contains precisely Vi−1. By Lemma 8.1, after
the last element of Vi−1 is dequeued Q contains precisely the elements in Vi.
Also, since D[u] = d(s, u) = i − 1 for all u ∈ Vi−1, we have for each v ∈ Vi

that D[v] = d(s, v) = i. Also π[v]v is an arc, by virtue of the algorithm, and
π[v] ∈ Vi−1. ⊓⊔
Definition 8.3 (Directed tree). A directed tree is a directed graph T =
(V,A) with |A| = |V | − 1 and containing a node r ∈ V such that there exists
a path from r to all other nodes of T .

Lemma 8.3. Consider the arrays D and π after the termination of the
breadth-first-search algorithm. The graph T = (V ′, A′) with V ′ = {v ∈
V : D[v] <∞} and A′ = {π(v)v : 1 ⩽ D[v] <∞} is a tree.

Proof. Clearly, |A′| = |V ′| − 1. For any i ∈ {1, . . . , n − 1}, by backtracking
the π-labels from any v ∈ Vi, we will eventually reach s.

Definition 8.4. The tree T from lemma 8.3 is the shortest-path-tree of the
(unweighted) directed graph G = (V,A).

Theorem 8.1. The breath-first-search algorithm runs in time O(|V |+ |A|).
Proof. Each vertex is queued and dequeued at most once. These queuing
operations take constant time each. Thus queuing and dequeuing costs O(|V |)
in total.

When a vertex u is dequeued, its neighbors are inspected and the opera-
tions in the if statement cost constant time each. Thus one has an additional
cost of O(|A|), since these constant-time operations are carried out for each
arc a ∈ A. ⊓⊔

8.3 Shortest Paths

Definition 8.5 (Cycle). A walk in which starting node and end-node agree
is called a cycle.
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a d

b

c e

s

(a) The breadth-first search algorithm
starts with the queue Q = [s]. The
distance labels for [s, a, b, c, d, e] are
[0,∞,∞,∞,∞,∞] respectively.

d

b

e

a

c

s

(b) After the first iteration of the while
loop the queue is Q = [a, c] and the dis-
tance labels are [0, 1,∞, 1,∞,∞] respec-
tively.

d

e

a

b

c

s

(c) After the second iteration of the
while loop the queue is Q = [c, b] and
the distance labels are [0, 1, 2, 1,∞,∞]

respectively.

d

e

a

b

c

s

(d) After the third iteration of the while
loop the queue is Q = [b] and the dis-
tance labels are unchanged, since c does
not have any neighbors.

d

e

a

b

c

s

(e) After the fourth iteration of the
while loop the queue is Q = [d, e] and
the distance labels are [0, 1, 2, 1, 3, 3] re-
spectively.

d

e

a

b

c

s

(f) After the fifth and sixth iteration
of the while loop the queue is empty
Q = [] and the distance labels remain
unchanged. The blue edges denote the
shortest path tree.

Fig. 8.3: An example-run of breadth-first search

Suppose we are given a directed graph D = (V,A) and a length function
c : A −→ R. The length of a walk W is defined as

c(W ) =
∑
a∈A
a∈W

c(a).

We now study how to determine a shortest path in a weighted directed graph
G efficiently, in case of the absence of cycles of negative length (such cycles
are called negative cycles).
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Theorem 8.2. Suppose that each cycle in D has non-negative length and
suppose there exists an s− t-walk in D. Then there exists a path connecting
s with t which has minimum length among all walks connecting s and t.

Proof. If there exists an s− t-walk, then there exists an s− t-path. Since the
number of arcs in a path is at most |V | − 1, there must exist a shortest path
P connecting s and t. We claim that c(P ) ⩽ c(W ) for all s − t-walks W .
Suppose that there exists an s − t-walk W with c(W ) < c(P ). Then let W
be such a walk with a minimum number of arcs. Clearly W contains a cycle
C. Since the cycle has non-negative length, then it can be removed from W
to obtain a walk whose length is at most c(W ) and whose number of arcs is
strictly less than |W |. This is a contradiction to the minimality of the number
of arcs in W . ⊓⊔

We use the notation |W |, |C|, |P | to denote the number of arcs in a walk
W , a cycle C or a path P .

As a conclusion we can note here:

If there do not exist negative cycles in D, and s and t are connected, then there
exists a shortest walk traversing at most |V | − 1 arcs.

The Bellman-Ford algorithm

Let n = |V |. We calculate functions f0, f1, . . . , fn : V −→ R ∪ {∞} succes-
sively by the following rule.

i) f0(s) = 0, f0(v) =∞ for all v ̸= s
ii) For k < n if fk has been found, compute

fk+1(v) = min{fk(v), min
(u,v)∈A

{fk(u) + c(u, v)}}

for all v ∈ V .

The following theorem shows us that the Bellman-Ford algorithm is a
method to compute minimum length walks.

Theorem 8.3. For each k = 0, . . . , n and for each v ∈ V

fk(v) = min{c(P ) : P is an s− v-walk traversing at most k arcs}.

Theorem 8.4. Given a directed graph D = (V,A), s ∈ V and a length func-
tion c : A→ R, one has fn = fn−1 if and only if D does not have a cycle of
negative length that is reachable from s.

Proof. (⇐) Suppose there exists t ∈ V such that fn(t) < fn−1(t) <∞. This
implies that the shortest s − t-walk traversing at most n arcs (call it W )
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(a) The algorithm is initialized with
distance labels for s, a, b, c, d, e being
[0,∞,∞,∞,∞,∞] respectively
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(b) After the first iteration the labels are
[0, 3,∞, 4,∞,∞]

a d

b

c e

s
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3
−3

22
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(c) After the second iteration the labels
are [0, 3, 4, 4,∞,∞]

a d

b

c e

s −3

24 2

−2

33 1

(d) After the third iteration the labels
are [0, 3, 4, 2, 7, 6]

a d

b

c e

s

224

−3
−2

33 1

(e) After the fourth iteration the labels
are [0, 3, 4, 2, 7, 4]

a d

b

c e

s

224

−3
−2

33 1

(f) After the fifth iteration the labels are
unchanged. The shortest path distances
have been computed.

Fig. 8.4: An example-run of the Bellman-Ford algorithm. The blue edges
represent the tree whose paths have the corresponding lengths.

traverses exactly n arcs and thus contains a cycle (call it C). Consider the
s− t-walk W ′ obtained by eliminating C from W . W ′ traverses at most n−1
arcs and thus we have c(W ′) > c(W ). Since c(W ) = c(W ′) + c(C), we have
that c(C) < 0.

(⇒) Let C = v0, v1, · · · , vk, v0 be a cycle reachable from s. Notice that
fn−1(vi) < ∞ ∀0 ⩽ i ⩽ k. We can show that C is a non-negative cycle
by these simple calculations (notice that the node indices i and i + 1 are
considered modulo k in the following sums).

0 =

k∑
i=0

fn(vi+1)− fn(vi) ⩽
k∑

i=0

c(vi, vi+1) = c(C)

Theorem 8.4 can be generalized for every n ⩾ |V |. This allows us to obtain
the following corollary.
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Corollary 8.1. If D = (V,A) does not contain negative cycles w.r.t. c, then
fn(v) is equal to the length of a shortest s− v-path. The numbers fn(v) can
be computed in time O(|V | · |A|).

Notice that by using theorem 8.4 we can see if a directed graph D(V,A) has
negative cycles in the following way. We obtain a new graph D′ = (V ′, A′) add
a node s to D and we connect s to all other vertices with an outgoing arc of
weight 0. Then, we apply Bellman-Ford algorithm to D′ with starting node s.
Notice that D contains a negative cycle, if and only if D′ contains a negative
cycle (since every cycle in D is reachable from s in D′). Thus D contains a
negative cycle if and only if there exists t ∈ V such that fn(t) < fn−1(t) in
D′. This gives us the following corollary.

Corollary 8.2. In time O(|V | · |A|) one can test whether D = (V,A) has a
negative cycle w.r.t. c and eventually return one.

Proof. By our previous words we know that we simply have to apply Bellman-
Ford algorithm to the graph D′. The corollary follows by the fact that |V ′| =
|V |+ 1 and |A′| = |A|+ |V | and by using corollary 8.1.

8.4 Maximum s − t-flows

We now turn our attention to a linear programming problem which we will
solve by direct methods, motivated by the nature of the problem. We often
use the following notation. If f : A −→ B denotes a function and if U ⊆ A,
then f(U) is defined as f(U) =

∑
a∈U f(a).

Definition 8.6 (Network, s− t-flow). A network with capacities consists
of a directed simple graph D = (V,A) and a capacity function u : A→ R⩾0.
We also require that if there is an arc uv ∈ A, then there is no reverse arc vu,
and we disallow self-loops. A function f : A→ R⩾0 is called an s− t-flow, if∑

e∈δout(v)

f(e) =
∑

e∈δin(v)

f(e), for all v ∈ V − {s, t}, (8.1)

where s, t ∈ V . These two vertices are called source and sink respectively.
The flow is feasible, if f(e) ⩽ u(e) for all e ∈ A. The value of f is defined as
value(f) =

∑
e∈δout(s) f(e)−

∑
e∈δin(s) f(e). The maximum s−t-flow problem

is the problem of determining a maximum feasible s− t-flow.

Here, for U ⊆ V , δin(U) denotes the arcs which are entering U and δout(U)
denotes the arcs which are leaving U . Arc sets of the form δout(U) are called
a cut of D. The capacity of a cut u(δout(U)) is the sum of the capacities of
its arcs.

Thus the maximum flow problem is a linear program of the form
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max
∑

e∈δout(s)

x(e) −
∑

e∈δin(s)

x(e) (8.2)

∑
e∈δout(v)

x(e) =
∑

e∈δin(v)

x(e), for all v ∈ V − {s, t} (8.3)

x(e) ⩽ u(e), for all e ∈ A (8.4)
x(e) ⩾ 0, for all e ∈ A (8.5)

Definition 8.7 (excess function). For any f : A→ R, the excess function
is the function excessf : 2V → R defined by excessf (U) =

∑
e∈δin(U) f(e)−∑

e∈δout(U) f(e).

