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1) Sudoku is the following puzzle: Given a matrix

A ∈ {1, . . . , 9, X}9×9

the task is to replace each X in A by a number in {1, . . . , 9} such that the following holds.

a) Each line of A contains all numbers in {1, . . . , 9}
b) Each column of A contains all numbers in {1, . . . , 9}
c) If A is written as

A =

B11 B12 B13

B21 B22 B23

B31 B32 B33


where the Bij are 3× 3 matrices, the each of them contains all numbers in {1, . . . , 9}.

In the following, you are asked to design an integer program whose feasible solutions are
solutions of a given Sudoku. The integer program has 93 variables

xi,j,k =

{
1 if si,j = k

0 otherwise.

where S ∈ {0, . . . , 9}9×9 is the solution of the Sudoku represented by the variables.

The following set of constraints guarantees that each cell of the solution contains a number

1 ⩽ i, j ⩽ 9 :

9∑
k=1

xi,j,,k = 1.

Write now constraints that guarantee the following.

• Each row must contain each number.

• Each column must contain each number.

• Each Bij must contain each number.

Describe the final integer programming problem that links some of the variables to the input
Sudoku.

Solution:
The condition that each row must contain each number, corresponds to the set of constraints

9∑
j=1

xi,j,k = 1, ∀ 1 ⩽ i, k ⩽ 9.

The condition that each column must contain each number, corresponds to the set of constraints

9∑
i=1

xi,j,k = 1, ∀ 1 ⩽ j, k ⩽ 9.



The condition that each Bij must contain each number, corresponds to the set of constraints

2∑
α=0

2∑
β=0

xi+α,j+β,k = 1, ∀ i, j = 1, 4, 7, 1 ⩽ k ⩽ 9.

To get the final integer program, we only need the set of constraints which guarantees that the
solution is compatible with the input, i.e.,

xi,j,k = 1, if in the input of Sudoku, the cell (i, j) is assigned the number k

and the integrality constraints

xi,j,k ∈ {0, 1}, ∀ 1 ⩽ i, j, k ⩽ 9.

2) Let a, b ∈ Z not both equal to zero. Describe an integer program with variables x, y ∈ Z whose
optimal value is the greatest common divisor of a and b and with optimal solution x, y ∈ Z being
the corresponding Bézout-coefficients

gcd(a, b) = x · a+ y · b.

Solution:
Consider the following integer program:

min ax+ by

s.t. x, y ∈ Z
ax+ by ⩾ 1

We claim that the optimal solution to the integer program above is the greatest common divisor
of a and b. Notice that the integer program is feasible since a, b are not both equal to zero.
Let d be the optimal solution of the integer program, with optimal solution x, y. It is easy to
see that gcd(a, b) | d. To show d | gcd(a, b), it suffices to show that d | a and d | b. Suppose
that d ∤ a. Then there exists q, r ∈ Z, 1 ⩽ r < d such that a = qd + r. Therefore we have
r = a − qd = a − q(ax + by) = (1 − qx)a + (−qy)b, which contradicts the optimality of d.
Similarly one can prove that d | b.

3) Consider the polyhedron P = {x ∈ R3 : x1 + 2x2 + 4x3 ⩽ 4, x ⩾ 0}. Show that this polyhedron
is integral.

Solution:
By the result of Exercise 5, it suffices to show that each vertex of P is integral. The system of
constraints are

x1 + 2x2 + 4x3 ⩽ 4,

x1 ⩾ 0,

x2 ⩾ 0,

x3 ⩾ 0.

Hence the 4 vertices of P are (0, 0, 0), (4, 0, 0), (0, 2, 0), (0, 0, 1).



4) (Clustering) The following is a recurring problem in data science. Suppose we are given m points
v1, . . . , vm ∈ Rn and a number k. We want to identify a subset S ⊆ {v1, . . . , vm} of size k such
that

m∑
i=1

d(vi, S) is minimal.

Here d(v, S) is the euclidean distance of v to S. Write an integer program that models this
problem.

Solution:
We assume that all the pairwise Euclidean distance di,j between any points vi, vj , 1 ⩽ i, j ⩽ m
have been pre-computed. Let yj be the decision variable indicating whether the point vj is
chosen to be in S. Let xi,j to be the variable indicating whether the point vj is the closest point
to vi in S. Consider the following integer program, which models the clustering problem:

min
m∑
i=1

m∑
j=1

di,jxi,j

s.t.

m∑
j=1

xi,j = 1, ∀ 1 ⩽ i ⩽ m

xi,j ⩽ yj , ∀ 1 ⩽ i, j ⩽ m
m∑
j=1

yj = k,

xi,j , yj ∈ {0, 1}, ∀ 1 ⩽ i, j ⩽ m

5) Show the following: A polyhedron P ⊆ Rn with vertices is integral, if and only if each vertex is
integral.

Solution:
The “only if” part is easy since each vertex is itself a face of P . To show the “if” part, assume
that each vertex of P is integral. Let P = {x ∈ Rn : Ax ⩽ b}. Consider any nonempty face F
of P , which is of the form F = P ∩ {x ∈ Rn : cTx = β} where cTx ⩽ β is valid for P .

• A proof for P being a bounded polyhedron: If P = conv(Ver(P )) where Ver(P ) is the set
of all vertices of P , then we take any x ∈ F which can be written as x =

∑k
i=1 αivi where

vi is a vertex of P and αi > 0,
∑k

i=1 αi = 1. We claim that each vi in the expression above,
which is integral by assumption, is in the face F . Indeed, we have

β = cTx = cT

(
k∑

i=1

αivi

)
=

k∑
i=1

αi(c
T vi) ⩽

k∑
i=1

αiβ = β,

which implies that every inequalities inside are in fact equalities. Thus for each i we have
cT vi = β, hence vi ∈ F .

• A proof for general polyhedron P : If P has vertices, then rank(A) = n. Thus for the face
F which is itself a polyhedron characterized by Ax ⩽ b, cTx ⩽ β,−cTx ⩽ −β, its constraint
matrix has rank n, which means that F also contains a vertex. We just need to show
that a vertex of F is also a vertex of P . To prove this, we first claim that there exists



u ∈ Rm, u ⩾ 0 such that uTA = cT and uT b = β. Indeed, consider the following pair of
primal and dual linear programs:

max cTx
Ax ⩽ b

and min bT y
yTA = cT

y ⩾ 0

Since cTx ⩽ β is valid for P , we know that P is bounded. Also P is feasible since it has
vertices. The optimal value of the primal problem is β, since the face F is nonempty. Then
by the strong duality theorem, the dual problem has an optimal solution, say u ∈ Rm, u ⩾ 0
with uTA = cT , such that the value is also β, i.e., uT b = β. Then we have F = P ∩ {x ∈
Rn : A′x = b′} where A′x ⩽ b′ is a sub-system of Ax ⩽ b by taking the constraint aTi x ⩽ bi
of Ax ⩽ b if and only if ui > 0. The fact F = P ∩ {x ∈ Rn : A′x = b′} implies that vertices
of F are also vertices of P .


