
École Polytechnique Fédérale de Lausanne
Prof. Eisenbrand

April 8, 2025

Discrete Optimization (Spring 2025)

Assignment 8

1) Let a, e, k ∈ N be three given natural numbers.

(a) Argue that a2
k
can be computed using Θ(k) multiplications.

(b) How many bits (Θ-notation) does a2
k
have?

(c) Let (e0, . . . , el) be the bit representation of e, that is, e =
l∑

i=0

ei2
i with ei ∈ {0, 1} for i =

0, . . . , l. Complete the following algorithm by replacing each occurrence of three question
marks (???) so that it computes ae using O(l) many arithmetic operations.

E = 1

S = a

For (i = 0 to l)

if (ei == 1)

E = E·???
S =???

return ???

(d) Show that for given a, e,N ∈ N one can compute ae(mod N) in time polynomial in the
binary encoding length of a, e and N .

(e) Let a, b, c,N ∈ N be given and suppose that N is a prime number. Show that ab
c
(mod N)

can be computed in polynomial time in the binary encoding length of a, b, c and N . You
may use Fermat’s little theorem: aN ≡ a(mod N).

Solution:

(a) Start with a(0) = a, and compute a(i) = a(i− 1)a(i− 1) for i ∈ [k]. By induction

a(k) = a2
k−1

a2
k−1

= a2
k
.

Thus, a2
k
has been obtained by performing k multiplications.

(b) This has log(a2
k
) = Θ(2k log a) many bits.

(c) One has E = E · S, S = S · S and return E.

(d) We use the same algorithm as in part (c), but do operations modulo N , in particular we
replace E = E ·S with E = E ·S(modN) and S = S ·S with S = S ·S(modN). Observe that
the modulo can be obtained by performing division with remainder. The correctness of the
algorithm follows from the fact that for any a, b ∈ N, ab ≡ (a(modN))(b(modN))(modN).
The algorithm performs O(l) steps, where l is the size of e, and in each step we perform
division with remainder on E · S (or S · S) and N : this takes time polynomial in the
binary encoding length (size) of the input, in particular of a, e,N (notice that the value of
A(modN) has size at most the size of N , irrespectively of the size of A). Hence the total
number of operations performed is polynomial in the size of a, e,N .

(e) First, by applying (d) we can compute e such that bc ≡ e(modN − 1) in time polynomial
in the binary encoding length of b, c,N . Note that e is bounded by N . Then by Fermat’s
little theorem aN−1 ≡ 1(modN), we have ab

c ≡ ae(modN). Finally, by applying (d) again,
we can compute ae(modN) in time polynomial in the binary encoding length of a,N .

2) There are n types of animals, and you want to assign them to two stables. Unfortunately, some
animals would eat other animals when left unattended. Therefore you need to assign the animals
carefully. There are m relations of the form “u eats v“, where u and v are animals. Find an
O(n +m) algorithm that decides whether there is an assignment of animals to the two stables
such that no animal eats another one of the same stable, and outputs a feasible assignment.
Hint: Breadth-first-search might be useful.

Solution:
Consider the following directed graph D = (V,A), where each node in V corresponds to an
animal, and we have an arc (u, v) for each relation ”u eats v“. Observe an assignment of the
animals to the two stables is feasible if and only if the corresponding partition of the nodes into
sets V1 and V2 we have that (u, v) ̸∈ A for all u, v ∈ V1 and (u, v) ̸∈ A for all u, v ∈ V2. In other
words, there is a feasible assignment if and only if the underlying undirected graph G = (V,E),
where E := {{u, v} : (u, v) ∈ A} is bipartite. Consider the following algorithm:

FULLBFS(G = (V,E))