Theorem 8.5. Let D = (V,A) be a digraph, let f : A → R and let U ⊆ V ,
then

excessf (U) =
∑
v∈U

excessf (v). (8.6)

Proof. An arc which has both endpoints in U is counted twice with different
parities on the right, and thus cancels out. An arc which has its tail in U is
subtracted once on the right and once on the left. An arc which has its head
in U is added once on the right and once on the left. ⊓⊔

A cut δout(U) with s ∈ U and t /∈ U is called an s− t-cut.

Theorem 8.6 (Weak duality). Let f be a feasible s−t-flow and let δout(U)
be an s− t-cut, then value(f) ⩽ u(δout(U)).

Proof. value(f) = −excessf (s) = −excessf (U) = f(δout(U))− f(δin(U)) ⩽
f(δout(U)) ⩽ u(δout(U)). ⊓⊔

For an arc a = (u, v) ∈ A the arc a−1 denotes the arc (v, u).

Definition 8.8 (Residual graph). Let f : A → R, and u : A → R where
0 ⩽ f ⩽ u. Consider the sets of arcs

Af = {a | a ∈ A, f(a) < u(a)} ∪ {a−1 | a ∈ A, f(a) > 0}. (8.7)

The digraph D(f) = (V,Af ) is called the residual graph of f (for capacities
u).

Corollary 8.3. Let f be a feasible s − t-flow and suppose that D(f) has no
path from s to t, then f has maximum value.

Proof. Let U be the set of nodes which are reachable in D(f) from s. Clearly
δout(U) is an s − t-cut. Now value(f) = f(δout(U)) − f(δin(U). Each arc
leaving U is not an arc of D(f) and thus f(δout(U)) = u(δout(U)). Each arc
entering U does not carry any flow and thus f(δin(U)) = 0. It follows that
value(f) = u(δout(U)) and f is optimal by Theorem 8.6. ⊓⊔
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Definition 8.9 (undirected walk). An undirected walk is a sequence of the
form P = (v0, a1, v1, . . . , vm−1, am, vm), where ai ∈ A for i = 1, . . . ,m and
ai = (vi−1, vi) or ai = (vi, vi−1). If the nodes v0, . . . , vm are all different, then
P is an undirected path.

Any directed path P in D(f) yields an undirected path in D. Define for
such a path P the vector χP ∈ {0,±1}A as

χP (a) =


1 if P traverses a,

−1 if P traverses a−1,

0 if P traverses neither a or a−1.

(8.8)

Theorem 8.7 (max-flow min-cut theorem, strong duality). The max-
imum value of a feasible s − t-flow is equal to the minimum capacity of an
s− t cut.

Proof. Let f be a maximum s− t-flow. Consider the residual graph D(f). If
this residual graph contains an s − t-path P , then we can route flow along
this path. More precisely, there exists an ϵ > 0 such that f + ϵ χP is feasible.
We have value(f + ϵ χP ) = value(f) + ϵ. This contradicts the maximality of
f thus there exists no s− t-path in D(f).

Let U be the nodes reachable from s in D(f). Then value(f) = u(δout(U))
and δout(U) is an s−t-cut of minimum capacity by the weak duality theorem.

This suggests the algorithm of Ford and Fulkerson to find a maximum
flow. Start with f = 0. Next iteratively apply the following flow augmentation
algorithm.

Let P be a directed s − t-path in D(f). Set f ← f + ϵχP , where ϵ is as
large as possible to maintain 0 ⩽ f ⩽ u.

Exercise 8.1. Define a residual capacity for D(f). Then determine the max-
imum ϵ such that 0 ⩽ f ⩽ u.

Theorem 8.8. If all capacities are rational, this algorithm terminates.

Proof. By multiplying all the capacities by 10x with x sufficiently large, we
can suppose the capacities to be integral. Since the value of the flow is aug-
mented at every step at least by 1 and the capacities are finite, our algorithm
finds a maximum flow in finitely many iterations.
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The example above shows that, if the augmenting paths are chosen in a
disadvantageous way, then the Ford-Fulkerson algorithm may take Ω(M)
iterations, where M is the largest capacity in the network. This happens if
all augmenting paths use the arc uv or vu respectively in the residual network.

Corollary 8.4 (integrity theorem). If u(a) ∈ N for each a ∈ A, then there
exists an integer maximum flow (f(a) ∈ N for all a ∈ A).

Proof. This follows from the fact that the residual capacities remain integral
and thus the augmented flow is always integral. ⊓⊔
Theorem 8.9. If we choose in each iteration a shortest s − t-path in D(f)
as a flow-augmenting path, the number of iterations is at most |V | · |A|.
Definition 8.10. Let D = (V,A) be a digraph, s, t ∈ V and let µ(D) denote
the length of a shortest path from s to t. Let α(D) denote the set of arcs
contained in at least one shortest s− t path.

Theorem 8.10. Let D = (V,A) be a digraph and s, t ∈ V . Define D′ =
(V,A ∪ α(D)−1). Then µ(D) = µ(D′) and α(D) = α(D′).

Proof. It suffices to show that µ(D) and α(D) are invariant if we add a−1

to D for one arc a ∈ α(D). Suppose not, then there is a directed s − t-path
P1 traversing a−1 of length at most µ(D). As a ∈ α(D) there is a path P2

traversing a of length µ(D). If we follow P2 until the tail of a is reached and
from thereon follow P1, we obtain another s − t path P3 in D. Similarly if
we follow P1 until the head of a is reached and then follow P2, we obtain a
fourth s− t path P4 in D. However P3 or P4 has length less than µ(D). This
is a contradiction. ⊓⊔
Proof (of Theorem 8.9). Let us augment flow f along a shortest s − t-path
P in D(f) obtaining flow f ′. The residual graph Df ′ is a subgraph of D′ =
(V,Af∪α(D(f))−1). Hence µ(Df ′) ⩾ µ(D′) = µ(D(f)). If µ(Df ′) = µ(D(f)),
then α(Df ′) ⊆ α(D′) = α(D(f)). At least one arc of P does not belong to
Df ′ , (the arc of minimum residual capacity!) thus the inclusion is strict. Since
µ(D(f)) increases at most |V | times and, as long as µ(D(f)) does not change,
|α(D(f))| decreases at most 2 |A| times, we have the theorem. ⊓⊔
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In the following let m = |A| and n = |V |.

Corollary 8.5. A maximum flow can be found in time O(nm2).

8.5 Minimum cost network flows, MCNFP

In contrast to the maximum s − t-flow problem, the goal here is to route
a flow, which comes from several sources and sinks through a network with
capacities and costs in such a way, that the total cost is minimized.

Example 8.2. Suppose you are given a directed graph D = (V,A) with arc
weights c : A → R⩾0 and your task is to compute a shortest path from a
particular node s to all other nodes in the graph and assume that such paths
exist. Then one can model this as a MCNFP (minimum cost network flow
problem) by sending a flow of value |V | − 1 into the source node and by
letting a flow of value 1 leave each node. The costs on the arcs are defined
by c. The arcs have infinite capacities. We will see later, that this MCNFP
has an integral solution which corresponds to the shortest paths from s to all
other nodes.

Here is a formal definition of a MCNFP. In this notation, vertices are
indexed with the letters i, j, k and arcs are denoted by their tail and head
respectively, for example (i, j) denotes the arc from i to j.

A network is now a directed graph D = (V,A) together with a capacity
function u : A → Q⩾0, a cost function c : A → Q and an external flow
b : V → Q. The value of bi denotes the amount of flow which comes from the
exterior. If bi > 0, then there is flow from the outside, entering the network
through node i. If bi < 0, there is flow which leaves the network through i.

In the following we often use the notation f(i, j) for the flow-value on the
arc (i, j) (instead of f((i, j))). Similarly we write c(i, j) and u(i, j).

A feasible flow is a function f : A → Q⩾0 which satisfies the following
constraints. ∑

e∈δout(i) f(e)−
∑

e∈δin(i) f(e) = bi for all i ∈ V,

0 ⩽ f(e) ⩽ u(e) for all e ∈ A.

The goal is to find a feasible flow with minimum cost:

minimize
∑

e∈A c(e)f(e)
subject to

∑
e∈δout(i) f(e)−

∑
e∈δin(i) f(e) = bi for all i ∈ V,

0 ⩽ f(e) ⩽ u(e) for all e ∈ A

Example 8.3. Imagine you are a pilot and fly a passenger airplane in hops
from airport 1 to airport 2 to airport 3 and so on, until airport n. At airport
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Fig. 8.5: A Network with in/out-flow, costs and capacities and a feasible flow
of cost 13.

i there are bij passengers that want to travel to airport j, where j > i. You
may decide how many of the bij passengers you will take on board. Each of
the passengers will pay cij dollars for the trip. The airplane can accommodate
p people.

You are a greedy pilot and think of a plan to pick up and deliver passengers
on your hop from 1 to n which maximizes your revenue.

Finding this plan can be modeled as a MCNFP. Your network has nodes
1, . . . , n and arcs (i, i+1), i = 1, . . . , n−1 with capacities p and without costs.
These nodes do not have in/out-flow from the outside. You furthermore have
nodes i → j for i < j and i, j ∈ {1, . . . , n} which are excess nodes with
in-flow bij from the outside. Each node i → j is connected to i and to j
with a directed arc. The capacities on these arcs are infinite. The cost of the
arc (i → j, i) is −cij . The cost of the arc (i → j, j) is zero. The outflow on
the node j is the total number of passengers that want to fly to node j. An
integral optimal flow to this problem is an optimal plan for you.

Throughout this chapter we make the following assumptions.
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1. All data (cost, supply, demand and capacity) are integral.
2. The network contains an incapacitated directed path between every pair

of nodes.
3. The supplies/demands at the nodes satisfy the condition

∑
i∈V bi = 0

and the MCNFP has a feasible solution.
4. All arc costs are nonnegative.
5. The graph does not contain a pair of reverse arcs.

Exercise 8.2. Show how to transform a MCNFP on a digraph with pairs of
reverse arcs into a MCNFP on a digraph with no pairs of reverse arcs. The
number of arcs and nodes should asymptotically remain the same.

An arc-flow of D is a flow vector, that satisfies the nonnegativity and
capacity constraints.

