
École Polytechnique Fédérale de Lausanne
Prof. Eisenbrand

March 25, 2025

Discrete Optimization (Spring 2025)

Assignment 6

1) Determine the value of the matrix game defined by

A =

(
6 6
7 4

)
and determine optimal strategies for both players with

(a) pure strategies and

(b) mixed strategies.

Solution:

(a) For row player, the best pure strategy is to choose row 1 since the minimum value for row
1 is 6 which is higher than the minimum value for row 2. Similarly, the best strategy for
column player is to choose column 2.

(b) The row player chooses x such that
∑

i xi = 1 and x is the solution of maxxminy x
TAy.

Note that for any vector x ⩾ 0, the minimizing vector y such that y1 + y2 = 1 is given by
y = (0, 1). Then we have that xTAy = 6x1 + 4x2 such that the maximizing vector x is
(1, 0). This gives the optimal mixed strategy which is actually a pure strategy.

The value of the matrix game is thus 6.

2) This exercise is a continuation of exercise 2) from the sheet of last week. Here we find the
Chebychev center of a polyhedron P = {x ∈ Rn : Ax ⩽ b} with A ∈ Rm×n and b ∈ Rm. This is
the center z ∈ Rn of the largest euclidean ball B(z,R) = {x ∈ Rn : ∥x− z∥2 ⩽ R} that satisfies
B(z,R) ⊆ P .

i) Let H = (aTx = β) ⊆ Rn be a hyperplane and x∗ ∈ Rn. What is the euclidean distance of
x∗ from H?

ii) Assume now that every row of A has euclidean norm ∥ · ∥2 equal to one. Prove that the
following linear program finds the Chebychev center z and the radius R ∈ R⩾0 of the largest
ball B(z,R) ⊆ P :

maxR
Az + 1R ⩽ b

,

and 1 ∈ Rm is the vector of all ones.

iii) Show that there is a subsystem A′x ⩽ b′ of Ax ⩽ b with at most n + 1 inequalities whose
corresponding polyhedron has the same Chebychev center as P .

iv) Write down the dual of the linear program above.

Solution:



i) The distance of x∗ to H is the distance of x∗ to the orthogonal projection onto H. This is

given by ∥x∗ − projH(x∗)∥ = |β−⟨x∗,α⟩|
∥α∥ .

ii) Let z∗ be the Chebyshev center and R∗ be the corresponding radius. The ball B(z∗, R∗) =
{x ∈ Rn : ∥x− z∗∥ ⩽ R∗} = {z∗ + x : ∥x∥ ⩽ R∗}. Then the Chebyshev center is defined by

max
z∗,R∗

R∗

s.t. B(z∗, R∗) ⊆ P.

This. is equivalent to

max
z∗,R∗

R∗

s.t. A(z∗ + x) ⩽ b for every x ∈ Rn s.t. ∥x∥ ⩽ R∗.

Note that for any row i, aTi (z
∗+x) ⩽ aTi (z

∗+ai/∥ai∥R∗) since ∥x∥ ⩽ R∗ and aTi x ⩽ ∥x∥aTi ai
∥ai∥

(this is just the projection from part (i)). Then, the Chebyshev center is defined by

max
z∗,R∗

R∗

s.t. aTi (z
∗ + ai/∥ai∥R∗) ⩽ bi i ∈ [m]

since if the above constraints hold, then the constraints over all x with ∥x∥ ⩽ R∗ also hold.
Then this LP is equivalent to

max
z∗,R∗

R∗

s.t. AT z∗ + 1R∗ ⩽ b

since ∥ai∥ = 1 for every i.

iii) The vector (z∗, R∗) ∈ Rn+1 is the maximizer of the LP given in part (ii). Then there exist a
set of at most n+ 1 tight inequalities of the LP so that the subsystem of these inequalities
uniquely define the optimizer (z∗, R∗). Then the polyhedron for this subsystem also has
(z∗, R∗) as an optimizer such that this system defines the same Chebyshev center.

iv) The dual linear program is
min bT y
AT y = 0
1T y = 1
y ⩾ 0

,

3) (Complementary slackness)

Consider the primal/dual pair

max cTx
Ax ⩽ b

and min bT y
yTA = cT

y ⩾ 0

defined by A ∈ Rm×n, b ∈ Rm and c ∈ Rn. Let x∗ ∈ Rn and y∗ ∈ Rm be feasible primal and
dual solutions respectively.

Show the following: x∗ and y∗ are both optimal solutions respectively if and only if (y∗)i >
0 =⇒ Aix

∗ = bi for each i ∈ [m].



Solution:
First we show ⇐.

By the assumption, we have that

y∗T b =

m∑
j=1

y∗j bj

=

m∑
j=1

y∗j (Ajx
∗)

=

m∑
j=1

y∗j

(
n∑

i=1

Ajix
∗
i

)

=
n∑

i=1

x∗i

 m∑
j=1

Ajiy
∗
j


= x∗T c

= cTx∗

so that x∗, y∗ achieve the same primal/dual objective value and are therefore optimal by strong
duality. For the second equality, we have used that whenever the summand is nonzero, Ajx

∗ = bj .

We then show ⇒.

We have that as x∗, y∗ are optimal, cTx∗ = bT y∗ by strong duality. Then

cTx∗ =
n∑

i=1

x∗i ci

=
n∑

i=1

x∗i

 m∑
j=1

Ajiy
∗
j


=

m∑
j=1

y∗j

(
n∑

i=1

Ajix
∗
i

)

=

m∑
j=1

y∗j (Ajx
∗)

⩽
m∑
j=1

y∗j bj

= y∗T b

where we have used that y∗j ⩾ 0 for every j in the last inequality. Then as the above inequalities

must hold with equality everywhere since cTx∗ = bT y∗, it must be that if y∗j > 0 then Ajx
∗ = bj .

4) Consider the linear programming problems

max cTx
Ax ⩽ b
x ⩾ 0

and min bT y
yTA ⩾ cT

y ⩾ 0



i) Show that the minimization problem on the right is equivalent to the dual of the maximiza-
tion problem.

ii) Let x∗ and y∗ be feasible solutions of the maximization and minimization problem respec-
tively. Show that they are both optimal solutions respectively if and only if the following
condition holds:

(y∗)T (b−Ax∗) = 0 and (yTA− cT )x∗ = 0.

Solution:

i) We rewrite the maximization problem as:

max cTx

Ãx ⩽ b̃

where Ã =

(
A
−I

)
and b̃ =

(
b
0

)
. Then the dual of this maximization problem is

min b̃T ỹ

ỹT Ã = cT

ỹ ⩾ 0

Let ỹ =

(
y
y′

)
then the objective becomes b̃T ỹ = bT y and the constraint becomes ỹT Ã =

yTA− (y′)T = cT , y, y′ ⩾ 0 ⇔ yTA = cT , y ⩾ 0. Therefore the dual problem is equivalent to

min bT y
yTA ⩾ cT

y ⩾ 0

which is the minimization problem on the right.

ii) By weak duality we have
cTx∗ ⩽ (y∗)TAx∗ ⩽ (y∗)T b.

Both x∗ and y∗ are optimal solutions if and only if both of inequalities above are equalities,
which is equivalent to

(yTA− cT )x∗ = 0 and (y∗)T (b−Ax∗) = 0.