D[v]←∞ ∀v ∈ V

for all v ∈ V

if D[v] =∞
D[v]← 0

BFS(G, v,D)

return D

We run this algorithm on the graph G. Let D be the output. We define V1 := {v ∈ V :
D[v] is odd} and V2 := {v ∈ V : D[v] is even}. We claim that the assignment given by V1 and
V2 is a feasible solution for our problem if and only if there exists a feasible solution. With the
observation from above, it is sufficient to show that V1 and V2 are feasible if and only if G is
bipartite. Trivially if V1 and V2 are feasible, then G is bipartite, since V1 and V2 give a bipartite
partition of the nodes. Now assume that V1 and V2 are infeasible, i.e. there is an edge e ∈ E
such that e ⊆ V1 (or e ⊆ V2. In the latter case we swap the roles of V1 and V2). We need to
show that G is not bipartite. As seen in the lecture, it is sufficient to show that G contains an
odd cycle. Let e = (u,w). Hence w is reachable from u and vice versa. Hence, u and w got their
D- label assigned in the same run of BFS in Line 6. Thus there is a node v such that there is a
v,u-path P of length D[u] and a v, w -path P’ of length D[w]. Since u and w both belong to V1,
we have D[u] ≡ D[w] mod 2, and therefore D[u] +D[v] is even. Let P∆P ′ be the set of edges
that are contained in either P or P’ (but not in both of them). Note that since D[u] +D[v] is
even, the number of arcs in this set even as well. Moreover e is contained in neither of the paths
(otherwise the algorithm would not have assigned u and w to the same Vi). We conclude that
(P∆P ′) ∪ {e} is an odd cycle in G.

3) Let M2k be a matrix of order n := 2k, where k ∈ N>0 such that it is recursively defined as
follows:

M2k =

(
M2k−1 M2k−1

M2k−1 −M2k−1

)
and M1 = [1], a 1 × 1 matrix. Prove that |det(Mn)| = nn/2, i.e. that the Hadamard bound is
tight.

Solution:
We prove the statement by induction on k ∈ N0 that M2

2k
= 2kI2k . For k = 0 one has M2

0 =
M1 = [1] = 20I20 . Assume that the statement holds for k and prove it for k + 1. Then

M2
2k+1 =

(
M2k M2k

M2k −M2k

)(
M2k M2k

M2k −M2k

)
=

(
2M2

2k
0

0 2M2
2k

)
=

(
2 · 2kI2k 0

0 2 · 2kI2k

)
= 2k+1I2k+1

where we have used the induction hypothesis in the second to last equality. By using the
statement above we have that det(M2

n) = det(nIn) = nn so | det(Mn)| = nn/2.

4) The determinant of a matrix A ∈ Rn×n can be computed by the recursive formula

det(A) =
n∑

j=1

(−1)1+ja1j det(A1j),

where A1j is the (n− 1)× (n− 1) matrix that is obtained from A by deleting its first row and
j-th column. This yields the following recursive algorithm.
Input: A ∈ Rn×n

Output: det(A)

if (n = 1)

return a11

else

d := 0

for j = 1, ..., n

d := (−1)1+j det(A1j) + d

return d

Let A ∈ Rn×n and suppose that the n2 components of A are pairwise different.

(a) Suppose that B is a matrix that can be obtained from A by deleting the first k rows and
k of the columns of A. How many (recursive) calls of the form det(B) does the algorithm
create?

(b) How many different submatrices can be obtained from A by deleting the first k rows and
some set of k columns? Conclude that the algorithm remains exponential, even if it does
not expand repeated subcalls.

Solution:
a) Let i1, ..., ik be the indices of the columns of A that were removed to obtain B. We have to
count the number of nodes of the form det(B) in the recursion tree of the algorithm. Each node
of the tree can be identified by its level (nodes of the form det(Aij) are at level i) and a sequence
of column indices representing the columns of A that are not columns of the submatrix called
by the node. Hence the nodes of the form det(B) are at level k of the tree, and their sequences
are permutations of i1, ..., ik (note that there is only one submatrix of A equal to B since all the
entries are pairwise different). Hence there are k! such nodes.
b) The number of such submatrices is clearly

(
n
k

)
, which is exponential for instance for k = n/2,

we have that: (
n

n/2

)
=

n · . . . (n/2 + 1)

n/2 · . . . · 1
⩾ 2n/2

such that even if the algorithm calls det(B) only once for any submatrix B, the algorithm remains
exponential.