∑
e∈δin(i)

f(e)−
∑

e∈δout(i)

f(e) = g(i) for all i ∈ V,

0 ⩽ f(e) ⩽ u(e) for all e ∈ A.

• If g(i) > 0, then i is an excess node (more inflow than outflow).
• If g(i) < 0, then i is a deficit node (more outflow than inflow).
• If g(i) = 0 then i is a balanced node.

Exercise 8.3. Prove that
∑

i∈V g(i) = 0 holds and thus that a feasible flow
only exists if the sum of the b(i) is equal to zero.

Let P be the collection of directed paths of D and let C be the collection
of directed cycles of D. A path-flow is a function β : P ∪ C → R⩾0 which
assigns flow values to paths and cycles.

For (i, j) ∈ A and P ∈ P let δ(i,j)(P ) be 1 if (i, j) ∈ P and 0 otherwise.
For C ∈ C let δ(i,j)(C) be 1 if (i, j) ∈ C and 0 otherwise.

A path-flow β determines a unique arc-flow

f(i, j) =
∑
P∈P

δ(i,j)(P )β(P ) +
∑
C∈C

δ(i,j)(C)β(C).

Theorem 8.11. Every path and cycle flow has a unique representation as a
nonnegative arc-flow. Conversely, every nonnegative arc-flow f can be repre-
sented as a path and cycle flow with the following properties:

1. Every directed path with positive flow connects a deficit node with an
excess node.

2. At most n+m paths and cycles have nonzero flow and at most m cycles
have nonzero flow.

If the arc-flow f is integral, then so are the path and cycle flows into which
it decomposes.
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Proof. “⇒” See discussion above.
“⇐”
Let f be an arc-flow. Suppose i0 is a deficit node. Then there exists an

incident arc (i0, i1) which carries a positive flow. If i1 is an excess node, we
have found a path from deficit to excess node. Otherwise, the flow balance
constraint at i1 implies that there exists an arc (i1, i2) with positive flow.
Repeating this procedure, we finally must arrive at an excess node or revisit
a node. This means that we either have constructed a directed path P from
deficit node to excess node or a directed cycle C, both involving only arcs
with strictly positive flow.

In the first case, let P = i0, . . . , ik be the directed path from deficit node i0
to excess node ik. We set β(P ) = min{−ei0 , eik ,min{f(i, j) | (i, j) ∈ P}} and
f(i, j) = f(i, j)−β(P ), (i, j) ∈ P . In the second case, set β(C) = min{f(i, j) |
(i, j) ∈ C and f(i, j) = f(i, j)−β(C), (i, j) ∈ C. Repeat this procedure until
all node imbalances are zero.

Now find an arc with positive flow and construct a cycle C by following
only positive arcs from there. Set β(C) = min{f(i, j) | (i, j) ∈ C} and
f(i, j) = f(i, j) − β(C), (i, j) ∈ C}. Repeat this process until there are no
positive flow-arcs left.

Each time a path or a cycle is identified, the excess/deficit of some node
is set to zero or some arc is set to zero. This implies that we decompose into
at most n+m paths and cycles. Since cycle detection sets an arc to zero we
have at most m cycles. ⊓⊔

An arc flow f with g(i) = 0 for each i ∈ V is called a circulation.

Corollary 8.6. A circulation can be decomposed into at most m cycle-flows.

Let D = (V,A) be a network with capacities u(i, j), (i, j) ∈ A and costs
c(i, j), (i, j) ∈ A and let f be a feasible flow of the network. The residual
network D(f) is defined as follows.

• We replace each arc (i, j) ∈ A with two arcs (i, j) and (j, i).
• The arc (i, j) has cost c(i, j) and residual capacity r(i, j) = u(i, j)−f(i, j).
• The arc (j, i) has cost −c(i, j) and residual capacity r(j, i) = f(i, j).
• Delete all arcs which do not have strictly positive residual capacity.

A directed cycle (or path) in D(f) is called an augmenting cycle (or path)
of f .

Lemma 8.4. Suppose that f and f◦ are feasible flows, then f − f◦ is a
circulation in D(f◦). Here f − f◦ is the flow

(f − f◦)(e) =


max{0, f(e)− f◦(e)}, if e ∈ A(D)

max{0, f◦(e)− f(e)}, if e−1 ∈ A(D)

0, otherwise.
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Fig. 8.6: The residual network of the flow in Figure 8.5 and a negative cycle
marked by the red edges.

Proof. It is very easy to see that the flow f − f◦ satisfies the capacity con-
straints. One also has for each v ∈ V∑

e∈δout(v)

(f(e)− f◦(e))−
∑

e∈δin(v)

(f(e)− f◦(e)) = 0.

If a term (f(e) − f◦(e)) is negative, it is replaced by its absolute value and
charged as flow on the arc e−1 in D(f◦) which leaves its contribution to the
sum above invariant. ⊓⊔

4/3/4
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3/4/4
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1/1

e1

1/4
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2

Fig. 8.7: Two arcs e1, e2 ∈ A labeled with f(e)/f◦(e)/u(e) and the corre-
sponding flow on these arcs (or their reverse) in D(f◦). Arcs in D(f◦) are
labeled with flow and capacity values respectively.
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Theorem 8.12 (Augmenting Cycle Theorem). Let f and f◦ be any two
feasible flows of a network flow problem. Then f equals f◦ plus the flow of at
most m directed cycles in D(f◦). Furthermore the cost of f equals the cost
of f◦ plus the cost of flow on these augmenting cycles.

Proof. This can be seen by applying flow decomposition on the flow f − f◦

in D(f◦). ⊓⊔

Theorem 8.13 (Negative Cycle Optimality Conditions). A feasible
flow f∗ is an optimal solution of the MCNFP, if and only if it satisfies the
negative cycle optimality conditions: the residual network D(f∗) contains no
directed cycle of negative cost.

Proof. “⇒” Suppose that f is a feasible flow and that D(f) contains a nega-
tive directed cycle. Then f cannot be optimal, since we can augment positive
flow along the corresponding cycle in the network. Therefore, if f∗ is an
optimal flow, then D(f∗) cannot contain a negative directed cycle.

“⇐” Suppose now that f∗ is a feasible flow and suppose that D(f∗) does
not contain a negative cycle. Let f◦ be an optimal flow with f◦ ̸= f∗. The
vector f◦−f∗ is a circulation in D(f◦) with non-positive cost cT (f◦−f∗) ⩽ 0.
It follows from Theorem 8.12 that the cost of f◦ equals the cost of f∗ plus
the cost of directed cycles in the residual network D(f∗). The cost of these
cycles is nonnegative, and therefore c(f◦) ⩾ c(f∗) which implies that f∗ is
optimal. ⊓⊔
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Fig. 8.8: The result of augmenting a flow of one along the negative cycle in
Figure 8.6. This flow has cost 12 but is not optimal, since the residual network
still contains a negative cycle.

Algorithm 8.1 (Cycle Canceling Algorithm).
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1. establish a feasible flow f in the network
2. WHILE D(f) contains a negative cycle

a. detect a negative cycle C in D(f)
b. let δ = min{r(i, j) | (i, j) ∈ C}
c. augment δ units of flow along the cycle C
d. update D(f)

3. RETURN f

Theorem 8.14. The cycle canceling algorithm terminates after a finite num-
ber of steps if the MCNFP has an optimal solution.

Proof. The cycle canceling algorithm reduces the cost in each iteration. We
have assumed that the input data is integral. Thus the cost decreases by at
least one unit each iteration. Therefore the number of iterations is finite. ⊓⊔
Corollary 8.7. If the capacities are integral and if the MCNFP has a optimal
flow, then it has an optimal flow with integer values only.

Let π : V → R be a function (node potential). The reduced cost of an arc
(i, j) w.r.t. π is cπ((i, j)) = c((i, j)) + π(i) − π(j). The potential π is called
feasible if cπ((i, j)) ⩾ 0 for all arcs (i, j) ∈ A.

Lemma 8.5. Let D = (V,A) be a digraph with arc weights c : A→ R. Then
D does not have a negative cycle if and only if there exists a feasible node
potential π of D.

Proof. Consider a directed path P = i0, i1, . . . , ik. The cost of this path is

c(P ) =

k∑
j=1

c((ij−1, ij)).

The reduced cost of this path is equal to

cπ(P ) =

k∑
j=1

c((ij−1, ij)) + π(i0)− π(ik).

If P is a cycle, then i0 and ik are equal, which means that its cost and reduced
cost coincide. Thus, if there exists a feasible node potential, then there does
not exist a negative cycle.

On the other hand, suppose that D does not contain a negative cycle
w.r.t. c. Add a vertex s to D and the arcs (s, i) for all i ∈ V . The weights
(costs) of all these new arcs is 0. Notice that in this way, no new cycles
are created, thus still there does not exist a negative cycle. This means we
can compute the shortest paths from s to all other nodes i ∈ V . Let π be
the function which assigns these shortest paths lengths. Clearly cπ((i, j)) =
π(i)− π(j) + c((i, j)) ⩾ 0, since the shortest-path length to j is at most the
shortest-path length to i plus c((i, j)). ⊓⊔
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This means that we have again a nice way to prove that a flow is optimal.
Simply equip the residual network with a feasible node potential.

Corollary 8.8 (Reduced Cost Optimality Condition). A feasible flow
f∗ is optimal if and only if there exists a node potential π such that the
reduced costs cπ(i, j) of each arch (i, j) of D(f) are nonnegative.

The cycle canceling algorithm is only pseudopolynomial. If we could always
chose a minimum cycle (cycle with best improvement) as an augmenting
cycle, we would have a polynomial number of iterations. Finding minimum
cycles is NP -hard. Instead we augment along minimum mean cycles. One
can find minimum mean cycles in polynomial time.

The mean cost of a cycle C ∈ C is the cost of C divided by the number of
arcs in C: ∑

(i,j)∈C

c(i, j))/|C|.

Algorithm 8.2 (Minimum Mean Cycle Canceling, MMCC).

1. establish a feasible flow f in the network
2. WHILE D(f) contains a negative cycle

a. detect a minimum mean cycle C in D(f)
b. δ = min{r(i, j) | (i, j) ∈ C}
c. augment δ units of flow along the cycle C
d. update D(f)

3. RETURN f

We now analyze the MMCC-algorithm. Let µ(f) denote the minimum
mean-weight of a cycle in D(f).

