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1) Let P = {x : Ax ⩽ b} ⊆ Rn be a polyhedron. Show that x∗ is an extreme point ⇐⇒ ∀x1 ̸=
x2 ∈ P, x∗ ̸= 1

2x1 +
1
2x2.

Solution:
We show x∗ is an extreme point =⇒ ∀x1 ̸= x2 ∈ P, x∗ ̸= 1

2x1 +
1
2x2.

Since x∗ is an extreme point, there exists an inequality aTx ⩽ β valid for K such that {x∗} =
P ∩{x ∈ Rn : aTx = β}. Assume that x∗ can be written as a midpoint of two points x1, x2 ∈ K.
We obtain that

β = aTx∗ = aT (1/2x1 + 1/2x2) = 1/2aTx1 + 1/2aTx2 < 1/2β + 1/2β = β

which gives a contradiction. We used that aTx1 < β since aTx1 ⩽ β(aTx ⩽ β is valid for P and
x1 ∈ P ) and aTx1 ̸= β (x∗ is the only point in P satisfying aTx ⩽ β with equality).

We show ∀x1 ̸= x2 ∈ P, x∗ ̸= 1
2x1 +

1
2x2 =⇒ x∗ is an extreme point.

Let Ax∗be the a set of valid inequalities for P which are tight at x∗. If rank(Ax∗) < n then
there exists a vector d and ϵ ∈ R > 0 such that ad = 0 for any vector a of Ax∗ and x∗ ± ϵd ∈ P .
Since x∗ = 1/2(x∗+ ϵd)+1/2(x∗− ϵd) we have a contradiction. As this cannot hold, here exist n
linearly independent vectors that form the rows of some matrix A such that each row is a valid
inequality aTi x = bi for P and Ax∗ = b at x∗. Let c = 1TA. Then x∗ is the unique point x such
that cx = 1T b and Ax ⩽ b. Thus x∗ is an extreme point.

2) Suppose that the linear program max{cTx : x ∈ Rn, Ax ⩽ b} is non-degenerate and B is an
optimal basis. Show that the linear program has a unique optimal solution if and only if λB > 0.

Solution:
Let x∗ be the optimal solution corresponding to B and λT

BAB = cT with λB > 0. Suppose that
there is another optimal solution x′. This gives

0 = cT (x∗ − x′) = λT
B(ABx

∗ −ABx
′) = λT

B(bB −ABx
′).

Since λB > 0 and bB −ABx
′ ⩾ 0, we must have bB −ABx

′ = 0, hence x′ = A−1
B bB = x∗.

Now, assume that x∗ is the unique optimal solution. Assume for the sake of contradiction that
λB has a zero component λj = 0, j ∈ B. First we choose the direction d = (−1)A−1

B ej where
ej is the jth unit vector. Next, we shall determine the step-size ε > 0 such that x∗ + εd is also
an optimal solution and different from x∗, which is a contradiction. Note that for any ε > 0 we
have

cT (x∗ + εd) = cTx∗ + cT εd = cTx∗ + ελT
BABd = cTx∗ − ελT

Bej = cTx∗ − ελj = cTx∗.

Thus we only need to choose ε > 0 so that x∗+ εd is feasible. Consider K = {j ∈ {1, 2, . . . ,m} :

aTj d > 0}. If K is empty, then we can take any ε > 0. Otherwise let ε = minj∈K

{
bj−aTj x∗

aTj d

}
.

Since the linear program is non-degenerate, bj − aTj x
∗ > 0, ∀ j ∈ [m] \B, hence ε > 0.



3) For each of the following assertion, provide a proof or a counterexample.

i) An index that has just left the basis B in the simplex algorithm cannot enter in the very
next iteration.

ii) An index that has just entered the basis B in the simplex algorithm cannot leave again in
the very next iteration.

Solution:

i) An index that has left the basis can enter in the very next iteration. An example is a triangle
in the plane. Maybe the simplex method does not decide to walk to the neighboring optimal
vertex in one step but makes a detour (while improving) via the other vertex. In this case,
the inequality that has just left re-enters again.

ii) We use the fact that Simplex always chooses a direction that augments the objective func-
tion. Let B be a feasible basis and let Simplex move from B to B̃ = B \ {i} ∪ {j}, i.e., i
leaves the basis and j enters it. Note that B and B̃ have n − 1 common indices. Assume
that j leaves the basis in the next iteration. Let d and d̃ be the directions that Simplex
chooses to move from B to B̃ and away from B̃ respectively. Then, d · ak = 0 = d̃ · ak for all
k ∈ B \ {i}. Since the set of vectors ak : k ∈ B \ {i} are n−1 linearly independent vectors
and d, d̃ ∈ Rn, this means that d and d̃ are parallel. Since j entered the basis, this means
that aTj d > 0. Since j leaves the basis in the next step, aTj d̃ = −1. Thus, d = −wd̃ for some
w > 0. In particular, this means that the Simplex is moving in the opposite direction. Now,
due to the choice of the direction in Simplex we know that cTd > 0 and cT d̃ > 0. But this
is impossible as d = −wd̃.

4) Consider the following linear program:

max 6a+ 9b+ 2c

subject to a+ 3b+ c ⩽ −4

b+ c ⩽ −1

3a+ 3b− c ⩽ 1

a ⩽ 0

b ⩽ 0

c ⩽ 0.

Solve the linear program with the Simplex method and initial vertex (−1,−1, 0)T . For each
iteration indicate all the parameters including the optimal value and the proof of optimality.

Solution:

iteration basis vertex λ direction ϵ index exchange
1 {1, 2, 6} (−1,−1, 0) (6,−9, 5) (3,−1, 0) 1/3 2 → 4
2 {1, 4, 6} (0,−4/3, 0) (3, 3,−1) (0, 1/3,−1) 5/2 6 → 3
3 {1, 3, 4} (0,−1/2,−5/2) (5/2, 1/2, 2)

so that the last vertex is optimal with objective value −19/2.

5) Fill in the blanks to complete the code for the Simplex.py file which runs a simplex algorithm
for a non-degenerate LP.


