

Discrete Optimization (Spring 2025)

Assignment 3

1) Using Theorem 3.11, prove the following variant of Farkas' lemma: Let $A \in \mathbb{R}^{m \times n}$ be a matrix and $b \in \mathbb{R}^m$ be a vector. The system $Ax \leq b$, $x \in \mathbb{R}^n$ has a solution if and only if for all $\lambda \in \mathbb{R}_{\geq 0}^m$ with $\lambda^T A = 0$ one has $\lambda^T b \geq 0$.

Solution:

We first show $Ax \leq b$ has a solution $\implies \forall \lambda \in \mathbb{R}_{\geq 0}^m$ with $\lambda^T A = 0, \lambda^T b \geq 0$.

Assume that there actually exists some $\lambda \in \mathbb{R}_{\geq 0}^m$ with $\lambda^T A = 0, \lambda^T b < 0$. Then

$$\begin{aligned} (\lambda^T A)x &= 0^T x &= 0 \\ \lambda^T(Ax) &\leq \lambda^T b &< 0 \end{aligned}$$

which is impossible as $\lambda^T Ax$ is distributive. Here we used in the inequality that $\lambda \geq 0$.

Now we show that $\forall \lambda \in \mathbb{R}_{\geq 0}^m$ with $\lambda^T A = 0$ we have $\lambda^T b \geq 0 \implies Ax \leq b$ has a solution.

Assume that $Ax \leq b$ actually has no solution. Now consider the matrix $\tilde{A} = (A \ -A \ I_m)$ where the 3 matrices are concatenated and I_m is the $m \times m$ identity matrix. Then clearly $\tilde{A}x = b$ has no solution $x \geq 0$ as if there was such a solution where $x = (u, v, s)$ for some $u \in \mathbb{R}_{\geq 0}^n, v \in \mathbb{R}_{\geq 0}^n, s \in \mathbb{R}_{\geq 0}^m$, then we have that $Au - Av + s = b$ where $s \geq 0$ such that $A(u - v) \leq b$. This gives $(u - v) \in \mathbb{R}^n$ as a solution to $Ax \leq b$ which is assumed not to exist.

Thus $\tilde{A}x = b$ has no solution $x \geq 0$ such that the standard Farkas lemma tells us that there exists some $\lambda \in \mathbb{R}^m$ such that

$$\begin{aligned} \lambda^T b &< 0 \\ \lambda^T \tilde{A} &\geq 0. \end{aligned}$$

Then

$$\begin{aligned} \lambda^T \tilde{A} &\geq 0 \\ \implies \lambda^T (A \ -A \ I_m) &\geq 0 \\ \implies \lambda^T A &\geq 0, -\lambda^T A \geq 0, \lambda \geq 0 \\ \implies \lambda^T A &= 0, \lambda \geq 0. \end{aligned}$$

Then λ satisfies $\lambda^T A = 0, \lambda^T b < 0, \lambda \geq 0$ which is a contradiction to the assumption. So $Ax \leq b$ must have a solution.

2) Provide an example of a convex and closed set $K \subseteq \mathbb{R}^2$ and a linear objective function $c^T x$ such that $\inf\{c^T x: x \in K\} > -\infty$ but there does not exist an $x^* \in K$ with $c^T x^* \leq c^T x$ for all $x \in K$.

Solution:

Let the set K be defined as follows:

$$K = \{x \in \mathbb{R}^2 : x_2 \geq e^{-x_1}\}.$$

Then clearly K is convex and closed by convexity of the function $f(x) = e^{-x}$. Now, let the linear objective $c^T x = x_2$. Then for any $x \in K$, $x_2 \geq e^{-x_1} \geq 0$ for any value $x_1 \in \mathbb{R}$ so that the objective $c^T x \geq 0 > -\infty$ for any $x \in K$.

Assume there exists some $x^* = (x_1^*, x_2^*) \in K$ such that $c^T x^* \leq c^T x$ for all $x \in K$. Take the point $\tilde{x} = (x_1^* + 1, e^{-(x_1^* + 1)})$ which is also a point in K . Then

$$\tilde{x}_2 = e^{-(x_1^* + 1)} < e^{-x_1^*} \leq x_2^*.$$

Then $c^T \tilde{x} < c^T x^*$ such that there does not exist such an x^* .

3) Consider the vectors

$$x_1 = \begin{pmatrix} 3 \\ 1 \\ 2 \end{pmatrix}, x_2 = \begin{pmatrix} 1 \\ 2 \\ 5 \end{pmatrix}, x_3 = \begin{pmatrix} 2 \\ 0 \\ 1 \end{pmatrix}, x_4 = \begin{pmatrix} 2 \\ 4 \\ 3 \end{pmatrix}, x_5 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}.$$

The vector

$$v = x_1 + 3x_2 + 2x_3 + x_4 + 3x_5 = \begin{pmatrix} 15 \\ 14 \\ 25 \end{pmatrix}$$

is a conic combination of the x_i .