Lemma 8.6 (See Korte & Vygen [9]). Let f1, f2, . . . be a sequence of
feasible flows such that fi+1 results from fi by augmenting flow along Ci,
where Ci is a minimum mean cycle of D(fi), then

1. µ(fk) ⩽ µ(fk+1) for all k.
2. µ(fk) ⩽ n

n−1µ(fl), where k < l and Ck ∪ Cl contains a pair of reversed
arcs.

Proof. 1): Suppose fk and fk+1 are two subsequent flows in this sequence.
Consider the multi-graph H which results from Ck and Ck+1 by deleting
pairs of opposing arcs. The arcs of H are a subset of the arcs of D(fk), since
an arc of Ck+1 which is not in D(fk) must be a reverse arc of Ck.

Each node in H has even degree. Thus H can be decomposed into cycles,
each of mean weight at least µ(fk). Thus we have c(A(H)) ⩾ µ(fk)|A(H)|.

Since the total weight of each reverse pair of arcs is zero we have
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c(A(H)) = c(Ck) + c(Ck+1) = µ(fk)|Ck|+ µ(fk+1)|Ck+1|.

Since |A(H)| ⩽ |Ck|+ |Ck+1| we conclude

µ(fk)(|Ck|+ |Ck+1|) ⩽ µ(fk)|A(H)|
⩽ c(A(H))

= µ(fk)|Ck|+ µ(fk+1)|Ck+1|.

Thus µ(fk) ⩽ µ(fk+1).
2): By the first part of the theorem, it is enough to prove the statement

for k, l such that Ci ∪ Cl does not contain a pair of reverse arcs for each
i, k < i < l.

Again, consider the graph H resulting from Ck and Cl by deleting pairs
of opposing arcs. H is a subgraph of D(fk), since any arc of Cl which does
not belong to D(fk) must be a reverse arc of Ck, Ck+1, . . . , Cl−1. But only
Ck contains a reverse arc of Cl. So as above we have

c(A(H)) = c(Ck) + c(Cl) = µ(fk)|Ck|+ µ(fl)|Cl|.

Since |A(H)| ⩽ |Ck| + |Cl| − 2 we have |A(H)| ⩽ n−1
n (|Ck| + |Cl|). Thus

we get

µ(fk)
n− 1

n
(|Ck|+ |Cl|) ⩽ µ(fk)|A(H)|

⩽ c(A(H))

= µ(fk)|Ck|+ µ(fl)|Cl|
⩽ µ(fl)(|Ck|+ |Cl|)

This implies that µ(fk) ⩽ n
n−1µ(fl). ⊓⊔

Corollary 8.9. During the execution of the MMCC-algorithm, |µ(f)| de-
creases by a factor of 1/2 every n ·m iterations.

Proof. Let C1, C2, . . . be the sequence of augmenting cycles. Every mth it-
eration, there must be an arc of the cycle, which is reverse to one of the
succeeding m− 1 cycles, because every iteration, one arc of the residual net-
work will be deleted. Thus after nm iterations, the absolute value of µ has
dropped by

(
n−1
n

)n
⩽ e−1 ⩽ 1/2. ⊓⊔

Corollary 8.10. If all data are integral, then the MMCC-algorithm runs in
polynomial time.

Proof. • A lower bound on µ is the smallest cost cmin

• |µ| drops by 1/2 every mn iterations.
• After mn log n|cmin| iterations, absolute value of minimum mean weight

cycle drops below 1/n, thus is zero.
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• We need to prove that a minimum mean cycle can be found in
polynomial time

⊓⊔

This is a so-called weakly polynomial bound, since the binary encoding
length of the numbers in the input (here the costs) influences the running
time. We now prove that the MMCC-algorithm is strongly polynomial.

Theorem 8.15 (See Korte & Vygen [9]). The MMCC-algorithm requires
O(m2 n log n) iterations (mean weight cycle cancellations).

Proof. One shows that every mn(⌈log n⌉ + 1) iterations, at least one arc is
fixed, which means that the flow through this arc does not change anymore.

Let f1 be some flow at some iteration and let f2 be the flow mn(⌈log n⌉+1)
iterations later. It follows from Corollary 8.9 that

µ(f1) ⩽ 2nµ(f2) (8.9)

holds.
Define the costs c′(e) = c(e)−µ(f2) for the residual network D(f2). There

exists no negative cycle in D(f2) w.r.t. this cost c′. (A cycle C has weight
c′(C) =

∑
e∈C c(e)−|C|µ(f2) and thus c′(C)/|C| = ∑

e∈C c(e)/|C|−µ(f2) ⩾
0). By Lemma 8.5 there exists a feasible node potential π for these weights.
One has 0 ⩽ c′π(e) = cπ(e)− µ(f2) and thus

cπ(e) ⩾ µ(f2), for all e ∈ A(D(f2)). (8.10)

Let C be a minimum mean cycle of D(f1). One has

cπ(C) = c(C) = µ(f1) |C| ⩽ 2nµ(f2)|C|. (8.11)

It follows that there exists an arc e0 of C such that

cπ(e0) ⩽ 2nµ(f2) (8.12)

holds. The inequalities (8.10) imply that e0 /∈ A(D(f2))
We now make the following claim:

Let f ′ be a feasible flow such that e0 ∈ D(f ′), then µ(f ′) ⩽ µ(f2).

If we have shown this claim, then it follows from Lemma 8.6 that e0 cannot
be anymore in the residual network of a flow after f2. Thus the flow along
the arc e0 (or e−1

0 ) is fixed.
Let f ′ be a flow such that e0 ∈ A(D(f ′)). Recall that f ′−f2 is a circulation

in D(f2) where e0 /∈ D(f2), e
−1
0 ∈ D(f2) and this circulation sends flow

over e−1
0 . This circulation can be decomposed into cycles and one of these

cycles C contains e−1
0 . One has cπ(e

−1
0 ) = −cπ(e0) ⩾ −2nµ(f2) (eq. (8.12)).

Using (8.10) one obtains
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c(C) =
∑
e∈C

cπ(e) (8.13)

⩾ −2nµ(f2) + (n− 1)µ(f2) (8.14)
= −(n+ 1)µ(f2) (8.15)
> −nµ(f2). (8.16)

The reverse of C is an augmenting cycle for f ′ with total weight at most
nµ(f2) and thus with mean weight at most µ(f2). Thus µ(f ′) ⩽ µ(f2). ⊓⊔

8.6 Computing a minimum cost-to-profit ratio cycle

Given a digraph D = (V,A) with costs c : A → Z and profit p : A → N>0,
the task is to compute a cycle C ∈ C with minimum ratio

c(C)

p(C)
. (8.17)

Notice that this is the largest number β ∈ Q which satisfies

β ⩽
c(C)

p(C)
, for all C ∈ C. (8.18)

By rewriting this inequality, we understand this to be the largest number
β ∈ Q such that

c(C)− β p(C) ⩾ 0 for all C ∈ C. (8.19)

In other words, given a digraph D = (V,A) with costs cβ : A → Q, where
cβ(e) = c(e)− β p(e), we search the largest number β ∈ Q such that the

cβ ⩾ 0. (8.20)

We need a routine to check whether D has a negative cycle for a given
weight function c. For this we assume w.l.o.g. that each vertex is reachable
from the vertex s, if necessary by introducing a new vertex s from which
there is an arc with cost and profit 0 to all other nodes. The minimum cost-
to-profit ration cycle w.r.t. this new graph is then the minimum cost-to-profit
ratio cycle w.r.t. the original graph, since s is not a vertex of any cycle.

Recall the following single-source shortest-path algorithm of Bellman-Ford
which we now apply with weights cβ :

Let n = |V | and m = |A|. We calculate functions f0, f1, . . . , fn : V −→ R ∪ {∞}
successively by the following rule.

i) f0(s) = 0, f0(v) = ∞ for all v ̸= s

ii) For k < n if fk has been found, compute
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fk+1(v) = min{fk(v), min
(u,v)∈A

{fk(u) + cβ(u, v)}

for all v ∈ V .

As seen when we talked about the Bellman-Ford algorithm, there exists
a negative cycle w.r.t. cβ if and only if fn(v) < fk(v) for some v ∈ V and
1 ⩽ k < n. Thus we can test in O(m ·n) steps whether D contains a negative
cycle w.r.t. cβ .

We now apply the following idea to search for the correct value of β. We
keep an interval I = [L,U ] with the invariant that the value β that we are
searching lies in this interval I. As starting values, we can chose L = cmin and
U = cmax, where cmin and cmax are the smallest and largest cost respectively.
In one iteration we compute M = (L + U)/2. We then check whether D,
together with cM contains a negative cycle. If yes, we know that β is at least
M and we set L←M . If not, then β is at most M and we update the upper
bound U ←M .

When can we stop this procedure? We can stop it, if we can assure that
only one valid cost-to-profit ratio cycle lies in [L,U ]. Suppose that C1 and
C2 have different cost-to-profit ratios. Then

|c(C1)/p(C1)− c(C2)/p(C2)| =
∣∣∣∣c(C1) p(C2)− c(C2)p(C1)

p(C1) p(C2)

∣∣∣∣ (8.21)

⩾ 1/(n2p2max). (8.22)

Thus we can stop our process, if U − L < 1/(n2p2max), since we know then
that there can be only one cycle c ∈ C with c(C)/p(C) ∈ [L,U ].

Suppose that [L,U ] is the final interval. We know then that

L ⩽ c(C)/p(C) for all C ∈ C

and
U > c(C)/p(C) holds for some C ∈ C.

Let C be a minimum weight cycle w.r.t. the arc costs cL. Clearly U >
c(C)/p(C) ⩾ L holds and thus C is the minimum cost-to-profit cycle we
have been looking for.

Let us analyze the number of required iterations. We need to halve the
starting interval-length 2 c, where c is the largest absolute value of a cost,
until the length is at most 1/(n2p2max). We search the minimal i ∈ N such
that

(1/2)ic ⩽ 1/(n2p2max). (8.23)

This shows us that we need O(log(c p2maxn
2)) iterations which is O(log n logK),

where K is the largest absolute value of a cost or a profit.

