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Discrete Optimization (Spring 2025)

Assignment 3

1) Using Theorem 3.11, prove the following variant of Farkas’ lemma: Let A € R™*™ be a matrix

and b € R™ be a vector. The system Az < b, z € R" has a solution if and only if for all A € RZ
with ATA = 0 one has \Tb > 0.

Solution:
We first show Az < b has a solution = VA € R with MNA=0,ATb>0.

Assume that there actually exists some A € RZ, with M'A=0,ATb < 0. Then

(M Az =0Tz =0
M (Az) < Mo <0

which is impossible as AT Az is distributive. Here we used in the inequality that A > 0.
Now we show that VA € RY) with ATA =0 we have NTb > 0 = Az < b has a solution.

Assume that Az < b actually has no solution. Now consider the matrix A= (A —A Im)
where the 3 matrices are concatenated and I, is the m x m identity matrix. Then clearly
Az = b has no solution z > 0 as if there was such a solution where z = (u,v,s) for some
u € RY,v € RY),s € RY,, then we have that Au — Av + s = b where s > 0 such that
A(u —v) < b. This gives (u — v) € R™ as a solution to Az < b which is assumed not to exist.

Thus Az = b has no solution x > 0 such that the standard Farkas lemma tells us that there
exists some A € R such that

Mh <0
ATA>o0.
Then
MNA>0
= (A4 -A I,)>0
— MA>0,-MA4>01>0
— MMA=0,1>0.

Then A satisfies \TA = 0, \Th < 0, \ > 0 which is a contradiction to the assumption. So Az < b
must have a solution.

Provide an example of a convex and closed set K C R? and a linear objective function ¢’ x such

that inf{c’x: 2 € K} > —oco but there does not exist an z* € K with ¢’ 2* < ¢’z for all z € K.



Solution:
Let the set K be defined as follows:

K={zcR*: 2y >e "}

Then clearly K is convex and closed by convexity of the function f(z) = e™®. Now, let the
linear objective ¢’z = x5. Then for any = € K, x5 > e~** > 0 for any value z; € R so that the
objective ¢z > 0 > —oo for any = € K.

Assume there exists some z* = (23,23) € K such that ¢ 2* < ¢’z for all x € K. Take the point
& = (x4 1,e~@i*D) which is also a point in K. Then

To = e @It < e L g3,
Then ¢!z < ¢T'z* such that there does not exist such an x*.

Consider the vectors
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The vector

v=2x1+ 32 + 23 + x4 + 35 = 14

is a conic combination of the z;.
Write v as a conic combination using only three vectors of the x;.

Hint: Recall the proof of Carathéodory’s theorem

Solution:
Note that —z1 + 3 + x5 = 0.

Let A be the matrix | 1 z2 23 x4 x5 |. Then

1 1 -1 0
3 3 0 3
v=Al|2|=A|2|+A]| 1 | =43
1 1 0 1
3 3 1 4
Next, note that xs + x4 — 4x5 = 0. Then,
0 0 0 0
3 3 0 3
v=A|3|=A3]|+A| 1 |=A]4
1 1 1 2
4 4 —4 0

such that v = 3x9 + 423 + 224.
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In this exercise, assume that a linear program max{c’ = | Az < b} can be solved in constant time
O(1). Suppose that P(A,b) has vertices and that the linear program is bounded. Show how to
compute an optimal vertex solution of the linear program in polynomial time in n and m where
A e Rm*",

Solution:

Since P(A,b) has vertices, we have rank(A) = n. Recall Theorem 3.2 which shows that there is
an optimal vertez solution of the linear program max{c’z | Az < b}, if the linear program is
feasible and bounded and rank(A) = n. We will redo the proof of Theorem 3.2 in an algorithmic
way.

First by using the “black box” constant time O(1) algorithm, we get a feasible optimal solution

x*. Let Ag«x < by« be the subsystem of Ax < b that is satisfied by «* with equalities. Define
rank(z*) to be the rank of A«.

If z* is a vertex, we are done. Otherwise, rank(z*) < n and we will compute a feasible point
y* € P(A,b) such that

° CTy* — cTac*,

e rank(y*) > rank(z*).
The procedure of computing y* is as follows.

