

Discrete Optimization (Spring 2025)

Assignment 7

- 1) Consider the following problem. We are given $B \in \mathbb{N}$, and a set of integer points $S = \{p \in \mathbb{Z}^n : 0 \leq p_i \leq B \forall i = 1, \dots, n\}$, whose points are all colored blue but one, which is red. We have an oracle that, given vectors $l, r \in \mathbb{R}^n$, tells us whether the red point in S is contained in the box $S \cap \{x \in \mathbb{R}^n : l_i \leq x_i \leq r_i \forall i = 1, \dots, n\}$ or not. Give an algorithm to find the red point using $O(n \log(B))$ many oracle calls.
- 2) Let $P := \{x \in \mathbb{R}^n : Ax = b, x \geq 0\}$ be a polyhedron and $\min\{c^T x : x \in P\}$ be the corresponding primal linear program. Assume that all the coefficients of A, b and c are integral and bounded in absolute value by given $B \in \mathbb{N}$, and furthermore let $L := B^n n^{n/2}$.
 - (a) Show the following: If x_1, x_2 are vertices of P and $c^T x_1 \neq c^T x_2$, then $|c^T x_1 - c^T x_2| \geq 1/L^2$.
 - (b) Let x^* and y^* be feasible solutions of the primal and dual linear program respectively. Conclude the following from the above: If $|c^T x^* - b^T y^*| < 1/L^2$, then each vertex x of P with $c^T x \leq c^T x^*$ is an optimal solution of the primal.
- 3) Let $Ax \leq b$ be a system of inequalities where each component of A and b is an integer bounded by B in absolute value. Show that $Ax \leq b$ is feasible if and only if $Ax \leq b, -B^n \cdot n^{n/2} \cdot n \cdot B \leq x_i \leq B^n \cdot n^{n/2} \cdot n \cdot B, \forall i \in [n]$ is feasible.

Hint: Consider a feasible point x^ and the index sets $I = \{i : x_i^* \geq 0\}$ and $J = \{j : x_j^* \leq 0\}$. The polyhedron defined by $Ax \leq b, x_i \geq 0, i \in I, x_j \leq 0, j \in J$ is feasible and has vertices. Estimate the infinity norm of a vertex.*

- 4) Suppose that there exists an algorithm that on input $A \in \mathbb{Z}^{m \times n}$ and $b \in \mathbb{Z}^m$ decides the feasibility of the system $Ax \leq b$, in time $\text{poly}(n, m, \log B)$, where B is an upper bound on each absolute value of an entry of A and b .

Let the system $P = \{Ax \leq b\}$ be feasible where P contains vertices. Let $c \in \mathbb{Z}^n$ such that $\max\{c^T x : Ax \leq b\} < \infty$ and $\|c\|_\infty \leq B$. Using binary search, show that there exists a polynomial time (in n, m and $\log B$) algorithm that on input A, b, c determines the value of $\max\{c^T x : Ax \leq b\}$.