Theorem 8.16 (Lawler [10]). Let D be a digraph with costs c : A → Z
and profit p : A → N>0 and let K ∈ N such that |c(e)| + |p(e)| ⩽ K for all
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e ∈ N. A minimum cost-to-profit ratio cycle of G can be computed in time
O(mn log n logK).

But we knew a weakly polynomial algorithm for MCNFP from the exer-
cises. So you surely ask: Can we do better for minimum cost-to-profit cycle
computation? The answer is “Yes”!

8.6.1 Parametric search

Let us first roughly describe the idea on how to obtain a strongly polynomial
algorithm, see [14]. The Bellman-Ford algorithm tells us whether our current
β is too large or too small, depending on whether D with weights cβ contains
a negative cycle or not. Recall that the B-F algorithm computes labels fi(v)
for v ∈ V and 1 ⩽ i ⩽ n. If these labels are computed with costs cβ , then
they are piecewise linear functions in β and we denote them by fi(v)[β].

Denote the optimal β that we look for by β∗ and suppose that we know
an interval I with such that β∗ ∈ I and each function fi(v)[β] is linear if it
is restricted to this domain I. Then we can determine β∗ as follows.

Let I = [L,U ] be the interval and remember that we are searching for the
largest value of β ∈ I such that fn(v)[β] = fn−1(v)[β] holds for each v ∈ V .
Clearly this holds for β = L. Thus we only need to check whether β = U
by computing the values fn(v)[U ] and fn−1(v)[U ] for each v ∈ V and check
whether one of these pairs consists of different numbers.

The idea is now to compute such an interval I = [L,U ] in strongly poly-
nomial time.

Consider the function f1(v)[β]. Clearly one has

f1(v)[β] =

{
c(s, v)− β · p(s, v) if (s, v) ∈ A,

∞ otherwise.

This shows that f1(v)[β] is a linear function in β for each v ∈ V .
Now suppose that i ⩾ 1 and that we have computed an interval I = [L,U ]

with β∗ ∈ I and each function fi(v)[β] is a linear function if β is restricted
to I.

Now consider the function fi+1(v)[β] for a particular v ∈ V . Recall the
formula

fi+1(v)[β] = min{fi(v)[β], min
(u,v)∈A

{fi(u)[β] + c(u, v)− β · p(u, v)}}. (8.24)

Each of the functions fi(v)[β] and fi(u)[β] + c(u, v)− β · p(u, v) are linear
on I. The function fi(v)[β] can be retrieved by computing a shortest path
Pi(v) from s to v with arc weights cβ for some β in (L,U) which uses at most
i arcs. If β is then allowed to vary, the line which is defined by fi(v)[β] on I
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is then the length of this path P with parameter β. Similarly we can retrieve
the functions (lines) fi(u)[β] + c(u, v)− β · p(u, v) for each (u, v) ∈ A. With
the Bellman-Ford algorithm, this amounts to a running time of O(m · n).

We now have n lines and can now compute the lower envelope of these lines
in time O(n log n) alternatively we can also compute all intersection points of
these lines and sort them w.r.t. increasing β-coordinate. This would amount
to O(n2 log n). Let β1, . . . , βk be the sorted list of these β-coordinates. Now
βtrial := β⌊k/2⌋ and check whether β∗ > βtrial. If yes, we can replace L by
βtrial and we can delete the numbers β1, . . . , β⌊k/2⌋−1. Otherwise, we replace
U by βtrial and delete β⌊k/2⌋+1, . . . , βk. In any case, we halved the number
of possible β-coordinates and continue in this way. Such a check requires a
negative cycle test in the graph D with arc weights βtrial and costs O(m ·n).
In the end we have two consecutive β-coordinates and have an interval [L,U ]
on which fi+1(v)[β] is linear. To find an interval I such that fi+1(v)[β] is
linear on I and β∗ ∈ I costs thus O(m · n log n) steps.

We now continue to tighten this interval such that all functions fi+1(v)[β], v ∈
V are linear on [L,U ]. Thus in step i+ 1 this amounts to a running time of

O (n · (m · n log n)) .

The total running time is thus

O(n3 ·m · log n).

Theorem 8.17. Let D = (V,A) be a directed graph and let c : A −→ R and
p : A −→ R>0 be functions. One can compute a cycle C of D minimizing
c(C)/p(C) in time O(n3 ·m · log n).

8.6.1.1 Exercises

1) Show that there are no two different paths from r to another node in a
directed tree T = (V,A).

2) Prove Lemma 8.3.
3) Why can we assume without loss of generality that a minimum cost net-

work has a path from i to j for all i ̸= j ∈ V which is incapacitated?
4) Provide an example of a MCNFP for which the simple cycle-canceling

algorithm from above can require an exponential number of cancels, if the
cycles are chosen in a disadvantageous way.

5) Provide a proof of Theorem 8.8.
6) Let Q =< u1, . . . , uk > be the queue before an iteration of the while loop

of the breadth-first-search algorithm. Show that D[ui] is monotonously
increasing and that D[u1] + 1 ⩾ D[uk]. Conclude that the sequence of
assigned labels (over time) is a monotonously increasing sequence.

7) Extend the definitions and properties of flows and networks in a multi-
source and multi-sink network. Show that any flow in a multi-source and
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multi-sink network corresponds to a flow of identical value in the single-
source and single-sink network obtained by unifying the sources and sinks
in a single super-source and super-sink respectively.



Chapter 9
The ellipsoid method

It is not known whether the simplex algorithm is an algorithm that runs
in polynomial time. For many pivoting rules it was even proved to require
an exponential number of iterations [7]. It was long open, whether there ex-
ists a polynomial time algorithm for linear programming until Khachiyan [6]
showed that the ellipsoid method[17, 15] can solve linear programs in poly-
nomial time. The remarkable fact is that the algorithm is polynomial in the
binary encoding length of the linear program. In other words, if the input
consists of the problem max{cTx : x ∈ Rn, Ax ⩽ b}, where A ∈ Qm×n and
b ∈ Qm, then the algorithm runs in polynomial time in m+n+ s, where s is
the largest binary encoding length of a rational number appearing in A or b.
The question, whether there exists an algorithm which runs in time polyno-
mial in m+n and performs arithmetic operations on numbers, whose binary
encoding length remains polynomial in m+n+s is one of the most prominent
open problems in theoretical computer science and discrete optimization.

Initially, the ellipsoid method can be used to solve the following problem.

Given a matrix A ∈ Zm×n and a vector b ∈ Zm, determine a feasible point x∗ in
the polyhedron P = {x ∈ Rn | Ax ⩽ b} or assert that P is not full-dimensional or
P is unbounded.

After we understand how the ellipsoid method solves this problem in polyno-
mial time, we discuss why linear programming can be solved in polynomial
time.

Clearly, we can assume that A has full column rank. Otherwise, we can find
with Gaussian elimination an invertible matrix U ∈ Rn×n with A·U =

(
A′ 0

)
where A′ has full column rank. The system A′x ⩽ b is then feasible if and
only if Ax ⩽ b is feasible.

Exercise 9.1. Let x′ be a feasible solution of A′x ⩽ b and suppose that U
from above is given. Show how to compute a feasible solution x̃ of Ax ⩽ b.
Also vice versa, show how to compute x′, if x̃ is given.

The unit ball is the set B = {x ∈ Rn | ∥x∥ ⩽ 1} and an ellipsoid E(A, b) is
the image of the unit ball under a linear map t : Rn → Rn with t(x) = Ax+b,

115
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where A ∈ Rn×n is an invertible matrix and b ∈ Rn is a vector. Clearly

E(A, b) = {x ∈ Rn | ∥A−1x−A−1b∥ ⩽ 1}. (9.1)

Exercise 9.2. Consider the mapping t(x) =
(
1 3
2 5

)(
x1
x2

)
. Draw the ellipsoid

which is defined by t. What are the axes of the ellipsoid?

The volume of the unit ball is denoted by Vn, where Vn ∼ 1
π n

(
2 e π
n

)n/2.
It follows that the volume of the ellipsoid E(A, b) is equal to |det(A)| · Vn.
The next lemma is the key to the development of the ellipsoid method.

Lemma 9.1 (Half-Ball Lemma). The half-ball H = {x ∈ Rn | ∥x∥ ⩽
1, x1 ⩾ 0} is contained in the ellipsoid

E =

{
x ∈ Rn |

(
n+ 1

n

)2 (
x1 −

1

n+ 1

)2

+
n2 − 1

n2

n∑
i=2

x2
i ⩽ 1

}
(9.2)

x1 ≥ 0

Fig. 9.1: Half-ball lemma.

Proof. Let x be contained in the unit ball, i.e., ∥x∥ ⩽ 1 and suppose further
that 0 ⩽ x1 holds. We need to show that(

n+ 1

n

)2 (
x1 −

1

n+ 1

)2

+
n2 − 1

n2

n∑
i=2

x2
i ⩽ 1 (9.3)

holds. Since
∑n

i=2 x
2
i ⩽ 1− x2

1 holds we have
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n+ 1

n

)2 (
x1 −

1

n+ 1

)2

+
n2 − 1

n2

n∑
i=2

x2
i

⩽

(
n+ 1

n

)2 (
x1 −

1

n+ 1

)2

+
n2 − 1

n2
(1− x2

1)

(9.4)

This shows that (9.3) holds if x is contained in the half-ball and x1 = 0 or
x1 = 1. Now consider the right-hand-side of (9.4) as a function of x1, i.e.,
consider

f(x1) =

(
n+ 1

n

)2 (
x1 −

1

n+ 1

)2

+
n2 − 1

n2
(1− x2

1). (9.5)

The first derivative is

f ′(x1) = 2 ·
(
n+ 1

n

)2 (
x1 −

1

n+ 1

)
− 2 · n

2 − 1

n2
x1. (9.6)

We have f ′(0) < 0 and since both f(0) = 1 and f(1) = 1 (and since f(x1) is
a 2-degree polynomial w.r.t. x1), we have f(x1) ⩽ 1 for all 0 ⩽ x1 ⩽ 1 and
the assertion follows.

