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1) Using Theorem 3.11, prove the following variant of Farkas’ lemma: Let A ∈ Rm×n be a matrix
and b ∈ Rm be a vector. The system Ax ⩽ b, x ∈ Rn has a solution if and only if for all λ ∈ Rm

⩾0

with λTA = 0 one has λT b ⩾ 0.

Solution:
We first show Ax ⩽ b has a solution =⇒ ∀λ ∈ Rm

⩾0 with λTA = 0, λT b ⩾ 0.

Assume that there actually exists some λ ∈ Rm
⩾0 with λTA = 0, λT b < 0. Then

(λTA)x = 0Tx = 0

λT (Ax) ⩽ λT b < 0

which is impossible as λTAx is distributive. Here we used in the inequality that λ ⩾ 0.

Now we show that ∀λ ∈ Rm
⩾0 with λTA = 0 we have λT b ⩾ 0 =⇒ Ax ⩽ b has a solution.

Assume that Ax ⩽ b actually has no solution. Now consider the matrix Ã =
(
A −A Im

)
where the 3 matrices are concatenated and Im is the m × m identity matrix. Then clearly
Ãx = b has no solution x ⩾ 0 as if there was such a solution where x = (u, v, s) for some
u ∈ Rn

⩾0, v ∈ Rn
⩾0, s ∈ Rm

⩾0, then we have that Au − Av + s = b where s ⩾ 0 such that
A(u− v) ⩽ b. This gives (u− v) ∈ Rn as a solution to Ax ⩽ b which is assumed not to exist.

Thus Ãx = b has no solution x ⩾ 0 such that the standard Farkas lemma tells us that there
exists some λ ∈ Rm such that

λT b < 0

λT Ã ⩾ 0.

Then

λT Ã ⩾ 0

=⇒ λT
(
A −A Im

)
⩾ 0

=⇒ λTA ⩾ 0,−λTA ⩾ 0, λ ⩾ 0

=⇒ λTA = 0, λ ⩾ 0.

Then λ satisfies λTA = 0, λT b < 0, λ ⩾ 0 which is a contradiction to the assumption. So Ax ⩽ b
must have a solution.

2) Provide an example of a convex and closed set K ⊆ R2 and a linear objective function cTx such
that inf{cTx : x ∈ K} > −∞ but there does not exist an x∗ ∈ K with cTx∗ ⩽ cTx for all x ∈ K.



Solution:
Let the set K be defined as follows:

K = {x ∈ R2 : x2 ⩾ e−x1}.

Then clearly K is convex and closed by convexity of the function f(x) = e−x. Now, let the
linear objective cTx = x2. Then for any x ∈ K,x2 ⩾ e−x1 ⩾ 0 for any value x1 ∈ R so that the
objective cTx ⩾ 0 > −∞ for any x ∈ K.

Assume there exists some x∗ = (x∗1, x
∗
2) ∈ K such that cTx∗ ⩽ cTx for all x ∈ K. Take the point

x̃ = (x∗1 + 1, e−(x∗
1+1)) which is also a point in K. Then

x̃2 = e−(x∗
1+1) < e−x∗

1 ⩽ x∗2.

Then cT x̃ < cTx∗ such that there does not exist such an x∗.

3) Consider the vectors

x1 =

 3
1
2

 , x2 =

 1
2
5

 , x3 =

 2
0
1

 , x4 =

 2
4
3

 , x5 =

 1
1
1

 .

The vector

v = x1 + 3x2 + 2x3 + x4 + 3x5 =

 15
14
25


is a conic combination of the xi.

Write v as a conic combination using only three vectors of the xi.

Hint: Recall the proof of Carathéodory’s theorem

Solution:
Note that −x1 + x3 + x5 = 0⃗.

Let A be the matrix

 | | | | |
x1 x2 x3 x4 x5
| | | | |

. Then

v = A


1
3
2
1
3

 = A


1
3
2
1
3

+A


−1
0
1
0
1

 = A


0
3
3
1
4

 .

Next, note that x3 + x4 − 4x5 = 0⃗. Then,

v = A


0
3
3
1
4

 = A


0
3
3
1
4

+A


0
0
1
1
−4

 = A


0
3
4
2
0


such that v = 3x2 + 4x3 + 2x4.



4) In this exercise, assume that a linear program max{cTx | Ax ⩽ b} can be solved in constant time
O(1). Suppose that P (A, b) has vertices and that the linear program is bounded. Show how to
compute an optimal vertex solution of the linear program in polynomial time in n and m where
A ∈ Rm×n.

Solution:
Since P (A, b) has vertices, we have rank(A) = n. Recall Theorem 3.2 which shows that there is
an optimal vertex solution of the linear program max{cTx | Ax ⩽ b}, if the linear program is
feasible and bounded and rank(A) = n. We will redo the proof of Theorem 3.2 in an algorithmic
way.

First by using the “black box” constant time O(1) algorithm, we get a feasible optimal solution
x∗. Let Ax∗x ⩽ bx∗ be the subsystem of Ax ⩽ b that is satisfied by x∗ with equalities. Define
rank(x∗) to be the rank of Ax∗ .

