

Discrete Optimization (Spring 2025)

Assignment 5

1) Suppose you are given an oracle algorithm, which for a given polyhedron

$$P = \{\bar{x} \in \mathbb{R}^n : \bar{A}\bar{x} \leq \bar{b}\}$$

gives you a feasible solution or asserts that there is none. Show that using a single call of this oracle one can obtain an optimum solution for the LP

$$\max\{c^T x : x \in \mathbb{R}^n; Ax \leq b\}$$

assuming that the LP is feasible and bounded.

Solution:

The LP is feasible and bounded, thus an optimum solution must exist. Strong duality tells us that the dual $\min\{b^T y : A^T y = c, y \geq 0\}$ is feasible and bounded. For optimal solutions x^* of the primal and y^* of the dual we have

$$b^T y^* = c^T x^*.$$

Thus every point (x^*, y^*) of the polyhedron

$$\begin{aligned} c^T x &= b^T y \\ Ax &\leq b \\ A^T y &= c \\ y &\geq 0 \end{aligned}$$

is optimal. Hence with one oracle call for the polyhedron above we get an optimal solution of the LP.

2) Determine the dual program for the following linear program:

$$\begin{aligned} \min \quad & 3x_1 + 2x_2 - 3x_3 + 4x_4 \\ & 2x_1 - 2x_2 + 3x_3 + 4x_4 \leq 3 \\ & x_2 + 3x_3 + 4x_4 \geq -5 \\ & 2x_1 - 3x_2 - 7x_3 - 4x_4 = 2 \\ & x_1 \geq 0 \\ & x_4 \leq 0 \end{aligned}$$

Solution:

$$\begin{aligned} \max \quad & 3y_1 - 5y_2 + 2y_3 \\ & 2y_1 + 2y_3 \leq 3 \\ & -2y_1 + y_2 - 3y_3 = 2 \\ & 3y_1 + 3y_2 - 7y_3 = -3 \\ & y_1 + y_2 - y_3 \geq 1 \\ & y_1 \leq 0 \\ & y_2 \geq 0 \end{aligned}$$

3) Let $P = \{x \in \mathbb{R}^n : Ax \leq b\}$ be a bounded, non-empty polyhedron. Formulate a linear program that computes the largest ball inside P.

Solution:

A ball of radius r and center x is contained in P if and only if $x \in P$ and x has distance at least r from any hyperplane defining P . Hence we obtain the following linear program:

$$\begin{aligned} & \max \quad r \\ \text{subject to } & \frac{b_i - a_i x}{\|a_i\|} \geq r \quad \forall i = 1, \dots, m \\ & Ax \leq b \end{aligned}$$

where a_1, \dots, a_m are the rows of A and $b = (b_1 \dots b_m)^T$.

4) Consider the following linear program:

$$\begin{aligned} & \max \quad x_1 + x_2 \\ \text{subject to } & 2x_1 + x_2 \leq 6 \\ & x_1 + 2x_2 \leq 8 \\ & 3x_1 + 4x_2 \leq 22 \\ & x_1 + 5x_2 \leq 23 \end{aligned}$$

Show that $(4/3, 10/3)$ is an optimal solution by using weak duality.

Solution:

The assignment $(4/3, 10/3)$ has the objective function value of $14/3$. In order to prove that it is optimal (via weak duality), we are going to form the dual LP, and find a feasible solution to the dual that achieves the same objective value. The dual is:

$$\min \quad 6y_1 + 8y_2 + 22y_3 + 23y_4 \quad (1)$$

$$\text{subject to } 2y_1 + y_2 + 3y_3 + y_4 = 1 \quad (2)$$

$$y_1 + 2y_2 + 4y_3 + 5y_4 = 1 \quad (3)$$

$$y_1, y_2, y_3, y_4 \geq 0 \quad (4)$$

Thus, we are looking for a feasible dual solution such that $6y_1 + 8y_2 + 22y_3 + 23y_4 = 14/3$. By using Gaussian elimination on this constraint combined with (1) and (2) we get:

$$-4y_2 - 2y_3 - 7y_4 = -4/3$$

$$-3y_2 - 5y_3 - 9y_4 = -1$$

and

$$14/3y_3 + 5y_4 = 0.$$

Since $y_1, y_2, y_3, y_4 \geq 0$, we have that $y_3 = y_4 = 0$ and then $y_1 = y_2 = 1/3$. This is the desired feasible dual solution coinciding with the primal solution $(4/3, 10/3)$, proving the optimality of the latter.