In terms of a matrix A and a vector b, the ellipsoid E is described as
E = {x ∈ Rn | ∥A−1x − A−1b∥}, where A is the diagonal matrix with
diagonal entries

n

n+ 1
,

√
n2

n2 − 1
, . . . ,

√
n2

n2 − 1

and b is the vector b = (1/(n + 1), 0, . . . , 0). Our ellipsoid E is thus the
image of the unit sphere under the linear transformation t(x) = Ax+ b. The

determinant of A is thus n
n+1

(
n2

n2−1

)(n−1)/2

which is bounded by

e−1/(n+1)e(n−1)/(2·(n2−1)) = e−
1

2(n+1) . (9.7)

We can conclude the following theorem.

Theorem 9.1. The half-ball {x ∈ Rn | x1 ⩾ 0, ∥x∥ ⩽ 1} is contained in an
ellipsoid E, whose volume is bounded by e−

1
2(n+1) · Vn.

Recall the following notion from linear algebra. A symmetric matrix A ∈
Rn×n is called positive definite if all its eigenvalues are positive. Recall the
following theorem.

Theorem 9.2. Let A ∈ Rn×n be a symmetric matrix. The following are
equivalent.

i) A is positive definite.



118 9 The ellipsoid method

ii) A = LTL, where L ∈ Rn×n is a uniquely determined upper triangular
matrix.

iii) xTAx > 0 for each x ∈ Rn \ {0}.
iv) A = QT diag(λ1, . . . , λn)Q, where Q ∈ Rn×n is an orthogonal matrix and

λi ∈ R>0 for i = 1, . . . , n.

It is now convenient to switch to a different representation of an ellipsoid.
An ellipsoid E (A, a) is the set E (A, a) = {x ∈ Rn | (x− a)TA−1(x− a) ⩽ 1},
where A ∈ Rn×n is a symmetric positive definite matrix and a ∈ Rn is a
vector, called the center of the ellipsoid. Consider the half-ellipsoid E (A, a)∩
(cTx ⩽ cTa).

Our goal is a similar lemma as the half-ball-lemma for ellipsoids. Geo-
metrically it is clear that each half-ellipsoid E (A, a) ∩ (cTx ⩽ cTa) must be
contained in another ellipsoid E (A′, b′) with vol(E (A′, a′))/vol(E (A, a)) ⩽
e−1/(2n). More precisely this follows from the fact that the half-ellipsoid is
the image of the half-ball under a linear transformation. Therefore the image
of the ellipsoid E under the same transformation contains the half-ellipsoid.
Also, the volume-ratio of the two ellipsoids is invariant under a linear trans-
formation.

We now record the formula for the ellipsoid E ′(A′, a′). It is defined by

a′ = a− 1

n+ 1
b (9.8)

A′ =
n2

n2 − 1

(
A− 2

n+ 1
b bT

)
, (9.9)

where b is the vector b = Ac/
√
cTAc. The proof of the correctness of this

formula can be found in [5].

Lemma 9.2 (Half-Ellipsoid-Theorem). The half-ellipsoid E (A, b)∩(cTx ⩽
cTa) is contained in the ellipsoid E ′(A′, a′) and one has vol(E ′)/vol(E ) ⩽
e−1/(2n).

Before talking about the method, we give a useful definition.

Definition 9.1. A polyhedron P is full-dimensional if it has positive volume.

9.1 The method

Suppose we know the following things of our polyhedron P .

I) We have a number L such that vol(P ) ⩾ L if P is full-dimensional.
II) We have an ellipsoid Einit which contains P if P is bounded.

The ellipsoid method is now easily described.

Algorithm 9.1 (Ellipsoid method exact version).
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a) (Initialize): Set E (A, a) := Einit

b) If a ∈ P , then assert P ̸= ∅ and stop
c) If vol(E ) < L, then assert that P is unbounded or P is not full-dimensional

d) Otherwise, compute an inequality cTx ⩽ β which is valid for P and satisfies
cTa > β and replace E (A, a) by E (A′, a′) computed with formula (9.8) and
goto step b).

Theorem 9.3. The ellipsoid method computes a point in the polyhedron P or
asserts that P is unbounded or not full-dimensional. The number of iterations
is bounded by 2 · n ln(vol(Einit)/L).

Proof. Unless P is unbounded, we start with an ellipsoid which contains P .
This then holds for all the subsequently computed ellipsoids. After i iterations
one has

vol(E )/vol(Einit) ⩽ e−
i

2n . (9.10)

Since we stop when vol(E ) < L, we stop at least after 2 · n ln(vol(Einit)/L)
iterations. This shows the claim.

9.2 Deciding feasibility

Suppose that we have to decide the feasibility of P = {x ∈ Rn : Ax ⩽ b}
using the ellipsoid method described above. Here A ∈ Zm×n and b ∈ Zm. In
the following B is an upper bound on the absolute values of the components
of A and b.

To apply the ellipsoid method we have to take care of the following items:

i) We have to find a starting ball that contains a subset of the feasible
region.

ii) We have to deal with the fact that P might not be full dimensional even
if it is feasible.

iii) We have to bound the volume P from below, if P is full dimensional.

We first deal with the issue i). Suppose that there exists a feasible point
x∗ and consider the index sets I = {i : x∗

i ⩾ 0} and J = {j : x∗
j ⩾ 0}. The

polyhedron

P ′ = {x ∈ Rn : Ax ⩽ b, xi ⩾ 0, i ∈ I, xj ⩽ 0, j ∈ J}

is contained in P and it has vertices. Clearly P ′ is described by a system of
inequalities Cx ⩽ d where each component of C and d is bounded by B in
absolute value.

A vertex v∗ of P ′ is of the form v∗ = C−1
B bB for a basis B of C. Since

C−1
B = C̃B/ det(CB) where C̃B ∈ Zn×n is the adjoint of CB . Each component
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of C̃B is, by the Hadamard bound, bounded by Bn·nn/2. It follows that ∥v∗∥∞
is bounded by nn/2+1 ·Bn+1. We can thus conclude that P is infeasible if and
only if

P ∩ {x ∈ Rn : ∥x∥∞ ⩽ nn/2+1 ·Bn+1}
is infeasible. For this polyhedron, we have a starting ellipsoid which is the
ball of radius nn/2+1 ·Bn+1 around 0.

Next, we deal with the issue ii).

Exercise 9.3. Let P = {x ∈ Rn | Ax ⩽ b} be a polyhedron and ε > 0 be a
real number. Show that Pε = {x ∈ Rn | Ax ⩽ b+ ε · 1} is full-dimensional if
P ̸= ∅.

The above exercise raises the following question. Is there an ε > 0 such
that Pε = ∅ if and only if P = ∅ and furthermore is the binary encoding
length of this ε polynomial in the binary encoding length of A and b?

We recall the Farkas’ lemma (Theorem 1.2).

Theorem 9.4. The system Ax ⩽ b does not have a solution if and only if
there exists a nonnegative vector λ ∈ Rm

⩾0 such that λTA = 0 and λT b = −1.
If Ax ⩽ b is infeasible, then the polyhedron

{λ ∈ Rm : λTA = 0, λT b = −1, λ ⩾ 0}

has vertices. As we have argued before, there exists a vertex λ∗ of P such
that ∥λ∗∥ ⩽ nn/2+1 ·Bn+1.

Now let ε = (2 ·m · nn/2+1 ·Bn+1)−1. Then |λ∗T1 · ε| < 1 and thus

λT (b+ ε · 1) < 0. (9.11)

Consequently the system Ax ⩽ b + ε · 1 is infeasible if and only if Ax ⩽ b
is infeasible. Furthermore, if Ax ⩽ b + ε · 1 is feasible, then the polyhedron
described by this set of inequalities is full-dimensional. Notice again that the
encoding length of ε is polynomial in the encoding length of Ax ⩽ b.

Next we deal with issue iii. We ask ourselves the following question. If
P = {x ∈ Rn : Ax ⩽ b} is full-dimensional and bounded, what is a lower
bound on vol(P )?

If P is full-dimensional, then P contains n+1 affinely independent vertices
v1, . . . , vn+1, see Exercise 1. Each of these vertices is of the form vi = v′i/qi,
where v′i ∈ Zn and qi is a n× n-sub-determinant of A. Consequently

vol(P ) ⩾ (1/

n+1∏
i=1

qi) · vol(conv(v′1, . . . , v′n+1))

⩾ (Bn · nn/2)−n · 1/n!,

where the last inequality follows from the Hadamard bound and Exercise 2
and Exercise 3. A crude bound on vol(P ) is thus vol(P ) ⩾ 1/(Bn2 · n2·n2

).
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We can conclude with the following theorem.

Theorem 9.5. Let Ax ⩽ b be a system of linear inequalities with A ∈ Zm×n

and b ∈ Zm. Let B be an upper bound on the absolute value of the entries of
A and b. The ellipsoid medthod can decide in time polynomial in n,m and
logB whether Ax ⩽ b is feasible.

The next theorem follows from binary search. Its proof is an exercise.

Theorem 9.6. Let max{cTx : x ∈ Rn, Ax ⩽ b} be a linear program with
A ∈ Zm×n, b ∈ Zm, c ∈ Zn. Let B be an upper bound on the absolute value
of the entries of A and b. The ellipsoid method finds an optimal solution of
the linear program if one exists in time polynomial in n,m and logB. Let
Ax ⩽ b be a system of linear inequalities with A ∈ Zm×n and b ∈ Zm. Let
B be an upper bound on the absolute value of the entries of A and b. The
ellipsoid can decide in time polynomial in n,m and logB whether Ax ⩽ b is
feasible.

Exercises

1. Show the following. If P ⊆ Rn is a bounded and full-dimensional polyhe-
dron, then there exist vertices v1, . . . , vn+1 of P that are affinely indepen-
dent, i.e., v2 − v1, v3 − v1, . . . , vn+1 − v1 are linearly independent. Hint:
If aTx = β is some hyperplane, where a ∈ Rn \ {0}, then there exists a
vertex of P that is not contained in that hyperplane.

2. Show that vol(conv(0, e1, . . . , en)) = 1/n!
3. Let a1, . . . , an ∈ Zn be linearly independent. Show that

vol(conv(0, a1, . . . , an)) = |det(a1, . . . , an)|/n!.