(a) Compute the matrix A,~, which can be done in polynomial time.

(b) Compute a non-zero kernel d € R",d # 0 of Az~, which can also be done in polynomial
time.

(¢) Compute the maximum distance Apax to move along the same direction of d or the opposite
direction of d, such that the updated point y* := z* 4 Apaxd is feasible, ¢’ y* = ¢'z*, and
rank(y*) > rank(z*). Note that since z* is optimal, we must have ¢!'d = 0 otherwise moving
along d or —d will strictly increase the objective value. Since Ad # 0 and Ag+~d = 0, we
can compute an inequality of Az < b, say al-Ta: < b;, such that it’s not in the subsystem

RPN AU
Ap+x < by and a;fpd # 0. Then take A\pax = bl|a(.;idr , move along d if a;rd > 0 and move

along —d if ade < 0.

The procedure described above is in polynomial time of n, m. We keep doing the procedure at
most n times until we get a feasible point whose rank is n, which is an optimal vertex solution.

Let A € R™™™ be a non-singular matrix and let a1, ..., a, € R™ be the columns of A. Show that
cone({ai,...,a,}) is the polyhedron P = {y € R": A~'y > 0}. Show that cone({ay,...,ax})
for k < n is the set P, = {y € R™: a;lx >0,i=1,...,k, ai_laU:O,i:k—i—l,...,n},where ai_l
denotes the i-th row of A~

Solution:

k
Let x € cone{ay,...,ax}. Then z = Z Aia; such that \; > 0 for all <.
i=1



A1
A2

Thenz = A | A, | where (), 0) has n—k zeros padded at the end. Then z satisfies A~'z = (A, 0)

0
0
and since \; > 0 for all i € [k], x € P. This shows cone{ay,...,ar} C Pj.
A1

Next let y € P, such that a; 'y > 0 fori € [k] and a; 'y = 0 fori € [k+1,n]. Then A~y = | \g

0

k n
for some values \; > 0,7 € [k] so that y = Z Aia; + Z Oa; so that y € cone{ay,...,ar}. Thus
i=1 i=k+1
Py, C cone{ay,...,ar}.

Prove that for a finite set X C R"™ the conic hull cone(X) is closed and convex.

Hint: Use Carathéodory’s theorem and exercise 5.

Solution:
We show that cone(X) is convex.

Let z,y € cone(X). Then z = Z Ao,y = Z Mz, Then Az+(1—-N)y = Z(A)\;—l—(l—)\))\g)x
reX zeX zeX
where (A\Z 4 (1 — A)AY) > 0 for every z as we are adding and multiplying non-negative values.

Thus Az + (1 — A\)y € cone(X).
We show that cone(X) is closed.

First, by Carathéodory’s theorem, for each y € Cong(X ), there exists a linearly independent
subset X C X of size at most n, such that y € cone(X). Therefore we have

cone(X) = U cone(X).

Xcx,
X is linearly independent

Since X is finite, the union above is also finite.

Next, we show that for every such cone(X) where X C X, |X | < n, and X is linearly independent,
cone(X) is closed. If | X| = n, then by Exercise 5, cone(X) = {y € R": A~y > 0} where the
columns of A are elements of X. Then for any convergent sequence (y,) in cone(X) where
A=Yy, > 0 for each n. Let y € R™ be the limit of (y,,). Since A~ s continuous, A=y, — A~ ly,
hence A~y > 0, i.e., y € cone(X). If | X| = k < n, then we first extend (in whatever way) X to
get X’ which is of size n and is linearly independent. Consider the matrix A where the columns
of A are the elements of X ’. Note that the first k& columns of A are elements of X. By Exercise 5,
cone(X)={y€R":a;'2>0,i=1,...,kand a; ‘o = 0,i = k+1,...,n}. For any convergent
sequence (yn) in cone(X), by a similar argument as before, one can show that the limit y of (yy)
satisfies a; y>0fori=1,. ,k and a; y=0fori=k+1,...,n, iec. y€cone(X)

Since the finite union of closed sets is closed, this completes our proof.