Write v as a conic combination using only three vectors of the x_i .

Hint: Recall the proof of Carathéodory's theorem

Solution:

Note that $-x_1 + x_3 + x_5 = \vec{0}$.

Let A be the matrix $\begin{pmatrix} | & | & | & | & | \\ x_1 & x_2 & x_3 & x_4 & x_5 \\ | & | & | & | & | \end{pmatrix}$. Then

$$v = A \begin{pmatrix} 1 \\ 3 \\ 2 \\ 1 \\ 3 \end{pmatrix} = A \begin{pmatrix} 1 \\ 3 \\ 2 \\ 1 \\ 3 \end{pmatrix} + A \begin{pmatrix} -1 \\ 0 \\ 1 \\ 0 \\ 1 \end{pmatrix} = A \begin{pmatrix} 0 \\ 3 \\ 3 \\ 1 \\ 4 \end{pmatrix}.$$

Next, note that $x_3 + x_4 - 4x_5 = \vec{0}$. Then,

$$v = A \begin{pmatrix} 0 \\ 3 \\ 3 \\ 1 \\ 4 \end{pmatrix} = A \begin{pmatrix} 0 \\ 3 \\ 3 \\ 1 \\ 4 \end{pmatrix} + A \begin{pmatrix} 0 \\ 0 \\ 1 \\ 1 \\ -4 \end{pmatrix} = A \begin{pmatrix} 0 \\ 3 \\ 4 \\ 2 \\ 0 \end{pmatrix}$$

such that $v = 3x_2 + 4x_3 + 2x_4$.

4) In this exercise, assume that a linear program $\max\{c^T x \mid Ax \leq b\}$ can be solved in constant time $O(1)$. Suppose that $P(A, b)$ has vertices and that the linear program is bounded. Show how to compute an optimal *vertex* solution of the linear program in polynomial time in n and m where $A \in \mathbb{R}^{m \times n}$.

Solution:

Since $P(A, b)$ has vertices, we have $\text{rank}(A) = n$. Recall Theorem 3.2 which shows that there is an optimal *vertex* solution of the linear program $\max\{c^T x \mid Ax \leq b\}$, if the linear program is feasible and bounded and $\text{rank}(A) = n$. We will redo the proof of Theorem 3.2 in an algorithmic way.

First by using the “black box” constant time $O(1)$ algorithm, we get a feasible optimal solution x^* . Let $A_{x^*}x \leq b_{x^*}$ be the subsystem of $Ax \leq b$ that is satisfied by x^* with equalities. Define $\text{rank}(x^*)$ to be the rank of A_{x^*} .

If x^* is a vertex, we are done. Otherwise, $\text{rank}(x^*) < n$ and we will compute a feasible point $y^* \in P(A, b)$ such that

- $c^T y^* = c^T x^*$,
- $\text{rank}(y^*) > \text{rank}(x^*)$.

The procedure of computing y^* is as follows.

- (a) Compute the matrix A_{x^*} , which can be done in polynomial time.
- (b) Compute a non-zero kernel $d \in \mathbb{R}^n, d \neq 0$ of A_{x^*} , which can also be done in polynomial time.
- (c) Compute the maximum distance λ_{\max} to move along the same direction of d or the opposite direction of d , such that the updated point $y^* := x^* \pm \lambda_{\max}d$ is feasible, $c^T y^* = c^T x^*$, and $\text{rank}(y^*) > \text{rank}(x^*)$. Note that since x^* is optimal, we must have $c^T d = 0$ otherwise moving along d or $-d$ will strictly increase the objective value. Since $Ad \neq 0$ and $A_{x^*}d = 0$, we can compute an inequality of $Ax \leq b$, say $a_i^T x \leq b_i$, such that it’s not in the subsystem $A_{x^*}x \leq b_{x^*}$ and $a_i^T d \neq 0$. Then take $\lambda_{\max} = \frac{b_i - a_i^T x^*}{|a_i^T d|}$, move along d if $a_i^T d > 0$ and move along $-d$ if $a_i^T d < 0$.

The procedure described above is in polynomial time of n, m . We keep doing the procedure at most n times until we get a feasible point whose rank is n , which is an optimal *vertex* solution.

5) Let $A \in \mathbb{R}^{n \times n}$ be a non-singular matrix and let $a_1, \dots, a_n \in \mathbb{R}^n$ be the columns of A . Show that $\text{cone}(\{a_1, \dots, a_n\})$ is the polyhedron $P = \{y \in \mathbb{R}^n: A^{-1}y \geq 0\}$. Show that $\text{cone}(\{a_1, \dots, a_k\})$ for $k \leq n$ is the set $P_k = \{y \in \mathbb{R}^n: a_i^{-1}x \geq 0, i = 1, \dots, k, a_i^{-1}x = 0, i = k+1, \dots, n\}$, where a_i^{-1} denotes the i -th row of A^{-1} .