9.3 The separation problem

At this point we can already notice a very important fact. Inspect step d
of the algorithm. What is required here? An inequality which is valid for P
but not for the center a of E (A, a). Such an inequality is readily at hand
if we have the complete inequality description of P in terms of a system
Cx ⩽ d. Just pick an inequality which is violated by a. Sometimes however,
it is not possible to describe the polyhedron of a combinatorial optimization
problem with an inequality system efficiently, simply because the number of
inequalities is too large. An example of such a polyhedron is the matching
polytope, see Theorem 7.5.
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The great power of the ellipsoid method lies in the fact that we do not have
to write down the polyhedron entirely. We only have to solve the so-called
separation problem for the polyhedron, which is defined as follows.

Separation Problem

Given a point a ∈ Rn determine, whether a ∈ P and if not,
compute an inequality cTx ⩽ β which is valid for P with
cTa > β.

Exercise 9.4. We are given an undirected graph G = (V,E). A spanning tree
T is a subset T ⊆ E of the edges such that T does not contain a cycle and
T connects all the vertices V . Consider the following spanning tree polytope
Pspan ∑

e∈E

x(e) = n− 1 (9.12)∑
e∈δ(U)

x(e) ⩾ 1 ∀∅ ⊂ U ⊂ V (9.13)

x(e) ⩽ 1 ∀e ∈ E (9.14)
x(e) ⩾ 0 ∀e ∈ E. (9.15)

Let x be an integral solution of Pspan and define T = {e ∈ E | x(e) = 1}.
The inequality (9.12) ensures that exactly n−1 edges are picked. The inequal-
ities (9.13) ensure that T connects the vertices of G. Thus T must be a span-
ning tree. Clearly, there are exponentially many inequalities of type (9.13).
Nevertheless, a fractional solution of this polytope can be computed using
the ellipsoid method.

Show that the separation problem for Pspan can be solved in polynomial
time.

Hint: To verify whether a vector x ∈ R|E|
⩾0 fulfills inequalities of type (9.13),

it is a good idea to recall the MinCut or MaxFlow problem.
Via binary search even an optimal solution can be computed in polynomial time (in the
input length) if we introduce edge costs (you don’t have to show that). In the next semester
you will see that any optimal basis solution is integral and hence defines an optimal span-
ning tree w.r.t. the edge costs.

Exercise 9.5. Consider the triangle defined by

−x1 − x2 ⩽ −2
3x1 ⩽ 4

−2x1 + 2x2 ⩽ 3.

Draw the triangle and simulate the ellipsoid method with starting ellipsoid
being the ball of radius 6 around 0. Draw each of the computed ellipsoids
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with your favorite program (pstrics, maple,. . . ). How many iterations does
the ellipsoid method take?

Ignore the occurring rounding errors!

9.4 The ellipsoid method for optimization

Suppose that you want to solve a linear program

max{cTx | x ∈ Rn, Ax ⩽ b} (9.16)

and recall that if (9.16) is bounded and feasible, then so is its dual and the
two objective values are equal. Thus, we can use the ellipsoid method to find
a point (x, y) with cTx = bT y, Ax ⩽ b and AT y = c, y ⩾ 0.

However, we mentioned that the strength of the ellipsoid method lies in
the fact that we do not need to write the system Ax ⩽ b down explicitly. The
only thing which has to be solvable is the separation problem. This is to be
exploited in the next exercise.

Exercise 9.6. Show how to solve the optimization problem max{cTx | Ax ⩽
b} with a polynomial number of calls to an algorithm which solves the sep-
aration problem for Ax ⩽ b. You may assume that A has full column rank
and the polynomial bound on the number of calls to the algorithm to solve
the separation problem can depend on n and the largest size of a component
of A, b and c.

9.5 Numerical issues

We did not discuss the numerical details on how to implement the ellipsoid
method such that it runs in polynomial time. One issue is crucial.

!

We only want to compute with a precision which is polynomial
in the input encoding!

In the formula (9.8) the vector b is defined by taking a square root. The
question thus rises on how to round the numbers in the intermediate ellipsoids
such that they can be handled on a machine. Also one has to analyze the
growth of the numbers in the course of the algorithm. All these issues can
be overcome but we do not discuss them in this course. I would like to refer
you to the book of Alexander Schrijver [16] for further details. They are not
difficult, but a little technical.





Chapter 10
Primal-Dual algorithm

In this chapter we talk about matching problems, a very important topic in
combinatorial optimization.

10.1 Graphs and Matchings

We begin by giving some useful definitions.

Definition 10.1. A graph G = (V,E) (or G = (V,A)) is called bipartite if
we can split V into two disjoint subsets V1 and V2, such that for every e ∈ E
(or a ∈ A) one endpoint is in V1 and the other one is in V2.

We recall an important result about bipartite graphs.

Lemma 10.1. A graph is bipartite if and only if it does not contain an odd
cycle (that is, a cycle of odd length).

Definition 10.2 (Matching). Let G = (V,E), or G = (V,A), be a graph.
A matching in G is a subset M ⊆ E, or M ⊆ A, of pairwise disjoint edges, or
arcs (that is, edges, or arcs, which do not share any vertex). A vertex v that
is an endpoint of an edge (or arc) in M is called a matched node, otherwise it
is called an exposed node. A matching is called perfect if there are no exposed
nodes.

Definition 10.3. Let G = (V,E) be a graph and M ∈ E be a matching in
G. An alternating path is a path that alternates between edges in M and
edges in E\M . An alternating path that starts and ends at an exposed node
is called an augmenting path.

Definition 10.4 (Vertex cover). Let G = (V,E) be a graph. A vertex cover
is a set C ⊆ V such that every e ∈ E has at least one endpoint in C.

125
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a w

b x

c y

d z

Fig. 10.1: This picture shows an example of an undirected bipar-
tite graph G = (V,E), where V = {a, b, c, d, w, x, y, z}, E =
{{a,w}, {b, y}, {b, z}, {c, z}, {d,w}, {d, x}}, V1 = {a, b, c, d} and V2 =
{w, x, y, z}. The thicker edges form a matching, vertices a and x (marked
in grey) are exposed nodes and a,w, d, x is an alternating and augmenting
path. C = {b, w, x, z} is a vertex cover.

10.2 Matching problems

Now that we know some basic definitions, we can concentrate on two of the
most important problems about matchings:

1. Maximum cardinality matching problem: Find a matching M of
maximum size.

2. Maximum (or minimum) weight matching problem: Given a
graph G = (V,E) and a weight function w : E −→ R, find a matching
M of maximum (or minimum) weight, where the weight of a matching is

w(M) =
∑
e∈M

w(e).

From now we will focus on the case of an undirected bipartite graph G =
(V,E).
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10.2.1 The maximum cardinality matching problem

Before giving a method to find a maximum cardinality matching in a graph,
we want to show how we can prove its optimality. For this purpose we recall
theorem 7.3, that gives an upper bound on the size of any matching in a given
bipartite graph, and we prove another theoreme, which gives us a method to
see if a matching is of maximum size or not.

Theorem 10.1 (König’s theorem). In any bipartite graph, the number of
edges in a maximum cardinality matching equals the number of vertices in a
minimum vertex cover.

Theorem 10.2. A matching M of a graph G = (V,E) is of maximum car-
dinality if and only if there are no augmenting paths with respect to M .

Proof. (⇒) Suppose there exists an augmenting path in G, call it P . Consider
the set M ′ = M△P . By definition of augmenting path, we have that M ′ has
exactly one edge more than M . Since M is a matching and P starts and ends
in an exposed node, the only edges of M with an endpoint in P are the edges
of P . This implies that M ′ is a matching.

(⇐) Let M be a maximum cardinality matching and let M̃ be a strictly
smaller matching. Consider X = M△M̃ . X is formed by cycles and alternat-
ing paths (with respect to M and M̃). Since |M | > |M̃ |, X contains at least
one alternating path P with more edges from M than from M̃ . By definition
of X, we see that P is an augmenting path. ⊓⊔

We are now ready to show an algorithm that allows us to find a maximum
cardinality matching in any bipartite graph.

Let G = (V,E) be a bipartite graph with bipartition V = A ⊔ B and
M a matching. Now turn G into a directed graph D = (V,A) by directing
matching edges from A to B and non-matching edges from B to A. We are
interested in a method to find augmenting paths or to assert that there aren’t
any (and thus, that M is of maximum size). For this purpose we illustrate
the following claim and theorem.

Claim. Let G and D be as above. A path in D between two exposed nodes
that starts in an exposed node in B (resp. in A), ends in an exposed node in
A (resp. in B).

Theorem 10.3. Let G and D be as above and M be a matching. There exists
an augmenting path in G if and only if there exists a path from an exposed
node in B to an exposed node in A in the directed graph D.

Proof. (⇒) This is a direct consequence of the choice of the direction of the
arcs in D and of the previous claim.

(⇐) Trivial.
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Let G and D be as illustrated before. How can we use the previous theorem
for our purpose? Add a vertex s to our directed graph D and connect it to
all exposed nodes in B by an arc whose tail is s. Now we have that finding
a directed path, in D, from an exposed node u in B to an exposed node v
in A is equivalent to finding a directed path from s to v passing by u. Thus,
we deduce that there is an augmenting path in G if and only if there is at
least one exposed node in A reachable from s. To find if there are such nodes
reachable from s and the corresponding augmenting paths, we can use the
Breadth-First search algorithm (see chapter 8.2.1) applied to vertex s in D.
If there is any exposed node u in A with finite distance from s, then we can
obtain an augmenting path by taking the shortest path s, a1, a2, · · · , u from
s to u (which is given by Bread-First search) without s (i.e., the augmenting
path would be a1, a2, · · · , u).

To resume, we obtain the following algorithm.

Algorithm 10.1.
Initialise M = ∅
while There exists M -augmenting path

Update M
return M

Finally, we are interested in the running time of our algorithm.

Theorem 10.4. A maximum cardinality matching in a bipartite graph G =
(V,E) can be computed in time O(|V | · (|V |+ |E|)). If we assume that G does
not have any isolated vertex, then we can consider the running time to be
O(|V | · |E|).

Proof. The while loop runs at most |V |/2 times and its execution requires
O(|V |+ |E|) (= O(|E|) if we have the assumption) operations.