If x∗ is a vertex, we are done. Otherwise, rank(x∗) < n and we will compute a feasible point
y∗ ∈ P (A, b) such that

• cT y∗ = cTx∗,

• rank(y∗) > rank(x∗).

The procedure of computing y∗ is as follows.

(a) Compute the matrix Ax∗ , which can be done in polynomial time.

(b) Compute a non-zero kernel d ∈ Rn, d ̸= 0 of Ax∗ , which can also be done in polynomial
time.

(c) Compute the maximum distance λmax to move along the same direction of d or the opposite
direction of d, such that the updated point y∗ := x∗ ± λmaxd is feasible, cT y∗ = cTx∗, and
rank(y∗) > rank(x∗). Note that since x∗ is optimal, we must have cTd = 0 otherwise moving
along d or −d will strictly increase the objective value. Since Ad ̸= 0 and Ax∗d = 0, we
can compute an inequality of Ax ⩽ b, say aTi x ⩽ bi, such that it’s not in the subsystem

Ax∗x ⩽ bx∗ and aTi d ̸= 0. Then take λmax =
bi−aTi x∗

|aTi d| , move along d if aTi d > 0 and move

along −d if aTi d < 0.

The procedure described above is in polynomial time of n,m. We keep doing the procedure at
most n times until we get a feasible point whose rank is n, which is an optimal vertex solution.

5) Let A ∈ Rn×n be a non-singular matrix and let a1, . . . , an ∈ Rn be the columns of A. Show that
cone({a1, . . . , an}) is the polyhedron P = {y ∈ Rn : A−1y ⩾ 0}. Show that cone({a1, . . . , ak})
for k ⩽ n is the set Pk = {y ∈ Rn : a−1

i x ⩾ 0, i = 1, . . . , k, a−1
i x = 0, i = k+1, . . . , n}, where a−1

i

denotes the i-th row of A−1.

Solution:

Let x ∈ cone{a1, . . . , ak}. Then x =
k∑

i=1

λiai such that λi ⩾ 0 for all i.

Then x =

(
a1 a2 . . . ak
| | . . . |

)
λ1

λ2
...
λk

.



Then x = A



λ1

λ2
...
λk

0
...
0


where (λ, 0⃗) has n−k zeros padded at the end. Then x satisfies A−1x = (λ, 0⃗)

and since λi ⩾ 0 for all i ∈ [k], x ∈ Pk. This shows cone{a1, . . . , ak} ⊆ Pk.

Next let y ∈ Pk such that a−1
i y ⩾ 0 for i ∈ [k] and a−1

i y = 0 for i ∈ [k+1, n]. Then A−1y =



λ1

λ2
...
λk

0
...
0


for some values λi ⩾ 0, i ∈ [k] so that y =

k∑
i=1

λiai+
n∑

i=k+1

0ai so that y ∈ cone{a1, . . . , ak}. Thus

Pk ⊆ cone{a1, . . . , ak}.

6) Prove that for a finite set X ⊆ Rn the conic hull cone(X) is closed and convex.

Hint: Use Carathéodory’s theorem and exercise 5.

Solution:
We show that cone(X) is convex.

Let z, y ∈ cone(X). Then z =
∑
x∈X

λz
xx, y =

∑
x∈X

λy
xx. Then λz+(1−λ)y =

∑
x∈X

(λλz
x+(1−λ)λy

x)x

where (λλz
x + (1− λ)λy

x) ⩾ 0 for every x as we are adding and multiplying non-negative values.
Thus λz + (1− λ)y ∈ cone(X).

We show that cone(X) is closed.

First, by Carathéodory’s theorem, for each y ∈ cone(X), there exists a linearly independent
subset X̃ ⊆ X of size at most n, such that y ∈ cone(X̃). Therefore we have

cone(X) =
⋃

X̃⊆X,

|X̃|⩽n,

X̃ is linearly independent

cone(X̃).

Since X is finite, the union above is also finite.

Next, we show that for every such cone(X̃) where X̃ ⊆ X, |X̃| ⩽ n, and X̃ is linearly independent,
cone(X̃) is closed. If |X̃| = n, then by Exercise 5, cone(X̃) = {y ∈ Rn : A−1y ⩾ 0} where the
columns of A are elements of X̃. Then for any convergent sequence (yn) in cone(X̃) where
A−1yn ⩾ 0 for each n. Let y ∈ Rn be the limit of (yn). Since A

−1 is continuous, A−1yn → A−1y,
hence A−1y ⩾ 0, i.e., y ∈ cone(X̃). If |X̃| = k ⩽ n, then we first extend (in whatever way) X̃ to
get X ′ which is of size n and is linearly independent. Consider the matrix A where the columns
of A are the elements of X ′. Note that the first k columns of A are elements of X̃. By Exercise 5,
cone(X̃) = {y ∈ Rn : a−1

i x ⩾ 0, i = 1, . . . , k and a−1
i x = 0, i = k + 1, . . . , n}. For any convergent

sequence (yn) in cone(X̃), by a similar argument as before, one can show that the limit y of (yn)
satisfies a−1

i y ⩾ 0 for i = 1, . . . , k and a−1
i y = 0 for i = k + 1, . . . , n, i.e., y ∈ cone(X̃).

Since the finite union of closed sets is closed, this completes our proof.