Solution:

Let $x \in \text{cone}\{a_1, \dots, a_n\}$. Then $x = \sum_{i=1}^k \lambda_i a_i$ such that $\lambda_i \geq 0$ for all i .

Then $x = \begin{pmatrix} a_1 & a_2 & \dots & a_n \\ | & | & \dots & | \end{pmatrix} \begin{pmatrix} \lambda_1 \\ \lambda_2 \\ \vdots \\ \lambda_k \end{pmatrix}$.

Then $x = A \begin{pmatrix} \lambda_1 \\ \lambda_2 \\ \vdots \\ \lambda_k \\ 0 \\ \vdots \\ 0 \end{pmatrix}$ where $(\lambda, \vec{0})$ has $n-k$ zeros padded at the end. Then x satisfies $A^{-1}x = (\lambda, \vec{0})$

and since $\lambda_i \geq 0$ for all $i \in [k]$, $x \in P_k$. This shows $\text{cone}\{a_1, \dots, a_k\} \subseteq P_k$.

Next let $y \in P_k$ such that $a_i^{-1}y \geq 0$ for $i \in [k]$ and $a_i^{-1}y = 0$ for $i \in [k+1, n]$. Then $A^{-1}y =$

$$\begin{pmatrix} \lambda_1 \\ \lambda_2 \\ \vdots \\ \lambda_k \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$

for some values $\lambda_i \geq 0, i \in [k]$ so that $y = \sum_{i=1}^k \lambda_i a_i + \sum_{i=k+1}^n 0a_i$ so that $y \in \text{cone}\{a_1, \dots, a_k\}$. Thus $P_k \subseteq \text{cone}\{a_1, \dots, a_k\}$.

6) Prove that for a finite set $X \subseteq \mathbb{R}^n$ the conic hull $\text{cone}(X)$ is closed and convex.

Hint: Use Carathéodory's theorem and exercise 5.

Solution:

We show that $\text{cone}(X)$ is convex.

Let $z, y \in \text{cone}(X)$. Then $z = \sum_{x \in X} \lambda_x^z x, y = \sum_{x \in X} \lambda_x^y x$. Then $\lambda z + (1-\lambda)y = \sum_{x \in X} (\lambda \lambda_x^z + (1-\lambda) \lambda_x^y) x$ where $(\lambda \lambda_x^z + (1-\lambda) \lambda_x^y) \geq 0$ for every x as we are adding and multiplying non-negative values. Thus $\lambda z + (1-\lambda)y \in \text{cone}(X)$.

We show that $\text{cone}(X)$ is closed.

First, by Carathéodory's theorem, for each $y \in \text{cone}(X)$, there exists a linearly independent subset $\tilde{X} \subseteq X$ of size at most n , such that $y \in \text{cone}(\tilde{X})$. Therefore we have

$$\text{cone}(X) = \bigcup_{\substack{\tilde{X} \subseteq X, \\ |\tilde{X}| \leq n, \\ \tilde{X} \text{ is linearly independent}}} \text{cone}(\tilde{X}).$$

Since X is finite, the union above is also finite.

Next, we show that for every such $\text{cone}(\tilde{X})$ where $\tilde{X} \subseteq X, |\tilde{X}| \leq n$, and \tilde{X} is linearly independent, $\text{cone}(\tilde{X})$ is closed. If $|\tilde{X}| = n$, then by Exercise 5, $\text{cone}(\tilde{X}) = \{y \in \mathbb{R}^n : A^{-1}y \geq 0\}$ where the columns of A are elements of \tilde{X} . Then for any convergent sequence (y_n) in $\text{cone}(\tilde{X})$ where $A^{-1}y_n \geq 0$ for each n . Let $y \in \mathbb{R}^n$ be the limit of (y_n) . Since A^{-1} is continuous, $A^{-1}y_n \rightarrow A^{-1}y$, hence $A^{-1}y \geq 0$, i.e., $y \in \text{cone}(\tilde{X})$. If $|\tilde{X}| = k \leq n$, then we first extend (in whatever way) \tilde{X} to get X' which is of size n and is linearly independent. Consider the matrix A where the columns of A are the elements of X' . Note that the first k columns of A are elements of \tilde{X} . By Exercise 5, $\text{cone}(\tilde{X}) = \{y \in \mathbb{R}^n : a_{i_k}^{-1}x \geq 0, i = 1, \dots, k \text{ and } a_i^{-1}x = 0, i = k+1, \dots, n\}$. For any convergent sequence (y_n) in $\text{cone}(\tilde{X})$, by a similar argument as before, one can show that the limit y of (y_n) satisfies $a_i^{-1}y \geq 0$ for $i = 1, \dots, k$ and $a_i^{-1}y = 0$ for $i = k+1, \dots, n$, i.e., $y \in \text{cone}(\tilde{X})$.

Since the finite union of closed sets is closed, this completes our proof.