10.2.2 The maximum weight matching problem

In this section we consider a graph G = (V,E) and a weight function
w : E −→ R. First of all, notice that, by changing the sign of the weights of
all edges, we have that finding a maximum weight matching or a minimum
weight matching are equivalent problems.

We can also prove that the problem of finding a minimum weight matching
can always be replaced by the problem of finding a minimum weight perfect
matching. To see that, it is sufficient to create a copy G′ of our graph G
and add edges of weight 0 connecting all vertices v in G to their copy v′ in
G′. This will give us a new graph G̃. Notice that G̃ has at least a perfect
matching, thus there is one, call it M̃ , of minimum weight. If we consider
only the edges of M̃ in G, we obtain a minimum weight matching in G.
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a w

b x

c y s

d z

A B

Fig. 10.2: This picture illustrate how transform a bipartite graph to apply
the maximum cardinality matching algorithm, using the graph of figure 10.1
as an example.

Moreover, we have an important relation between the difficulty of this two
problems, given by the following theorem.

Theorem 10.5. If there exists a polynomial time algorithm for the mini-
mum weight perfect matching problem, then there exists a polynomial time
algorithm for the minimum weight matching problem.

Proof. Let G = (V,E) be a graph. Using the process described above, we
create the graph G̃ = (Ṽ , Ẽ). Notice that |Ṽ | = 2|V | and |Ẽ| = 2|E| + |V |.
By hypothesis, we can find a minimum weight perfect matching in G̃ (and
thus a minimum weight matching in G) in time O((Ṽ + Ẽ)k) = O((2|V | +
2|E| + |V |)k) = O((|V | + |E|)k′

), for some k, k′ ∈ N (that is, a polynomial
time with respect to the size of G).

Since we concentrate on bipartite graphs, we show how to reduce the
problem of finding a minimum weight bipartite matching to the problem of
finding a minimum weight bipartite perfect matching. Let G = (V,E) be a
bipartite graph with bipartition V = A ⊔ B. We can suppose w.l.o.g. that
|A| ⩾ |B|. If |A| > |B|, add a set C of cardinality |A| − |B| and add edges
of weight zero connecting all nodes of A to all nodes of B ∪ C. Call G′ the
bipartite graph obtained by this process. Obviously, G′ admits at least one
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bipartite perfect matching, and thus also one of minimum weight, call it M ′.
By taking out all edges of weight zero from M ′, we obtain a minimum weight
bipartite matching in G.

Also in this case, we have an important relation between the difficulty of
these two matching problems.

Theorem 10.6. If there exists a polynomial time algorithm for the minimum
weight bipartite perfect matching problem, then there exists a polynomial time
algorithm for the minimum weight bipartite matching problem.

Proof. Let G = (V,E) be a bipartite graph with bipartition V = A ⊔ B.
Construct G′ = (V ′, E′) as shown above. Notice that |V ′| = 2|A| ⩽ 2|V |
and |E′| = |E| + |A| · (|A| − 1) ⩽ |E| + |V |2. Hence, by hypothesis, finding
a minimum weight bipartite matching in G (by finding a minimum weight
bipartite perfect matching in G′) can be done in time O((2|V |+|E|+|V |2)k) =
O((|V |+ |E|)k′

), for some k, k′ ∈ N (that is, a polynomial time with respect
to the size of G).

Let G = (V,E) be a bipartite graph. We have showed that the problem
of finding a maximum weight (bipartite) matching can be reduced to the
problem of finding a minimum weight (bipartite) perfect matching. Moreover,
if there exists a polynomial time algorithm to solve the first problem, then
there exists a polynomial time algorithm to solve the second one.

The following theorem is crucial for the introduction of the Primal-Dual
algorithm.

Theorem 10.7 (Complementary Slackness). Let

max cTx
Ax ⩽ b

be a primal LP and let
min bT y
AT y = c
y ⩾ 0

be his dual. Let x∗ and y∗ be primal and dual feasible solutions respectively.
Then they are both optimal if and only if

(b−Ax∗)T y∗ = 0.

Proof.
(b−Ax∗)T y∗ = 0

⇔
y∗i > 0⇒ aTi x

∗ = bi
⇔

bT y∗ = (Ax∗)T y∗ = (x∗)TAT y∗ = cTx

The result follows from strong duality theorem (theorem 5.2)
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Let G = (V,E) be a bipartite graph. In order to prove the next theorem,
we need to recall the LP-relaxation of the minimum weight perfect matching
problem (we will call it the dual LP) and his dual (which we will call the
primal LP).

PRIMAL DUAL
max

∑
v∈V yv min

∑
e∈E we · xe

uv ∈ E : yu + yv ⩽ wuv v ∈ V :
∑

e∈δ(v) xe = 1

y ∈ R|V | x ⩾ 0

Theorem 10.8. Suppose x∗ and y∗ are feasible solutions of the recalled pri-
mal and dual linear programs respectively. Then, they are optimal solutions
if and only if

∀uv ∈ E : x∗
uv > 0⇒ y∗u + y∗v = wuv

Proof. The proof follows immediately from theorem 10.7.

Another direct consequence of theorem 10.7 is the following criterion for
the optimality of a minimum weight perfect matching.

Let y∗ ∈ R|V | be feasible in the primal LP and let Gy∗ = (V,Ey∗) be the
graph with edge set

Ey∗ = uv ∈ E : y∗u + y∗v = wuv

If Gy∗ has a perfect matching M , then y∗ and χM are optimal solutions of
the corresponding linear programs, In particular, since, by definition of χM ,

χM
uv > 0⇒ y∗u + y∗v = wuv,

M is a minimum weight perfect matching.

The Primal-Dual Algorithm

Let G = (V,E) be a complete bipartite graph with bipartition V = A ⊔ B
and edge weights w : E → R. The primal-dual algorithm is a method to
find a minimum weight matching in G. It starts from a feasible solution y∗

of the dual LP recalled before theorem 10.8 (notice that a possible choice
for an initial feasible solution can always be y∗ such that y∗v is equal to 0
or to the smallest edge-weight in the graph in the case it is smaller than 0)
and it updates this solution until it is optimal. The last question we have to
answer is: how do we update y∗ in such a way that our algorithm terminates
correctly?

Let Gy∗ be as previously defined and let M be a maximum cardinality
matching in Gy∗ . Turn Gy∗ into a directed graph by orientating the matching
edges from A to B and the non-matching edges from B to A (call this new
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graph G̃y∗). Let M be a maximum cardinality matching in Gy∗ . Let L ⊆ A⊔B
be the set of vertices reachable from the set of exposed nodes of B in the
directed graph G̃y∗ .

Claim. Gy∗ does not contain an edge uv with u ∈ A\L and v ∈ B ∩ L.

Proof. Let uv be such an edge. If uv is a non-matching edge, then, since
v ∈ L, also u has to be in L. Suppose now that uv is a matching edge. Since
v ∈ L, there must be a matching edge ũv with ũ ∈ L. This implies that u = ũ
and this leads to a contradiction since u ̸∈ L.

We want to update our solution y∗ in such a way to obtain an optimal
solution. Let δ = min{wuv − y∗u − y∗v | uv ∈ E, u ∈ A\L, v ∈ B ∩ L}. If y∗ is
not already optimal, then δ is strictly positive. This allows us to construct a
feasible solution ỹ in this way:

i) ỹv = y∗v + δ if v ∈ A\L
ii) ỹv = y∗v − δ if v ∈ B\L
iii) ỹv = y∗v otherwise

This gives us a new graph Gỹ. Notice that the previous claim shows that
all the edges of M are in Gỹ. Furthermore, by the definition of δ, at least one
edge connecting a node in A\L to a vertex in B ∩ L becomes tight. Thus, L
is augmented. This implies that every time we update our solution there are
two things that can happen:

i) Gỹ contains an augmenting path with respect to M . This allows us to
increase our matching.

ii) The set L increases.

Since V is a finite set and by the criterion of optimality showed before, we
can assert that the Primal-Dual algorithm terminates correctly.

We conclude by resuming the algorithm, giving his running time and an
example, which can be useful to understand better how the Primal-Dual
algorithm works.

Algorithm 10.2.
Input: A feasible solution y∗

Initialisation: Turn G into a directed graph
while M is not optimal

Compute L
Let δ = min{wuv − y∗u − y∗v}
Update y∗

return M

Theorem 10.9. The Primal-Dual algorithm runs in O(|V 2|) time.

Proof. We can have at most |V |many augmentation of L without augmenting
M and M can be augmented at most |V |/2 times.

Figure 10.3 shows how to apply Primal-Dual algorithm on a complete
bipartite graph.
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y∗ = (0, 0, 0, 0), Ey∗ = ∅
M = ∅, L = {b, d}, δ = 2

A B

a b

c d

y∗ = (2, 0, 2, 0), Ey∗ = {ad}
M = {ad}, L = {b}, δ = 3

A B

a b

c d

y∗ = (5, 0, 5,−3), Ey∗ = {ad, ba}
M = {ad}, L = {a, b, d}, δ = 1

A B

a b

c d

y∗ = (5, 0, 6,−3), Ey∗ = {ab, da, cd}
M = {ab, cd}, L = ∅

Fig. 10.3: The edges of Gy∗ are coloured, red for the matching edges, and
green for the non-matching edges.
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Exercises

1. Let
max cTx
Ax ⩽ b

be a primal LP and let
min bT y
AT y = c
y ⩾ 0

be his dual. Let x∗ and y∗ be primal and dual feasible solutions respec-
tively. Suppose they are both optimal. Is the following true: if aTi x∗ = bi,
then y∗i > 0?

2. Find Gy∗ from the graph G = (V,E) shown in figure 10.4 as described in
the criterion for the optimality of a minimum weight perfect graph.

2 3

1

2 0

5

3

5 3

4

3 2

Fig. 10.4: G = (V,E)

3. Are there rational numbers y1, y2, y3, y4 such that

y1 + y3 ⩽ 5
y1 + y4 = 2
y2 + y3 = 9
y2 + y4 ⩽ 3
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4. Apply Primal-Dual Algorithm to the complete bipartite graph of fig-
ure 10.5 (we give an initial feasible solution y∗ = (0, 0, 0, 0)).

0 0

0 0

1

20

1

A B

Fig. 10.5
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